
COMPARE: Accelerating Groupwise Comparison in
Relational Databases for Data Analytics

(Extended Version)

Tarique Siddiqui Surajit Chaudhuri Vivek Narasayya
Microsoft Research

{tasidd, surajitc, viveknar}@microsoft.com

ABSTRACT
Data analysis often involves comparing subsets of data across many
dimensions for finding unusual trends and patterns. While the com-
parison between subsets of data can be expressed using SQL, they
tend to be complex to write, and suffer from poor performance
over large and high-dimensional datasets. In this paper, we pro-
pose a new logical operator COMPARE for relational databases that
concisely captures the enumeration and comparison between sub-
sets of data and greatly simplifies the expressing of a large class
of comparative queries. We extend the database engine with op-
timization techniques that exploit the semantics of COMPARE to
significantly improve the performance of such queries. We have
implemented these extensions inside Microsoft SQL Server, a com-
mercial DBMS engine. Our extensive evaluation on synthetic and
real-world datasets shows that COMPARE results in a significant
speedup over existing approaches, including physical plans gener-
ated by today’s database systems, user-defined functions (UDFs),
as well as middleware solutions that compare subsets outside the
databases.

1. INTRODUCTION
Comparing subsets of data is an important part of data explo-

ration [8, 30, 43, 19, 47], routinely performed by data scientists
to find unusual patterns and gain actionable insights. For instance,
market analysts often compare products over different attribute com-
binations (e.g., revenue over week, profit over week, profit over
country, quantity sold over week, etc.) to find the ones with sim-
ilar or dissimilar sales. However, as the size and complexity of
the dataset increases, this manual enumeration and comparison of
subsets becomes challenging. To address this, a number of visual-
ization tools [47, 49, 19, 43] have been proposed that automatically
compare subsets of data to find the ones that are relevant. Figure
1a depicts an example from Seedb [47] where the user specifies the
subsets of population (e.g., based on marital status, race) and the
tool automatically find a socio-economic indicator (e.g., education,
income, capital gains) on which the subsets differ the most. Sim-
ilarly, Figure 1b depicts an example from Zenvisage [43] for find-
ing states with similar house pricing trends. Unfortunately, most
of these tools perform comparison of subsets in a middleware and
as depicted in Figure 2, with the increase in size and number of
attributes in the dataset, these tools incur large data movement as
well as serialization and deserialization overheads, resulting in poor
latency and scalability.

The question we pose in this work is: can we efficiently perform
comparison between subsets of data within the relational databases
to improve performance and scalability of comparative queries?
Supporting such queries within relational databases also makes them
broadly accessible via general-purpose data analysis tools such as

(a) Seedb [47]

(b) Zenvisage [43]

Figure 1: Examples of comparative queries from visual analytic tools: a)
Finding socio-economic indicators that differentiate married and unmarried
couples in Seedb [47].The user specifies the subsets (A) after which the tool
outputs a pair of attributes (B) along with corresponding visualizations (C)
that differentiates the subsets the most. b) A comparative query in Zenvis-
age [43] for finding states with comparable housing price trends.

PowerBI [3], Tableau [5], and Jupyter notebooks [27]. All of these
tools let users directly write SQL queries and execute them within
the DBMS to reduce the amount of data that is shipped to the client.

One option for in-database execution is to extend DBMS with
custom user-defined functions (UDFs) for comparing subsets of
data. However, UDFs incur invocation overhead and are executed
as a batch of statements where each statement is run sequentially
one after other with limited resources (e.g., parallelism, memory).
As such, the performance of UDFs does not scale with the increase
in the number of tuples (see Figure 2). Furthermore, UDFs have
limited interoperability with other operators, and are less amenable
to logical optimizations, e.g., PK-FK join optimizations over mul-
tiple tables.

While comparative queries can be expressed using regular SQL,
such queries require complex combination of multiple subqueries.
The complexity makes it hard for relational databases to find ef-
ficient physical plans, resulting in poor performance. While prior
work have proposed extensions [14, 13, 22, 18, 44] such as group-

1

103 104 105 106 107 108
Number of Tuples

75
50
25

0
25
50
75

Im
pr

ov
em

en
t (

%
)

 (w
.r.

t.
SQ

L
SE

RV
ER

)

Middleware (Outside DB)
UDF-based Comparison
COMPARE(Our approach)

Figure 2: Relative performance of different execution approaches for a
comparative query w.r.t unmodified SQL SERVER execution time (higher
the better). The query finds a pair of origin airports that have the most
similar departure delays over week trends in the flight dataset [1]

ing variables, GROUPING SETs, CUBE; as we discussed in the
later sections, expressing and optimizing grouping and comparison
simultaneously remains a challenge. To describe the complexity
using regular SQL, we use the following example.

Example. Consider a market analyst exploring sales trends across
different cities. The analyst generates a sample of visualizations
depicting different trends, e.g., average revenue over week, aver-
age profit over week, average revenue over country, etc., for a few
cities. She notices that trends for cities in Europe look different
from those in Asia. To verify whether this observation generalizes,
she looks for a counterexample by searching for pairs of attributes
over which two cities in Asia and Europe have most similar trends.
Often, an Lp norm-based distance measure (e.g., Euclidean dis-
tance, Manhattan distance) that measures deviation between trends
and distributions is used for such comparisons [43, 47, 19].

Figure 3 depicts a SQL query template for the above example.
The query involves multiple subqueries, one for each attribute pair.
Within each subquery, subsets of data (one for each city) are ag-
gregated and compared via a sequence of self-join and aggregation
functions that compute the similarity (i.e., sum of squared differ-
ences). Finally, a join and filter is performed to output the tuples
of subsets with minimum scores. Clearly, the query is quite ver-
bose and complex, with redundant expressions across subqueries.
While comparative queries often explore and compare a large num-
ber of attribute pairs [47, 28], we observe that even with only a few
attribute pairs, the SQL specification can become extremely long.

Furthermore, the number of groups to compare can often be
large—determined by the number of possible constraints (e.g., citi-
es), pairs of attributes, and aggregation functions—which grow sig-
nificantly with the increase in dataset size or number of attributes.
This results in many subqueries with each subquery taking sub-
stantially long time to execute. In particular, while there are large
opportunities for sharing computations (e.g., aggregations) across
subqueries, the relational engines execute subqueries for each attrib-
ute-pair separately resulting in substantial overhead in both runtime
as well as storage. Furthermore, as depicted in subquery 1 in Fig-
ure 3, while each pair of groups (e.g., set of tuples corresponding
to each city) can be compared independently, the relational engines
perform an expensive self-join over a large relation consisting of
all groups. The cost of doing this increases super-linearly as the
number and size of subsets increases (discussed in more detail in
Section 4.1). Finally, in many cases, we only need the aggregated
result for each comparison; however the join results in large inter-
mediate data—one tuple for each pair of matching tuples between
the two sets, resulting in substantial overheads.

Figure 3: A SQL query for comparing subsets of data over different at-
tribute combinations, depicting the complexity of specification using exist-
ing SQL expressions.

1.1 Overview of Our Approach
In this paper, we take an important step towards making specifi-

cation of the comparative queries easier and ensuring their efficient
processing. To do so, we introduce a logical operator and exten-
sions to the SQL language, as well as optimizations in relational
databases, described below.
Groupwise comparison as a first class construct (Section 2 and
3). We introduce a new logical operation, COMPARE (Φ), as a first
class relational construct, and formalize its semantics that help cap-
ture a large class of frequently used comparative queries. We pro-
pose extensions to SQL syntax that allows intuitive and more con-
cise specification of comparative queries. For instance, the compar-
ison between two sets of citiesC1 andC2 over n pairs of attributes:
(x1, y1), (x2, y2), ..., (xn, yn) using a comparison function F can
be succinctly expressed as COMPARE [C1<->C2][(x1, y1), (x2,
y2), ..., (xn, yn)] USING F . As illustrated earlier, expressing the
same query using existing SQL clauses requires a UNION over n
subqueries, one for each (xi, yi) where each subquery itself tends
to be quite complex. Overall, while COMPARE does not give ad-
ditional expressive power to the relational algebra, it reduces the
complexity of specifying comparative queries and facilitates opti-
mizations via query optimizer and the execution engine.
Efficient processing via optimizations (Section 4 and 5). We
exploit the semantics of COMPARE to share aggregate computa-
tions across multiple attribute combinations, as well as partition
and compare subsets in a manner that significantly reduces the pro-
cessing time. While these optimizations work for any comparison
function, we also introduce specific optimizations (by introducing
a new physical operator) that exploit properties of frequently used
comparison functions (e.g., Lp norms). These optimizations help
prune many subset comparisons without affecting the correctness.
Inter-operator optimizations (Section 6). We introduce new trans-
formation rules that transform the logical tree containing the COM-
PARE operator along with other relational operators into equivalent
logical trees that are more efficient. For instance, the attributes re-

2

week

re
ve

nu
e week

re
ve

nu
e

week
re

ve
nu

e
re

ve
nu

e

region = ‘Asia’
product =‘Inspiron’
& region = ‘Asia’

product = ‘G7’ &
region = ‘Asia’

product = ‘XPS’ &
region = ‘Asia’

week

week

re
ve

nu
e

month

re
ve

nu
e

product = ‘Inspiron’
& region = ‘Asia’

product = ‘Inspiron’
& region = ‘Asia’

week

re
ve

nu
e

month

re
ve

nu
e

region = ‘Asia’

region = ‘Asia’

region = ‘Asia’

product = ‘Inspiron’
& region = ‘Asia’

week

re
ve

nu
e

week

re
ve

nu
e

city = ‘Tokyo’

city = ‘Seoul’

city =‘Beijing’

week

re
ve

nu
e

week

re
ve

nu
e

city = ‘Paris’

city = ‘Zurich’

1a: One to many comparisons over fixed X and
Y attributes

1b: One to one comparisons over varying X and Y
attributes

2b: Many to many comparisons over varying
X and Y attributes

 denotes comparison

country

pr
ofi

t

city = ‘London’

category

pr
ofi

t

country

pr
ofi

t

category

pr
ofi

t

week

re
ve

nu
e

week

re
ve

nu
e

week

re
ve

nu
e

city =‘Tokyo’

city = ‘Beijing’

city = ‘Seoul’

week

re
ve

nu
e

week

re
ve

nu
e

week

re
ve

nu
e

city = ‘Paris’

city = ‘London’

city = ‘Zurich’

2a: Many to many comparisons over fixed X and
Y attributes

Figure 4: Illustrating comparative queries described in Section 2.1

ferred in COMPARE may be spread across multiple tables, involv-
ing PK-FK joins between fact and dimension tables. To optimize
such cases, we show how we can push COMPARE below join that
reduces the number of tuples to join. Similarly, we describe how
aggregates can be pushed below COMPARE, how multiple COM-
PARE operators can reordered and how we can detect and translate
an equivalent sub-plan expressed using existing relational operators
to COMPARE.
Implementation inside commercial database engine (Section 7).
We have prototyped our techniques in Microsoft SQL SERVER en-
gine, including the physical optimizations. Our experiments show
that even over moderately-sized datasets (e.g., 10–20 GB) COM-
PARE results in up to 4× improvement in performance relative to
alternative approaches including physical plans generated by SQL
SERVER, UDFs, and middlewares (e.g., Zenvisage, Seedb). With
the increase in the number of tuples and attributes, the performance
difference grows quickly, with COMPARE giving more than a order
of magnitude better performance.

