
Exploiting On-device Image Classification for
Energy Efficiency in Ambient-aware Systems

Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

Abstract Ambient-aware applications need to know what objects are in the envi-
ronment. Although video data contains this information, analyzing it is a challenge
esp. on portable devices that are constrained in energy and storage. A naı̈ve solution
is to sample and stream video to the cloud, where advanced algorithms can be used
for analysis. However, this increases communication-energy costs, making this ap-
proach impractical. In this article, we show how to reduce energy in such systems by
employing simple on-device computations. In particular, we use a low-complexity
feature-based image classifier to filter out unnecessary frames from video. To lower
the processing energy and sustain a high throughput, we propose a hierarchically-
pipelined hardware architecture for the image classifier. Based on synthesis results
from an ASIC in a 45 nm SOI process, we demonstrate that the classifier can achieve
minimum-energy operation at a frame rate of 12 fps, while consuming only 3 mJ of
energy per frame. Using a prototype system, we estimate about 70% reduction in
communication energy when 5% of frames are interesting in a video stream.

1 Introduction

Portable devices connect to the physical world through sensors. One rich sensing
modality is the visual light field, which is captured by cameras. It provides us infor-
mation about various things and events around us. Thus, perceiving the environment
through a stream of video has the potential to light up a host of new context-aware
applications on portable devices. Fig. 1 illustrates three such examples. First, an on-
board camera can help a flying drone detect the presence of obstacles and aid in
navigation [4]. Second, a dash-mounted camera can provide real-time driver assis-

Mohammed Shoaib, Xian-Sheng Hua, Jie Liu, Jin Li
Microsoft Research, Redmond WA 98052 e-mail: {moshoaib,xshua,liuj,jinl}@microsoft.com

Swagath Venkataramani
School of ECE, Purdue University, W. Lafayette IN 47907 e-mail: venkata0@purdue.edu

1

Thezarars
Typewriter
Shuayb Zarar, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

Thezarars
Rectangle

2 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

Example 1: Drones: Detect and
avoid obstacles for navigation

Example 2: Car dashboards: Detect
pedestrians, lanes, etc. for alerting driver

Example 3: Wearables and smartphones: Detect objects
and people to provide feedback to user and to archive

Fig. 1 Video processing can enable a range of ambient-aware applications on portable devices.

tance by identifying traffic signs, pedestrians, lanes, and other automobiles [10, 7].
Third, wearable cameras and smartphones can detect people and objects in front of
them, which can help improve service and productivity [1, 5, 6, 2, 3] .

Observe that while extracting actionable information from video, a basic require-
ment is to detect and recognize objects in each frame. Then comes higher-level im-
age understanding such as actions, events, etc. Fortunately, all three of these are rich
areas of research and the literature provides many algorithmic options to solve them
[9, 8, 11]. However, when realizing these techniques in an end-to-end system for
portable devices, there are some new trade-offs that we need to make. We discuss
some of these next.

1.1 System-level Challenges

Fig. 2 shows a block diagram of the various steps involved in realizing an ambient-
aware system. It comprises computations for object detection, recognition, and im-
age understanding. Information derived from image understanding is used to drive
ambient-aware applications such as the ones described in the previous section. To be
realized on portable devices, such systems need to meet three key constraints. First,
most applications require ambient-aware systems to respond in real-time. One way
to achieve this is to keep some sensor in the system always on. For example, a dash-
mounted camera has to detect pedestrians as soon as they appear so that brakes can
be applied in time, if necessary. This can be achieved by either keeping the camera
always on or by using a continually operating motion detector to trigger the camera.
Second, these systems must have high algorithmic accuracy. This in turn implies

Object
Detection

Object
Recognition

Image
Understanding

C
am

e
ra

Key Requirements: Real-time performance, high accuracy, and low energy

Ambient-aware
Applications

(e.g., navigation, hyper-
local advertising, etc.)

Fig. 2 An end-to-end ambient-aware system involves computations for object detection, recogni-
tion, and image understanding. To be useful in a mobile scenario, such systems need to meet strict
constraints in performance and energy.

On-device Image Classification for Energy-efficient Ambient-aware Systems 3

that each step in the sequence to be precise. Third, these systems must be energy-
efficient when realized on a portable device. This last constraint arises due to the
need for mobility in several useful ambient-aware applications.

The three system-level constraints mentioned above lead to interesting design
trade-offs. Intuitively, lowering latency hints towards performing all computations
locally on the portable device. However, the associated energy costs for this ap-
proach can be prohibitive. Recent evaluations with face recognition on Google
Glass, an emerging wearable device, validate this behavior. Experiments show that
local computations can drain the battery at a speed that is 10× faster than routine use
(battery life is lowered from 377 min. to 38 min.) [12, 13]. Similar results have also
been observed for other portable devices such as smartphones, drones, and security
cameras [16, 17, 18]. Another trade-off is between accuracy and energy: accurate
algorithms are desirable at each stage but are prohibitive on portable devices due to
the high energy costs.

Since it is infeasible to support all computations locally on portable devices, there
is an emerging thrust towards realizing hybrid systems. Such systems aim to exploit
the growing connectivity of devices together with the computational capabilities of
the cloud [14, 15]. Although promising, these hybrid systems face issues along a
new dimension – they introduce additional latencies and energy costs due to data
communication. Fig. 3 shows the costs involved in acquiring 3-channel RGB video
[at 30 frames-per-second (fps), 2×8b per pixel] and streaming it to the cloud for
processing. For the analysis shown, we assume 90 mW power for sensing 1080p/60
fps video and 240 mW for MPEG compression by 10× [21, 20]. We also assume
that the power scales with the frame rate and resolution. Further, for communication
using the WiFi 802.11 a/g/n protocol, we assume transmission energies of 40 nJ/b
and 10 nJ/b at speeds of 54 and 150 Mbps, respectively [19]. Under these assump-
tions, for a portable device with a Li-ion battery of capacity 500 mAh (6660 J at 3.7
V), the streaming system model allows operation for only 96 minutes before requir-
ing a recharge. The recharge time reduces to 78 minutes and 35 minutes for 720p
and 1080p HD image resolutions, respectively. Thus, acquiring raw video on the
portable device and streaming it to the cloud for processing is undesirable for con-
tinuous operation. Thus, there is a need to dissect the sequence of computations so
that some are performed locally on the device and some on the cloud. Our proposed
system model is guided by this insight. We present details about it next.

Compr-
-ession

Tx

0.2 – 1.5
mJ/Fr.$

8 - 54
mJ/Fr.@

30 – 50
mJ/Fr.*

Portable Device

Cloud

Sensing

All Data
Transmitted

$: 45 mW OmniVision OV2470 1080p; @: MPEG: 240 mW for 10x compression;
* WiFi: 40 nJ/bit at 54 Mbps and 10 nJ/b at 150 Mbps for 802.11 a/g/n

- Object
Detection

- Object
Recognition

- Image
Understanding

VGA 720p 1080p

Ti
m

e
be

fo
re

 r
ec

ha
rg

e

96
min.

78
min.

35
min.

Fig. 3 Realizing an end-to-end ambient-aware system through continuous video streaming is in-
feasible on portable devices.

4 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

1.2 Design Approach

As an alternative to performing all computations in the cloud, we propose to split the
sequence so that computations are supported in parts on the device and the cloud. In
this section, we present the analysis behind our approach.

Consider the CamVid dataset, which is representative of typical recordings from
a portable device [22]. Specifically, the dataset provides multiple recordings from
a dash-mounted camera on a car; for illustration purposes, we have randomly cho-
sen one recording, seq05VD, of 3 min. There are many objects of interest in the
video recording. Observe from Fig. 4 that the frames-of-interest (FoI) (i.e., those
that contain relevant objects) comprise only a small percentage of all frames. On
average, across all objects, only 10% of the frames are interesting at 10 fps. At a
lower frame rate of 1 fps, this number is reduced to about 1%. This result shows
that just after the object detection step, the amount of useful data (determined by
FoI) can be reduced by 90–99%. Processing through the object-recognition step can
further lower the number of informative frames. However, the room for improve-
ment due to this step is low. Thus, in our end-to-end system, we propose to employ
computations for object detection (used synonymously with image classification) lo-
cally on the portable device, while performing all other computations in the cloud.
Through this approach, we will demonstrate that we can substantially reduce the
amount of communication energy (and thus the end-to-end system energy). To keep
the image-classification energy low, we will also show that we need to subtly tweak
the algorithmic accuracy as well as develop a dedicated hardware accelerator.

Our system model is shown in Fig. 5. Under the same assumptions as those used
for Fig. 3, we observe that using a local data filter for image classification on the
portable device can improve battery lives by up to 5.5× (i.e., battery life improves
from 96 min. or 1.6 hrs. in Fig. 3 to 8.8 hrs. in our case for VGA frames). These en-
ergy savings come due to a reduction in the communication energy. Observe that in
estimating the gains, we assume that the local filter for image classification reduces
useful data frames by 90% and that it costs an additional 3 mJ/frame. Next, we vali-

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

30

Pe
rs

is
te

n
ce

 (

Fr
am

es
)

Fo
I (

%
)

FoI

Mean FoI

Persistence at 1 fps

Fig. 4 Results from a typical video dataset show that most object persist in the camera’s field of
view for at least 10 frames. In a recording of approx. 3 min., on average, specific objects appear in
≤ 10% of the frames at 10 fps and in about 1% of the frames at 1 fps.

