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Reconstructing 3D objects from a single image is a notoriously difficult task, with many different 
proposed approaches and settings. In this paper, we investigate a unique variant: fitting cuboids 
to silhouettes. In other words, we ask how strong geometric priors can benefit texture-less binary 
silhouettes based reconstruction. While more challenging, using silhouettes enables training on 
purely synthesized perfectly labeled data. For the investigation, we look at street-level images of 
buildings, since they hold rigorous geometric structure, and their silhouettes are easily obtained, for 
example through instance-level segmentation. Given a noisy, partially occluded, segmentation mask 
as input, we present a three-step network that first generates a cleaner version for the mask, then 
moves to a heat-map estimation of the cuboid corners, and finally extracts the actual, geometrically 
coherent, vertex positions. Even though jointly trained, each of these steps produces human-legible 
intermediate results instead of a latent code, which serve both in guiding the training process, 
but also in providing explainability—a pillar of modern ethical AI systems. Finally, we evaluate our 
approach through street level images and ablation studies
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1.	 Introduction
Reconstructing a 3D object from a single image has been 
one of the core challenges of computer vision since the dawn 
of the field. It is useful in countless applications, spanning 
everything from medical diagnosis and manufacturing 
control to robot navigation and autonomous driving. This 
task, however, is ill-posed and extremely difficult in the 
general case, since it requires vast semantic knowledge and 
profound reasoning about physics, optical phenomena, 
and the interaction between objects and people. Hence, 
many different approaches have been proposed to tackle it, 
leveraging a variety of assumptions and scene settings in 
order to make the problem feasible.

In this paper, we look at the problem of reconstruction 
from silhouettes. Silhouettes are binary masks, indicating 
the area the target object is occupying in the input image. 
Using silhouettes offers a lot of flexibility. A system that 
relies on silhouettes only is more robust, in the sense that 
it is unaffected by lighting conditions, small changes to 
geometry, or unusual textures such as drawings. Even more 
importantly, silhouettes are simple to generate, meaning one 
could train such a system using only synthetic data. Curating 
quality datasets is one of the biggest bottlenecks of modern- 
day algorithms, and has become a stage with practically the 
same importance as designing the method itself. Hence, the 
ability to generate perfectly labeled training examples at no 
cost is significant.

Of course, using only silhouettes, on the other hand, means 
ignoring a lot of useful visual information, such as inner 
details and geometric visual cues. Hence, some restrictions 
must be applied in order to make the problem feasible, as 
previously mentioned. One of the most powerful assumptions 
that can be made is restricting the reconstructed geometry 
to a predefined model. Using a strong geometric prior is an 
efficient way to extend the information seen in an image to 
its occluded dimensions. Hence, we turn to the problem of 
primitive fitting – where simple geometries are positioned, 
oriented, and stretched in order to fit the visible information. 
Even though our method is not restricted to specific 
geometries or scenes, in this work we solely use cuboids 
to estimate buildings from a single street-level silhouette. 
Buildings can be very versatile in appearance, and datasets 
regarding their structure are hard to come by. On the other 
hand, it is well established that buildings can be represented 
by the construction of simple primitives (see Section 3), 
which are most commonly cuboids buildings, hence our 
method is the right choice for the task. Moreover, successfully 

fitting cuboids to buildings is a useful capability that could 
be applied, for example, to localize oneself accurately within 
an urban scene.

Our method is comprised of three jointly trained neural 
networks, corresponding to three algorithmic steps. The 
input is a silhouette of a building, typically obtained by an 
off-the-shelf semantic segmentation process or manual 
annotation. Such masks are noisy at the boundaries, and 
usually reflect partial occlusions, such as trees, cars, or other 
buildings positioned between the target and the camera. Our 
first step is to heal the input binary mask, by completing 
holes and reducing noise. This step reduces the diversity that 
the following network has to deal with and hence improves 
overall performance. Then, we generate heat maps, estimating 
the 2D image positions of every vertex of the cuboid. Using 
points of interest as a means of orientation estimation, instead 
of the more intuitive approach of explicitly evaluating model 
parameters such as dimensions and rotations, has been 
proven useful several times in the past in [1][2][3]. Lastly, 
explicit vertex coordinates are extracted from the heat maps, 
estimating the final cuboid position.

Imposing intermediate results on a network prevents it from 
freely finding a latent space on its own, potentially restricting 
its expressiveness. We chose to go through these intermediate 
steps, however, since they guide the training process towards 
the desired results. In addition, they provide explainability — 
giving insight into how and why a specific choice was made in 
test time. Since our training is purely performed on synthetic 
data, we propose a specifically tailored training scheme, 
combining training each part separately on its generated 
intermediate result for bootstrapping, with training all the 
steps together.

