
Abstract

EXPLAINABLE 3D
RECONSTRUCTION USING DEEP
GEOMETRIC PRIOR

Mattan Serry, Microsoft and Tel Aviv University, maserry@microsoft.com
Dov Danon, Tel Aviv University, dov84d@gmail.com
Hagit Schechter, Rafael Advanced Defense Systems, hagit.schechter@gmail.com
Amit H. Bermano, Tel Aviv University, amberman@tauex.tau.ac.il

Reconstructing 3D objects from a single image is a notoriously difficult task, with many different
proposed approaches and settings. In this paper, we investigate a unique variant: fitting cuboids
to silhouettes. In other words, we ask how strong geometric priors can benefit texture-less binary
silhouettes based reconstruction. While more challenging, using silhouettes enables training on
purely synthesized perfectly labeled data. For the investigation, we look at street-level images of
buildings, since they hold rigorous geometric structure, and their silhouettes are easily obtained, for
example through instance-level segmentation. Given a noisy, partially occluded, segmentation mask
as input, we present a three-step network that first generates a cleaner version for the mask, then
moves to a heat-map estimation of the cuboid corners, and finally extracts the actual, geometrically
coherent, vertex positions. Even though jointly trained, each of these steps produces human-legible
intermediate results instead of a latent code, which serve both in guiding the training process,
but also in providing explainability—a pillar of modern ethical AI systems. Finally, we evaluate our
approach through street level images and ablation studies

Keywords. Computer vision, artificial intelligence, ethics.

1. Introduction
Reconstructing a 3D object from a single image has been
one of the core challenges of computer vision since the dawn
of the field. It is useful in countless applications, spanning
everything from medical diagnosis and manufacturing
control to robot navigation and autonomous driving. This
task, however, is ill-posed and extremely difficult in the
general case, since it requires vast semantic knowledge and
profound reasoning about physics, optical phenomena,
and the interaction between objects and people. Hence,
many different approaches have been proposed to tackle it,
leveraging a variety of assumptions and scene settings in
order to make the problem feasible.

In this paper, we look at the problem of reconstruction
from silhouettes. Silhouettes are binary masks, indicating
the area the target object is occupying in the input image.
Using silhouettes offers a lot of flexibility. A system that
relies on silhouettes only is more robust, in the sense that
it is unaffected by lighting conditions, small changes to
geometry, or unusual textures such as drawings. Even more
importantly, silhouettes are simple to generate, meaning one
could train such a system using only synthetic data. Curating
quality datasets is one of the biggest bottlenecks of modern-
day algorithms, and has become a stage with practically the
same importance as designing the method itself. Hence, the
ability to generate perfectly labeled training examples at no
cost is significant.

Of course, using only silhouettes, on the other hand, means
ignoring a lot of useful visual information, such as inner
details and geometric visual cues. Hence, some restrictions
must be applied in order to make the problem feasible, as
previously mentioned. One of the most powerful assumptions
that can be made is restricting the reconstructed geometry
to a predefined model. Using a strong geometric prior is an
efficient way to extend the information seen in an image to
its occluded dimensions. Hence, we turn to the problem of
primitive fitting – where simple geometries are positioned,
oriented, and stretched in order to fit the visible information.
Even though our method is not restricted to specific
geometries or scenes, in this work we solely use cuboids
to estimate buildings from a single street-level silhouette.
Buildings can be very versatile in appearance, and datasets
regarding their structure are hard to come by. On the other
hand, it is well established that buildings can be represented
by the construction of simple primitives (see Section 3),
which are most commonly cuboids buildings, hence our
method is the right choice for the task. Moreover, successfully

fitting cuboids to buildings is a useful capability that could
be applied, for example, to localize oneself accurately within
an urban scene.

Our method is comprised of three jointly trained neural
networks, corresponding to three algorithmic steps. The
input is a silhouette of a building, typically obtained by an
off-the-shelf semantic segmentation process or manual
annotation. Such masks are noisy at the boundaries, and
usually reflect partial occlusions, such as trees, cars, or other
buildings positioned between the target and the camera. Our
first step is to heal the input binary mask, by completing
holes and reducing noise. This step reduces the diversity that
the following network has to deal with and hence improves
overall performance. Then, we generate heat maps, estimating
the 2D image positions of every vertex of the cuboid. Using
points of interest as a means of orientation estimation, instead
of the more intuitive approach of explicitly evaluating model
parameters such as dimensions and rotations, has been
proven useful several times in the past in [1][2][3]. Lastly,
explicit vertex coordinates are extracted from the heat maps,
estimating the final cuboid position.

Imposing intermediate results on a network prevents it from
freely finding a latent space on its own, potentially restricting
its expressiveness. We chose to go through these intermediate
steps, however, since they guide the training process towards
the desired results. In addition, they provide explainability —
giving insight into how and why a specific choice was made in
test time. Since our training is purely performed on synthetic
data, we propose a specifically tailored training scheme,
combining training each part separately on its generated
intermediate result for bootstrapping, with training all the
steps together.

In the following, We show how the network is built and
trained (Section 3), and its performance (Section 4). Then,
we evaluate how different design choices contribute to the
method’s performance through ablation studies.

Figure 1: Example of single-box 8 semantic keypoints heat maps
estimation, an output from the Estimator, the second network in
our model.

Research Paper — Volume 15 111

2. Related work
Our work focuses on the monocular reconstruction of cuboid
objects where the image is already segmented into a binary
image. Reconstructing a 3D object from an image or set of
images is a fundamental task in computer vision. Hence
our work can be cast in several different ways, according to
respective lines of work. As far as we know, it is the first work
that applies outdoor cuboid—fitting without any human
interaction and supervision.