2. CHARACTERIZING COMPARATIVE
QUERIES

In this section, we first characterize comparative queries with the
help of additional examples drawn from visualization tools [19, 43,
47] and data mining [35, 10, 8, 30]. Then, we give a formal defini-
tion that concisely captures the semantics of comparative queries.

2.1 Examples
We return to the example scenario discussed in introduction: a

market analyst is exploring sales trends of products with the help
of visualizations to find unusual patterns. The analyst first looks at
a small sample of visualizations, e.g., average revenue over week
trends for a few regions (e.g., Asia, Europe) and for a subset of
cities and products within each region. She observes some unusual
patterns and wants to quickly find additional visualizations that ei-
ther support or disprove those patterns (without examining all pos-
sible visualizations). Note that we use the term "trend" to refer to
a set of tuples in a more general sense where both categorical (e.g.,
country) or ordinal attributes (e.g., week) can be used for ordering
or alignment during comparison. We consider several examples be-
low in increasing order of complexity. Figure 4 illustrates each of
these examples, depicting the differences in how the comparison is
performed.
Example 1a. The analyst notes that the average revenue over week
trends for Asia as well as for a subset of products in that region look
similar. As a counterexample, she wants to find a product whose
revenue over week trend in Asia is very dissimilar (typically mea-
sured using Lp norms) to that of the Asia’s overall trend. There are
visualization systems [48, 12, 43, 28] that support similar queries.

Example 1b. In the above example, the analyst finds that the trend
for product ‘Inspiron’ is different from the overall trend for the re-
gion ‘Asia’. She finds it surprising and wants to see the attributes
for which trends or distributions of Inspiron and Asia deviate the
most. More precisely, she wants to compare ‘Inspiron’ and ‘Asia’
over multiple pairs of attributes (e.g., average profit over country,
average quantitysold over week, ..., average profit over week) and
select the one where they deviate the most. Such comparisons can
be found in features such as Explain Data[4] in Tableau and tools
such as Seedb [47], Zenvisage [43], Voyager [49].
Example 2a. Consider another scenario: the analyst visualizes the
revenue trends of a few cities in Asia and in Europe, and finds that
while most cities in Asia have increasing revenue trends, those in
Europe have decreasing trends. Again, as a counterexample to this,
she wants to find a pair of cities in these regions where this pattern
does not hold, i.e., they have the most similar trends. Such tasks
involving search for similar pair of items are ubiquitous in data
mining [36] and time series [35, 10, 8, 30].
Example 2b. In the above example, the analyst finds that the output
pair of visualizations look different, supporting her intuition that
perhaps no two cities in Europe and Asia have similar revenue over
week trends. To verify whether this observation generalizes when
compared over other attributes, she searches for pairs of attributes
(similar to ones mentioned in Example 1b) for which two cities in
Asia and Europe have most similar trends or distributions. Such
queries are common in tools such as Zenvisage [43] that support
finding outlier visualizations over a large set of attributes.

In summary, the comparative queries in above examples fast-
forward the analyst to a few visualizations that depict a pattern she
wants to verify—thereby allowing her to skip the tedious and time-
consuming process of manual comparison of all possible visualiza-
tions. As illustrated in Figure 4, each query involves comparisons
between two sets of visualizations (henceforth referred as Set1 and
Set2) to find the ones which are similar or dissimilar. Each visu-
alization depicting a trend is represented via two attributes (X at-
tribute, e.g., week and a Y attribute, e.g., average revenue) and a set
of tuples (specified via a constraint, e.g., product = ‘Inspiron’). We
now present a succinct representation to capture these semantics.

2.2 Formalization
We formalize our notion of comparative queries and propose a

concise representation for specifying such queries.

2.2.1 Trend
A trend is a set of tuples that are compared together as one unit.

Formally,

Definition 1 [Trend]. Given a relation R, a trend t is a set of tuples
derived from R via the triplet: constraint c, grouping g, measurem
and represented as (c)(g, m).

3

Definition 2 [Constraint]. Given a relation R, a constraint is a con-
junctive filter of the form: (p1 = α1, p2 = α2, ..., pn = αn) that
selects a subset of tuples from R. Here, p1, p2, ..., pn are attributes
in R and αi is a value of pi in R. One can use ‘ALL’ to select all
values of pi, similar to [22].

Definition 3 [(Grouping, Measure)]. Given a set of tuples selected
via a constraint, all tuples with the same value of grouping are
aggregated using measure. A tuple in one trend is only compared
with the tuple in another trend with the same value of grouping.

In example 1a, (R.region = ‘Asia’)(R.week, AVG(R.revenue)) is
a trend in Set1, where (region = ‘Asia’) is a constraint for the trend
and all tuples with the same value of grouping:‘week’ are aggre-
gated using the measure: ‘AVG(revenue)’. We currently do not
support range filters for constraint.

2.2.2 Trendset
A comparative query involves two sets of trends. We formalize

this via trendset.

Definition 4 [Trendset]. A trendset is a set of trends. A trend in one
trendset is compared with a trend in another trendset.

In example 1a, the first trendset consists of a single trend: {(R.region
= ‘Asia’)(R.week, AVG(R.revenue))}, while the second trendset
consists of as many trends as there are are unique products in R:
{(R.region = ‘Asia’, R.product = ‘Inspiron’) (R.week, AVG(R.reven-
ue)), (R.region = ‘Asia’, R.product = ‘XPS’)(R.week, AVG(R.reven-
ue)), ..., (R.region = ‘Asia’, R.product = ‘G7’) (R.week, AVG(R.rev-
enue))}.

As is the case in the above example, often a trendset contains one
trend for each unique value of an attribute (say p) as a constraint,
all sharing the same (grouping, measure). Such a trendset can be
succinctly represented using only the attribute name as constraint,
i.e., [p][(g1, m1)]. If α1, α2, ..αn represent all unique values of p,
then,

[p][(g1, m1)] ⇒ {(p = α1)(g1, m1), (p = α2)(g1, m1), ...,
(p = αn)(g1, m1)} (⇒ denotes equivalence)

Similarly, [p1, p2 = β][(g1, m1)]⇒ {(p1 = α1, p2 = β)(g1,
m1), (p1 = α2, p2 = β)(g1, m1), ..., (p1 = αn, p2 = β)(g1, m1)}

Alternatively, a trendset consisting of different (grouping, mea-
sure) combinations but the same constraint (e.g., p = α1) can be
succinctly written as:

[(p = α1)][(g1, m1), ..., (gn, mn)] ⇒ {(p = α1)(g1, m1), ...,
(p = α1)(gn, mn)}

2.2.3 Scoring
We first define our notion of ‘Comparability’ that tells when two

trends can be compared.

Definition 5 [Comparability of two trends]. Two trends t1: (c1)(g1,
m1) and t2: (c1)(g2, m2) can be compared if g1 = g2 and m1 =
m2, i.e., they have the same grouping and measure.

For example, a trend (R.product = ‘Inspiron’) (R.week, AVG(
R.revenue)) and a trend (R.product = ‘XPS’)(R.month, AVG(R.pro-
fit)) cannot be compared since they differ on grouping and measure.

Next, we define a function scorer for comparing two trends.

Definition 6 [Scorer]. Given two trends t1 and t2, a scorer is any
function that returns a single scalar value called ‘score’ measuring
how t1 compares with t2.

While we can accept any function that satisfies the above defi-
nition as a scorer; as mentioned earlier, two trends are often com-
pared using distance measures such as Euclidean distance, Manhat-
tan distance [31, 47, 43]. Such functions are also called aggregated

distance functions [34]. All aggregated distance functions use a
function DIFF(.) as defined below.

Definition 7 [DIFF(m1,m2, p)]. 1 Given a tuple with measure value
m1 and grouping value gi in trend t1 and another tuple with mea-
sure value m2 and the same grouping value gi, DIFF(m1, m2, p)
= |m1 −m2|p where p ∈ Z+. Tuples with non-matching grouping
values are ignored.

Since m1 and m2 are clear from the definition of t1 and t2 and
tuples across trends are compared only when they have same group-
ing and measure expressions, we succinctly represent DIFF(m1,
m2, p) = DIFF(p)

Definition 8 [Aggregated Distance Function]. An aggregated dis-
tance function compares trends t1 : (ci)(gi,mi) and t2 : (cj)
(gi,mi) in two steps: (i) first DIFF(p) is computed between every
pairs of tuples in t1 and t2 with same values of gi, and (ii) all values
of DIFF(p) are aggregated using an aggregate function AGG such
as SUM, AVG, MIN, and MAX to return a score. An aggregated
distance function is represented as AGG OVER DIFF(p).

For example, Lp norms2 such as Euclidean distance can be spec-
ified using SUM OVER DIFF(2), Manhattan distance using SUM
OVER DIFF(1), Mean Absolute Deviation as AVG OVER DIFF(1),
Mean Square Deviation as AVG OVER DIFF(2).

2.2.4 Comparison between Trendsets
We extend Definition 5 to the following observation over trend-

sets.
Observation 1 [Comparability between two trendsets] Given two
trendsets T1 and T2, a trend (ci)(gi,mi) in T1 is compared with
only those trends (cj)(gj ,mj) in T2 where gi = gj andmi = mj .

Thus, given two trendsets, we can automatically infer which trends
between the two trendsets need to be compared. We use T1<->T2
to denote the comparison between two trendsets T1 and T2. For
example, the comparison in example 1a can be represented as:
[region = ‘Inspiron’][(week, AVG(revenue))] <-> [region = ‘Asia’,
product][(week, AVG (revenue))]

If both T1 and T2 consist of the same set of grouping and mea-
sure expressions say {(g1, m1), ..., (gn, mn)} and differ only in
constraint, we can succinctly represent T1 <-> T2 as follows:
[c1][(g1, m1), ..., (gn, mn)] <-> [c2][(g1, m1), ..., (gn, mn)]⇒
[c1 <-> c2][(g1, m1), ..., (gn, mn)]

Thus, the comparison between trendsets in example 1a can be
succinctly expressed as:
[(region = ‘Asia’) <-> (region = ‘Asia’, product)][(week, AVG(reve-
nue))]
Similarly, the following expression represents the comparison in
example 1b.
[(region = ‘Asia’) <-> (region = ‘Asia’, product = ‘Inspiron’)][(week,
AVG(revenue)), (country, AVG(profit)), ... , (month, AVG(revenue))]

We can now define a comparative expression using the notions
introduced so far.