In the following, We show how the network is built and 
trained (Section 3), and its performance (Section 4). Then, 
we evaluate how different design choices contribute to the 
method’s performance through ablation studies.

Figure 1: Example of single-box 8 semantic keypoints heat maps 
estimation, an output from the Estimator, the second network in 
our model.
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2.	Related work
Our work focuses on the monocular reconstruction of cuboid 
objects where the image is already segmented into a binary 
image. Reconstructing a 3D object from an image or set of 
images is a fundamental task in computer vision. Hence 
our work can be cast in several different ways, according to 
respective lines of work. As far as we know, it is the first work 
that applies outdoor cuboid—fitting without any human 
interaction and supervision.

2.1. Monocular reconstruction
One way to cast our problem is through the eyes of object 
reconstruction from a single image. The general problem is 
one of the most fundamental goals in computer vision, with 
countless proposed approaches. A seminal work in the field 
extracts an occupancy grid from a given image, or in other 
words, reconstructs a voxel representation of the target object 
like in [4]. The system is trained using 3D mesh data and 
corresponding images. More recent publications like [5][6]
[7] use a single image to obtain 3D information of objects, 
producing voxel or accurate mesh representations while 
relying on the camera parameters and object appearance. This 
line of work, while producing impressive results, is aiming at 
a general case of objects without any prior on their shape. 
For this reason, such methods require intensive training, 
extensive supervision, are typically sensitive to object texture, 
and are restricted to indoor scenes, which offer some control 
over scene lighting. To alleviate lighting and appearance 
limitations, many proposed method reconstruct objects from 
their silhouettes alone. This could be done using several 
images of the same object from different angles, or through 
a differentiable renderer, which offers supervision and loss 
estimation, like in [8]. For a more thorough review, we refer 
the reader to a recent state-of-the-art report covering this 
field in [9]. Cuboid-fitting was also studied previously in [10]
[11], but so far only for indoor scenes. Similar work to ours 
but on other outdoor objects, cars, was also studied before in 
[12]. In general, these approaches aim at a very wide variety 
of reconstructed objects, which imposes great training and 
supervision efforts. By using a very simplified and lightweight 
model of specific object classes, i.e. cuboids, we were able 
to devise a method that is completely supervision free and 
requires no labeling or images or 3D data.

2.2. Inverse procedural modeling
Another way to look at our problem is through its similarities 
to procedural modeling. This field, which is commonly used 
for buildings and city modeling, defines a grammar with 

which a system or a user can describe the target object. 
This approach offers a very lightweight description of a 
building or another object, which is faster and easier to 
optimize for. Even though easier to handle, these methods 
still require laborious efforts for elaborate modeling. 
Therefore, interactive approaches for procedural modeling 
have been proposed, like in [13]. To further automate this 
process, inverse procedural modeling methods have been 
proposed. These methods try to estimate the grammar 
parameters from a given image, similar to our task. A work 
proposed in [14] shares some similarities with ours, as it 
predicts 2D junctions/corners first from an input image, 
then reconstructs 2D primitives like boxes. For aerial 
images of buildings, the task becomes somewhat easier, as 
all information is visible, and the problem becomes one of 
finding the 2D shape of the roof, like in [15]. For street- 
level images, the proposed methods detect the repetitive 
patterns often seen in building facades to formulate the 
structure’s grammar. One of the most dominant works in 
this aspect, which is similar to ours in goals, is proposed 
in [16]. While producing impressive results, this work, 
similar to others along with this approach like [17], still 
relies on user interaction and data labeling for supervision, 
or parameters such as camera intrinsics, or even 3D point 
locations in inference time, specifically for buildings (see 
[18]). Again, in contrast to these works, our approach is 
trained on purely synthetic data and can extract the cuboid 
shape without any prior knowledge about the camera or 
any other detail in the scene.