2.1. Monocular reconstruction
One way to cast our problem is through the eyes of object
reconstruction from a single image. The general problem is
one of the most fundamental goals in computer vision, with
countless proposed approaches. A seminal work in the field
extracts an occupancy grid from a given image, or in other
words, reconstructs a voxel representation of the target object
like in [4]. The system is trained using 3D mesh data and
corresponding images. More recent publications like [5][6]
[7] use a single image to obtain 3D information of objects,
producing voxel or accurate mesh representations while
relying on the camera parameters and object appearance. This
line of work, while producing impressive results, is aiming at
a general case of objects without any prior on their shape.
For this reason, such methods require intensive training,
extensive supervision, are typically sensitive to object texture,
and are restricted to indoor scenes, which offer some control
over scene lighting. To alleviate lighting and appearance
limitations, many proposed method reconstruct objects from
their silhouettes alone. This could be done using several
images of the same object from different angles, or through
a differentiable renderer, which offers supervision and loss
estimation, like in [8]. For a more thorough review, we refer
the reader to a recent state-of-the-art report covering this
field in [9]. Cuboid-fitting was also studied previously in [10]
[11], but so far only for indoor scenes. Similar work to ours
but on other outdoor objects, cars, was also studied before in
[12]. In general, these approaches aim at a very wide variety
of reconstructed objects, which imposes great training and
supervision efforts. By using a very simplified and lightweight
model of specific object classes, i.e. cuboids, we were able
to devise a method that is completely supervision free and
requires no labeling or images or 3D data.

2.2. Inverse procedural modeling
Another way to look at our problem is through its similarities
to procedural modeling. This field, which is commonly used
for buildings and city modeling, defines a grammar with

which a system or a user can describe the target object.
This approach offers a very lightweight description of a
building or another object, which is faster and easier to
optimize for. Even though easier to handle, these methods
still require laborious efforts for elaborate modeling.
Therefore, interactive approaches for procedural modeling
have been proposed, like in [13]. To further automate this
process, inverse procedural modeling methods have been
proposed. These methods try to estimate the grammar
parameters from a given image, similar to our task. A work
proposed in [14] shares some similarities with ours, as it
predicts 2D junctions/corners first from an input image,
then reconstructs 2D primitives like boxes. For aerial
images of buildings, the task becomes somewhat easier, as
all information is visible, and the problem becomes one of
finding the 2D shape of the roof, like in [15]. For street-
level images, the proposed methods detect the repetitive
patterns often seen in building facades to formulate the
structure’s grammar. One of the most dominant works in
this aspect, which is similar to ours in goals, is proposed
in [16]. While producing impressive results, this work,
similar to others along with this approach like [17], still
relies on user interaction and data labeling for supervision,
or parameters such as camera intrinsics, or even 3D point
locations in inference time, specifically for buildings (see
[18]). Again, in contrast to these works, our approach is
trained on purely synthetic data and can extract the cuboid
shape without any prior knowledge about the camera or
any other detail in the scene.

2.3. Pose estimation
Arguably, our method is most similar to the pose
estimation field. The common goal for the publications
in this area is to estimate the configuration of a known
model according to a given image. A prominent direction
is the estimation of human poses, with the seminal work
of the field, named OpenPose by [2], which estimates the
configuration of the human pose in 2D. They do this in
a ”bottom-up” manner, where first potential locations of
joints are estimated, followed by a step to connect them
into skeletons correctly. We adopt this concept in our work
as well. Our work, however, is more aligned with rigid pose
estimation. The latter is addressed using many different
approaches in the literature. [19] looks for the orientation
of bounding boxes of objects seen in a given image. They
suggest estimating the required box dimension and its
orientation is correlated, and hence should be deduced by
the same network. In addition, they propose a combined
discrete-continuous loss, which estimates the parameters in

112 MSJAR — Research paper112 MSJAR — Research paper

several bins at the same time. While we take some of these
concepts into our work, this work uses full supervision —
with given 3D objects, images that correspond to them,
along with their orientation, which is in complete contrast
to our supervision free approach. It has been further shown
that given enough training data, the same concept can be
applied to more elaborate, fine-detailed, shapes, like in [20].
[3] adds the concept of synthesizing data in order to improve
performance. They do this by estimating correspondences
between vertices of given 3D models of several classes, to
2D locations in an image. Once these correspondences
are in place, the established PnP method like in [21] is
employed to extract the 3D orientation of the object
accordingly. Similarly, other works have added estimation
of camera intrinsic parameters to the process, like [22][1],
or propose finding the correct translation and rotation of
the target object through concepts of disentanglement, like
[23]. While these works demonstrate impressive, state-of-
the-art results for several classes of objects, they still require
mixing between real and synthetic data during training,
and rely on finding distinct visual features in the images.
For buildings, approaches relying on visual features for
correspondence points can prove unreliable since facades
have typically very repetitive patterns.

2.4. Explainable artificial intelligence
Explainable AI (XAI) is a rising field in the machine learning
community, and the deep learning community in particular [24].
The purpose of XAI is to enable ways to interpret models that
were previously considered uninterpretable (black-box models),
without significant loss of performance. In [25], the connections
between explainability and fairness, and explainability and
accountability, are discussed. This is why XAI is in high demand
in critical decision making systems, such as medical AI systems.
The discussion on XAI in those systems and its implications are
thoroughly addressed in recent literature, for example in [26]
[27][28][29]. XAI is also common in recommendation systems,
for ethical reasons [30]. However, XAI is less common in
computer vision systems. One similar work to ours is [31], where
explainable 3D classification is discussed. Another similar work
is [32], where explainable 3D object detection for autonomous
vehicles is proposed. Finally, a work that is most similar to ours
is [33], where a pose estimation from single images system has

explainable components. However, to the best of our knowledge,
this is the first work on 3D reconstruction of outdoor objects
with explainability.

3. Method
3.1. Overview
Our method seeks to estimate the 2D vertex positions of a
cuboid model, which best describes the geometry of a given
segmentation mask of a single building. For clarity, we lay
out the method using a single cuboid model, however, our
method is not restricted to this case alone. In Section 5 we
demonstrate another model, of two adjacent cuboids. Many
other options could also be conceived, but we found these
two to be quite inclusive for urban buildings, and leave using
other primitives and combinations to future extensions.