Definition 9 [Comparative expression]. Given two trendsets T1 <->
T2 over a relation R, and a scorer F , a comparative expression
computes the scores between trends (ci)(gi,mi) in T1 and (cj)
(gj ,mj) in T2 where gi = gj and mi = mj .

1Note that the function DIFF is distinct from another operator [6]
with similar name.
2We ignore the pth root as it does not affect the ranking of subsets.

4

Table 1: Output of COMPARE in Example 1a
R1 P W V score

Asia XPS True True 30
Asia Inspiron True True 24

...
Asia G8 True True 45

3. THE COMPARE OPERATOR
In this section, we introduce a new operator COMPARE, that

makes it easier for data analysts and application developers to ex-
press comparative queries. We first explain the syntax and seman-
tics of COMPARE and then show how COMPARE inter-operates
with other relational operators to express top-k comparative queries
as discussed in Section 2.1.

3.1 Syntax and Semantics
COMPARE, denoted by Φ, is a logical operator that takes as input

a a comparative expression specifying two trendsets T1 <->T2 over
relation R along with a scorer F and returns a relation R′.

Φ(R, T1<->T2,F)→ R′

R′ consists of scores for each pair of compared trends between
the two trendsets. For instance, the table below depicts the out-
put schema (with an example tuple) for the COMPARE expression
[c1 <-> c2][(g1, m1), (g2, m2)]. The values in the tuple indicate
that the trend (c1 = α1)(g1, m1) is compared with the trend (c2 =
α2)(g1, m1) and the score is 10.

c1 c2 g1 m1 g2 m2 score
α1 α2 True True False False 10
...

We express the COMPARE operator in SQL using two extensions:
COMPARE and USING:

COMPARE T1 <-> T2
USING F

For instance, for example 1a, the comparison between the AVG(reve-
nue) over week trends for the region ‘Asia’ and each of the products
in region ’Asia’ can be succinctly expressed as follows:

Listing 1: COMPAREXPR1A
SELECT R1, P, W, V, score
FROM sales R
COMPARE [((R.region = Asia) AS R1) <-> (R1, R.product AS P)]

[R.week AS W, AVG (R.revenue) AS V]
USING SUM OVER DIFF(2) AS score

Here T1 = [((R.region = Asia) AS R1)][R.week AS W, AVG
(R.revenue) AS V] and T2 = [((R.region = Asia) AS R1, R.product
AS P)][R.week AS W, AVG (R.revenue) AS V]. Observe that T1

and T2 share the same set of (grouping, measure) and the filter
predicate (R.region = Asia) in their constraints, thus it is concisely
expressed as [((R.region = Asia) AS R1)<->(R1, R.product AS
P)][R.week AS W, AVG (R.revenue) AS V].

Table 1 illustrate the output of this query. The first two columns
R1 and P identify the values of constraint for compared trends in
T1 and T2. The columns W and V are Boolean valued denoting
whether R.week and AVG(R.revenue) were used for the compared
trends. Thus, the values of (R1, P, W, V) together identify the pairs
of trends that are compared. Since R.week and AVG(R.revenue)
are grouping and measure for all trends in this example, their values

Table 2: Output of COMPARE in Example 1b
R1 P W C M V O score

Asia Inspiron True False False True False 40
Asia Inspiron False True False True False 20

...
Asia Inspiron False False True True False 10

are always True. Finally, the column score specifies the scores com-
puted using Euclidean distance, expressed as SUM OVER DIFF(2).

Now, consider below the query for example 1b that compares
tuples where (R.region = Asia) with tuples where (R.region = Asia)
and (R.product = ’Inspiron’) over a set of (grouping, measure):

Listing 2: COMPAREXPR1B
SELECT R1, P, W, C, V, ..., M, score
FROM sales R
COMPARE [((R.region = Asia) AS R1) <-> (R1, (R.product = ’Inspiron’)

AS P)][(R.week AS W, AVG(R.revenue) AS V), (R.country AS
C, AVG(R.profit) AS O), ..., (R.month AS M, V)]

USING SUM OVER DIFF(2) AS score

Table 2 depicts the output for this query. The columns R1 and P
are always set to "Asia" and "Inspiron" since the constraint for all
trends in T1 and T2 are fixed. W, C, M, V, and P consist of Boolean
values telling which columns among R.week, R.country, R.month,
AVG(R.revenue), and AVG(R.profit) were used as (grouping, mea-
sure) for the pair of compared trends.

From above examples, it is easy to see that we can write queries
with COMPARE expression for examples 2a and 2b as follows:

Listing 3: COMPAREXPR2A
SELECT R1, C1, R2, C2, W, V, score
FROM sales R
COMPARE [((R.Region = Asia) AS R1, (R.city) AS C1) <-> ((R.Region

= Europe) AS R2, (R.city) AS C2)][R.week AS W,
AVG(R.revenue) AS V]

USING SUM OVER DIFF(2) AS score

Listing 4: COMPAREXPR2B
SELECT R1, C1, R2, C2, W, C, V, ..., M, score
FROM sales R
COMPARE [((R.Region = Asia) AS R1, (R.city) AS C1) <-> ((R.Region

= Europe) AS R2, (R.city) AS C2)][(R.week AS W, AVG(R.revenue) AS
V), (R.country AS C, AVG(R.profit) AS O), ..., (R.month AS M, V)]

USING SUM OVER DIFF(2) AS score

Note that COMPARE is semantically equivalent to a standard
relational expression consisting of multiple sub-queries involving
union, group-by, and join operators as illustrated in introduction.
As such, COMPARE does not add to the expressiveness of relational
algebra SQL language. The purpose of COMPARE is to provide a
succinct and more intuitive mechanism to express a large class of
frequently used comparative queries as shown above. For example,
expressing the query in Listing 2 using existing SQL clauses (see
Figure 3) is much more verbose, requiring a complex sub-query for
each (grouping, measure). Prior work have proposed similar suc-
cinct abstractions such as GROUPING SETs [17] and CUBE [22]
(both widely adopted by most of the databases) and more recently
DIFF [6], which share our overall goal that with an extended syn-
tax, complex analytic queries are easier to write and optimize.

Furthermore, the input to COMPARE is a relation, which can ei-
ther be a base table or an output from another logical operator (e.g.,

5

join over multiple tables); similarly the output relation from COM-
PARE can be an input to another logical operator or the final output.
Thus, COMPARE can interoperate with other operators. In order to
illustrate this, we discuss how COMPARE interoperates with other
operators such as join, filter to select top-k trends.

3.2 Expressing Top-k Comparative Queries
While COMPARE outputs the scores for each pair of compared

trends, comparative queries often involve selection of top-k trends
based on their scores (Section 2.1). In this section, we show how
we can use the above-listed COMPARE sub-expressions (referred by
COMPAREXPR1A, COMPAREXPR1B, COMPAREXPR2A, and
COMPAREXPR1B) with LIMIT and join to select tuples for trends
belonging to top-k.
Example 1a. The following query selects the tuples of a prod-
uct in region ‘Asia’ that has the most different AVG(revenue) over
week trends compared to that of region ‘Asia’ overall. COMPAR-
EXPR1A refers to the sub-expression in Listing 1.

SELECT T.product, T.week, T.revenue, S.score
FROM sales T JOIN
(SELECT * FROM COMPAREXPR1A
ORDER BY score DESC
LIMIT 1) AS S
WHERE T.product = S.P

The ORDER BY and LIMIT clause select the top-1 row in Ta-
ble 1 with the highest score with P consisting of the most similar
product. Next, a join is performed with the base table to select all
tuples of the most similar product along with its score.
Example 2a. The query for example 2a differs from example 1a
in that both trendsets consist of multiple trends. Here, one may be
interested in selecting tuples of both cities that are similar, thus we
use the WHERE condition (T.city = S.C1 AND T.Region = S.R1)
OR (T.city = S.C2 AND T.Region = S.R2). (S.R1, S.R2, S.C1,
S.C2) in SELECT clause identifies the pair of compared trends.

SELECT T.Region, T.city, T.week, T.revenue, S.R1, S.C1, S.R2, S.C2,
S.score

FROM sales T JOIN
(SELECT * FROM COMPAREXPR2A
ORDER BY score
LIMIT 1) AS S
WHERE (T.city = S.C1 AND T.Region = S.R1) OR (T.city = S.C2 AND
T.Region = S.R2)

Examples 1b and 2b. These examples extend the first two exam-
ples to multiple attributes. We show the query for example 2b; it’s
a complex version of (example 1b) where trends in each trendsets
are created by varying all three: constraint, grouping, measure (ex-
ample 1b has a fixed constraint for each trendset).

SELECT T.city, S.R1, S.R2, S.C1, S.C2,
CASE WHEN S.W THEN T.week ELSE NULL END,
...
CASE WHEN S.V THEN T.revenue ELSE NULL END,
S.score

FROM sales T JOIN
(SELECT * FROM COMPAREXPR2B
ORDER BY score
LIMIT 1) AS S
WHERE (T.city = S.C1 AND T.Region = S.R1) OR (T.city = S.C2 AND
T.Region = S.R2)

The SELECT clause only outputs the values of columns for which
corresponding trends has the highest score, setting NULL for other
columns to indicate that those columns were not part of top-1 pair
of trends. This idea of setting NULL is borrowed from prior work
on CUBE [22]. Nevertheless, an alternative is to output values of
all columns, and add (S.W, S.M, S.C, S.P, S.V) (as in the previous
example) to the output to indicate which columns were part of the
comparison between top-1 pair of trends.

4. OPTIMIZING COMPARATIVE QUERIES
In this section, we discuss how we optimize a logical query plan

consisting of a COMPARE operation. We extend the Microsoft SQL
SERVER optimizer to replace COMPARE with a sub-plan of existing
physical operators using two steps. First, we transform COMPARE
into a sub-plan of existing logical operators. These logical oper-
ators are then transformed into physical operators using existing
rules to compute the cost of COMPARE. The cost of the sub-plan
for COMPARE is combined with costs of other physical operators to
estimate the total cost of the query. We state our problem formally:

Problem 4.1. Given a logical query plan consisting of COMPARE
operation: Φ(R, [c1<->c2] [(d1, m1), ..., (dn, mn)], F)→ R′,
replace COMPARE with a sub-plan of physical operators with the
lowest cost.

For ease of exposition, we assume that both trendsets contain the
same set of trends, one for each unique value of c, i.e., c1 = c2 = c.