On-device Image Classification for Energy-efficient Ambient-aware Systems 5

Data Filter
(Local Proc.)

Compr-
-ession

TxSensing

Selected Data
Instances Transmitted

$: 45 mW OmniVision OV2470 1080p; @: MPEG: 240 mW for 10x compression;
* WiFi: 40 nJ/bit at 54 Mbps and 10 nJ/b at 150 Mbps for 802.11 a/g/n

0.2 – 1.5
mJ/Fr.$

8 - 54
mJ/Fr.@

30 – 50
mJ/Fr.*

3 – 22.5
mJ/Fr.

Portable Device Cloud

- Object
Recognition

- Image
Understanding

VGA 720p 1080p

Ti
m

e
be

fo
re

 r
ec

ha
rg

e

8.8
hrs.

3.6
hrs.

1.8
hrs.

< 10%
frames

Fig. 5 Proposed system model: Perform object detection locally on the device. This approach can
increase battery lives by up to 5.5× (i.e., 96 min. in Fig. 3 to 8.8 hrs. in our case for VGA frames).

date these assumptions and describe the trade-offs that exists between accuracy and
energy consumption of the data filter.

2 Algorithm Selection for Data Filtering

Recall from Fig. 4 that the FoI reduces with frame rate. Also, note from the figure
that once an object is found in a frame, it stays in the camera’s field of view for at
least 5-10 subsequent frames, when the video is sampled at 30 fps. We call this be-
havior persistence. The value of persistence is shown for the various objects in the
CamVid recording on the secondary Y-axis in Fig. 4. This high value of persistence
hints at the fact that we could lower the frame rate by 5-10× and still detect the
presence of interesting objects in the video. Equivalently, we could relax the accu-
racy of the image classification algorithm so that it detects at least one out of the
5-10 contiguous frames in which the object of interest appears. In our system, we
propose to exploit a combination of both of these approaches.

To sustain the battery charge up to a reasonably long duration, we assume a
computational energy budget of approx. 3-20 mJ (Fig. 5), depending on the image
resolution. Assuming a 50 mW budget for VGA (lowest) resolution, this translates
to 17 fps, 100 million operations per second (MOPS) [costing 2 mJ/Fr. total, assum-
ing 0.3 µW/OP], and less than 10 MB of memory accesses [costing 1 mJ/Fr. total,
assuming 100 pJ/B access energy] per frame. Thus, our energy budget still allows
room for relaxing the accuracy of the algorithm. We achieve this by employing the
technique of biased classifiers. We explain this concept next.

Fig. 6, in the middle, shows the energy constraints for implementing the de-
tection algorithm locally on the portable device. At the left, the figure also shows
two potential algorithm choices that we have for implementing image classification,
namely, A and B. Algorithm A has high accuracy but also high computational en-
ergy. Algorithm B, on the other hand, has both lower accuracy and energy. On the
right, the figure shows two metrics that represent the accuracy of the algorithms,
namely, true positives and false positives. Observe how for algorithm B one metric
is lower and another higher than algorithm A. True positives are determined by the
number of frames transmitted (FT) (or selected) by the algorithm that are among
the FoI – it is desirable to have these high. False positives are determined by the

6 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

AccuracyC
o

m
p

u
ta

ti
o

n
 E

n
er

gy

B

A

False Positives

Tr
u

e
Po

si
ti

ve
s

B

A B*
Gain

Loss

Fig. 6 We propose to bias a low-energy algorithm B towards having high true positives at the
cost of additional false positives (resulting in an algorithm B*). Gain and loss are annotated for
algorithm B* in comparison with algorithm B.

FT that are not among the FoI – it is desirable to have these low. Typically, both of
these metrics are related to each other, increasing (decreasing) one also increases
(decreases) the other. But, the change is not symmetric. In other words, increasing
the true positives by x% does not necessarily increase the false positives by the same
percentage. In fact, the change is dependent on the algorithm at hand. We propose
to exploit this niche property of classification algorithms in tweaking the on-device
image classifier.

Our proposal is to bias algorithm B such that it leads us to a new algorithm B*,
which has a high true positive rate (potentially close to that provided by algorithm
A) at the cost of a higher false positive rate than algorithm B (and algorithm A). For
ambient-aware applications, having high true positives is important since the algo-
rithm then does not miss frames that contain objects of interest. The above process
thus implies that algorithm B* transmits a few additional frames (comprising of the
additional false positives) when compared to algorithm A but is able to detect all of
the interesting frames that algorithm A would detect. However, an important point
to note is that this higher false positive rate of B* comes with an energy benefit over
A – recall that the energy requirements of algorithm B (and thus also B*) were much
lower than algorithm A to begin with.

The amount of energy algorithm B* helps us save end-to-end depends on how
simple algorithm B* is in comparison to algorithm A. Consider the computational
energy costs for algorithm B* ranging from 5-40 mJ/Fr. Fig. 7 shows the end-to-end
energy savings that are achievable with these potential costs. If algorithm B* costs
40mJ/Fr. for image classification, end-to-end energy savings are achieved only until
the number of frames transmitted (%FT) is ≤ 40%. Thus, if %FoI is 10%, there
is an additional room of 30% for the increasing false positive rate. However, if al-
gorithm B* costs only 5 mJ/Fr. then end-to-end energy savings are achieved until
94%, resulting in a room of 84% for the increase in false positive rate. Thus, to max-
imize the end-to-end energy savings, it makes more sense to choose an algorithm
B* that is energy efficient and has a higher false positive rate (like algorithm B*)
than one that has higher energy costs and a lower false positive rate (like algorithm
A). The image-classification algorithm that we select for our system is based on this
principle. We present details about it next.

On-device Image Classification for Energy-efficient Ambient-aware Systems 7

0

20

40

60

80

100

0 20 40 60 80 100

Es
ti

m
at

ed
 E

n
d

-t
o

-e
n

d
En

er
gy

 S
av

in
gs

 (
%

)

% FT (Ideally equal to % FoI)

5 mJ/Fr.
10 mJ/Fr.
20 mJ/Fr.
40 mJ/Fr.

Energy for
Local Filtering

B*

A

Energy for B* < Energy for A

Fig. 7 Since algorithm B* has much lower computational energy costs, it provides us higher end-
to-end energy savings than algorithm A. Figure adapted from [25].

3 Low-energy Algorithm for Image Classification

Recent results have shown that neural network based algorithms have the poten-
tial to provide state-of-the-art accuracy in image classification as well as in visual
recognition [23]. These algorithms employ dynamic decision models that require
large memories, high-bandwidth communication links, and compute capacities of
up to several GOPS [43, 42, 41]. With enormous potential parallelism, such algo-
rithms provide very high accuracies. However, these algorithms are not suited for
implementation in our case. This is because, as mentioned earlier, our goal is not
to select the algorithm with the highest accuracy but the one with the lowest energy
consumption. It is also desirable that the algorithm that we choose be programmable
so that it can detect arbitrary objects of interest. We thus choose an algorithm that
not only performed reasonably well in the ILSVRC competition, but also that which
had a much lower computational complexity [24]. The basic algorithm is illustrated
in Fig. 8. It comprises four major computational blocks that we describe next.

3.1 Interest-point Detection (IPD)

For each incoming frame, this step helps identify the pixel locations with the most
information. Locations typically lie at key-points such as corners, edges, blobs,
ridges, etc. In our case, we utilize the Harris-Stephens algorithm that detects pixel
locations on object corners [31]. In this algorithm, a patch of pixels I(x,y) is ex-
tracted around each pixel location (x,y) in a grayscale frame I. This patch is sub-
tracted from a shifted patch I(x+u,y+ v) centered at location (x+u,y+ v) and the
result is used to compute the sum-of-squared distances [denoted by S(x,y)] using
the following formulation:

8 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

Interest
Point

Detection

Feature
Extraction

Feature
Representation

ClassificationImage

p11 …….. p1N

p21 …….. p2N

: .. :

: .. :

pN1 …….. pMN

Corners

Edges

Image
matrix

Patches around
interest points

Local features
present in patch

Global features
inferred from patches

Class
Output

SIFT

GLOH

DAISY

BoV

Fisher

SVM

Decision tree

NN

M x N T x m x n T x D F x 1 1 x 1

Fig. 8 Light-weight algorithm used for image-classification on the portable device. At each stage,
our selection is shown circled and the dimensionality of data is shown at the bottom.