Our solution consists of three neural networks, as can be seen in
Figure 2. Our mission is to identify 2D keypoint coordinates of
3D shapes, from images. We assume the image was segmented
to instances, and we operate over the segmentation mask of
the shape instance. In our work, we trained different models
for different classes of shapes. Thus, a decision for the class of
the object is needed at an early stage. This decision can indeed
be taken early by some heuristics (or a classifier). Alternatively,
the decision can be taken after all class predictors were used,
by some leveraging of their confidence scores. The first part
of our pipeline, the Refiner (R), is introduced to alleviate our
finding that interpretation from noisy input is difficult. The
Refiner is designed to improve binary segmentation maps
by filling in occlusions or holes and reducing noise. Working
with cleaner segmentation maps, that are closer to the actual
silhouettes, has improved the performance of the next steps, as
we demonstrate in Section 5.

Next, instead of explicitly pinpointing desired vertex positions, we
follow recent work [2][34] and calculate probabilistic heat maps
for every vertex of the model — a task more natural for neural
networks. Our second network, the Estimator (S), is designed
to calculate these heat maps from binary segmentation data.
Using points of interest as a means of orientation estimation,
instead of the more intuitive approach of explicitly evaluating

Figure 2: Flow chart of the entire model pipeline. Noisy and occluded segmentation maps are fed to the Refiner (we also suggest that this
step repeats until maximal refinement). Clean segmentation maps are fed to the Estimator. Keypoint heat maps are fed to the Tabulator.
3D shape structure is computed.

Research Paper — Volume 15 113

model parameters such as dimensions and rotations, has been
proven useful several times in the past [1][2][3]. In addition, it is
well established that networks perform better when trained to
produce probability maps instead of being asked to make clear
cut choices. This is the reason for the existence of our third step.

Finally, we turn to extract the final 2D coordinates. Ideally,
each heat map will be activated in exactly one pixel, or at
least should be centered around one pixel, which is the
true coordinate. In practice, however, the extraction task
poses a twofold problem: First, the generated heat maps
are imperfect, due to occlusions, ambiguities, or unclear
boundaries. Second, the vertex positions should collectively
represent a projected cuboid, hence their extraction should
take this geometric prior into account, as opposed to
extracting each vertex independently. With these challenges
in mind, we design our third network, the Tabulator (T).

3.2. Architecture
The model’s architecture is composed of three deep neural
networks implemented in PyTorch [35]. The source code
is available in the TorchVision library [36]. The networks’
architecture is based on ResNet–18 [37], either the
convolutional (CNN) variant, which maps tensors to vectors,
or the fully-convolutional (FCN) [38] variant, which maps
tensors to tensors. The networks are optimized using Adam
[39] with the L2 penalty [40]. Each network specializes in a
specific, human-interpretable task.

Refiner The Refiner (R) is an FCN, with the purpose of
segmentation map refinement, i.e. removing noise and
occlusions. Its input and output are a single channeled
image. The final output layer of this network is activated by
a tanh function, to force the output to be in the same range
as the input, where the pixel value of 1 represents the object,
and −1 represents the background.

Estimator The Estimator (S) is also an FCN, with the
purpose of estimating probability heat maps of semantic
keypoints from the refined segmentation maps. In our
design, we use a single estimator network for N points, where
N is the number of vertices in the fitted model. This is in
contrary to employing N estimators processing a single point
each. The single network configuration facilitates learning

the dependencies between the different points and hence
outputs a coherent, geometrically correct estimation.

The Estimator’s input is again a single channeled
image, but its output is N images of this size. The output of
this network is followed by a sigmoid activation function,
where values closer to 1 mean higher probability, and values
closer to 0 mean lower probability.

Tabulator The Tabulator (T) is a CNN, with the purpose of
learning exact keypoint locations from heat maps. Again, in
our design, we use a single tabulator network for N points,
contrary to N tabulators for a single point, for internal
coherence. The Tabulator’s input consists of N images
of dimensions , and its output dimensions are N
2. The output of this network is activated using a sigmoid
function and is afterwards multiplied by (H, W), so the final
values are in the range of the original segmentation map’s
dimensions. As shown in Figure 4, the Tabulator holds the
critical extracting vertices that are geometrically valid. For
example, should a produced map consist of two distinct

Figure 3: Example of semantic segmentation of an image, with
classes used in the autonomous driving dataset Cityscapes.

Figure 4. Header: (a1) a natural image; (a2) its binary segmentation map;
Top row: (a3) refined segmentation map, with the final result
overlaid; (a4) the sum of all generated heat maps, overlaid with the
final result; (a5) the final result laid over the original image. We also
show (d), a visualization of the cropped input segment.
Middle row: restriction-less fine tuning ablation study result — undergoing
additional training that did not penalize for the intermediate results.
Bottom row: end-to-end ablation study result — training with no
forced representational meaning for intermediate steps.

114 MSJAR — Research paper114 MSJAR — Research paper

blobs, the Tabulator decides between them, in a way that
resembles a projected box the most. This is possible since the
Tabulator makes a holistic decision, looking at all N maps
and producing all N positions at the same time.

3.3. Training
3.3.1. Training data

Our unique problem setting enables training our model
on synthetic data only. This means producing unlimited
amounts of perfectly balanced and labeled data, eliminating
bottleneck costs of annotated data collection. To generate a
synthetic data sample, we start by constructing the vector
of vertex positions that defines our shape. For a box, we
construct a canonical cube, having its 8 vertices at locations

 where the order is significant (i.e. the
front-facing top left vertex is always in index 0, etc.). See
Table 1 for definition, For the shape of two adjacent boxes,
for example, the structure is composed of 14 points. See Table
2 for definition. Note that one could consider removing the
order significance of the vertices, however, this would impose
reflection and symmetry considerations during training,
making the process more cumbersome, and also less accurate,
as it turns out from our experiments.

We then perform a series of random 3D transformations on
these vectors. These transformations consist of a translation,
a rotation, and a non-uniform scale. We limit the range of the
random parameters to be consistent with the task we intend
to learn. For example, for the case of street-level images of
buildings, one can safely assume that the camera position
is not below the object. For our experiments, we uniformly
sample the parameter space defined by the ranges found in
Appendix A. Once the shape has been positioned in 3D, we
project it to the 2D plane using perspective projection with
a random projection plane distance. The latter is varied to
enable the support of different cameras. Then, the only step
left is rasterizing the binary image according to the resulting
2D coordinates, to form the segmentation map.