4.1 Basic Execution
We start with a simple approach that transforms COMPARE into

a sub-plan of logical operators. The sub-plan is similar to the one
generated by database engines when comparative queries are ex-
pressed using existing SQL clauses (discussed in Section 1). We
perform the transformation using the following steps:
(1) ∀(di,mi): Ri ← Group-byc,di

Aggmi
(R)

(2) ∀ Ri: Rij ←1Ri.c!=Ri.c,Ri.di=Ri.di (Ri)
(3) ∀ Rij : Rijk ← Group-byci,cj AggUDAF

(Rij) // ci, cj are
aliases of column c
(4) R′ ← Union All

i,j,k
(Rijk)

First, we create trendsets for each (grouping, measure) combi-
nation (e.g., GROUP BY product, week, AGG on AVG(reve- nue)).
Next, we join tuples between each pair of trends that are compared,
i.e., tuples with different constraints but same value of grouping
(e.g., 1R’.product !=R’.product, R’.week = R’.week)). The score between each
pair of trends is computed by applying F specified as an user-
defined aggregate (UDA). This is done by first partitioning the join
output to create a partition for each pair of trends. Each partition is
then aggregated using F . Finally, the scores from comparing each
pairs of trends are aggregated via Union All.

Unfortunately, this approach has two issues that make it less ef-
ficient as the size of the input dataset and the number of (grouping,
measure) combinations become large. First, aggregations across
(grouping, measure) are performed separately, even when there are
overlaps in the subset of tuples being aggregated. Second, the cost
of join increases rapidly as the number of trends being compared
and the size of each trend increases (see Figure 5b). We next dis-
cuss how we address these issues via merging and partitioning op-
timizations

4.2 Merging and Partitioning Optimization
To generate a more efficient plan, we adapt the sub-plan gener-

ated above using two optimizations. We first describe each of these
optimizations and then present an algorithm that incorporates both
of these optimizations to find an overall efficient plan.

6

20 18 16 14 12 10 8 6 4 21
Number of group-by expressions

 after merging

25

50

La
te

nc
y

(s
)

(a) Variation in performance as
we merge group-by aggregates
to share computations

101 102 103 104 105
Number of trends per trendset

100
200
300

La
te

nc
y

(s
)

Trendsetwise Join
Partitioning + Trendwise Join
Only Partitioning

(b) Improvements due to trendwise join
after partitioning trendset into trends (the
size of each trend is fixed to 1000 tuples)

Figure 5: Improvement in performance due to merging group-by
aggregates and trendwise comparison (via partitioning)
Merging group-by aggregates. The first optimization shares the
computations across a set of group-by aggregates, one for each
(grouping, measure), by merging them into fewer group-by aggre-
gates. We observe that (grouping, measure) often share a common
grouping column, e.g., [(day, AVG(revenue), (day, AVG(profit)]
or have correlated grouping columns (e.g., [(day, AVG(revenue),
(month, AVG(revenue)]) or have high degree of overlapping tuples
across trends. For example, we considered a set of 20 group-by ag-
gregates in the flights [1] dataset, computing AVG(ArrivalDelay),
AVG(DepDelay), ..., AVG(Duration) grouped by day, week, ..., air-
port. As depicted in Figure 5a, by merging them (using an approach
discussed shortly) into 12 aggregates, the latency improves by 2×.
However, merging is helpful only up to a certain point, after which
the performance degrades due to less sharing and much larger in-
crease in the output size of group-by aggregates.

Finding the optimal merging of group-by aggregates is NP- Com-
plete [7]. Prior work on optimizing GROUPING SETs compu-
tation [17] have proposed best-first greedy approaches that merge
those group-by aggregates first that lead to maximum decrease in
the cost. Unfortunately, in our setting, we also need to consider the
impact of merging on the cost of subsequent comparison between
trends; ignoring which can lead to sub-optimal plans as we describe
shortly. We first introduce the second optimization for comparison.
Trendwise Comparison via Partitioning. The second optimiza-
tion is based on the observation that pairwise joins of multiple
smaller relations is much faster than the a single join between two
large relations. This is because the cost of join increases super-
linearly with the increase in the size of the trendsets. In addition
to improvement in complexity, trendwise joins are more amenable
to parallelization than a single join between two trendsets. Fig-
ure 5b depicts the difference in latency for these two approaches
as we increase the number of trends from 10 to 105 (each of size
1000). The black dotted line shows the partitioning overhead in-
curred while creating partitions for each trend, showing that the
overhead is small (linear in n) compared to the gains due to trend-
wise join. Moreover, this is much smaller than the overhead in-
curred when partitioning is performed on the join output (∝ n2) in
the basic plan (see step 3 in Section 4.1).

Figure 7 depicts the query plan after applying the above two op-
timizations on the basic query plan. First,we merge multiple group-
by aggregates to share computations (using the approach discussed
below). Then, we partition the output of merged group-by aggre-
gates into smaller relations, one for each trend. This is followed
by joining and scoring between each pair of trends independently
and in parallel. Observe that the merging of group-by aggregates
results in multiple trends with overlapping (grouping, measure) in
the output relation. Hence, we apply the partitioning in two phases.
In the first phase, we partition it vertically, creating one relation
for each (grouping, measure). In the second phase, we partition
horizontally, creating one relation for each trend.
Joint Optimization of Merging and Partitioning. As depicted in
Figure 6b, the cost of partitioning increases with the increase in the

Group-by {c d1d6d4}
Aggregate on {m1m6m4}

Partition
on c

⨝

Grp-by {c1d1}
Agg on {m1}

Grp-by {c2d1}
Agg on {m1}

Grp-by {cnd1}
Agg on {m1}

⨝ ⨝

Partition
on c

..
.
..
...

......⨝

......

......⨝

......

.........

......⨝

......

UNION ALL

Partition
on c

 Group-by {c d2dn}
Aggregate on {m2mn}

.........

......⨝

......

.........

......⨝

......

.........

R

.........

Partition
on (dimi)

.........
Partition
on (dimi)

cd1m1
cd6m6 cd4m4

1. Merging
aggregates

2. Partitioning
TrendSet into

Trends

3. Trend-wise
comparison

.........

.........

Vertical
Partitioning

Horizontal
Partitioning

Figure 6: Optimized query plan generated after applying merging and par-
titioning on basic query plan in Figure 7.

size of its input. The input size is proportional to the number of
unique group-by values, which increases with the increase in the
number of merging of group-by aggregates. Thus, when the input
becomes large, the cost of partitioning dominates the gains due to
merging. It is therefore important to merge group-by aggregates
such that the overall cost of computing group-by aggregates, parti-
tioning and trendwise comparison together is minimal.

In order to find the optimal merging and partitioning, we follow
a greedy approach as outlined in Algorithm 1. Our key idea is to
merge at the granularity of sub-plans instead of the group-by ag-
gregates. We start with a set of sub-plans, one for each (grouping,
measure) as generated by the basic execution strategy discussed
earlier and merge two sub-plan at a time that lead to the maximum
decrease in cost.

Formally, if the two sub-plans operate over (d1, m1) and (d2,
m2) respectively, we merge them using the following steps (illus-
trated in Figure 6):
(1)R1← Group-byc,d1,d2

Aggm2,m2
[R] // merge group-by aggre-

gates
(2) ∀ (di,mi): Ri ← Π(di,mi)(R1) // vertical partitioning
(3) ∀ i: Rij ← Partition Ri ON c // horizontal partitioning, one
partition for each value of c
(4) ∀ i, j: Ri′j′ ← Group-bycj ,di

Aggmi
[Rij] // aggregate again

(5) ∀ i′, j′, k: Ri′j′k ← Ri′j′ 1di Ri′k //partitition-wise join
(6) ∀ i′, j′, k: R

′
i′j′k ← AggUDAF

(Ri′j′k) // compute scores

(7) R′ ← Union All
i′,j′,k

(R
′

i′j′k)

We first merge group-by aggregates to share the computation,
followed by creating one partitions for each trend using both ver-
tical and horizontal partitioning. Then, we join pairs of trends and
compute the score as discussed in Section 4.1. For computing the
cost of the merged sub-plan, we use the optimizer cost model. The
cost is computed as a function of available database statistics (e.g.,
histograms, distinct value estimates), which also captures the ef-
fects of the physical design, e.g., indexes as well as degree of par-
allelism (DOP). We merge two sub plans at a time until there is no
improvement in cost.

5. OPTIMIZING DIFF-BASED COMPARI-
SON

While the approach discussed in the previous section works for
any arbitrary scorer (implemented as UDA), we note that for top-k
comparative queries involving aggregated distance functions (de-
fined in Section 2.2) such as Euclidean distance, we can substan-
tially reduce the cost of comparison between pairs of trends. We
first outline the three properties of DIFF(.) function that we lever-
age for optimizations.

7

Algorithm 1 Merge-Partition Algorithm
1: Let B be a basic sub-plan computed from Φ as described in Section 4.1
2: while true do
3: C ← OptimizerCost(B)
4: Let si ∈ S be a sub-plan in B consisting of a sequence of group-by

aggregate, join and partition operations over (di, mi)
5: Let MP = Set of all sub-plans obtained by merging a pair of sub-

plans in S as described in Section 4.2
6: Let Bnew be the sub-plan in MP with lowest cost (Cnew) after

merging two sub-plans si, sj
7: if Cnew > C then
8: break;
9: end if

10: C ← Cnew

11: B← Bnew

12: end while
13: Return B

1. Non-negativity: DIFF(m1,m2, p) ≥ 0

2. Monotonicity: DIFF(m1,m2, p) varies monotonically with the
increase or decrease in |m1 −m2|.
3. Convexity: DIFF(m1,m2, p) are convex for all p.

5.1 Summarize → Bound → Prune
Overview. We introduce a new physical operator that minimizes
the number of trends that are compared using the following three
steps (illustrated in Figure 8). 1. We summarize each trend inde-
pendently using a set of three aggregates: SUM, MIN and MAX
and a bitmap corresponding to the grouping column. 2. Next,
we intersect the bitmaps between trends to compute the COUNT
of matching tuples between trends, which together with three ag-
gregates help compute the upper and lower bounds on the score
between the two trends. Given bounds on scores for each pair of
trends, we find a pruning threshold T on the lowest possible top k
score, as the kth largest lower bound score. Any pair with its up-
per bound score smaller than T can thus be pruned. 3. Finally, we
perform join only between those trends that are not pruned.

⨝ ⨝

Bitmap +
Summary

Aggregates

⨝

Bitmap +
Summary

Aggregates

Bitmap +
Summary

Aggregates

P1 P2 P3

1

2

[28, 30] [15, 19] [26, 29]

⨝ ⨝

P1 P2 P3

3
[28, 30] [26, 29]

Figure 7: Illustrating pruning for DIFF-based comparisons

While the pruning incurs an overhead of first computing the sum-
mary aggregates and bitmap for each candidate trend, the gains
from skipping tuple comparisons for pruned trends offsets the over-
head. Moreover, the summary aggregates of each trend can be com-
puted independently in parallel.
Computing Bounds. The simplest approach is to create a sin-
gle set of summary aggregates for each trend as depicted in Fig-
ure 8b. The gray and yellow blocks depict the summary aggregates
for two trends respectively, consisting of COUNT (computed using
bitmaps), SUM, MIN, and MAX in order.