S(x,y) = ΣuΣvw(u,v)[I(u+ x,v+ y)− I(u,v)]2, (1)

where w(u,v) is a window function (matrix) that contains the set of weights for each
pixel in the frame patch. The weight matrix could comprise a circular window of
Gaussian (isotropic response) or uniform values. In our case, we pick uniform values
since it simplifies implementation. A corner is then characterized by a large variation
of S(x,y) in all directions around the pixel at (x,y). In order to aid the computation of
S(x,y), the algorithm exploits a Taylor series expansion of I(u+x,v+y) as follows:

I(u+ x,v+ y)≈ I(u,v)+ Ix(u,v)x+ Iy(u,v)y (2)

where Ix(u,v) and Iy(u,v) are the partial derivatives of the image patch I at (u,v)
along the x and y directions, respectively. Based on this approximation, we can write
S(x,y) as follows:

S(x,y)≈ ΣuΣvw(u,v) · [Ix(u,v) · x− Iy(u,v) · y]2 ≈ [x,y] A [x,y]T (3)

where A is a structure tensor that is given by the following:∣∣∣∣ < I2
x > < IxIy >

< IxIy > < I2
y >

∣∣∣∣ . (4)

In order to conclude that (x,y) is a corner location, we need to compute the eigen-
values of A. But, since the exact computation of the eigenvalues is computationally
expensive, we can compute the following corner measure Mc′(x,y) that approxi-
mates the characterization function based on the eigenvalues of A:

Mc′(x,y) = det(A)−κ · trace2(A). (5)

On-device Image Classification for Energy-efficient Ambient-aware Systems 9

T-Block S-Block
T image
patches N-BlockG-Block

T x D

Gaussian
Smoothing

H and V
Gradients

Spatial
Pooling

Normalize

P X P
Image patch

A X A
kernel

Conv.

P X P
Smooth Image

k X P X P
T-features

Pool
k X (D/k)

S-features

Grad.
+ Bin Norm

1 X D
N-Features

Fig. 9 We use the daisy feature extraction algorithm. It comprises T, S, N, and E processing blocks.

To be more efficient, we avoid setting the parameter κ and make use of a modified
corner measure Mc(x,y), which amounts to evaluating the harmonic mean of the
eigenvalues as follows:

Mc(x,y) = 2 ·det(A)/ [trace(A)+ ε] (6)

where ε is a small arbitrary positive constant (that is used to avoid division by zero).
After computing a corner measure [Mc(x,y)] at each pixel location (x,y) in the
frame, we need to assess if is largest among all abutting pixels and if it is above
a pre-specified threshold; marking it to be a corner if it is. This process is called
non-maximum suppression (NMS). The corners thus detected are invariant to light-
ing, translation, and rotation.

3.2 Feature Extraction

The feature-extraction step extracts low-level features from pixels around the inter-
est points. Typical classification algorithms use histogram-based feature-extraction
methods such as SIFT, HoG, GLOH, etc. While appearing quite different, many of
these can be constructed using a common modular framework consisting of five pro-
cessing stages, namely G-block, T-Block, S-Block, E-Block, and N-Block [27, 33].
This approach known as the daisy feature-extraction algorithm, thus allows us to
adapt one computation engine to represent most other feature-extraction methods
depending on tunable algorithmic parameters that can be set at run-time. Fig. 9
shows a block-level diagram of the daisy feature-extraction module. At each stage,
different candidate block algorithms may be swapped in and out to produce new
overall descriptors. In addition, parameters that are internal to the candidate features

10 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

can be tuned in order to maximize the performance of the descriptor as a whole. We
next present details about each of the processing stages.

• Pre-smoothing (G-block): A P×P patch of pixels around each interest point is
smoothed by convolving it with a 2d-Gaussian filter of standard deviation (σs).

• Transformation (T-block): This block maps the smoothed patch onto a length
k vector with non-negative elements. There are four sub-blocks defined for the
transformation, namely, T1, T2, T3, and T4. In our system, we have implemented
only the T1 and T2 blocks, with easy extensibility options for T3 and T4.

– T1: At each pixel location (x,y), we compute gradients along both horizontal
(∆x) and vertical (∆y) directions. We then apportion the magnitude of the
gradient vector into k (equals 4 in T1a and 8 in T1b mode) bins split equally
along the radial direction – resulting in an output array of k feature maps, each
of size P×P.

– T2: The gradient vector is quantized in a sine-weighted fashion into 4 (T2a)
or 8 (T2b) bins. For T2a, the quantization is done as follows: |∆x|−∆x; |∆x|+
∆x; |∆y| −∆y; |∆y|+∆y. For T2b, the quantization is done by concatenating
an additional length 4 vector using ∆45, which is the gradient vector rotated
through 45o.

– T3: At each pixel location (x,y), we apply steerable filters using n orientations
and compute the response from quadrature pairs. After this, we quantize the
result in a manner similar to T2a to produce a vector of length k = 4n (T3a)
and T2b to produce a vector of length k = 8n (T3b). It is also possible that
we use filters of second or higher-order derivatives and/or broader scales and
orientations in combination with the different quantization functions.

– T4: We compute two isotropic difference of Gaussian (DoG) responses with
different centers and scales (effectively reusing the G-block). These two re-
sponses are used to generate a length k = 4 vector by rectifying the positive
and negative parts into separate bins as described in T2.

• Spatial Pooling (S-block): In this stage, we accumulate weighted vectors from
the previous stage to give N linearly summed vectors of length k. This process
is similar to the histogram approach used other descriptor algorithms in the lit-
erature. We concatenate these N vectors to produce a descriptor of length kN.
Fig. 10 shows an overview of the different approaches. We use the following
pooling patterns for the vectors:

– S1: Square grid of pooling centers. The overall footprint of this grid is a pa-
rameter. The T-block features are spatially pooled by linearly weighting them
according to their distances from the pooling centers.

– S2: This is similar to the spatial histogram used in GLOH [34]. We use a polar
arrangement of summing regions. The radii of the centers, their locations, the
number of rings, and the number of locations per angular segment are all
parameters that can be adjusted (zero, 4, or 8) to maximize performance.

On-device Image Classification for Energy-efficient Ambient-aware Systems 11

Fig. 10 Examples of the various spatial summation patterns. Figure reproduced from [32].

– S3: We use normalized Gaussian weighting functions to sum input regions
over local pooling centers arranged in a 3×3, 4×4, or 5×5 grid. The sizes
and the positions of these grid samples are tunable parameters.

– S4: This is the same approach as S3 but with a polar arrangement of the Gaus-
sian pooling centers instead of being rectangular. We used 17 or 25 centers
with the ring sizes and locations being tunable parameters.

• Embedding (E-block): This is an optional stage that is mainly used to reduce
the feature vector dimensionality. This comprises multiple sub-stages: principal
component analysis (E1), locality preserving projections (E2) [35], locally dis-
criminative embedding (E3) [36], etc. In our design, we have not implemented
the E-block but provide an option for extensibility.

• Post Normalization (N-block): This block is used to remove descriptor depen-
dency on image contrast. In the non-iterative process, we first normalize the s-
block features to a unit vector (dividing by the Euclidean norm) and clip all ele-
ments that are above a threshold. In the iterative version of this block, we repeat
these steps until a maximum number of iterations have been reached.

3.3 Feature Representation

This step allows us to aggregate feature-vectors from all image patches to produce
a vector of constant dimensionality. Again, there are several algorithmic options for
high-level feature representation including the bag-of-visual words, fisher vectors
(FV), etc. [26]. We choose the FV, which is a statistical representation obtained by
pooling local image features. The FV representation provides high classification per-
formance, thanks to a richer Gaussian mixture model (GMM)-based representation
of the visual vocabulary. Next, we provide a description of the FV representation.

Let I = (x1,x2, . . . ,xT) be a set of T feature descriptors (i.e., the daisy fea-
tures) extracted from an image each of dimensionality D. Let Θ = (µk,Σk,φk,k =
1,2, . . . ,K) be the parameters of a GMM fitting the distribution of the daisy de-
scriptors. The GMM associates each vector xi to a centroid k in the mixture with a
strength given by the following posterior probability:

12 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

qik =
exp
[
− 1

2 (xi−µk)
T Σ
−1
k (xi−µk)

]
Σ K

t=1exp
[
− 1

2 (xi−µt)T Σ
−1
k (xi−µt)

] . (7)

For each centroid k, the mean (u jk) and covariance deviation (v jk) vectors are defined
as follows:

u jk =
1

T
√

πk
Σ

T
i=1qik

x ji−µ jk
σ jk

(8)

v jk =
1

T
√

2πk
Σ

T
i=1qik

[(
x ji−µ jk

σ jk

)2

−1

]
. (9)

where j = 1,2, . . . ,D spans the vector dimensions. The FV of an image I is the
stacking of the vectors uk and then of the vectors vk for each of the K centroids in
the Gaussian mixtures:

FV (I) = [. . .uk . . .vk . . .]
T . (10)

To get a good classification performance, the FVs need to be normalized. This is
achieved by reassigning each dimension z of an FV to be |z|α sign(z), where α is
a design parameter that is optimized to limit the dynamic range of the normalized
FVs. The FVs are normalized a second time by dividing each dimension by the l2

norm. The normalized FVs thus produced are global feature vectors of size 2KD.