This is done by marking with the inner points that are
limited by the shape’s convex hull. If the object is not convex
but composed of convex sub-objects, for example in the two-
boxes case, we do this procedure for each sub-object and then
union the maps pixel-wise, for a single binary segmentation
map. A segmentation map is a square matrix, where the
pixels in the polygon filled by these points with 1 (object),
contrary to the background pixels, which we set as -1.

Finally, we augment the clean image produced to better match
the behavior of real-life segmentation maps. To simulate
occlusions, we remove the silhouettes of random objects from
the produced image. For each binary segmentation map, we
randomly choose an occlusion element from a predefined
library of RGBA images. In our example, these are 2D cut-
outs of urban elements such as trees, cars, pedestrians, and
signs. extracted from an existing dataset of similar scenes —
in our case, Cityscapes [41]. We then choose the random size,
orientation, and position for this element, and subtract it from
the segmentation map (see example in Figure 15). To account
for inaccuracies of segmentation networks, we add noise of
random amount to each of the generated segment’s contour. In
Figure 9, we show that our model performs well even if the
occlusion type is of a different kind than what it was trained on.

Additionally, for every 2D coordinate, we generate the
corresponding heat map. Each heat map contains a single,
low variance Gaussian blob around the respective vertex
coordinate (see Figure 1). These heat maps serve as the
ground truth for the heat map prediction produced by S.

INDEX DEPTH WIDTH HEIGHT
0 BACK RIGHT TOP
1 BACK RIGHT BOTTOM
2 BACK LEFT TOP
3 BACK LEFT BOTTOM
4 FRONT RIGHT TOP
5 FRONT RIGHT BOTTOM
6 FRONT LEFT TOP
7 FRONT LEFT BOTTOM

Table 1: Semantic IDs of keypoints in single-cube estimation,
agnostic to pose, assuming that the box’s front plane is somehow
fronting the camera.

INDEX DEPTH WIDTH HEIGHT (SIDE)
0 BACK RIGHT TOP (R)
1 BACK RIGHT BOTTOM
2 BACK MIDDLE TOP (R)
3 BACK MIDDLE BOTTOM
4 FRONT RIGHT TOP (R)
5 FRONT RIGHT BOTTOM
6 FRONT MIDDLE TOP (R)
7 FRONT MIDDLE BOTTOM
8 BACK MIDDLE TOP (L)
9 BACK LEFT TOP (L)

10 BACK LEFT BOTTOM
11 FRONT MIDDLE TOP (L)
12 FRONT LEFT TOP (L)
13 FRONT LEFT BOTTOM

Table 2: Semantic IDs of keypoints in two-cubes estimation,
agnostic to pose, assuming that the boxes’ front planes are
somehow fronting the camera. TOP (L) and TOP (R) are the locations
of the top of the building on the left hand side and the building on
the right hand side, respectively.

Research Paper — Volume 15 115

3.3.2. Training scheme

Since we synthetically constructed our data, we have
full knowledge of its parameters, and in particular, the
2D location of the N keypoints. For this reason, we have
unlimited labeled data for training. Unorthodoxly, in this
work, the data creation and model training are linked. A
pipeline for data generation was described in Section 4.3.1.
That pipeline is executed on the CPU, enabling the GPUs to
train without competition for resources.

When invoking the training phase, data folder and data
size must be specified. Training samples are generated on
the CPU, then they serialize and replace older data files on
the disk. When the limit of data size is reached, the oldest
files are replaced again with new samples. This process runs
continuously, and essentially provides an infinite amount
of data for training. As a result, the training data folder is
constantly refreshed with new samples. One may specify
data size of value 0, to retain the data in the folder. In our
work, we found that a limit of 10,000 for number of samples
in the data folder was sufficient.

At the same time, the model’s training on the GPUs begins,
and every epoch we sequentially load B data samples from the
training data folder. The loading process is enumerated, and
is much faster than the generation process, which guarantees
that every data sample will be loaded for training at least
once. The samples consist of: 1) tuples of noisy and occluded
segmentation maps, 2) clean segmentation maps, arrays of
heat maps, and 4) vectors of 2D coordinates. We denote the
batch of data samples by

We define three loss terms, and where each
term corresponds to a different network.

• The distance between (an
output of the network) and

• The distance between (an
output of the network) and

• The distance between (an
output of the network) and

If we train all networks jointly, then the model is equivalent
to a large single network, which yields poor performance
and the loss of the interpretability of intermediate results.
Instead, We guide the training process and avoid learning
uninterpretable representations by introducing a two-
phase training scheme, taking a bottom-up approach. The
scheme starts with the first phase of training each network

separately, according to the intermediate results existing in
our synthesized data (see Section 4.3.1). The second phase
trains the networks together, ignoring intermediate losses.
This improves final performance in terms of accuracy, but at
the cost of a possible decrease in interpretability. The training
phases are described in more detail below:

Phase 1. We start by training each network separately.
We do this for epochs. In other words, the noisy and
occluded segmentation maps, are fed to , and the
clean segmentation maps, are expected to be produced.
Similarly, the clean segmentation maps are fed to , and
heat maps, , are the ground truth labels for this network.
Finally, the heat maps are fed to T, which is expected
to produce the final vector of vertex coordinates, In this
configuration, we employ three independent loss terms:

Phase 2. In this phase, we train our 3 networks as a single
end-to-end unit, for epochs. In every epoch, is fed
to , resulting in Then is fed to , resulting in
which in turn is fed to T, resulting in The purpose of
this stage is to let networks adapt to the needs of the other
networks through joint training. Of course, we still don’t
want to lose the explainability and guidance we offer in the
form of the intermediate results. Therefore, we do not use
only the loss Considering only the final
result will cause degradation of the intermediate maps, and
ultimately the overall performance, as is indicated by our
ablation studies (Section 5.1). Instead, we train the network
to work as a whole, while preserving the semantics of the
intermediate results by considering all of our losses. Namely,
the loss for this phase is

 (1)

In our work, the coefficients are

3.4. Inference
In inference time, binary segmentation maps are fed to the
concatenation of the three networks, producing semantic
2D keypoint estimations. The intermediate results (refined
segmentation maps and probabilistic heat maps) can be
observed, helping to describe the decision process of the
whole system. For example, Figure 1 demonstrates a result
of the probabilistic heat maps. As can be seen, the network
has identified two possible locations for vertex number 1 (the
second maps from top left) and has a rather unclear decision,
represented by a smeared blob for vertex number 2 (the third
map). These difficulties in identifications become immediately

116 MSJAR — Research paper116 MSJAR — Research paper

intuitive when looking at human legible heat maps, which
could potentially help fine-tune the network and data we feed
to it. Figure 4 demonstrates the entire pipeline, including
the keypoint estimation from heat maps. In addition, further
manipulations can be applied to intermediate products.
For example iterative refinement (if the trained R is not
stationary) or amplifying heat maps’ values. In Figure 7 we
show how re-entering the refined segmentation maps to
the Refiner, gradually removes more occlusions, ultimately
improving the final keypoints estimation.