First, for deriving the lower bound, we prove the following useful
property based on the convexity property of DIFF functions (see
[2] for the proof).

Theorem 1. ∀ DIFF(m1,m2, p),
AVG (DIFF(m1,m2, p)) ≥ DIFF(AVG (m1),AVG (m2), p)

This essentially allows us to apply DIFF on the average values
of each trend to get a sufficiently tight lower bounds on scores. For

example, in Figure 8b, we get a lower bound of 1700 for a score of
1717 for the two trends shown in Figure 8b.

For the upper bound, it is easy to see that the maximum value
of DIFF(m1, m2, 2) between any pairs of tuples in R and S is
given by: MAX (|MAX (m1) − MIN (m2)|, |MAX (m2) − MIN
(m1)|). Given that DIFF(m1,m2, 2) is Non-negative and Mono-
tonic, we can compute the upper bound on SUM by multiplying
the the MAX (DIFF(m1,m2, 2)) by COUNT. For example, in Fig-
ure 8b, we get an upper bound of 6400.
Multiple Piecewise Summaries. Given that the value of measure
can vary over a wide range in each trend, using a single sum-
mary aggregate often does not result in tight upper bound. Thus,
to tighten the upper bound, we create multiple summary aggre-
gates for each trend, by logically dividing each trend into a se-
quence of l segments, where segment i represents tuples from in-
dex: (i−1)× n

l
+1 to i× n

l
where n is the number of tuples in the

trend. Instead of creating a single summary, we compute a set of
same summary aggregates over each segment, called segment ag-
gregates. For example, Figure 8c depicts two segment aggregates
for each trend, with each segment representing a range of 8 tuples.
The bounds between a pair of matching segments is computed in
the same way as we described above for a single summary aggre-
gates. Then, we sum over the bounds across all pairs of matching
segments to get the overall bound (see [2] for formal description).
To estimate the number of summary aggregates for each trend, we
use Sturges formula, i.e., (b1 + log2(n)c) [42], which assumes the
normal distribution of measure values for each trend. Because of its
low computation overhead and effectiveness in capturing the distri-
bution or trends of values, Sturges formula is widely used in the
statistical packages for automatically segmenting or binning data
points into fewer groups. We empirically evaluate the effectiveness
of Sturges formula in Section 8.

5.2 Early Termination
When selecting top-k trends, we can further reduce the compu-

tation by ordering the comparison of trends that are not pruned in
the previous step. To do so, we assign an utility to each of the
trends that tells how likely they are going to be in the top-k. For
estimating the utility of trends, we use the bounds computed us-
ing segment aggregates. Specifically, for selecting top-k trends in
descending order of their scores, a trend with higher upper bound
score has a higher utility and for ascending order of scores, a trend
with the smallest lower bound has a higher utility. The processing
of higher utility trends leads to the faster improvement in the prun-
ing threshold, thereby minimizing wastage of tuple comparisons
over low utility trends.

Furthermore, the utility of a trend can vary after comparing a few
tuples in a candidate trend. Hence, instead of processing the entire
trend in one go, we process one segment of a trend at a time, and
then update the bounds to check (i) if the trend can be pruned, or
(ii) if there is another trend with better utility that we can switch
to. Incrementally comparing high utility trends leads to pruning of
many trends without processing all of their tuples.

5.3 Putting It All Together
We implemented a new physical operator, Φp, that takes as input

the trends, and replaces the join and F in query plan discussed in
Section 4. It outputs a relation consisting of tuples that identify
the top-k pairs of trends along with their scores. The algorithm
used by the operator makes use of four data structures: (1) SegAgg
: An array where index i stores summary aggregates for segment i.
There is one SegAgg per trend. (2) TState : It consists of the current
upper and lowers bounds on the score between two trends, as well

8

18 18 14 18 18 16 14 14 10 14 12 10 13 13 14 14

26 23 23 29 30 28 24 25 27 24 24 20 21 25 20 22

Score = 1717

16, 229, 10, 18

16, 394, 20, 30

Bounds = [1700, 6400]

8, 129, 13, 18 8, 100, 10, 14

8, 211, 23, 30 8, 183, 20, 27

Bounds = [1702, 4624]

(a) Exact score on comparing two trends
(b) Bounds on score us-

ing a single summary
(c) Bounds on score using
two-segment summaries

Figure 8: Using summaries to bound scores. F = SUM OVER DIFF(2). Each value in (a) corresponds to a single tuple in a trend.

as the next segment within the trends to be compared next. There is
one TState for each pairs of trends, and is updated after comparing
each pairs of segment. (3) PQP : a max priority queue that keeps
track of the trend pairs with the highest upper bound. It is updated
after comparing each segment. (4) PQS : a min priority queue that
keeps track of the trend pairs with the smallest lowest bound. It is
updated after comparing each segment.

Algorithm 2 Pruning Algorithm for DIFF-based Comparison
1: Compute SegAgg and bitmaps for each trend ci
2: for each pair of trends ci, cj do
3: Compute bounds on scores (Section 5.1)
4: Update PQS
5: end for
6: for each pair of trends (ci, cj) do
7: If ((ci, cj) upper bound < PQS .Top()) Continue;
8: Initialize (ci, cj) TState and push to PQP
9: end for

10: while size of PQP > k do
11: (ci, cj) = PQP .Top()
12: Compare a segment of ci with that of cj
13: Update bounds and PQS
14: If ((ci, cj) upper bound < PQS .Top()) Continue;
15: Push (ci, cj) to PQP
16: end while
17: Return Top k trend pairs of trends and their scores from PQP

Algorithm 2 depicts the pseudo-code for a single threaded im-
plementation. We first compute the segment aggregates for trends
(line 1). For each pair of trends, we compute the bounds on scores
as discussed in Section 5.1, and update PQS to keep track of top k
lower bounds (lines 2—5). The upper bound for each pair of trend
is compared with PQS .Top() to check if it can be pruned (line 7).
If not pruned, the TState is initialized and pushed to PQP (line
8). Once the TState of all unpruned trends are pushed to PQP , we
fetch the pair of trends with the highest upper bound score ((line
11)), and following the process outlined in Section 5.2, compare a
pair of segments (line 12). After the comparison, we check if the
current pair of trends is pruned or if there is another pair of trends
with higher upper bound (line 14–15). This process is continued
until we are left with k pairs of trends . Finally, we output values
of k pairs of trends with highest scores (line 17).
Memory Overhead. Given a relation of n tuples consisting of p
trends, Φp creates p× log(n/p) segment aggregates (assuming tu-
ples are uniformly distributed across trends), with each segment ag-
gregate consisting of fixed set of aggregates. In addition, the opera-
tor maintains a TState consisting of bounds on scores between each
pair of trends as well as the priority queues to maintain top-k pairs
of trends. Thus, the overall space overhead isO(p×log(n/p)+p2).

6. ADDITIONAL ALGEBRAIC RULES
The query optimizer in Microsoft SQL SERVER relies on alge-

braic equivalence rules for enumerating query plans to find the plan
with the least cost. When COMPARE occurs with other logical op-
erators, we present five transformation rules (see Table ??) that re-
order Φ with other operators to generate more efficient plans.

R1. Pushing Φ below join. Data warehouses often have a snowflake
or star schema, where the input to COMPARE operation may involve
a PK-FK join between fact and dimension tables. If one or more
columns in Φ are the PK columns or have functional dependen-
cies on the PK columns in the dimension tables , Φ can be pushed
down below the join on fact table by replacing the dimension tables
columns with the corresponding FK columns in the fact table (see
RuleR1 in Table ??.) For instance, consider example 1a in Section
2.1 that finds a product with a similar average revenue over week
trend to ‘Asia’. Here, revenue column would typically be in a fact
table along with foreign key columns for region, product and year.
In such cases, we can push Φ below the join by replacing dimen-
sion table columns (e.g., product, week) values with corresponding
PK column values.
R2. Pushing Group-by Aggregate (Υ) below Φ to remove du-
plicates. When an aggregate operation occurs above a COMPARE
operation, in some cases we can push the aggregate operation be-
low the COMPARE to reduce the size of each partition. In particular,
consider an aggregate operation ΥG,A with group by attributes G
and aggregate function A such that all columns used in Φ are in
G. Then, if all aggregation functions in Φ ∈ {MAX, MIN }, we
can push Υ below Φ as per the Rule R2 in Table ??. Pushing ag-
gregation operation below Φ reduces the size of each partition by
removing the duplicate values.
R3. Predicate pushdown. A filter operation (σ) on partition col-
umn (e.g., product) can be pushed down below Φ, to reduce the
number of partitions to be compared. While predicate pushdown in
a standard optimization, we notice that optimizers are unable to ap-
ply such optimizations when the COMPARE are expressed via com-
plex combination of operations as described in Section 1. Adding
an explicit logical COMPARE, with a predicate pushdown rule makes
it easier for the optimizer to apply this optimization. Note that if σ
involves any attribute other than the partitioning column, then we
cannot push it below Φ. This is because the number of tuples for
partitions compared in Φ can vary depending on its location.
R4. Commutativity. Finally, a single query can consist of a chain
of multiple COMPARE operations for performing comparison based
on different metrics (e.g., comparing products first on revenue, and
then on profit). When multiple Φ operations on the same parti-
tioning attribute, we can swap the order such that more selective
COMPARE operation is executed first.
R5. Reducing comparative sub-plans to Φ. Finally, we extend
the optimizer to check for an occurrence of the comparative sub-
expression specified using existing relational operators to create an
alternative candidate plan by replacing the sub-expression with Φ.
In order to do so, we add the equivalence rule R5 where the expres-
sion on the left side represents the sub-expression using existing
relational operators. This rule allows us to leverage physical op-
timizations for comparative queries expressed without using SQL
extensions.

7. DISCUSSION
We discuss the generalizability and robustness of our proposed

optimizations as well as potential applications of COMPARE.