3.4 Feature Classification

To keep the computational costs low, we use a simple margin-based classifier
[specifically, a support vector machine (SVM)] to classify the FVs. The classifier
thus helps detect relevant frames based on a model that is learned offline using pre-
labeled data during the training phase. In SVMs, a set of vectors (total NSV vectors),
called support vectors, determine the decision boundary. During online classifica-
tion, the FV is used to compute a distance score (DS) as follows:

DS =
NSV

∑
i=1

K (FV · svi)αiyi−b, (11)

where svi is the ith support vector; b, αi, and yi are training parameters; and the func-
tion K(·) is the kernel function, which is a design parameter. In our implementation,
we choose polynomial kernels (up to order 3), which are defined as follows:

K (FV · svi) = (FV · svi +β)d , (12)

where d and β are training parameters. Based on the sign of DS, an FV is assigned
to either the positive (object of interest) or the negative class. To bias the classifier
towards having a high true positive rate at the cost of increased false positive rate,
we modify the decision boundary using the various training parameters.

On-device Image Classification for Energy-efficient Ambient-aware Systems 13

Img. Scale Daisy T-Blk Daisy S-Blk SVM
Accuracy

1 2 4 T14 T24 T18 T28 Rect 1r8s 2r8s Lin Poly3 RBF

X X X X 0.65
X X X X 0.8
X X X X 0.85
X X X X 0.8
X X X X 0.6
X X X X 0.6
X X X X 0.6
X X X X 0.5
X X X X 0.5
X X X X 0.75
X X X X 0.45
X X X X 0.6

X X X X 0.8

X X X X 0.85
X X X X 0.85
X X X X 0.85
X X X X 0.8
X X X X 0.6

X X X X 0.85
X X X X 0.8
X X X X 0.8

Fig. 11 Design-space exploration of the algorithmic parameters for Caltech256: The highlighted
row gave the best performance and the algorithmic parameters were picked accordingly.

4 Software Implementation of On-device Image Classification

We implemented the end-to-end algorithm in C# and parallelized the code using
the task parallel library (TPL) provided by the .NET 4.5 framework [37]. To eval-
uate the algorithm, we used the following four image-classification datasets: Cal-
tech256 [30], NORB [28], PASCAL VOC [29], and CamVid [22]. For each of the
above datasets, we performed a design-space exploration of the algorithmic param-
eters to determine the best-performing values. Fig. 11, for instance, summarizes the
exploration results for Caltech256. The highlighted row gave the best accuracy and
the algorithmic parameters were chosen accordingly. Specifically, the image scale
factor was set to 2 along with T14-Rect for the daisy features and 3rd degree poly-
nomial kernel for the SVM. We also explored other microparameters (not shown in
Fig. 11) such as the number of GMM clusters and α scale values for the FVs etc.
After finding the best-performing parameters, we biased the SVM classifier using
data re-sampling so that the end-to-end algorithm has a high true positive rate. In
the rest of the article, we use the following two algorithmic performance metrics:
(1) coverage, which basically represents the true positive rate [but alludes to the
FoI that are detected (or covered) by the algorithm], and (2) FT, which represents a
combination of the false positives and true positives.

Fig. 12 shows the FT vs. FoI charts for the four datasets. Results are shown at
four different coverage levels: 30-50%, 50-70%, 70-90%, and 90-100%. These cov-
erage levels mean that the respective percentage of interesting frames are selected
or detected by the algorithm. Like previously mentioned, we bias the classifier to
achieve these coverage levels. The error bars shown in the figure represent the vari-
ance across different objects of interest. The dotted line along the diagonal indicates
the ideal value of FT (= FoI) the different coverage levels. Note that some lines cross
over the others i nthe figure. This is an artifact of our experimental data; we believe

14 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

0

20

40

60

80

100

0 15 30 45 60 75 90

FT
 (

%
)

--
>

FoI (%) -->

Caltech256

NORB

PASCAL VOC

CamVid

No Local Proc.
0

20

40

60

80

100

0 15 30 45 60 75 90

FT
 (

%
)

--
>

FoI (%) -->

Caltech256

NORB

PASCAL VOC

CamVid

No Local Proc.

Coverage 70-90%

0

20

40

60

80

100

0 15 30 45 60 75 90

FT
 (

%
)

--
>

FoI (%) -->

Caltech256 NORB

PASCAL VOC CamVid

No Local Proc.

Coverage 50-70%

0

20

40

60

80

100

0 15 30 45 60 75 90

FT
 (

%
)

--
>

FoI (%) -->

Caltech256 NORB

PASCAL VOC CamVid

No Local Proc.

Coverage 30-50%

Coverage >90%

Fig. 12 FT, which is ≥ FoI at higher coverage values, begins to approach FoI as we relax the
coverage levels of the algorithm.

that repeating the experiment for more objects (or different combinations of objects)
and averaging the results would smooth the trends and remove the cross overs.

From Fig. 12, we observe that without any on-device classification, FT is always
100%; this represents the streaming system model of Fig. 3. Further, with local
image classification, for a coverage of ≥ 90%, we are able to filter out ∼70% (FT =
30%) of the frames (averaged over all datasets) at FoI = 5%. This number improves
dramatically at lower coverage levels (i.e., goes down to 73%, 83%, and 91% at
coverage levels of 70-90%, 50-70%, and 30-50%, respectively). Lower coverage
levels are acceptable since typical datasets have substantial persistence (recall that
persistence was 10% at 10 fps in Fig. 4).Thanks to high persistence, the probability
of detecting at least one frame that contains the object of interest is thus high even
at low coverage levels. The large amounts of data filtering that we achieve though
local filtering translates directly into big system-level energy savings that we present
ahead in Sec. 6.2.1.

Although promising from an accuracy perspective, the software implementation
of the algorithm fares poorly when it comes to runtime costs. Table 1 shows how

On-device Image Classification for Energy-efficient Ambient-aware Systems 15

Table 1 Software implementation of image classification incurs a large processing delay that is
unacceptable for real-time context-aware applications. Table reproduced from [25].

Caltech256 NORB PASCAL CamVid
Frame Size 640 × 480 96 × 96 640 × 480 720 × 960

MOPS 161 9 81 211
Time/frame (sec.) 3.5 0.33 1.6 4.5

the algorithmic complexity varies depending on the frame size, number of interest
points, classifier model size, etc. (these parameters are dataset dependent). Across
all datasets, we find that the mean complexity is quite low: ∼116 MOPS. However,
the software run-time on both a desktop (Core i7) and mobile CPU (Snapdragon
800) exceeds 2.5 sec./frame on average. This latency comes about because we are
unable to fully exploit the inherent parallelism in the algorithm. Since this latency is
unacceptable for real-time context-aware applications, we propose to accelerate the
image-classification algorithm through hardware specialization. We describe this
approach next.

5 Hardware Implementation of On-device Image Classification

In this section, we propose a hardware-specialized engine called SAPPHIRE for ac-
celerating image classification on portable devices. Fig. 13 shows a block diagram
of the proposed architecture of a local computation platform for image classifica-
tion. An ARM-class processor is used to preprocess video frames as they stream
in. The raw frames are then handed off to the SAPPHIRE accelerator, which per-
forms image classification in an energy-efficient manner. The frames selected by
SAPPHIRE are then compressed by the processor and streamed out over a com-
munication link. Within the accelerator, we exploit several microarchitectural opti-
mizations to achieve significant processing efficiency. A key feature is that it can be
configured to obtain different power and performance points for a given application.
Thus, SAPPHIRE can be easily scaled to cater to both the performance constraints
of the application and the energy constraints of the device. In this section, we pro-

DDR 3/4
interface

D
at

a
I/

O ARM
Cortex
Ax CPU

FPU and NEON

MMU

I-Cache D-Cache
SAPPHIRE

accelerator

DMA x Ch.

IRQ, DMA sync. SWDT

TTC

Clock

TTC

Debug
UARTProgr. Interface

Fig. 13 Proposed use of an accelerator (SAPPHIRE) for image classification on portable devices.

16 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

vide details on the hardware optimizations that we use in SAPPHIRE followed by
block-level implementations of the various computing modules that comprise the
accelerator.

5.1 Hardware Optimizations

Through SAPPHIRE, we provide two key microarchitectural features: (1) stream
processing support through local data buffering and two-level vector reduction, and
(2) data-level parallelism through hierarchical pipelining. We describe these features
next.