4. Evaluation
We begin the evaluation of our method by collecting
binary segmentation maps. These maps could be segmented
manually, or automatically through a semantic segmentation
network (or an instance segmentation network). We present
results from multiple sources.

For the task of building identification, we have acquired a
few examples of outdoor street-level RGB images and their
corresponding man-made segmentation maps. We extracted
segments of objects that are from the domain of our task
(buildings that are composed of a single box or two boxes)
and placed each segment in the middle of a new 256 256
binary image.

A similar process was made for automatically segmented
images. For semantic segmentation, we use an off-the-
shelf TensorFlow [42] DeepLab network with Xception 71
backbone [43], trained on the Cityscapes dataset [41]. An
illustration of it on one of our test images can be seen in
Figure 3.

From these segmentation maps, we infer their portrayed
shapes by feeding them to the system, as described in section
4.4. An example result from a natural image and a manually
annotated segment can be seen in Figure 4, top row. In (a3),
each keypoint is marked by its index in red, and the wireframe
formed by the keypoints is depicted in green. The orientation
from the box center to the middle of the front face of the
box is depicted by the blue arrow. In (a4) we observe that
resulting coordinates are not necessarily at the maxima of the
heat maps — as implicit geometric correctness was learned.
Note that we do not have the true keypoint coordinates for
the images from both of these sources. Hence, quantitative
results can only be calculated on synthetic data, as there is no
real-world labeled data of buildings images, their silhouettes,
and their keypoint 2D coordinates, to the best of our

knowledge. Table 3 indicates the average distance between
ground truth 2D coordinates and the inferred ones. As can
be seen, this distance for synthetic data is minute (second
line, 0.04 pixels).

4.1. Ablation studies
4.1.1. Alternative training scheme

One of our main claims is that a model composed of a few
networks, where each one tackles a different, separable, and
human legible sub-task of the problem, will outperform a
single network model with similar architecture or capacity.
In this section, we demonstrate how the proposed training
scheme guides the networks for a better solution while
providing explainability.

We start by using the same architecture with no phases and
no intermediate losses, and simply train all networks in an
end-to-end fashion for semantic keypoints estimation.

In Figure 4, bottom row, we demonstrate intermediate and
final results of such a model, trained on equivalent terms to
our original network. As can be expected, the intermediate
results are meaningless to humans. Less predictably, the final
keypoints location estimation has also lost accuracy, though
the general geometric correctness is preserved. This result
demonstrates how our intermediate steps guides the network,
for an otherwise difficult optimization problem.

Furthermore, we make a stronger claim: a trained end-
to-end model with similar architecture, initialized with
the weights of our proposed models, would not surpass
our reported performance. In Figure 4, middle row, we
show the outputs of such a model, which is trained in
an end-to-end manner, with not intermediate losses,
after our proposed training scheme. As expected, we see
degradation in explainability, as the blobs in the heat
maps become smeared. Also, even though the model is not
limited to the meaningful intermediate representation,
the final result still displays degradation in accuracy. We
speculate this is due to the high accuracy achieved with
the initialized weights, keeping the parameters in a near
space of its initialization.

4.1.2. Alternative architectures

In this experiment, we explore the possibility of replacing the
Tabulator network with classic computer vision approaches.
One could argue that keypoint locations can be inferred
directly from probabilistic heat maps, by taking their center
of mass as the point location. This approach tends to collapse
in some cases, for example, when there are two major centers

Research Paper — Volume 15 117

on a single heat map (see an example in Figure 1). In this
case, the center of mass would not be close to either of the
dominant blobs.

Another approach is choosing the maximal value location in
the heat map as the point location. This approach can also
fail when there are two or more equally dominant centers
if the wrong center is chosen. This could happen since this
approach works on each heat map locally, when sometimes a
global view is needed, to handle outliers, or, importantly, to
enforce geometric correctness.

However, global validity can be enforced using classic computer
vision algorithms. A prominent example is Point Distribution
Model, or PDM [44][45]. PDM constructs a linear subspace
of the geometric shapes it was initialized with, and it can learn
the statistics and the variability of geometric shapes. Once
initialized, it enables the refinement of inaccurate shapes by
projecting them to its subspace and reconstructing from it. We
show an example of a failed heat maps estimation attempt,
and a PDM correction, in Figure 5.

Figure 5. Example of semantic keypoints coordinates estimation
chosen as the maximum value from the heat maps, and fixed with
PDM. From left to right: (a) refined segmentation map, output of
the Refiner, and keypoint locations and structure, estimated from
maximal value locations of heat maps; (b) keypoint locations from
image (a) over the sum of heat maps, output of the Estimator; (c)
refined segmentation map and keypoint locations and structure,
estimated from PDM projection and reconstruction over maximal
value locations of heat maps; (d) keypoint locations over the sum of
heat maps, output of the Estimator; keypoint locations from image
(c) over the sum of heat maps.