9

Generalizability of optimizations. Our proposed optimizations in
Section 4 deal with replacing COMPARE to a sub-plan of logical
and physical operators within existing database engines. These op-
timizations can be incorporated in other database engines support-
ing cost-based optimizations and addition of new transformation
rules. Concretely, given a COMPARE expression, one can generate
a sub-plan using Algorithm 1 and transformation rules implement-
ing steps outlined in Section 4.1 and Section 4.2. Furthermore, we
discuss additional transformation rules (see Table 3) in Section 6
that optimize the query when COMPARE occurs along with other
logical operators such as join, group-by, and filter. We show that
DIFF-based comparisons can be further optimized by adding a new
physical operator that first computes the upper and lower bounds on
the scores of each trend, which can then be used for pruning parti-
tions without performing costly join.
Robustness to physical design changes. A large part of COM-
PARE execution involves operators such as group-by, joins and par-
tition (See Figure 6). Hence, the effect of physical design changes
on COMPARE is similar to their effect on these operators. For in-
stance, since column-stores tend to improve the performance of
group-by operations, they will likely improve the performance of
COMPARE. Similarly, if indexes are ordered on the columns used
in constraints or grouping, the optimizer will pick merge join over
hash-join for joining tuples from two trends. Finally, if there is a
materialized view for a part of the COMPARE expression, modern
day optimizers can match and replace the part of the sub-plan with
a scan over the materialized view. We empirically evaluate the im-
pact of indexes on COMPARE implementation in Section 8.
Applications of COMPARE. COMPARE is meant to be used by
data analysts as well as applications to issue comparative queries
over large datasets stored in relational databases. It has two advan-
tages over regular SQL and middleware approaches (e.g., Zenvis-
age, Seedb). First, it allows succinct specification of comparative
queries which can be invoked from data analytic tools supporting
SQL clients. Second, it helps avoid data movement and serializa-
tion and deserialization overheads, and is thus more efficient and
scalable. We classify the applications into three categories:
BI Tools. BI applications such as Tableau and Power BI do not pro-
vide an easier mechanism for analysts to compare visualizations.
However, for supporting complex analytics involving multiple joins
and sub-queries, these tools support SQL querying interfaces. For
comparative queries, users currently have to either write complex
SQL queries as discussed in Introduction, or generate all possible
visualizations and compare them manually. With COMPARE, users
can now succinctly express such queries (as illustrated in Section
3) for in-database comparison.
Notebooks. For large datasets stored in relational databases, it is
inefficient to pull the data into notebook and use dataframe APIs
for processing. Hence, analysts often use a SQL interface to access
and manipulate data within databases. While one can also expose
Python APIs for comparative queries and automatically translate
them to SQL, such features are limited to the users of the Python
library. SQL extensions, on the other hand, can be invoked from
multiple applications and languages that support SQL clients. Fur-
thermore, in the same query, one can use COMPARE along with
other relational operators such as join and group-by that are fre-
quently used in data analytics (see Section 3.2).
Visual analytic tools. Finally, there are visual analytic tools such as
as Zenvisage and Seedb that perform comparison between subsets
of data in a middle-ware. With COMPARE, such tools can scale to
large datasets and decrease the latency of queries as we show in
Section 8.

8. PERFORMANCE EVALUATION
Using our prototype implementation on SQL SERVER (referred

as COMPARE below), we evaluate the improvement in latency with
respect to current execution strategy in SQL SERVER as described
in Section 4.1. We consider two alternative strategies as base-
lines: (b) MIDDLEWARE: Issuing select-aggregate queries to re-
trieve the data from SQL SERVER over a network (average speed
of 10 MB/s) and performing comparison and filtering in a C# im-
plementation; this approach mimics the data retrieval approach fol-
lowed by visualization tools such as Zenvisage [43] while also in-
corporating trendwise comparison and segment-aggregates based
pruning optimizations (discussed in Section 5), and (c) an UDF im-
plementation that executes within SQL SERVER. It takes as input
the UNION of all group-by aggregates (computed via GROUPING
SETs clause) and incorporates trendwise comparison and segment-
aggregates based pruning optimizations.
Datasets and Queries. We use two datasets: Flight [1] and TPC-
DS with a scale factor of 100 [32](summarized in Table 4). We
use websales table in TPC-DS which has PK-FK joins with tables
webpages and warehouses. As depicted in Table 3, we issue four
types of comparative queries (with characteristics similar to exam-
ples discussed in Section 2.1), with the default number of output
pair of trends set to 5. All measure attributes are aggregated using
AVG() and we use SUM() OVER DIFF(2) as scorer.

Table 4: Datasets
Dataset Disk Size Buffer Size Number of rows
Flight 8GB 11GB 74M

TPC-DS 20GB 24 GB 720M

Setup. All experiments were conducted on a 64-bit Windows 2012
Server with 2.6GHz Intel ×eon E3-1240 10-core, 20 logical pro-
cessors and 192GB of 2597 MHz DDR3 main memory. Unless
specified, we use the default settings for the degree of parallelism
(DOP) and buffer memory, where the SQL SERVER tries to utilize
the maximum possible resources available in the system. We re-
port the results of warm runs by loading the tables referenced in
the query into memory.

8.1 End-to-End Latency
Figure 9a depicts the end-to-end improvement in latency of COM-

PARE, MIDDLEWARE, and UDF with respect to the unmodified
SQL SERVER runtimes. We see that COMPARE provides a substan-
tial improvement with respect to all approaches, with improvement
being proportional number and size of trends.

For Q1 that involves one to many comparisons over a fixed at-
tribute combination, we see a speed-up of about 26% on Flight and
about 36% on the TPC-DS. The improvement increases substan-
tially as we increase the complexity of the query; for example we
see upto 4× improvement in latency for Q2 and Q4 which involve
a large number of trend comparisons. For MIDDLEWARE, the main
bottleneck is the data transfer and deserialization overhead, which
takes up to 70% of the overall execution time. While UDF also
incurs an overhead in invocation and reading the input from down-
stream aggregate operators, a large part of its time (> 90%) is
spent on processing, indicating that inline execution of COMPARE
via partitioning and join operators is much faster. In summary, we
find that COMPARE gives the best of both worlds: requires minimal
data transfer and deserialization overhead, and runs much faster
by efficiently comparing tuples within databases.
Ablative Analysis. Next, we conducted an ablative analysis to
evaluate the effectiveness of each of the optimizations described
in Section 4 and Section 5. Figure 9b depicts the impact of each
optimization as we add them successively from left to right. Each

10

Table 3: Queries over Flight and TPC-DS datasets
ID Type Flight TPC-DS

trendset 1 trendset 2 trendset 1 trendset 2
constraint, # (grouping,measure), # #

trends
constraint, # (grouping,measure), # #

trends
constraint, # (grouping,measure), # #

trends
constraint, # (grouping,measure), # #

trends
Q1 One to many

with fixed at-
tributes

airport=‘SFO’,
1

(Days, ArrDelays), 1 1 all airports, 384 (Days, ArrDelays) 384 webpage = 1; 1 (Items, NetProfits), 1 1 all webpages;
2040

1 2040

Q2 Many to many
with fixed at-
tributes

all airports, 384 (Days, ArrDelays), 1 384 all airports, 384 (Days, ArrDelays) 384 all webpages;
2040

(Items, NetProfits), 1 2040 all webpages;
2040

(Items,NetProfits), 1 2040

Q3 One to one
with varying
attributes

airport=‘SFO’,
1

(Days, ArrDelays),
(Days, DepDelays),
(Weeks, ArrDelays), ...,
(Weeks, WeatherDe-
lays,); 10

10 airport =
‘SFO’, 1

(Days, ArrDelays),
(Days, DepDelays)),
(Weeks, ArrDelays), ...,
(Weeks, DepDelays);
10

10 webpage = 1; 1 (Items, NetProfits),
(Days, NetProfits), ...,
(Days, Quantity),5

5 webpage = 1; 1 (Items, NetProfits),
(Days, NetProfits), ...,
(Days, Quantity),5

5

Q4 Many to many
with varying at-
tribues

all airports, 384 (Days, ArrDelays),
(Days, DepDelays),
(Weeks, ArrDelays), ...,
(Weeks, WeatherDe-
lays,); 10

3840 all airports (Days, ArrDelays),
(Days, DepDelays),
(Weeks, ArrDelays), ...,
(Weeks, WeatherDe-
lays,); 10

3840 all webpages;
2040

(Items, NetProfits),
(Days, NetProfits), ...,
(Days, Quantity),5

10200 all webpages;
2040

(Items, NetProfits),
(Days, NetProfits), ...,
(Days, Quantity),5

10200

Q1 Q2 Q3 Q4
40
20

0
20
40
60

Im
pr

ov
em

en
t (

%
)

a) Flight

Middleware UDF COMPARE

Q1 Q2 Q3 Q4
75
50
25

0
25
50
75

b) TPC-DS
(a) Comparison with Baselines

Q1 Q2 Q3 Q4
10
20
30
40
50
60
70

Im
pr

ov
em

en
t (

%
)

Flight

Merging Aggregates
Trend-wise Processing

Segment Aggregates
EarlyTermination

(b) Ablative analysis quantifying the impact of each optimization.
Each optimization is successively turned on from left to right.

Figure 9: Improvement in end-to-end latency w.r.t. unmodified SQL SERVER

level of COMPARE optimization provides a substantial speed-up
in latency compared to basic execution strategy. For Q3 and Q4,
sharing aggregates improves the runtime by about 30% (note that
there are no sharing opportunities for Q1 and Q2). The trend-wise
processing further improves the processing by 25% on average—
more the number of trend comparisons, the higher the improve-
ment. Note that both sharing aggregates and trend-wise process-
ing do not depend on the properties of scorer and hence can be
applied on arbitrary scorer. The next two optimizations based on
segment-aggregates and early termination, although only applica-
ble for DIFF(m1,m2, 2)-based comparison, result in the massive
improvement ranging between 20-25% by pruning trends early that
are guaranteed to be not in top-k.

8.2 Sensitivity to Data Characteristics
We now evaluate the impact of dataset characteristics on the per-

formance of COMPARE. For these experiments, we use the flight
dataset (consisting of real-world trends/distributions) and scale its
size as described below.
Impact of number of trends. To evaluate this, we scale the num-
ber of trends for query Q2 between 10 and 104 by randomly remov-
ing or replicating the trends corresponding to original 384 airports.
While replicating, we update the original value mo of each mea-
sure column m by a new value mn where mn = mo ± stdev(m).
This ensures that the replicated trends are not duplicates but still
represent the original distribution. We find that the increase in the
number of trends leads to the increase in latency for all approaches;
however the increase is much higher for UDF and MIDDLEWARE
due to data movement and deserialization overhead. COMPARE is
further able to reduce comparisons due to early pruning of parti-
tions using segment-aggregates.
Impact of number of (grouping, measure). In this case, we scale
the number of (grouping, measure) for query Q3 between 1 and
50 by randomly removing or replicating the columns for each trend
while updating the values of replicated measure column as described
above. All approaches incur increase in latency; however, the in-
crease in latency is much higher for SQL SERVER compared to

COMPARE, MIDDLEWARE and UDF due to higher sharing of ag-
gregate computations.
Varying number and size of trends while keeping the overall
data size fixed. Using a similar process as described above, we
scale the number of trends between 10 and 105 while proportion-
ally decreasing the size of each trend such that the size of the
dataset is fixed to 105. Here, we see an interesting observation.
The latency of SQL SERVER decreases as we increase the number
of trends and reduce their size. This is because with the decrease
in the size of trends, the number of tuple comparison decreases.
As a result of this, the improvement in latency w.r.t SQL SERVER
decreases for all of COMPARE, MIDDLEWARE, and UDF. How-
ever, for COMPARE, the latency initially decreases as sorting and
comparison can done faster in parallel as the number of partitions
increase. As the number of partitions become too large, the im-
provement due to parallelism decreases.