5.2 Stream Processing

Our proposed architecture for SAPPHIRE allows for stream processing through two
techniques. First, it allows data to be buffered locally, which obviates the need for
multiple fetches from external memory. Thus, the required external memory band-
width requirements of SAPPHIRE are low. Second, we support a feature called 2-
level vector reduction. This is a commonly occurring computational process in our
system wherein vector data is processed in two stages. Fig. 14 illustrates the con-
cept more generally. In the first level of reduction (i.e., L1), two vectors operands
U and V are processed element-wise using a reduction function f . To achieve this,
we exploit inter-vector data parallelism (we provide more details about parallelism
in Sec. 5.3), which enables us to reuse the vector V across all L1 lanes. Thus, the
operation can be iteratively completed within a systolic array. In the second level of
reduction (i.e., L2), each element of the resulting vector W is processed by another
reduction function g. To achieve this, we decompose U and interleave the element-
wise operations. A common example of 2-level vector reduction is the computa-
tion of dot-products between two vectors in the first level followed by multiply-
accumulation of the resulting vector in the second level. Thanks to 2-level vector
reduction, we can avoid re-fetching data repeatedly from external memory. Thus,
both memory bandwidth and local storage are significantly lowered.

L1 L1 L1

U1

h

V21 V22

f

g

V2L

L2

L2L1

V U
=f

f
f
f
f
f

=
=
=
=
=

g h

W

Fig. 14 Two-level vector reduction along with local data buffering allows for stream processing
on SAPPHIRE.

On-device Image Classification for Energy-efficient Ambient-aware Systems 17

Feature Extraction Classification
Inter-picture

pipeline

Inter-patch
pipeline IPD Daisy N-Blk FV

Inter-pixel
pipeline G-Blk T-Blk S-Blk

FV-

Comp
Q-Comp

IPD

G-Blk

T-Blk

S-Blk

N-Blk

Fisher

SVM

FeaEx

Daisy

I-Pic.
pipe

I-Pat.
pipe

I-Pix.
pipe

X

XX
I-Pixel

I-Picture

I-Patch

DONE

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 15 Hierarchical pipelining in SAPPHIRE and the timing diagram for pipelining.

5.3 Data-level Parallelism

The image classification algorithm provides abundant opportunity for parallel pro-
cessing. Since, SAPPHIRE operates on a stream of frames, it is throughput limited.
Thus, we also exploit data-level parallelism through pipelining. An interesting fea-
ture of the algorithm is that the pipelined parallelism is not available at one given
level, but rather buried hierarchically across multiple levels of the design. To exploit
this parallelism, we develop a novel three-tiered, hierarchically pipelined architec-
ture shown in Fig. 15. The timing diagram for hierarchical pipelining is also shown
in the figure. Next, we provide details about the functional aspects of the system.

18 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

Inter-picture pipeline. This is the topmost tier in the pipeline. Here, we exploit
parallelism across successive input video frames. As shown in Fig. 15, this stage
comprises two parts, namely feature computation and classification. Feature compu-
tation includes IPD, daisy feature extraction, and the FV blocks. And classification
comprises just the SVM. As shown in the timing diagram, while global features of a
frame i are being computed, the previous frame i.e., i−1 is concurrently processed
by the classifier.

Inter-patch pipeline. This is the next tier in the pipeline. Here, we exploit par-
allelism within each feature-computation stage of the inter-picture pipeline. In this
tier, image patches around different interest points are processed concurrently. Thus,
this tier comprises the IPD, daisy (G, T, and S blocks only), and the FV modules.
Interest points that are found by the IPD are pushed onto a first-in first-out (FIFO)
memory, which are then utilized by the daisy sub-blocks to compute the S-block
features. These features are then normalized to produce the full local descriptors at
that interest point. The normalized vectors are consumed by the FV block, which
iteratively updates the global feature memory. The entire process is repeated until
the local memory is empty. It is interesting to note that the stages of computation
in this tier cannot be merged with the previous tier since global FV computations
require all descriptors (i.e., descriptors at all interest points) to be available before
evaluation. Due to this dependency, these tiers must be independently operated.

Inter-pixel pipeline. This is the innermost tier of the hierarchy and is present
within the G, T, and S blocks of the inter-patch pipeline. It leverages the parallelism
across pixels in a patch by operating them in a pipeline. The three daisy sub-blocks
(i.e., G, T, and S) together compute the S-Block feature output for each image patch
in the frame.

To maximize throughput, it is important to balance execution cycles across all
tiers of the pipeline. This, however, requires careful analysis since the execution
time of each block significantly differs based on the input data and other algorithmic
parameters. For instance, the delay of the second tier is proportional to the number
of interest points, which varies across different video frames. Thus, in our imple-
mentation, we systematically optimize resource allocation for the various blocks
based on their criticality to the overall throughput. To better understand the various
inter-twined hardware-software trade-offs, we next describe the microarchitectural
details of the computational block in SAPPHIRE.

5.4 Microarchitecture of Computational Blocks

In addition to pipelining, the algorithm also allows fine-grained parallel implemen-
tations within the various processing elements of SAPPHIRE. Many blocks involve
a series of 2-level vector reduction operations. In our design, we employ arrays of

On-device Image Classification for Energy-efficient Ambient-aware Systems 19

3
1 2

4
x N-1

M-1, N-1

N

M

W x 3 x N x 18bGrad. Comp.

MN
X 8b/
frame

R x N x 49b

D x log2M x log2N b

External Mem. (e.g., DRAM)

MC Comp.

NMS

Harris Interest-point Detection Module

Ctrl. Logic 4 x 32b

Fig. 16 Block diagram of the implemented IPD module: For typical algorithmic parameters, SAP-
PHIRE requires an external bandwidth of 70.31 Mbps for VGA, 0.46 Gbps for 1080p, and 1.85
Gbps for 4k image resolutions at 30fps.

specialized processing elements that are suitably interconnected to exploit this com-
putation pattern. We also employ local buffering at various stages of processing.
In this section, we describe the microarchitectural details of the different blocks in
SAPPHIRE.

5.4.1 The IPD Block

A block diagram of the hardware architecture for IPD is shown in Fig. 16. For every
pixel, we retrieve 4 pixels from the neighborhood using the ordering shown in the
figure. The pixels are fetched from external memory (8b/pixel) using an address
value that is generated by the IPD block. Thus, the external memory bandwidth
required for this operation is 4MN× 8b/frame, where M and N are the height and
width of the grayscale frame. For VGA resolution at 30 fps, this bandwidth would
be 281 Mbps and for 720p HD resolution at 60 fps, this would be 1.6 Gbps. Note
that this is modest since typical DDR3 DRAMs provide a peak bandwidth of up to
several 10s of Gbps.

The four abutting pixels are then used to compute the gradients along the hori-
zontal and vertical directions, which are buffered into a local FIFO memory of size
W × 3×N× 18b (in a nominal implementation W = 3 and the memory is of size
12.7 kB for VGA and 25.3 kB for 720p HD). These gradients are in turn used to
evaluate the corner measure (Mc). The data path comprises one CORDIC-based di-
vider besides other simple compute elements. The resulting corner measures are put
in a local FIFO of depth R (typically 3). This FIFO is thus of size 9.8 kB for VGA
and 19.5 kB for 720p HD. The Mc values are then processed by the NMS block,
which pushes the identified interest point locations (both x and y coordinates) onto
another local FIFO of depth D (typically 512). Thus, the FIFO capacity is typically
equal to 5.2 kB for VGA and 6.1 kB for 720p HD. In conclusion, if all pixels are
accessed from external memory, the total bandwidth requirements for the IPD block

20 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

External
Mem

(DRAM)

FIFO

FIFO

FIFO

2d-
PE

2d-
PE

2d-
PE

FIFO

2d-
PE

2d-
PE

FIFO

2d-
PE

2d-
PE

2d-
PE

FIFO

x

+

1d-PE

1d-PE

+

FIFO

CTRL

d x 8b

R

C

P
 x C

 x 2
4

b

Kernel Matrix

In
p

u
t

M
at

ri
x P x P x T

x 8b /
frame

Fig. 17 Block diagram of the systolic array architecture used for 2d-convolution in the G-block.

are: 70.31 Mbps for VGA, 0.46 Gbps for 1080p, and 1.85 Gbps for 4k image reso-
lutions at 30fps.

5.4.2 The Daisy Feature-extraction Block

The feature-extraction module is highly pipelined to perform stream processing of
pixels. As mentioned above, the entire architecture comprises four processing steps
that are heavily interleaved at the pixel, patch, and frame levels. This allows us
to exploit the inherent parallelism in the application and perform computations with
minimal delay. At a high level, the T-block is a single processing element that gener-
ates the T-block features sequentially. The patterns for spatial pooling in the S-block
are stored in an on-chip memory along the borders of the 2D-array. The spatially
pooled S-Block features are then produced at the output. The number of rows and
columns in the G-Block array and the number of lanes in the S-Block array can be
adjusted to achieve the desired energy and throughput scalability. Next, we provide
more details on each block.

G-Block. Fig. 17 shows a block diagram of the implemented systolic-array ar-
chitecture for 2d-convolution. Our architecture allows the inputs to be fed only once
allowing maximum data reuse, which minimizes the bandwidth requirements from
external memory. Further, the vector reduction process described above allows us to
perform 2d convolution along any direction, with varying stride lengths, and kernel
sizes.The systolic array is primarily used in the G-block.