In our method, we initialize a PDM instance with 1000
ordered 2D octets, generated as described in Section 4.3.1.
The instance learns the general statistical shape of a valid
building, and the semantic meaning of each point separately.
During inference, we extract the maximal value locations of
the heat maps, and pass them to the PDM, to assure their
global validity. This approach was used in [1]. From our
experiments, on synthetic data, this approach yields similar
results to the Tabulator, but on real-world data, it performs
less accurately. Furthermore, it has some disadvantages:

• PDM has a constant parameter called active
components, which is analogous to the size of
the projected-to-subspace, or the percentage of
variance to be kept. Usually, for alignment and noise

removal, not all of the subspace is needed, similarly
to projecting and reconstructing from PCA. The
number of active components needs to be decided in
advance, and may not generalize well from problem
to problem.

• PDM is not a differentiable algorithm, which prevents
backpropagation through it to the previous networks in
the training scheme.

• If the semantic label of the points is wrong, then PDM
generally fails. An example can be seen in Figure 6.

In Table 3 we summarize the average pixel error over the
validation set, for all the discussed approaches. The average
pixel error with random weights networks is given as a
reference to the results of the followed approaches. It can be
seen that learning without representational meaning, i.e., as
a single network model, decreases the accuracy of the model.
The conclusion is that representational meaning learning is
not only enabling explainability but also better accuracy.

Figure 6. Example of wrong semantic keypoints coordinates
estimation chosen as the maximum value from the heat maps, and
the failed attempt of it to be fixed by PDM, an approach similar to
the one used in [1]. From left to right: (a) refined segmentation map,
output of the Refiner, and keypoint locations and structure, estimated
from maximal value locations of heat maps. It can be seen that two
points have their wrong semantic label; (b) keypoint locations from
image (a) over the sum of heat maps, output of the Estimator; (c)
refined segmentation map and keypoint locations and structure,
estimated from PDM projection and reconstruction over maximal
value locations of heat maps. Because PDM is extremely sensitive
to label noise, its reconstruction yields bad results; (d) keypoint
locations over the sum of heat maps, output of the Estimator;
keypoint locations from image (c) over the sum of heat maps.

MODEL CONFIGURATION AVERAGE PIXEL
ERROR

RANDOM WEIGHTS 17.9
TRAINED WITH REP. MEANING 0.6
TRAINED WITH REP. MEANING, T
REPLACED WITH PDM

0.6

PRE–TRAINED WITH REP. MEANING,
TRAINED WITHOUT REP. MEANING

0.8

UNINITIALIZED, TRAINED WITHOUT
REP. MEANING

1.0

Table 3. Average pixel location estimation errors on the synthetic
validation dataset, per model configurations, based on our
architecture. In this context, representational meaning is the
enabling of each network to learn its interpretable task.

118 MSJAR — Research paper118 MSJAR — Research paper

In these experiments, no noise and occlusions were used. For
studying the effect of the level of noise, see Figure 14.

4.2. Other shapes
We continue to investigate the strength of our model by
introducing a harder shape class, of two adjacent boxes. An
example of our method for such a class can be seen in Figure
9. Furthermore, we claim that our framework is flexible,
and can be extended for any cuboid-based class if the users
feel that their environment requires it. The definitions of
the keypoint indices of the single box and two box classes
are in Table 1 and Table 2. Some real-world examples of
both classes can be seen in Figure 16.

5. Application: Localization
Following the work we presented, we continue to investigate
applications based on it. In particular, we introduce the
problem of localization by visual information and our

Figure 7. Effect of iterative refinement (re-entering refined binary
segmentation maps to the Refiner) on final estimation. Top: from
left to right, an occluded segments and results of refinement steps.
Bottom: Keypoints estimation corresponding to the segmentation
maps above.

Figure 8. Example of single-box segment completion and
8 semantic keypoints coordinates estimation, outputs from
the Refiner and the Tabulator. In this example, the Refiner
demonstrates imperfect denoising, due that the occlusion type
is different than what is was trained on. The Tabulator, however,
manages to overcome the imperfect segment and successfully
reconstruct the object.

Figure 9. Example of processing a manually annotated segment
using the two-boxes, 14 semantic keypoints model. The figure
layout is identical to the one in Figure 4.

Parameter min. max.
Scale (X) ×0.5 ×2
Scale (Y) ×0.5 ×2
Scale (Z) ×0.5 ×2
TranSlaTion (X) –2 +2
TranSlaTion (Y) 0 PX +2 PX

roTaTion (X) –10° 10°
roTaTion (Y) –10° +10°
roTaTion (Z) –5° +5°
Focal lengTh 2 PX 10 PX

FliP ProbabiliTY 0.5
Table 4: Range of parameters for random data generation.

suggestion of its improvement.

Localization is the ability to locate an object geographically with
computational means. Many environment signals can be used
for localization: visual, audial, and most commonly, GPS. GPS is
specifically used for localization, however, it is notoriously known
for inaccuracy. Under the open sky, GPS enabled smartphones
are typically accurate to within a 4.9 meters radius, and worse
near bridges, buildings and trees. In this section, we suggest a
way to enhance localization by exploiting visual information.

5.1. Formulation
We focus on a specific scenario: understanding the location
on a street. We assume the street is known (perhaps by more
general systems such as GPS), and all of its buildings are
known for their dimensions.

If a picture of one of the buildings is taken and segmented,
then we can locate its 2D corners. It is practically impossible
to identify a building by a single segment of it, as many
similar buildings on that street can also match it. We offer
some relaxation to the problem:

• Instead of extracting exact dimension, we extract
dimension ratios. This enables us to disregard distance
from building ambiguity. The ratios are extracted as
another output of the Tabulator in Section 4.2.

• Photos of a sequence of consecutive buildings were
taken, not a single building.

We conducted the following experiment: N = 100 noisy and
occluded segments of buildings, and their ratios (and),
were sequentially drawn randomly according to the distribution
in Table 4. These segments passed the inference process in Section
4.4, and predicted ratios were calculated. Next, we observed all
sub-sequences of predicted ratios of length for all
for For each sub-sequence, we ranked how much it
matches to each true sub-sequence of length For example,
say and we observe the predicted ratios of buildings (12,

Research Paper — Volume 15 119

13, 14). Then we calculate its distance from all true triplets of
buildings, (1, 2, 3), (2, 3, 4), etc. The chosen distance is the
distance between the vectors of the ratios. We define accuracy as:

 (2)

In other words, the accuracy for sub-sequence length and top-
ranking l is the average number of predicted sub-sequences of
length that match their true sub–sequences, where matching
is considered if it is among the top l possibilities (a possibility is
ranked higher if the distance is lower).