2.3. Pose estimation
Arguably, our method is most similar to the pose 
estimation field. The common goal for the publications 
in this area is to estimate the configuration of a known 
model according to a given image. A prominent direction 
is the estimation of human poses, with the seminal work 
of the field, named OpenPose by [2], which estimates the 
configuration of the human pose in 2D. They do this in 
a ”bottom-up” manner, where first potential locations of 
joints are estimated, followed by a step to connect them 
into skeletons correctly. We adopt this concept in our work 
as well. Our work, however, is more aligned with rigid pose 
estimation. The latter is addressed using many different 
approaches in the literature. [19] looks for the orientation 
of bounding boxes of objects seen in a given image. They 
suggest estimating the required box dimension and its 
orientation is correlated, and hence should be deduced by 
the same network. In addition, they propose a combined 
discrete-continuous loss, which estimates the parameters in 
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several bins at the same time. While we take some of these 
concepts into our work, this work uses full supervision — 
with given 3D objects, images that correspond to them, 
along with their orientation, which is in complete contrast 
to our supervision free approach. It has been further shown 
that given enough training data, the same concept can be 
applied to more elaborate, fine-detailed, shapes, like in [20]. 
[3] adds the concept of synthesizing data in order to improve 
performance. They do this by estimating correspondences 
between vertices of given 3D models of several classes, to 
2D locations in an image. Once these correspondences 
are in place, the established PnP method like in [21] is 
employed to extract the 3D orientation of the object 
accordingly. Similarly, other works have added estimation 
of camera intrinsic parameters to the process, like [22][1], 
or propose finding the correct translation and rotation of 
the target object through concepts of disentanglement, like 
[23]. While these works demonstrate impressive, state-of-
the-art results for several classes of objects, they still require 
mixing between real and synthetic data during training, 
and rely on finding distinct visual features in the images. 
For buildings, approaches relying on visual features for 
correspondence points can prove unreliable since facades 
have typically very repetitive patterns.

2.4. Explainable artificial intelligence
Explainable AI (XAI) is a rising field in the machine learning 
community, and the deep learning community in particular [24]. 
The purpose of XAI is to enable ways to interpret models that 
were previously considered uninterpretable (black-box models), 
without significant loss of performance. In [25], the connections 
between explainability and fairness, and explainability and 
accountability, are discussed. This is why XAI is in high demand 
in critical decision making systems, such as medical AI systems. 
The discussion on XAI in those systems and its implications are 
thoroughly addressed in recent literature, for example in [26]
[27][28][29]. XAI is also common in recommendation systems, 
for ethical reasons [30]. However, XAI is less common in 
computer vision systems. One similar work to ours is [31], where 
explainable 3D classification is discussed. Another similar work 
is [32], where explainable 3D object detection for autonomous 
vehicles is proposed. Finally, a work that is most similar to ours 
is [33], where a pose estimation from single images system has 

explainable components. However, to the best of our knowledge, 
this is the first work on 3D reconstruction of outdoor objects 
with explainability.

3.	Method
3.1. Overview
Our method seeks to estimate the 2D vertex positions of a 
cuboid model, which best describes the geometry of a given 
segmentation mask of a single building. For clarity, we lay 
out the method using a single cuboid model, however, our 
method is not restricted to this case alone. In Section 5 we 
demonstrate another model, of two adjacent cuboids. Many 
other options could also be conceived, but we found these 
two to be quite inclusive for urban buildings, and leave using 
other primitives and combinations to future extensions.

Our solution consists of three neural networks, as can be seen in 
Figure 2. Our mission is to identify 2D keypoint coordinates of 
3D shapes, from images. We assume the image was segmented 
to instances, and we operate over the segmentation mask of 
the shape instance. In our work, we trained different models 
for different classes of shapes. Thus, a decision for the class of 
the object is needed at an early stage. This decision can indeed 
be taken early by some heuristics (or a classifier). Alternatively, 
the decision can be taken after all class predictors were used, 
by some leveraging of their confidence scores. The first part 
of our pipeline, the Refiner (R), is introduced to alleviate our 
finding that interpretation from noisy input is difficult. The 
Refiner is designed to improve binary segmentation maps 
by filling in occlusions or holes and reducing noise. Working 
with cleaner segmentation maps, that are closer to the actual 
silhouettes, has improved the performance of the next steps, as 
we demonstrate in Section 5.

Next, instead of explicitly pinpointing desired vertex positions, we 
follow recent work [2][34] and calculate probabilistic heat maps 
for every vertex of the model — a task more natural for neural 
networks. Our second network, the Estimator (S), is designed 
to calculate these heat maps from binary segmentation data. 
Using points of interest as a means of orientation estimation, 
instead of the more intuitive approach of explicitly evaluating 

Figure 2: Flow chart of the entire model pipeline. Noisy and occluded segmentation maps are fed to the Refiner (we also suggest that this 
step repeats until maximal refinement). Clean segmentation maps are fed to the Estimator. Keypoint heat maps are fed to the Tabulator. 
3D shape structure is computed.
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model parameters such as dimensions and rotations, has been 
proven useful several times in the past [1][2][3]. In addition, it is 
well established that networks perform better when trained to 
produce probability maps instead of being asked to make clear 
cut choices. This is the reason for the existence of our third step.