T patches (of size P×P and centered at locations specified in the IPD output
FIFO) are read out from external memory in block sizes of R pixels. In each it-
erations, these R pixels are processed in R + 3C cycles to produce R processed
2d-convolution outputs. The processing core comprises a systolic array of 2d-
processing elements (PEs), which are basically small multiply-accumulate (MAC)
units and internal registers for fast-laning. As shown in Fig. 17, R input data vectors
and the kernel elements stored in C columns are processed by the 2d-PEs sequen-
tially. At any given point in time, the systolic array comprises fully- and partially-

On-device Image Classification for Energy-efficient Ambient-aware Systems 21

Fig. 18 At any given time, the systolic array comprises fully and partially convolved outputs that
are reduced by the 1d PEs in the second level of processing.

convolved outputs. This aspect is shown in Fig. 18. As per the illustration, note
in particular that the elements along the diagonal comprise the desired output that
will be available after CM cycles. In order to accommodate the partially convolved
outputs, we employ a set of 1d-PEs (accumulators) along the edge of the 2d-array.

The total memory requirements for the block are as follows: RCd× 8b for the
I/O FIFOs of depth d (typically, 16) and PC× 24b to store the partially convolved
outputs. If, pixels are re-fetched after IPD from external memory, the hardware re-
quires an external memory bandwidth of T P2× 8b. However, in our implementa-
tion, we avoid going to external memory by adding local buffers between the IPD
and feature-extraction blocks.

T, S, and N Blocks. Fig. 19 shows the block diagram of the T, S, and N blocks.
The data path for the T-block comprises gradient-computation and quantization en-
gines for the T1 (a), T1 (b), T2 (a), and T2 (b) modes of operation. In the S-block, we
have a configurable number of parallel lanes for the spatial-pooling process. These
lanes comprise comparators that read out N p pooling region boundaries from a local
memory and compare with the current pixel locations. The output from the S-block
is processed by the N-block, which comprises an efficient square-rooting algorithm
and division module (based on CORDIC). The T-block outputs are buffered in a
local memory of size 6(R+ 2)× 24b and the pooling region boundaries are stored
in a local SRAM memory of size 3N p× 8b. The power consumption and perfor-
mance of the S block can be adjusted by varying the number of lanes in the array.
These are called the parallel S-block lanes and we study their impact ahead in the
experimental results section (Sec. 6.2.3).

All data precisions are tuned to maximize the output signal-to-noise-ratio (SNR)
for most images. The levels of parallelism in the system, the output precisions, mem-
ory sizes etc. can all be parameterized in the code. In conclusion, assuming no local
data buffering between the IPD and daisy feature-extraction modules, the total mem-

22 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

Ix

Iy

T1 (a)
T1 (b)

T2 (a)
T2 (b)

3 x (R+2) x 24 b

3 x (R+2) x 24 b

Np x 3 x 8b

1
9

2 b

N-
block

Fig. 19 Block diagram of the T, S, and N processing blocks. SAPPHIRE has low internal memory
overheads: 207.38 kB for VGA, 257.32 kB for 1080p, and 331.11 kB for 4k image resolutions.

ory requirements of the feature-extraction block (for nominal ranges) are (assuming
64×64 patch size and 100 interest points): 1.2 kB (4×4 2d array and 25 pooling re-
gions) for a frame resolution of VGA (128×128 patch size and 100 interest points)
and 3.5 kB (8× 8 2d array and 25 pooling regions) for a frame resolution of 720p
HD. Since, in our implementation, we include local buffering between the IPD and
feature-extraction modules, they work in a pipelined manner and thus the external
data access bandwidth is completely masked. The total estimated storage capacity
for IPD and feature-extraction is 207.38 kB for VGA, 257.32 kB for 1080p, and
331.11 kB for 4k image resolutions

5.4.3 The FV Feature-representation Block

The microarchitecture of the FV representation block is shown in Fig. 20. It com-
prises three processing elements, namely, Q-compute, FV-compute and Q-norm
compute. We exploit parallelism across GMM clusters by ordering the Q and FV
computations in an arrayed fashion. The GMM parameters (i.e., µ , σ , and π) are
stored in on-chip streaming memory elements. The daisy feature descriptors come
in from the left, and are processed by the Q- and FV-compute elements. After one
round of processing, the global feature memory is updated. This process is repeated
across all GMM clusters – recall that the number of GMM clusters is an algorithmic
parameter that is fixed during the initial design-space exploration phase. To maxi-
mize throughput, the GMM model parameters are shared across successive feature
inputs in the Q and FV-compute elements. This sharing also saves us memory band-
width. The power and performance of the FV block can be adjusted by varying the
number of lanes in the processing element array. We revisit this aspect in Sec. 6.2.3.

On-device Image Classification for Energy-efficient Ambient-aware Systems 23

Fig. 20 Block diagram of the fisher-vector computation block. It involves three elements: Q com-
putation, Q-norm computation, and FV computation. The GMM parameters are shared across Q
and FV computations of successive patches. Figure reproduced from [25].

5.4.4 The SVM Feature-classification Block

Fig. 21 shows the microarchitecture of the SVM block. It comprises two types of
PEs, namely, the dot-product unit (DPU) and the kernel-function unit (KFU). These
units together realize the distance computation. Support vectors, which represent the
trained model, are stored in a streaming memory bank along the borders of the DPU
array. During on-line classification, the DPUs perform L1 vector reduction between
the feature descriptors and the support vectors to compute the dot products. After
this, the dot products are streamed out to the KFU, where the kernel function (rep-
resenting the L2 reduction) and the distance score is computed. In our implementa-
tion, we only support linear and polynomial kernels, but provide easy extensibility
options for other kernels. Finally, the distance score is used by the global decision
unit (GDU). to compute the classifier output. Note that all of the previous opera-
tions are independent and can be parallelized. Note also that the execution time of
the SVM is proportional to the number of DPU units (SVM lanes).

24 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

Fig. 21 Block diagram of the SVM classification block. Multiple (horizontal) processing lanes
allow parallel processing of the FVs.

Through the various microarchitectural and hardware optimizations (e.g., spe-
cialized processing elements, parallel stages, and multi-tiered pipelines) mentioned
in this section, SAPPHIRE performs efficient image classification. The ability to
scale performance and energy by adjusting the various design parameters is also a
key attribute of the hardware architecture. We explore this aspect next.

6 SAPPHIRE Evaluation

We evaluate the performance and energy consumption of SAPPHIRE in an ASIC
implementation. In this section, we describe about our experimental methodology.
We then present results at various levels of the design hierarchy.

6.1 Experimental Methodology

In this section, we describe our methodology and the benchmarks that we used to
evaluate the performance and energy consumption of SAPPHIRE.

Architecture-level evaluation. We implemented SAPPHIRE at the register-transfer
logic (RTL) level using Verilog hardware description language (HDL). We synthe-
sized it to an ASIC in a 45 nm SOI process using Synopsys Design Compiler. We

On-device Image Classification for Energy-efficient Ambient-aware Systems 25

Table 2 Microarchitectural- and circuit-level parameters used in SAPPHIRE. Table reproduced
from [25]

µArch. params Value Circuit Params Value
G-Blk Rows/Cols 3/8 Feature size 45 nm SOI

S-Blk Lanes 1 Area 0.5 mm2

FV Lanes 2 Power (lkg+act) 51.8 mW
SVM Lanes 4 Gate Count 150k
Peak GOPS 29 Frequency 250 MHz

(Daisy,FV,SVM) (18.5,6,2.5)

used Synopsys Power Compiler and Primetime to estimate the power consumption
and delay of SAPPHIRE at the gate level, respectively. The microarchitectural- and
circuit-level parameters that we used in our implementation are shown in Table 2.
Since repeatedly simulating the algorithm at the gate-level was prohibitive in terms
of runtime, we developed a cycle-accurate simulation model for the design. This
model helped us estimate the hardware performance much more efficiently. For the
estimations, we computed the energy consumption of SAPPHIRE as a product of
the cycle count, operating frequency, and total power.

System-level energy modeling. We estimated the energy consumption in the end-
to-end streaming system model (see Fig. 3) as follows:

Ebaseline = Esense +Ecompress +Etransmit (13)

where Esense, Ecompress, and Etransmit are the energies for sensing, compression, and
data transmission, respectively. We estimate the energy of the proposed system
model (see Fig. 5) as follows:

Eproposed = Esense +ESAPPHIRE +(1− γ)(Ecompress +Etransmit) (14)

where γ is the defined as the fraction of the filtered frames (i.e., γ =(100−FT)/100,
where FT is in percentage). To cover a broad spectrum of devices, we estimate each
of these energies by assuming a slightly relaxed choice of components (when com-
pared to Figs. 3 and 5). Specifically, we use the following numbers: a less aggres-
sive low-power OmniVision VGA sensor (100.08 mW) [38], a light-weight MPEG
encoder (20 mW and 5× compression) [39], and low-bandwidth 802.11a/g WiFi
transmitter (45 nJ/bit at 20 Mbps) [40]. We also assumed a frame rate of 10 fps.