5.2. Results
In Figure 11 partial tables of accuracy scores, for a sequence
of 10 and 100 buildings, are presented. Few insights can be
extracted from it. For example, statistically, localization in a
100–buildings sequence, with predicting building rations of
only 8 buildings, is enough to have more than 50% probability
to identify the correct sub-sequence. When also considering the
second most probable match (this can be useful if they are very
far geographically and we can eliminate one of them by another
localization method), only 3 buildings are enough to achieve
50% accuracy. In Figure 12, we also demonstrate localization in
a 10–buildings sequence with a sub-sequence of length 4.

6. Discussion
In this paper, we have proposed a method for a completely
unsupervised fitting procedure to texture-less maps of cuboid
and bicuboid buildings. The only form of supervision our

method incorporates is in the geometric prior of the fitted
model. The paper gives an interesting insight into how much
of the information required for fitting is actually in the
silhouette of the object, and how far can one get with only
implicit supervision through the use of a geometric prior. Even
though we have demonstrated the effectiveness of our method
only for restrictive models (one or two adjacent cuboids), the
method should have no conceptual limitation in supporting
any simple polygon primitive or composition of primitives,
including prismal and pyramidal geometries, and even geodesic
domes. Non-polygonal shapes, like conical, cylindrical and
hemispherical geometries, cannot be solved by this method
without significant expansion, since their faces are defined by the
infinite number of vertices. Also, their pose cannot be properly
described. In the future, it would be interesting to examine these
polygonal and non-polygonal shapes, which would expand the

Figure 10: Accuracy scores for sub-sequences matching. For a
sequence of 100 random buildings, each cell describes the probability
to correctly locate a sub–sequence by building ratios estimation.

Figure 11: Accuracy scores for sub-sequences matching. For a
sequence of 10 random buildings, each cell describes the probability
to correctly locate a sub–sequence by building ratios estimation.

Figure 12: Example of matching a sub-sequence on 4 buildings in a
10 buildings sequence. We attempt to locate the starting building for
the predictions of the buildings in red. For each building, we present
the probability of it being the first building in the sub-sequence, by
calculating the negative distance between predicted and ground truth
ratios, and softmaxing it. It can be seen that the highest probability
was received for the correct building: the first building in red.

Figure 13: Effect of segmentation noise on 3D reconstruction.
From left to right: (a) High level of noise on segmentation map. (b)
Failed attempt of 3D reconstruction. (c) No noise on segmentation
map. (d) Successful attempt of 3D reconstruction.

Figure 14: Effect of different levels of noise around the contour
of the silhouette in the segmentation map, on the average pixel
location estimation error. Although there is a denoising step in the
pipeline, the graph shows how high levels of noise in the initial
segmentation map can harm the final result.

120 MSJAR — Research paper120 MSJAR — Research paper

types of buildings we can support, and see how the relaxation in
the model’s rigor affect accuracy, for better or maybe for worse.

Another important aspect of our method is explainability.
We have shown how guiding the training towards specific
intermediate results has not only produced human legible
milestones, which help in understanding the network’s
decision making, but also improves performance. This is in
contrast to the popular assumption that a network should be
free to find its own intermediate representation and warrants
further investigation between the trade-offs of a network’s
expressiveness and the concepts of curriculum learning.

Finally, we have also demonstrated how the method could be
applied to the problem of small scale localization — an important
and complementary problem to ubiquitous GPS solutions. We
believe that carrying a lightweight representation of a region, and
using a few simple camera shots to localize oneself accurately
could have powerful implications on modern day urban
navigation experiences. Furthermore, other fitting approaches
have demonstrated that 3D reasoning is attainable using similar
concepts to ours. Successfully incorporating this concept into
our method would produce a power scheme, which may be able
to populate entire cities with 3D building schematics just from
sparse street-level images within its streets. These two examples
demonstrate how much potential such a system may have, and
therefore we hope to see it continue growing in the near future.

Figure 15: Above: some common urban occluding elements extracted
from the Cityscapes dataset. These elements are used in the training
process as occlusion augmentation to the binary segmentation maps.
Below: subtracting the top right element from a building silhouette.
Note how the element was flipped and resized before the subtraction.

Figure 16: More results on photographs and illustrations of single
and double cuboids.

7. Appendix
Listing 1. Random box generator in homogeneous coordinates

Research Paper — Volume 15 121

References
[1] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K.

Daniilidis, “6-DoF object pose from semantic key-
points,” 2017.

[2] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y.
A. Sheikh, “Openpose: Realtime multi-person 2D pose
estimation using part affinity fields,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

[3] P. P. Busto and J. Gall, “Joint viewpoint and keypoint
estimation with real and synthetic data,” in German
Conference on Pattern Recognition, pp. 107–121,
Springer, 2019.

[4] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese,
“3D-r2n2: A unified approach for single and multi-
view 3D object reconstruction,” in Computer Vision –
ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and M. Welling,
eds.), (Cham), pp. 628–644, Springer International
Publishing, 2016.

[5] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin,
and A. Geiger, “Occupancy networks: Learning 3D
reconstruction in function space,” 2018.

[6] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang,
“Pixel2mesh: Generating 3D mesh models from single
RGB images,” 2018.

[7] G. Gkioxari, J. Malik, and J. Johnson, “Mesh R-CNN,”
in Proceedings of the IEEE International Conference on
Computer Vision, pp. 9785–9795, 2019.

[8] S. Liu, W. Chen, T. Li, and H. Li, “Soft rasterizer:
Differentiable rendering for unsupervised single-view
mesh reconstruction,” 2019.

[9] X. Han, H. Laga, and M. Bennamoun, “Image-based
3D object reconstruction: State-of-the-art and trends
in the deep learning era,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2019.

[10] J. Xiao, B. Russell, and A. Torralba, “Localizing 3D
cuboids in single-view images,” in Advances in Neural
Information Processing Systems, pp. 746–754, 2012.