Finally, we turn to extract the final 2D coordinates. Ideally, 
each heat map will be activated in exactly one pixel, or at 
least should be centered around one pixel, which is the 
true coordinate. In practice, however, the extraction task 
poses a twofold problem: First, the generated heat maps 
are imperfect, due to occlusions, ambiguities, or unclear 
boundaries. Second, the vertex positions should collectively 
represent a projected cuboid, hence their extraction should 
take this geometric prior into account, as opposed to 
extracting each vertex independently. With these challenges 
in mind, we design our third network, the Tabulator (T).

3.2. Architecture
The model’s architecture is composed of three deep neural 
networks implemented in PyTorch [35]. The source code 
is available in the TorchVision library [36]. The networks’ 
architecture is based on ResNet–18 [37], either the 
convolutional (CNN) variant, which maps tensors to vectors, 
or the fully-convolutional (FCN) [38] variant, which maps 
tensors to tensors. The networks are optimized using Adam 
[39] with the L2 penalty [40]. Each network specializes in a 
specific, human-interpretable task.

Refiner The Refiner (R) is an FCN, with the purpose of 
segmentation map refinement, i.e. removing noise and 
occlusions. Its input and output are a single channeled  
image. The final output layer of this network is activated by 
a tanh function, to force the output to be in the same range 
as the input, where the pixel value of 1 represents the object, 
and −1 represents the background.

Estimator The Estimator (S) is also an FCN, with the 
purpose of estimating probability heat maps of semantic 
keypoints from the refined segmentation maps. In our 
design, we use a single estimator network for N points, where 
N is the number of vertices in the fitted model. This is in 
contrary to employing N estimators processing a single point 
each. The single network configuration facilitates learning 

the dependencies between the different points and hence 
outputs a coherent, geometrically correct estimation.

The Estimator’s input is again a single channeled  
image, but its output is N images of this size. The output of 
this network is followed by a sigmoid activation function, 
where values closer to 1 mean higher probability, and values 
closer to 0 mean lower probability.

Tabulator The Tabulator (T) is a CNN, with the purpose of 
learning exact keypoint locations from heat maps. Again, in 
our design, we use a single tabulator network for N points, 
contrary to N tabulators for a single point, for internal 
coherence. The Tabulator’s input consists of N images 
of dimensions , and its output dimensions are N  
2. The output of this network is activated using a sigmoid 
function and is afterwards multiplied by (H, W ), so the final 
values are in the range of the original segmentation map’s 
dimensions. As shown in Figure 4, the Tabulator holds the 
critical extracting vertices that are geometrically valid. For 
example, should a produced map consist of two distinct 

Figure 3: Example of semantic segmentation of an image, with 
classes used in the autonomous driving dataset Cityscapes.

Figure 4. Header: (a1) a natural image; (a2) its binary segmentation map; 
Top row: (a3) refined segmentation map, with the final result 
overlaid; (a4) the sum of all generated heat maps, overlaid with the 
final result; (a5) the final result laid over the original image. We also 
show (d), a visualization of the cropped input segment.
Middle row: restriction-less fine tuning ablation study result — undergoing 
additional training that did not penalize for the intermediate results.
Bottom row: end-to-end ablation study result — training with no 
forced representational meaning for intermediate steps.
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blobs, the Tabulator decides between them, in a way that 
resembles a projected box the most. This is possible since the 
Tabulator makes a holistic decision, looking at all N maps 
and producing all N positions at the same time.

3.3. Training
3.3.1. Training data

Our unique problem setting enables training our model 
on synthetic data only. This means producing unlimited 
amounts of perfectly balanced and labeled data, eliminating 
bottleneck costs of annotated data collection. To generate a 
synthetic data sample, we start by constructing the vector 
of vertex positions that defines our shape. For a box, we 
construct a canonical cube, having its 8 vertices at locations 

 where the order is significant (i.e. the 
front-facing top left vertex is always in index 0, etc.). See 
Table 1 for definition, For the shape of two adjacent boxes, 
for example, the structure is composed of 14 points. See Table 
2 for definition. Note that one could consider removing the 
order significance of the vertices, however, this would impose 
reflection and symmetry considerations during training, 
making the process more cumbersome, and also less accurate, 
as it turns out from our experiments.

We then perform a series of random 3D transformations on 
these vectors. These transformations consist of a translation, 
a rotation, and a non-uniform scale. We limit the range of the 
random parameters to be consistent with the task we intend 
to learn. For example, for the case of street-level images of 
buildings, one can safely assume that the camera position 
is not below the object. For our experiments, we uniformly 
sample the parameter space defined by the ranges found in 
Appendix A. Once the shape has been positioned in 3D, we 
project it to the 2D plane using perspective projection with 
a random projection plane distance. The latter is varied to 
enable the support of different cameras. Then, the only step 
left is rasterizing the binary image according to the resulting 
2D coordinates, to form the segmentation map.