Application benchmarks. We used the four benchmarks mentioned earlier to
evaluate the performance of SAPPHIRE. The first three (Caltech256, NORB, and
PASCAL VOC) are static image benchmarks, while CamVid is a labeled video
dataset. Across these benchmarks, we design SAPPHIRE to detect frames that con-
tain one of 13 objects and filter the rest.

26 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

6.2 Experimental Results

In this section, we demonstrate the performance and energy savings at the system
level due to SAPPHIRE. We also illustrate the impact of parameter tuning on the
hardware energy.

6.2.1 System-level Energy Benefits Due to SAPPHIRE

Like we mentioned before, adding SAPPHIRE saves us communication energy at
the cost of some extra computational energy. The energy required by SAPPHIRE is
shown in comparison to the other components in Fig. 22. Observe that SAPPHIRE
achieves a 1.4-3.0× (2.1× on average) improvement in system energy, while cap-
turing over 90% of interesting frames in the datasets; recall that these numbers are
what we used to estimate the battery recharge times in Fig. 5. At lower coverage lev-
els, the energy benefits are much higher. For instance, they reach to about 3.6× and
5.1× on an average at 70-90% and 50-70% coverages, respectively. It is interesting
to note that at lower coverage levels, the higher system-level energy savings come
about even in the presence of additional communication energy costs. The figure
also shows the energy overhead incurred due to SAPPHIRE as a fraction of the total
system energy.

Fig. 23 shows the total energy costs of SAPPHIRE in comparison with the other
system components for the different datasets. Compared to the baseline, we see that
SAPPHIRE only contributes to about 6% of the overall system energy. This energy
dis-proportionality between identifying interesting data vs. completely transmitting
them is key to the applicability of SAPPHIRE. The energy contributions of SAP-
PHIRE increase to 28% at lower coverage levels since the overall system energy is
also significantly lowered.

Fig. 24 shows how much energy savings can be achieved through SAPPHIRE at
different FoI levels. Observe that the energy benefits provided by SAPPHIRE are
bounded by the maximum number of frames that can be filtered out (i.e., FoI). At
higher values of FoI, the savings due to SAPPHIRE are lower. For instance, at ≥
90% coverage, the savings reduce from 2.1 to 1.3× as FoI goes from 5 to 70%.

{SAPPHIRE cost}

0.06

0.14

0.19 0.28

0

0.2

0.4

0.6

0.8

1

Caltech256 NORB PASCAL VOC CamVid GeoMean

N
o

rm
.

En
er

gy

No Local Proc. Sap >90% Sap 70-90% Sap 50-70%

{SAPPHIRE cost}

ESAPP

Fig. 22 SAPPHIRE costs 6% overhead but lowers system energy by 2.1×. This overhead increases
to 28% at lower coverage levels, but the overall system energy is also reduced.

On-device Image Classification for Energy-efficient Ambient-aware Systems 27

Caltech256 NORB Pascal CamVid

Image Size
640 x 480
24 b/pix

96 x 96
24 b/pix

640 x 480
24 b/pix

960 x 720
24 b/pix

Bits/frame 1.5 Mbits 88 Kbits 1.5 Mbits 3.3 Mbits

E/frame Sense+ 1.7 mJ 0.06 mJ 1.7 mJ 3.8 mJ

E/frame
Compress$

8 mJ 0.27 mJ 8 mJ 8 mJ

E/frame Tx* 66 mJ 2 mJ 66 mJ 149 mJ

Fig. 23 Comparison between energy costs of SAPPHIRE and other system components.

However, as we observed in Fig. 4, in most context-aware applications, FoIs are low
(≤ 10%). Thus, most systems can benefit substantially by employing SAPPHIRE
for local data filtering.

6.2.2 Runtime and Energy Breakdown of SAPPHIRE

Fig. 25, at the top, shows the percentage contributions to power and runtime, re-
spectively, of the various computational elements in SAPPHIRE. Note that the sum
of all runtimes does not equal 100% since the hardware is pipelined and more than
one block may be concurrently active. For these results, we use the microarchitec-
tural configuration of Table 2. At the bottom, the figure shows the breakdown in
the normalized energy. Observe that the energy proportions for the various com-

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

>90% 70-90%

50-70% Baseline
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

>90% 70-90%

50-70% Baseline

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80

>90% 70-90%

50-70% Baseline

Pascal VOC

NORBCaltech256

N
o

rm
al

iz
ed

 E
n

er
gy

N
o

rm
al

iz
ed

 E
n

er
gy

N
o

rm
al

iz
ed

 E
n

er
gy

FoI (%) FoI (%)

FoI (%)

Fig. 24 SAPPHIRE saves more energy at lower FoI (typical of appl.). Figure adapted from [25].

28 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

Fig. 25 Power, runtime, and energy breakdown of various computational blocks in SAPPHIRE.
Figure adapted from [25].

putational elements depend on the complexity of the dataset. For instance, number
of interest points are high in Caltech256, leading to a higher (∼90%) runtime for
daisy feature extraction. This is in contrast with NORB, where the SVM classifier
is active most of the time. Thus, we observe that the microarchitectural parameters
of SAPPHIRE need to be tuned so that we can optimize the energy consumption for
different datasets and applications. We explore this aspect next.

6.2.3 Microarchitectural Design-space Exploration

We perform an exhaustive search of the design space for the energy-optimal mi-
croarchitectural configuration of SAPPHIRE. Fig. 26(a) shows a scatter plot of per-
formance [i.e., achievable fps] vs. the normalized energy consumption per frame
for various architectural configurations. In Fig. 26(b), the energy per frame is de-
coupled into two components, namely frame processing time (FPT) and power (the
product of these is the energy/frame). The pareto optimal configurations that mini-
mize the energy consumption are also shown in Fig. 26(a). The configurations are
marked as a tuple comprising the number of parallel lanes in the G-, S-, FV- and
SVM-blocks, and the operating frequency of SAPPHIRE. We see from the figure
that the pareto-optimal configurations are not obtained by scaling just a single pa-
rameter, but a combination. Also, at lower FPS, the increase is FPT outweighs the
corresponding decrease in power, thereby resulting in higher energy per frame. At
higher FPS,however, the disproportional increase in power also leads to a higher
frame energy. Thus the minimum energy configuration occurs at an FPS of ∼12 for

On-device Image Classification for Energy-efficient Ambient-aware Systems 29

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

FPS

Power FPT (6,8,4,4,260)

(6,8,4,4,250)

(3,4,2,4,260)

(3,3,2,4,260)

(3,2,2,4,265)

(3,1,2,4,250)

(3,1,2,4,200)

(3,1,2,4,50)

(3,3,2,4,50)

SAPPHIRE config: (G Rows, S Lanes, FV Lanes, SVM Lanes, Freq. MHz)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

N
o

rm
. E

n
er

gy

FPS

Energy/frame

(a) (b)

Fig. 26 Design space exploration showing the minimum-energy configuration of SAPPHIRE for
Caltech256.

this dataset. Thus, SAPPHIRE allows us to achieve optimal energy configurations
depending on the characteristics of the application data.

7 Conclusions

A range of emerging applications require portable devices to be continually ambient
aware. However, this requires devices to be always on, leading to a large amount of
sensed data. Transmitting this data to the cloud for analysis is power inefficient. In
this article, we proposed the design of a hybrid system that employs local computa-
tions for image classification and the cloud for more complex processing. We chose
a light-weight image-classification algorithm to keep the energy overheads low. We
showed that even with this light-weight algorithm, we can achieve very high true
positive rates at the cost of some extra false positives. This approach helped us filter
out a substantial number of frames from video data in the device itself. In order to
overcome the high processing latency in software, we also proposed a hardware-
specialized accelerator called SAPPHIRE. This accelerator allowed us to perform
image classification 235× faster than a CPU with a very low (3 mJ/frame) energy
cost. Using multiple levels of pipelining and other architectural innovations, we
were able to simultaneously achieve high performance and better energy efficiency
in the end-to-end system. Thanks to the resulting communication energy reduction,
we showed that our hybrid system using SAPPHIRE can bring down the overall
system energy costs by 2.1×. Our system thus has the potential to prolong battery
lives of many portable ambient-aware devices.

30 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

References

1. Baber C, Smith P, Cross J, Zasikowski D, and Hunter J (2005) Wearable technology for
crime scene investigation. Proceedings of the IEEE International Symposium on Wearable
Computers, 138–141.

2. Mann S (1998) WearCam (the wearable camera): Personal imaging systems for long-term use
in wearable tetherless computer-mediated reality and personal photo/videographic memory
prosthesis. Proceedings of the IEEE Int. Symposium on Wearable Computers, 124–131.

3. Kelly P, Marshall S J, Badland H, Kerr J, Oliver M, Doherty A R, and Foster C (2013) An
ethical framework for automated, wearable cameras in health behavior research. American
Journal of Preventive Medicine, 44(3):314–319, doi: 10.1016/j.amepre.2012.11.006.