8.3 Impact of Number of Segment Aggregates
Recall from Section 5.1 that we use the Sturges formula [42],

i.e., (b1 + log2(n)c) (where n is the estimated size of trend) to esti-
mate the number of segment-aggregates. To measure the efficacy of
this formula, we measure the changes in latency as we increase the
number of segment-aggregates for Q2 (Figure 11a) and Q4 (Fig-
ure 11b). With the increase in number of segments, the overall
latency decreased initially. However, as the number of segments
is increased beyond a certain number, the latency starts increasing.
This is because of the increase in the number of segment-aggregates
comparisons without further pruning. The dotted line shows the
results for the number of segments (i.e., (b1 + log2(n)c) that is
automatically selected by COMPARE, showing that the latency for
selected segments is close to minimal possible latency.

Next, we measure the impact of number of tuples processed per
update for early termination (Section 5.2). Figure 12 depicts the
impact of overall latency for Q2 and Q4 as we vary the number
of tuples processed for a given trend for updating the upper and
lower bounds. The dotted black line depicts the performance for
the number of tuples that COMPARE automatically decides, i.e.,
(n
(b1+log2(n)c)) (i.e., estimated size of a segment). We see that the

11

101 102 103 104
Number of Trends

100
50

0
50

Im
pr

ov
em

en
t (

%
) Middleware UDF COMPARE

(a) Varying number of trends with fixed (grouping,
measure)

0 10 20 30 40 50
Number of (Grouping, Measure)

0
20
40
60
80

Im
pr

ov
em

en
t (

%
) Middleware UDF COMPARE

(b) Varying number of (grouping, measure)

101 102 103 104 105
Number of Trends

50
0

50

Im
pr

ov
em

en
t (

%
) Middleware UDF COMPARE

(c) Increasing number of trends with proportional
decrease in trend size over a fixed data of size 105

Figure 10: Impact on latency on varying the number and size of trends on the flight dataset.

100 101 102

Number of Segments
0

10
20
30
40

Im
pr

ov
em

en
t (

%
) COMPARE

(a) Q2

100 101 102

Number of Segments
0

25
50
75

100

Im
pr

ov
em

en
t (

%
) COMPARE

(b) Q4

Figure 11: Varying number of segment-aggregates

100 101 102 103
Number of Tuples Compared Per Update
0

50

Im
pr

ov
em

en
t (

%
) COMPARE

(a) Q2

100 101 102 103
Number of Tuples Compared Per Update

Im
pr

ov
em

en
t (

%
) COMPARE

(b) Q4

Figure 12: Varying number of tuples compared per update during
early termination
latency is very high when we only consider a few tuples (< 10)
at time. This is because of cache misses and many updates to the
priority queues for reprocessing the same set of partitions repeat-
edly. On the other hand, processing too many tuples leads to extra
processing, even for low utility partitions that can be pruned earlier.
As depicted by the dotted line, the number chosen by COMPARE,
although not perfect, is close to the optimal performance that we
can get by processing few tuples at a time.

8.4 Impact of Transformation Rules
Figure 13 depicts the performance results on pushing Φ below

PK-FK joins (1) and pushing Aggregate (Υ) below Φ. We omit
the results on other logical optimizations such as predicate push-
down and reordering of multiple Φ operations as the gains in these
cases are always proportional to the selectivity of predicates and Φ
operation pushed down.
Pushing Φ below 1. We consider Q3 and Q4 over websales table
of TPC-DS dataset which has PK-FK joins with two other tables.
We observe that by pushing Φ below join leads to the improvement
in the runtime of both queries due to reduction in amount of time
taken by join. For Q3, Φ reduces of size of websales to 1

30
th of the

original size, which improves the overall latency by about 18%.
On the other hand, the selectivity of Φ for Q4 is more (1

200
th of

the original size), which leads to a relatively higher improvement
of about (32%) in latency. Thus, the amount of gain increases with
the increase in the selectivity of Φ.
Pushing Υ (aggregation) below Φ. In order to evaluate this, we
use MAX as aggregation function for measure and scorer in Q1
and Q2 over the Flight dataset. We added a simple aggregation
operation ΥG,A on top of Φ, settingG = {Days, ArrDelays} andA
= COUNT (*). While Υ needs to process more tuples compared to
when it is above Φ, the pushdown helps improve the overall latency

Q3 Q4
Query

0
20
40
60

Im
pr

ov
em

en
t (

%
) COMPARE

(a) Join pushdown

Q1 Q2
Query

0

20

40

Im
pr

ov
em

en
t (

%
) COMPARE

(b) Aggregate pushdown

Figure 13: Pushdown logical optimizations

by reducing duplicate values of G, which minimize the number of
all pair comparisons for Φ above. In particular, we observe that
pushing Υ down reduces the input to Φ by about 24% leading to an
improvement of of about 14% for Q1 and 19% for Q2.

8.5 Impact of Indexes
To evaluate the changes in physical design on COMPARE, we

made the following changes on Flight data set. We removed all
columns from the tables that are not part of queries, and created
non-clustered indexes on the queried columns. Adding indexes re-
sults between 20% to 38% improvement in overall runtime across
queries; the major changes in physical plan include the use of in-
dex scan and the replacement of hash join with merge join. As de-
picted in Figure 14, due to overall decrease in runtime, the perfor-
mance improvement for COMPARE when indexes are used is less
than when indexes are not used. However, compared to regular
SQL, COMPARE is still between 2 − 3× faster. This is primarily
because of the reduction in CPU time due to sharing of aggregates,
trend-wise processing and pruning of trend comparisons.

8.6 Parallelism and Memory Overhead
Figure 15a shows the improvement in latency of COMPARE w.r.t.
SQL SERVER on Q1 as we vary the Degree of Parallelism (DOP)
from 1 to 64. Both SQL SERVER and COMPARE benefit signifi-
cantly from increasing DOP up to a point, after which they experi-
ence diminishing returns. For any given DOP, COMPARE is usu-
ally faster (between 2× to 3×) similar to what we see in previous
experiments.

Figure 15b shows the additional overhead in committed mem-
ory usage of COMPARE w.r.t. to SQL SERVER for each of the
queries. Although COMPARE uses additional data-structures for
maintaining segment-aggregates, and bounds in the priority queue,
the overhead is minimal (< 13%) compared to the memory already
used by the system for sorting and maintaining aggregates which
are common to all approaches. Moreover, the execution engine
reuses the memory already committed by the downstream opera-
tors in the plan, instead of allocating new memory. Thus, the total
memory used during query processing is bounded by the maximum
memory used by any operator in the plan.

12

Q1 Q2 Q3 Q4
10
20
30
40
50
60
70

Im
pr

ov
em

en
t (

%
)

Flight

Without Indexes With Indexes

Figure 14: Impact of adding non-clustered indexes on referenced columns
and removing other columns

0 10 20 30 40 50 60
Degree of Parallelism

0
20
40
60
80

Im
pr

ov
em

en
t (

%
) COMPARE

(a) Varying DOP

Q1 Q2 Q3 Q4
Query

0
10
20
30
40

M
em

or
y

 O
ve

rh
ea

d
(%

) COMPARE

(b) Memory consumption

Figure 15: Impact of Parallelism and Memory Overhead

9. RELATED WORK
Visual Analytics. Our work has been motivated by many recent vi-
sual analytic tools [19, 47, 43, 49, 31] where comparing subsets or
groups of tuples using a deviation-based measures (e.g., Lp norms)
is the common theme. Unfortunately, as discussed in Section 1
these tools either retrieve the data into a middleware or issue com-
plex SQL queries for comparison, both approaches do not scale to
large datasets. As a result, recent work [45, 50, 20] have called for
supporting new abstractions and query optimization techniques for
addressing the impedance mismatch between relational databases
and analytic tasks—our work is a concrete step in this direction.
OLAP. Damianos et al. have proposed grouping variables and op-
erations such as MD-Join [13, 14] for succinctly expressing com-
plex aggregate queries such as finding products with sales above
average sales. Similarly, CUBE [22], GROUPING SETs [51], Se-
mantic Group By [44] allow flexible specification and optimization
of group by queries. In our work, we extend grouping of tuples to
support (i) easier and more direct specification of comparison be-
tween groups of tuples using complex aggregate expressions (e.g.,
Lp norms), and (ii) jointly optimize both aggregation and compar-
ison between groups of tuples. Sarawagi et al. have proposed tech-
niques for interactive browsing of interesting cells in data cube [39,
41]. Similarly, These work suggest raw aggregates that are infor-
mative given past browsing, or those that show a generalization or
explanation of a specific cell. In contrast, we provide extensions
to traditional query optimization and execution layers of relational
databases to support comparative queries like other SQL queries.
Similar to our approach, there have been database extensions [38,
23, 26, 33], the most recent being the DIFF operator [6], that sup-
port association and frequent pattern mining. While our focus is
on aggregate distance measures such as Lp norms (our focus), we
share their goal that with an extended syntax, complex analytic
queries are easier to write and optimize.
Similarity Join. There has been work on similarity join that use set
similarity functions such as edit distance, Jaccard similarity, cosine
similarity or their variants to join two relations [40, 21, 37, 11, 15,
9]. While these work are based on measuring set overlap or edit
distance between strings, COMPARE optimizes aggregate distance
functions between groups of tuples such as Euclidean distance, re-

quiring fundamentally different execution techniques. Similarly,
there is a vast body of work on top-k query processing [25], includ-
ing ones that extend relational databases [16, 46, 29, 24]. While
these work rank each tuple independently based on an aggregate
expression, our focus is on ranking groups of tuples by comparing
them with other groups of tuples in the same relation.
Spatial Databases. Finally, spatial databases such as PostGIS [52]
extend traditional databases to optimize for storage and querying
of spatial data. The similarity search queries supported is spatial
databases (e.g., [34]) operate in a different settings from ours.
First, the physical design is typically optimized to store all informa-
tion (e.g., sales) for each entity (e.g., product) required for distance
computation as a single object, thus no grouping or sorting of tuples
is typically required at runtime. In addition, spatial indexes such as
R-Tree are built to optimize for search at runtime. In contrast, our
work is meant for supporting ad hoc similarity search queries over
traditional databases, which are typically used as back-end for BI
tools such as Power BI and Tableau.

10. CONCLUSION
In this work, we introduce COMPARE, a complex operator that

concisely captures comparison between groups of tuples using ag-
gregated distance measures. We introduce physical optimizations
within the execution engine and extend the query optimizer with
new algebraic rules that improve the performance by significantly
reducing the number of subset comparisons and intermediate data
size. Together, these logical and physical optimizations help ad-
dress the impedance mismatch problem between data exploration
systems and relational databases for supporting comparative queries.
There are several avenues for future work such as supporting primi-
tives for easily expressing comparison metrics such as Jaccard simi-
larity, cosine similarity, as well as using sampling-based techniques
to tighten the bounds on scores for further reducing the number of
comparisons.