[11] D. Dwibedi, T. Malisiewicz, V. Badrinarayanan, and
A. Rabinovich, “Deep cuboid detection: Beyond 2d
bounding boxes,” arXiv preprint arXiv:1611.10010, 2016.

[12] M. Hejrati and D. Ramanan, “Analyzing 3D objects in
cluttered images,” in Advances in Neural Information
Processing Systems, pp. 593–601, 2012.

[13] G. Nishida, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and
A. Bousseau, “Interactive sketching of urban procedural
models,” ACM Transactions on Graphics, vol. 35, July 2016.

[14] C. Liu, J. Wu, P. Kohli, and Y. Furukawa, “Raster-
to-vector: Revisiting floorplan transformation,” in
Proceedings of the IEEE International Conference on
Computer Vision, pp. 2195–2203, 2017.

[15] N. Nauata and Y. Furukawa, “Vectorizing world
buildings: Planar graph reconstruction by primitive
detection and relationship inference,” 2019.

[16] G. Nishida, A. Bousseau, and D. G. Aliaga, “Procedural
modeling of a building from a single image,” in
Computer Graphics Forum, vol. 37, pp. 415–429, Wiley
Online Library, 2018.

[17] C. Deng, J. Huang, and Y.-L. Yang, “Interactive
modeling of lofted shapes from a single image,”
Computational Visual Media, pp. 1–11, 2019.

[18] H. Zeng, J. Wu, and Y. Furukawa, “Neural procedural
reconstruction for residential buildings,” in
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 737–753, 2018.

[19] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka,
“3D bounding box estimation using deep learning and
geometry,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7074–
7082, 2017.

[20] Y. Wang, X. Tan, Y. Yang, X. Liu, E. Ding, F. Zhou, and L.
S. Davis, “3D pose estimation for fine-grained object
categories,” in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 0–0, 2018.

[21] G. Nakano, “A versatile approach for solving PnP,
PnPf, and PnPfr problems,” in European Conference on
Computer Vision, pp. 338–352, Springer, 2016.

[22] A. Grabner, P. M. Roth, and V. Lepetit, “GP2C:
Geometric projection parameter consensus for joint
3D pose and focal length estimation in the wild,” in
Proceedings of the IEEE International Conference on
Computer Vision, pp. 2222–2231, 2019.

[23] Z. Li, G. Wang, and X. Ji, “CDPN: Coordinates-based
disentangled pose network for real-time RGB-based
6-DoF object pose estimation,” in Proceedings of the
IEEE International Conference on Computer Vision, pp.
7678–7687, 2019.

[24] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable
artificial intelligence: Understanding, visualizing and
interpreting deep learning models,” arXiv preprint
arXiv:1708.08296, 2017.

[25] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina,
R. Benjamins, et al., “Explainable artificial intelligence
(xai): Concepts, taxonomies, opportunities and
challenges toward responsible AI,” Information Fusion,
vol. 58, pp. 82–115, 2020.

122 MSJAR — Research paper

[26] E. Tjoa and C. Guan, “A survey on explainable
artificial intelligence (xai): Toward medical xai,”
IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[27] A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell,
“What do we need to build explainable AI systems for the
medical domain?,” arXiv preprint arXiv:1712.09923, 2017.

[28] A. J. London, “Artificial intelligence and black-box
medical decisions: accuracy versus explainability,”
Hastings Center Report, vol. 49, no. 1, pp. 15–21, 2019.

[29] A. Singh, S. Sengupta, and V. Lakshminarayanan,
“Explainable deep learning models in medical image
analysis,” Journal of Imaging, vol. 6, no. 6, p. 52, 2020.

[30] Y. Zhang and X. Chen, “Explainable recommendation:
A survey and new perspectives,” arXiv preprint
arXiv:1804.11192, 2018.

[31] N. Kwon, C. Liang, and J. Kim, “3D4ALL: Toward an
inclusive pipeline to classify 3D contents,” arXiv
preprint arXiv:2102.12606, 2021.

[32] H. Pan, Z. Wang, W. Zhan, and M. Tomizuka, “Towards
better performance and more explainable uncertainty
for 3D object detection of autonomous vehicles,” in
2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC), pp. 1–7, IEEE, 2020.

[33] F. Manhardt, G. Wang, B. Busam, M. Nickel, S. Meier,
L. Minciullo, X. Ji, and N. Navab, “CPS++: Improving
class-level 6D pose and shape estimation from
monocular images with self-supervised learning,” arXiv
preprint arXiv:2003.05848, 2020.

[34] F. Mueller, F. Bernard, O. Sotnychenko, D. Mehta, S.
Sridhar, D. Casas, and C. Theobalt, “Ganerated hands
for real-time 3D hand tracking from monocular
RGB,” in Proceedings of Computer Vision and Pattern
Recognition (CVPR), June 2018.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances
in Neural Information Processing Systems 32 (H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, eds.), pp. 8024– 8035, Curran
Associates, Inc., 2019.

[36] “Resnet implementations by pytorch’s torchvision.”
https://github.com/pytorch/vision/ blob/v0.9.1/
torchvision/models/ resnet.py, 2021.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[38] J. Long, E. Shelhamer, and T. Darrell, “Fully
convolutional networks for semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3431–3440, 2015.

[39] D. P. Kingma and J. Ba, “Adam: A method
for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[40] I. Loshchilov and F. Hutter, “Decoupled weight decay
regularization,” arXiv preprint arXiv:1711.05101, 2017.

[41] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M.
Enzweiler, R. Benenson, U. Franke, S. Roth, and B.
Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2016.

[42] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems.” https://www.
tensorflow. org/, 2015. Software available from
tensorflow.org.

[43] F. Chollet, “Xception: Deep learning with depthwise
separable convolutions,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1251–1258, 2017.

[44] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham,
“Active shape models-their training and application,”
Computer Vision and Image Understanding, vol. 61,
no. 1, pp. 38–59, 1995.

[45] T. F. Cootes, C. J. Taylor, et al., “Statistical models of
appearance for computer vision,” 2004.

Research Paper — Volume 15 123

https://github.com/pytorch/vision/blob/v0.9.1/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/v0.9.1/torchvision/models/resnet.py
https://www.tensorflow.org/
https://www.tensorflow.org/