This is done by marking with the inner points that are 
limited by the shape’s convex hull. If the object is not convex 
but composed of convex sub-objects, for example in the two-
boxes case, we do this procedure for each sub-object and then 
union the maps pixel-wise, for a single binary segmentation 
map. A segmentation map is a square matrix, where the 
pixels in the polygon filled by these points with 1 (object), 
contrary to the background pixels, which we set as -1.

Finally, we augment the clean image produced to better match 
the behavior of real-life segmentation maps. To simulate 
occlusions, we remove the silhouettes of random objects from 
the produced image. For each binary segmentation map, we 
randomly choose an occlusion element from a predefined 
library of RGBA images. In our example, these are 2D cut-
outs of urban elements such as trees, cars, pedestrians, and 
signs. extracted from an existing dataset of similar scenes — 
in our case, Cityscapes [41]. We then choose the random size, 
orientation, and position for this element, and subtract it from 
the segmentation map (see example in Figure 15). To account 
for inaccuracies of segmentation networks, we add noise of 
random amount to each of the generated segment’s contour. In 
Figure 9, we show that our model performs well even if the 
occlusion type is of a different kind than what it was trained on.

Additionally, for every 2D coordinate, we generate the 
corresponding heat map. Each heat map contains a single, 
low variance Gaussian blob around the respective vertex 
coordinate (see Figure 1). These heat maps serve as the 
ground truth for the heat map prediction produced by S.

INDEX DEPTH WIDTH HEIGHT
0 BACK RIGHT TOP
1 BACK RIGHT BOTTOM
2 BACK LEFT TOP
3 BACK LEFT BOTTOM
4 FRONT RIGHT TOP
5 FRONT RIGHT BOTTOM
6 FRONT LEFT TOP
7 FRONT LEFT BOTTOM

Table 1: Semantic IDs of keypoints in single-cube estimation, 
agnostic to pose, assuming that the box’s front plane is somehow 
fronting the camera.

INDEX DEPTH WIDTH HEIGHT (SIDE)
0 BACK RIGHT TOP (R)
1 BACK RIGHT BOTTOM
2 BACK MIDDLE TOP (R)
3 BACK MIDDLE BOTTOM
4 FRONT RIGHT TOP (R)
5 FRONT RIGHT BOTTOM
6 FRONT MIDDLE TOP (R)
7 FRONT MIDDLE BOTTOM
8 BACK MIDDLE TOP (L)
9 BACK LEFT TOP (L)

10 BACK LEFT BOTTOM
11 FRONT MIDDLE TOP (L)
12 FRONT LEFT TOP (L)
13 FRONT LEFT BOTTOM

Table 2: Semantic IDs of keypoints in two-cubes estimation, 
agnostic to pose, assuming that the boxes’ front planes are 
somehow fronting the camera. TOP (L) and TOP (R) are the locations 
of the top of the building on the left hand side and the building on 
the right hand side, respectively.
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3.3.2. Training scheme

Since we synthetically constructed our data, we have 
full knowledge of its parameters, and in particular, the 
2D location of the N keypoints. For this reason, we have 
unlimited labeled data for training. Unorthodoxly, in this 
work, the data creation and model training are linked. A 
pipeline for data generation was described in Section 4.3.1. 
That pipeline is executed on the CPU, enabling the GPUs to 
train without competition for resources.

When invoking the training phase, data folder and data 
size must be specified. Training samples are generated on 
the CPU, then they serialize and replace older data files on 
the disk. When the limit of data size is reached, the oldest 
files are replaced again with new samples. This process runs 
continuously, and essentially provides an infinite amount 
of data for training. As a result, the training data folder is 
constantly refreshed with new samples. One may specify 
data size of value 0, to retain the data in the folder. In our 
work, we found that a limit of 10,000 for number of samples 
in the data folder was sufficient.

At the same time, the model’s training on the GPUs begins, 
and every epoch we sequentially load B data samples from the 
training data folder. The loading process is enumerated, and 
is much faster than the generation process, which guarantees 
that every data sample will be loaded for training at least 
once. The samples consist of: 1) tuples of noisy and occluded 
segmentation maps, 2) clean segmentation maps, arrays of 
heat maps, and 4) vectors of 2D coordinates. We denote the 
batch of data samples by 

We define three loss terms,  and  where each 
term corresponds to a different network.