Acknowledgements
We would like to thank the anonymous reviewers at VLDB 2021,
Arnd Christian König, Wentao Wu, and Bailu Ding for their valu-
able feedback.

APPENDIX
A. Proof of Theorem 1
Here, we provide the proof for Theorem 1 stated in Section 5.1.

The proof directly derives from the property of convex function.
For a convex f(x),
k1f(x1)+k2f(x2)+...+knf(xn)≥ f(k1x1+x2, x2, ..., knxn)
Let each xi be the value a |m1 −m2| resulting from comparing

a pair of tuples between two trends, and n be the total number of
tuple comparisons. On setting, ki = 1/n and f(x) = |x|p:
|m1−m2|p

n
≥ |m1

n
− m2

n
|p

⇒AVG (DIFF(m1,m2, p)) ≥DIFF(AVG (m1), AVG (m2), p)
(by def. of DIFF)
�

B. Formal Description of Bounds Computation
Here, we formally describe how we compute the bounds on scores
of COMPARE using segment aggregates (Section 5.1).

Let p1 and p2 be two trends having same number of tuples c for
which we want to to compute the upper and lower bounds on score.
Let max1i and min1i be the maximum and minimum values of
attribute m1 in segment i of trend p1, and similarly max2i and

13

min2i be the maximum and minimum values of m2 in segment j
in p2. Let ci be the number of tuples in segment i. For succinctness,
we use ∆(m1,m2) for DIFF(m1,m2, p).

We know that the bounds on the ∆i(m1,m2) between segment
i in p1 and p2, is given by:

MAX (∆i(m1,m2)) ≤ ∆i(MAX (|max1i−min2i|, |min1i−max2i |))

MIN (∆i(m1,m2)) ≥ ∆i((AVG (m1),AVG (m2)) (From Theorem 1)

From above we get,

∆i((AVG (m1),AVG (m2)) ≤AVG (∆i(m1,m2)) ≤MAX (∆i(m1,m2))

Using the non-negativity and Monotonicity property of DIFF, we
can replace the value for each tuple comparison with minimum and
maximum bounds to get the bounds on SUM.

ci.AVG (∆i(m1,m2)) ≤ SUM (∆i(m1,m2)) ≤ ci MAX (∆i(m1,m2))

The above bounds over a single pair of segments can be extended
to segments using the union bound principle. Let sumu

i , maxui ,
minu

i be the upper bounds, and suml
i, max

l
i, min

l
i be the lower

bounds on the score of SUM(∆(.)), MAX(∆(.)), and MIN(∆(.))
on scoring segment i in p1 and p2. Then, the bounds across all
segments can be computed as follows:

AVG
i

(suml
i) ≤ AVG (∆(.)) ≤ AV G

i
(sumu

i)

c.SUM
i

(sumi
ci

l) ≤ SUM ∆(.)) ≤ c.SUM
i

(sumi
ci

u)

MIN (∆(.)) = MIN
i

(minl
i)

MAX (∆(.)) = MAX
i

(maxu
i)

REFERENCES
[1] Airline dataset (http://stat-computing.org/dataexpo/2009/the-data.html).

[Online; accessed 30-Oct-2015].
[2] Compare technical report. https://bit.ly/3gnUFAU.
[3] Powerbi (https://powerbi.microsoft.com/en-us/). [Online; accessed

3-June-2019].
[4] Powerbi (https://www.tableau.com/products/new-features/explain-data).

[Online; accessed 3-June-2020].
[5] Tableau public (www.tableaupublic.com/). [Online; accessed 11-Nov-2019].
[6] F. Abuzaid, P. Kraft, S. Suri, E. Gan, E. Xu, A. Shenoy, A. Ananthanarayan,

J. Sheu, E. Meijer, X. Wu, et al. Diff: a relational interface for large-scale data
explanation. Proceedings of the VLDB Endowment, 12(4):419–432, 2018.

[7] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton,
R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional
aggregates. In VLDB, volume 96, pages 506–521, 1996.

[8] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In International conference on foundations of data organization and
algorithms, pages 69–84. Springer, 1993.

[9] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In
Proceedings of the 32nd international conference on Very large data bases,
pages 918–929. VLDB Endowment, 2006.

[10] C. Böhm and F. Krebs. The k-nearest neighbour join: Turbo charging the kdd
process. Knowledge and Information Systems, 6(6):728–749, 2004.

[11] C. Bohm and H.-P. Kriegel. A cost model and index architecture for the
similarity join. In Proceedings 17th International Conference on Data
Engineering, pages 411–420. IEEE, 2001.

[12] P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman. Interactive
pattern search in time series. In Visualization and Data Analysis 2005, volume
5669, pages 175–187. International Society for Optics and Photonics, 2005.

[13] D. Chatziantoniou. Using grouping variables to express complex decision
support queries. Data & Knowledge Engineering, 61(1):114–136, 2007.

[14] D. Chatziantoniou and K. A. Ross. Querying multiple features of groups in
relational databases. In VLDB, volume 96, pages 295–306, 1996.

[15] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity
joins in data cleaning. In 22nd International Conference on Data Engineering
(ICDE’06), pages 5–5. IEEE, 2006.

[16] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In VLDB,
volume 99, pages 397–410, 1999.

[17] Z. Chen and V. Narasayya. Efficient computation of multiple group by queries.
In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 263–274, 2005.

[18] C. Cunningham, C. A. Galindo-Legaria, and G. Graefe. Pivot and unpivot:
Optimization and execution strategies in an rdbms. In Proceedings of the
Thirtieth international conference on Very large data bases-Volume 30, pages
998–1009. VLDB Endowment, 2004.

[19] R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang. Quickinsights: Quick and
automatic discovery of insights from multi-dimensional data. In Proceedings of
the 2019 International Conference on Management of Data, pages 317–332.
ACM, 2019.

[20] J. V. D’silva, F. De Moor, and B. Kemme. Aida: abstraction for advanced
in-database analytics. Proceedings of the VLDB Endowment,
11(11):1400–1413, 2018.

[21] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
D. Srivastava, et al. Approximate string joins in a database (almost) for free. In
VLDB, volume 1, pages 491–500, 2001.

[22] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data mining and knowledge
discovery, 1(1):29–53, 1997.

[23] J. Han et al. Dmql: A data mining query language for relational databases. In
Proc. 1996 SiGMOD, volume 96, pages 27–34, 1996.

[24] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in
relational databases. The VLDB Journal—The International Journal on Very
Large Data Bases, 13(3):207–221, 2004.

[25] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys (CSUR),
40(4):11, 2008.

[26] T. Imieliński and A. Virmani. Msql: A query language for database mining.
Data Mining and Knowledge Discovery, 3(4):373–408, 1999.

[27] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al. Jupyter
notebooks-a publishing format for reproducible computational workflows. In
ELPUB, pages 87–90, 2016.

[28] D. J.-L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and A. Parameswaran.
You can’t always sketch what you want: Understanding sensemaking in visual
query systems. IEEE transactions on visualization and computer graphics,
2019.

[29] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql: query algebra and
optimization for relational top-k queries. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, pages 131–142.
ACM, 2005.

[30] R. A. K.-l. Lin and H. S. S. K. Shim. Fast similarity search in the presence of
noise, scaling, and translation in time-series databases. In Proceeding of the
21th International Conference on Very Large Data Bases, pages 490–501.
Citeseer, 1995.

[31] S. Macke, Y. Zhang, S. Huang, and A. Parameswaran. Adaptive sampling for
rapidly matching histograms. Proceedings of the VLDB Endowment,
11(10):1262–1275, 2018.

[32] R. O. Nambiar and M. Poess. The making of tpc-ds. In Proceedings of the 32nd
international conference on Very large data bases, pages 1049–1058. VLDB
Endowment, 2006.

[33] A. Netz et al. Integrating data mining with sql databases: Ole db for data
mining. In ICDE’01, pages 379–387. IEEE, 2001.

[34] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate nearest neighbor
queries in spatial databases. ACM Transactions on Database Systems (TODS),
30(2):529–576, 2005.

[35] D. Rafiei and A. Mendelzon. Similarity-based queries for time series data. In
Proceedings of the 1997 ACM SIGMOD international conference on
Management of data, pages 13–25, 1997.

[36] A. Rajaraman and J. Ullman. Finding similar items. Mining of massive datasets,
77:73–80, 2010.

[37] K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik. Set containment
joins: The good, the bad and the ugly. In VLDB, pages 351–362, 2000.

[38] S. G. Rao, A. Badia, and D. Van Gucht. Providing better support for a class of
decision support queries. In ACM SIGMOD Record, volume 25, pages 217–227.
ACM, 1996.

[39] S. Sarawagi. Explaining differences in multidimensional aggregates. In VLDB,
volume 99, pages 7–10, 1999.

[40] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pages 743–754. ACM, 2004.

[41] S. Sarawagi and G. Sathe. i3: intelligent, interactive investigation of olap data
cubes. ACM SIGMOD Record, 29(2):589, 2000.

[42] D. W. Scott. Sturges’ rule. Wiley Interdisciplinary Reviews: Computational
Statistics, 1(3):303–306, 2009.

[43] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. Effortless
data exploration with zenvisage: an expressive and interactive visual analytics

14

system. Proceedings of the VLDB Endowment, 10(4):457–468, 2016.
[44] M. Tang, R. Y. Tahboub, W. G. Aref, M. J. Atallah, Q. M. Malluhi, M. Ouzzani,

and Y. N. Silva. Similarity group-by operators for multi-dimensional relational
data. IEEE Transactions on Knowledge and Data Engineering, 28(2):510–523,
2015.

[45] N. Tang, E. Wu, and G. Li. Towards democratizing relational data visualization.
In Proceedings of the 2019 International Conference on Management of Data,
pages 2025–2030. ACM, 2019.

[46] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava. Ranked join
indices. In Proceedings 19th International Conference on Data Engineering
(Cat. No. 03CH37405), pages 277–288. IEEE, 2003.

[47] M. Vartak et al. Seedb: Efficient data-driven visualization recommendations to
support visual analytics. VLDB, 8(13), Sept. 2015.

[48] M. Wattenberg. Sketching a graph to query a time-series database. In CHI ’01
Extended Abstracts on Human Factors in Computing Systems, CHI EA ’01,
pages 381–382, New York, NY, USA, 2001. ACM.

[49] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual analysis
with partial view specifications. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pages 2648–2659. ACM, 2017.

[50] E. Wu, L. Battle, and S. R. Madden. The case for data visualization
management systems: vision paper. Proceedings of the VLDB Endowment,
7(10):903–906, 2014.

[51] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and M. Urata.
Answering complex sql queries using automatic summary tables. In
Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pages 105–116, 2000.

[52] L. Zhang and J. Yi. Management methods of spatial data based on postgis. In
2010 Second Pacific-Asia Conference on Circuits, Communications and System,
volume 1, pages 410–413. IEEE, 2010.

15