4. D’Andrea R (2014) Can drones deliver? IEEE Transactions on Automation Science and En-
gineering, 138–141.

5. Navab N (2004) Developing killer apps for industrial augmented reality. IEEE Computer
Graphics and Applications, 24(3):16–20.

6. Aleksya M, Rissanenb M J, Maczeya S, and Dixa M (2011) Wearable computing in indus-
trial service applications. International Conference on Ambient Systems, Newtworking and
Technologies, 5:394–400, doi: 10.1016/j.procs.2011.07.051.

7. Randell C (2005) Wearable computing: A review. Technical Report Number CSTR-06-004.
University of Bristol.

8. Weinland D, Ronfard R, and Boyer E (2011) A survey of vision-based methods for action
representation, segmentation and recognition. Elsevier Computer Vision and Image Under-
standing, 115(2):224–241, doi: 10.1016/j.cviu.2010.10.002.

9. Poppe R (2010) A survey on vision-based human action recognition. Elsevier Image and
Vision Computing, 28(6):976–990, doi: 10.1016/j.imavis.2009.11.014.

10. Geronimo D, Lopez A M, Sappa A D, and Graf T (2009) Survey of pedestrian detection
for advanced driver assistance systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(7):1239–1258, doi: 10.1109/TPAMI.2009.122.

11. Crevier D, and Lepage R (1997) Knowledge-based image understanding systems:
A survey. Elsevier Computer Vision and Image Understanding, 67(2):161–185,
doi: 10.1006/cviu.1996.0520.

12. LiKamWa R, Wang Z, Carroll A, Lin X F, and Zong L (2014) Draining our glass: An en-
ergy and heat characterization of Google Glass. Proceedings of Asia-Pacific Workshop on
Systems, Article No. 10, doi: 10.1145/2637166.2637230.

13. Ha K, Chen Z, Hu W, Richter W, Pillai P, and Satyanarayanan M (2014) Towards wearable
cognitive assistance. Proceedings of the International Conference on Mobile Systems, Appli-
cations, and Services, 68–81, doi: 10.1145/2594368.2594383.

14. Kemp R, Palmer N, Kielmann T, and Bal H (2012) Cuckoo: A computation offloading frame-
work for smartphones. Mobile Computing, Applications, and Services. In Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecom. Engineering, 76:59–79.

15. Ra M-R, Sheth A, Mummert L, Pillai P, Wetherall D, and Govindan R (2011)
Odessa: Enabling interactive perception applications on mobile devices. Proceedings of
the International Conference on Mobile Systems, Applications, and Services, 43–56,
doi: 10.1145/1999995.2000000.

16. Jia Z, Balasuriya A, and Challa S (2009) Vision based target tracking for autonomous land
vehicle navigation: A brief survey. Recent Patents on Computer Science, 2(1):32–42.

17. Soro S and Heinzelman W (2009) A survey of visual sensor networks. Hindawi Advances in
Multimedia, Article No. 640386, doi: 10.1155/2009/640386.

18. Kyono Y, Yonezawa T, Nozaki H, Keio M O, Keio T I, Keio J N, Takashio K, and Tokuda
H (2013) EverCopter: Continuous and adaptive over-the-air sensing with detachable wired
flying objects. Proceedings of the ACM Conference on Pervasive and Ubiquitous Computing
Adjunct Publication, 299–302, doi: 10.1145/2494091.2494183.

19. Halperin D, Greenstein B, Sheth A, and Wetherall D (2010) Demystifying 802.11n power
consumption. Proceedings of the International Conference on Power Aware Computing and
Systems, Article No. 1.

On-device Image Classification for Energy-efficient Ambient-aware Systems 31

20. Nishikawa T, Takahashi M, Hamada M, Takayanagi T, Arakida H, Machiada N, Yamamoto
H, Fujiyoshi T, Matsumoto Y, Yamagishi O, Samata t, Asano A, Terazawa T, Ohmori K,
Shirakura J, Watanabe Y, Nakamura H, Minami S, Kuroda T, and Furuyama T (2000) A
60MHz 240mW MPEG-4 video-phone LSI with 16Mb embedded DRAM. IEEE Journal of
Solid-State Circuits, 35:1713–1721.

21. (2014) Worlds most power-efficient 1080p/60 high definition imag sensor for front-facing
camera applications. OV2740 1080p Product Brief. Available online at www.ovt.com.

22. Brostow G, Shotton J, Fauquer J, and Cipolla R (2008) Segmentation and recognition using
structure from motion point clouds. Proceedings of the European Conference on Computer
Vision, 44–57, doi: 10.1007/978-3-540-88682-2 5.

23. Krizhevsky A, Sutskever I, and Hinton G E (2012) Imagenet classification with deep convolu-
tional neural networks. Proceedings of Neural Information Processing Systems, 1106–1114.

24. Perronnin F, Sanchez J, and Mensink T (2010) Improving the fisher kernel for large-scale
image classification. Proceedings of the European Conference on Computer Vision, 143–156.

25. Venkataramani S, Bahl V, Hua X-S, Liu J, Li J, Phillipose M, Priyantha B, and Shoaib M
(2015) SAPPHIRE: An always-on context-aware computer-vision system for portable de-
vices. Proceedings of Conference on Design Automation and Test in Europe, to appear.

26. Sanchez J, Perronnin F, Mensink T, and Jakob V (2013) Image classification with the
Fisher Vector: Theory and practice. International Journal of Computer Vision, 105(3):222-
245. doi: 10.1007/s11263-013-0636-x.

27. Winder S, Hua G, and Brown M (2009) Picking the best daisy. Proceedings of the Interna-
tional Conference on Computer Vision and Pattern Recognition.

28. LeCun Y, Huang F J, and Bottou L (2004) Learning methods for generic object recognition
with invariance to pose and lighting. Proceedings of the International Conference on Com-
puter Vision and Pattern Recognition. doi: 10.1109/CVPR.2004.1315150.

29. Everingham M, Ali E S M, Luc V G, Williams C K I, Winn J, and Zisserman A (2014) The
pascal visual object classes challenge: A retrospective. International Journal of Computer
Vision. 1–39, doi: 10.1007/s11263-014-0733-5.

30. Griffin G, Holum A, and Perona (2011) Caltech-256 object category dataset.
Caltech Technical Report Number: CNS-TR-2007-001. Available online
at: http://authors.library.caltech.edu/7694.

31. Harris C and Stephens M (1988) A combined corner and edge detector. Proceedings of the
Fourth Alvey Vision Conference. 147–151.

32. Winder S A J and Brown M (2007) Learning local image descriptors. Proceedings of the
International Conference on Computer Vision and Pattern Recognition. 1–8.

33. Winder S, Hua G, and Brown M (2009) Discriminative learning of local image de-
scriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1): 43–57.
doi: 10.1109/TPAMI.2010.54.

34. Shotton J, Johnson M, and Cipolla R (2008) Semantic texton forests for image categoriza-
tion and segmentation. Proceedings of the International Conference on Computer Vision and
Pattern Recognition, 1–8, doi: 10.1109/CVPR.2008.4587503.

35. He X, Yan S, Hu Y, Niyogi P, and Zhang H-J (2005) Face recognition using Laplacian faces.
IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3): 328 – 340.

36. Chen H-T, Chang H-W, and Liu T-L (2005) Local discriminant embedding and its variants.
Proceedings of the International Conference on Computer Vision and Pattern Recognition,
846 – 853, doi: 10.1109/CVPR.2005.216.

37. Leijen D, Schulte W, and Burchardt S (2009) The design of a task parallel library. Proceedings
of the Conference on Object Oriented Programming Systems Languages and Applications,
227–242, doi: 10.1145/1640089.1640106.

38. (2014) OmniVision OV7735 Product Brief. Available online at www.ovt.com.
39. Chen S, Bermak A, and Wang Y (2011) A CMOS image sensor with on-chip image com-

pression based on predictive boundary adaptation and memoryless QTD algorithm. IEEE
Transactions on VLSI Systems, 19(4):538–547.

40. (2003) Low Power Advantage of 802.11a/g vs. 802.11b. Whitepaper, Texas Instruments.
Available online at www.ti.com.

32 Mohammed Shoaib, Swagath Venkataramani, Xian-Sheng Hua, Jie Liu, and Jin Li

41. Jin J, Gokhale V, Dundar A, Krishnamurthy B, Martini B, and Culurciello E (2014) An effi-
cient implementation of deep convolutional neural networks on a mobile coprocessor. IEEE
International Midwest Symposium on Circuits and Systems, 133–136, doi: 10.1109/MWS-
CAS.2014.6908370.

42. Gokhale V, Jin J, Dundar A, Martini B, Culurciello E (2014) A 240 G-ops/s mobile coproces-
sor for deep neural networks. IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 696–701, doi: 10.1109/CVPRW.2014.106.

43. Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, and Temam O (2014) DianNao: a small-
footprint high-throughput accelerator for ubiquitous machine-learning. Proceedings of the
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, 269–284, doi: 10.1145/2541940.2541967.