•	  The  distance between  (an 
output of the network ) and 

•	  The  distance between  (an 
output of the network ) and 

•	  The  distance between  (an 
output of the network ) and 

If we train all networks jointly, then the model is equivalent 
to a large single network, which yields poor performance 
and the loss of the interpretability of intermediate results. 
Instead, We guide the training process and avoid learning 
uninterpretable representations by introducing a two-
phase training scheme, taking a bottom-up approach. The 
scheme starts with the first phase of training each network 

separately, according to the intermediate results existing in 
our synthesized data (see Section 4.3.1). The second phase 
trains the networks together, ignoring intermediate losses. 
This improves final performance in terms of accuracy, but at 
the cost of a possible decrease in interpretability. The training 
phases are described in more detail below:

Phase 1. We start by training each network separately. 
We do this for  epochs. In other words, the noisy and 
occluded segmentation maps,  are fed to , and the 
clean segmentation maps,  are expected to be produced. 
Similarly, the clean segmentation maps  are fed to , and 
heat maps, , are the ground truth labels for this network. 
Finally, the heat maps  are fed to T, which is expected 
to produce the final vector of vertex coordinates,  In this 
configuration, we employ three independent loss terms: 

Phase 2. In this phase, we train our 3 networks as a single 
end-to-end unit, for  epochs. In every epoch,  is fed 
to , resulting in  Then  is fed to , resulting in  
which in turn is fed to T, resulting in  The purpose of 
this stage is to let networks adapt to the needs of the other 
networks through joint training. Of course, we still don’t 
want to lose the explainability and guidance we offer in the 
form of the intermediate results. Therefore, we do not use 
only the loss  Considering only the final 
result will cause degradation of the intermediate maps, and 
ultimately the overall performance, as is indicated by our 
ablation studies (Section 5.1). Instead, we train the network 
to work as a whole, while preserving the semantics of the 
intermediate results by considering all of our losses. Namely, 
the loss for this phase is

	 (1)

In our work, the coefficients are 

3.4. Inference
In inference time, binary segmentation maps are fed to the 
concatenation of the three networks, producing semantic 
2D keypoint estimations. The intermediate results (refined 
segmentation maps and probabilistic heat maps) can be 
observed, helping to describe the decision process of the 
whole system. For example, Figure 1 demonstrates a result 
of the probabilistic heat maps. As can be seen, the network 
has identified two possible locations for vertex number 1 (the 
second maps from top left) and has a rather unclear decision, 
represented by a smeared blob for vertex number 2 (the third 
map). These difficulties in identifications become immediately 
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intuitive when looking at human legible heat maps, which 
could potentially help fine-tune the network and data we feed 
to it. Figure 4 demonstrates the entire pipeline, including 
the keypoint estimation from heat maps. In addition, further 
manipulations can be applied to intermediate products. 
For example iterative refinement (if the trained R is not 
stationary) or amplifying heat maps’ values. In Figure 7 we 
show how re-entering the refined segmentation maps to 
the Refiner, gradually removes more occlusions, ultimately 
improving the final keypoints estimation.

4.	Evaluation
We begin the evaluation of our method by collecting 
binary segmentation maps. These maps could be segmented 
manually, or automatically through a semantic segmentation 
network (or an instance segmentation network). We present 
results from multiple sources.

For the task of building identification, we have acquired a 
few examples of outdoor street-level RGB images and their 
corresponding man-made segmentation maps. We extracted 
segments of objects that are from the domain of our task 
(buildings that are composed of a single box or two boxes) 
and placed each segment in the middle of a new 256  256 
binary image.

A similar process was made for automatically segmented 
images. For semantic segmentation, we use an off-the-
shelf TensorFlow [42] DeepLab network with Xception 71 
backbone [43], trained on the Cityscapes dataset [41]. An 
illustration of it on one of our test images can be seen in 
Figure 3.

From these segmentation maps, we infer their portrayed 
shapes by feeding them to the system, as described in section 
4.4. An example result from a natural image and a manually 
annotated segment can be seen in Figure 4, top row. In (a3), 
each keypoint is marked by its index in red, and the wireframe 
formed by the keypoints is depicted in green. The orientation 
from the box center to the middle of the front face of the 
box is depicted by the blue arrow. In (a4) we observe that 
resulting coordinates are not necessarily at the maxima of the 
heat maps — as implicit geometric correctness was learned. 
Note that we do not have the true keypoint coordinates for 
the images from both of these sources. Hence, quantitative 
results can only be calculated on synthetic data, as there is no 
real-world labeled data of buildings images, their silhouettes, 
and their keypoint 2D coordinates, to the best of our 

knowledge. Table 3 indicates the average distance between 
ground truth 2D coordinates and the inferred ones. As can 
be seen, this distance for synthetic data is minute (second 
line, 0.04 pixels).

4.1. Ablation studies
4.1.1. Alternative training scheme

One of our main claims is that a model composed of a few 
networks, where each one tackles a different, separable, and 
human legible sub-task of the problem, will outperform a 
single network model with similar architecture or capacity. 
In this section, we demonstrate how the proposed training 
scheme guides the networks for a better solution while 
providing explainability.

We start by using the same architecture with no phases and 
no intermediate losses, and simply train all networks in an 
end-to-end fashion for semantic keypoints estimation.

In Figure 4, bottom row, we demonstrate intermediate and 
final results of such a model, trained on equivalent terms to 
our original network. As can be expected, the intermediate 
results are meaningless to humans. Less predictably, the final 
keypoints location estimation has also lost accuracy, though 
the general geometric correctness is preserved. This result 
demonstrates how our intermediate steps guides the network, 
for an otherwise difficult optimization problem.

Furthermore, we make a stronger claim: a trained end-
to-end model with similar architecture, initialized with 
the weights of our proposed models, would not surpass 
our reported performance. In Figure 4, middle row, we 
show the outputs of such a model, which is trained in 
an end-to-end manner, with not intermediate losses, 
after our proposed training scheme. As expected, we see 
degradation in explainability, as the blobs in the heat 
maps become smeared. Also, even though the model is not 
limited to the meaningful intermediate representation, 
the final result still displays degradation in accuracy. We 
speculate this is due to the high accuracy achieved with 
the initialized weights, keeping the parameters in a near 
space of its initialization.

4.1.2. Alternative architectures

In this experiment, we explore the possibility of replacing the 
Tabulator network with classic computer vision approaches. 
One could argue that keypoint locations can be inferred 
directly from probabilistic heat maps, by taking their center 
of mass as the point location. This approach tends to collapse 
in some cases, for example, when there are two major centers 
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on a single heat map (see an example in Figure 1). In this 
case, the center of mass would not be close to either of the 
dominant blobs.

Another approach is choosing the maximal value location in 
the heat map as the point location. This approach can also 
fail when there are two or more equally dominant centers 
if the wrong center is chosen. This could happen since this 
approach works on each heat map locally, when sometimes a 
global view is needed, to handle outliers, or, importantly, to 
enforce geometric correctness.

However, global validity can be enforced using classic computer 
vision algorithms. A prominent example is Point Distribution 
Model, or PDM [44][45]. PDM constructs a linear subspace 
of the geometric shapes it was initialized with, and it can learn 
the statistics and the variability of geometric shapes. Once 
initialized, it enables the refinement of inaccurate shapes by 
projecting them to its subspace and reconstructing from it. We 
show an example of a failed heat maps estimation attempt, 
and a PDM correction, in Figure 5.

Figure 5. Example of semantic keypoints coordinates estimation 
chosen as the maximum value from the heat maps, and fixed with 
PDM. From left to right: (a) refined segmentation map, output of 
the Refiner, and keypoint locations and structure, estimated from 
maximal value locations of heat maps; (b) keypoint locations from 
image (a) over the sum of heat maps, output of the Estimator; (c) 
refined segmentation map and keypoint locations and structure, 
estimated from PDM projection and reconstruction over maximal 
value locations of heat maps; (d) keypoint locations over the sum of 
heat maps, output of the Estimator; keypoint locations from image 
(c) over the sum of heat maps.

In our method, we initialize a PDM instance with 1000 
ordered 2D octets, generated as described in Section 4.3.1. 
The instance learns the general statistical shape of a valid 
building, and the semantic meaning of each point separately. 
During inference, we extract the maximal value locations of 
the heat maps, and pass them to the PDM, to assure their 
global validity. This approach was used in [1]. From our 
experiments, on synthetic data, this approach yields similar 
results to the Tabulator, but on real-world data, it performs 
less accurately. Furthermore, it has some disadvantages:

•	 PDM has a constant parameter called active 
components, which is analogous to the size of 
the projected-to-subspace, or the percentage of 
variance to be kept. Usually, for alignment and noise 

removal, not all of the subspace is needed, similarly 
to projecting and reconstructing from PCA. The 
number of active components needs to be decided in 
advance, and may not generalize well from problem 
to problem.

•	 PDM is not a differentiable algorithm, which prevents 
backpropagation through it to the previous networks in 
the training scheme.

•	 If the semantic label of the points is wrong, then PDM 
generally fails. An example can be seen in Figure 6.

In Table 3 we summarize the average pixel error over the 
validation set, for all the discussed approaches. The average 
pixel error with random weights networks is given as a 
reference to the results of the followed approaches. It can be 
seen that learning without representational meaning, i.e., as 
a single network model, decreases the accuracy of the model. 
The conclusion is that representational meaning learning is 
not only enabling explainability but also better accuracy.

Figure 6. Example of wrong semantic keypoints coordinates 
estimation chosen as the maximum value from the heat maps, and 
the failed attempt of it to be fixed by PDM, an approach similar to 
the one used in [1]. From left to right: (a) refined segmentation map, 
output of the Refiner, and keypoint locations and structure, estimated 
from maximal value locations of heat maps. It can be seen that two 
points have their wrong semantic label; (b) keypoint locations from 
image (a) over the sum of heat maps, output of the Estimator; (c) 
refined segmentation map and keypoint locations and structure, 
estimated from PDM projection and reconstruction over maximal 
value locations of heat maps. Because PDM is extremely sensitive 
to label noise, its reconstruction yields bad results; (d) keypoint 
locations over the sum of heat maps, output of the Estimator; 
keypoint locations from image (c) over the sum of heat maps.

MODEL CONFIGURATION AVERAGE PIXEL 
ERROR

RANDOM WEIGHTS 17.9
TRAINED WITH REP. MEANING 0.6
TRAINED WITH REP. MEANING, T 
REPLACED WITH PDM

0.6

PRE–TRAINED WITH REP. MEANING, 
TRAINED WITHOUT REP. MEANING

0.8

UNINITIALIZED, TRAINED WITHOUT 
REP. MEANING

1.0

Table 3. Average pixel location estimation errors on the synthetic 
validation dataset, per model configurations, based on our 
architecture. In this context, representational meaning is the 
enabling of each network to learn its interpretable task.
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In these experiments, no noise and occlusions were used. For 
studying the effect of the level of noise, see Figure 14.

4.2. Other shapes
We continue to investigate the strength of our model by 
introducing a harder shape class, of two adjacent boxes. An 
example of our method for such a class can be seen in Figure 
9. Furthermore, we claim that our framework is flexible, 
and can be extended for any cuboid-based class if the users 
feel that their environment requires it. The definitions of 
the keypoint indices of the single box and two box classes 
are in Table 1 and Table 2. Some real-world examples of 
both classes can be seen in Figure 16.

5.	Application: Localization
Following the work we presented, we continue to investigate 
applications based on it. In particular, we introduce the 
problem of localization by visual information and our 

Figure 7. Effect of iterative refinement (re-entering refined binary 
segmentation maps to the Refiner) on final estimation. Top: from 
left to right, an occluded segments and results of refinement steps. 
Bottom: Keypoints estimation corresponding to the segmentation 
maps above.

Figure 8. Example of single-box segment completion and 
8 semantic keypoints coordinates estimation, outputs from 
the Refiner and the Tabulator. In this example, the Refiner 
demonstrates imperfect denoising, due that the occlusion type 
is different than what is was trained on. The Tabulator, however, 
manages to overcome the imperfect segment and successfully 
reconstruct the object.

Figure 9. Example of processing a manually annotated segment 
using the two-boxes, 14 semantic keypoints model. The figure 
layout is identical to the one in Figure 4.

Parameter Min. Max.
Scale (X) ×0.5 ×2
Scale (Y) ×0.5 ×2
Scale (Z) ×0.5 ×2
Translation (X) –2 +2
Translation (Y) 0 Px +2 Px

Rotation (X) –10° 10°
Rotation (Y) –10° +10°
Rotation (Z) –5° +5°
Focal Length 2 Px 10 Px

Flip Probability 0.5
Table 4: Range of parameters for random data generation.

suggestion of its improvement.

Localization is the ability to locate an object geographically with 
computational means. Many environment signals can be used 
for localization: visual, audial, and most commonly, GPS. GPS is 
specifically used for localization, however, it is notoriously known 
for inaccuracy. Under the open sky, GPS enabled smartphones 
are typically accurate to within a 4.9 meters radius, and worse 
near bridges, buildings and trees. In this section, we suggest a 
way to enhance localization by exploiting visual information.

5.1. Formulation
We focus on a specific scenario: understanding the location 
on a street. We assume the street is known (perhaps by more 
general systems such as GPS), and all of its buildings are 
known for their dimensions.

If a picture of one of the buildings is taken and segmented, 
then we can locate its 2D corners. It is practically impossible 
to identify a building by a single segment of it, as many 
similar buildings on that street can also match it. We offer 
some relaxation to the problem:

•	 Instead of extracting exact dimension, we extract 
dimension ratios. This enables us to disregard distance 
from building ambiguity. The ratios are extracted as 
another output of the Tabulator in Section 4.2.

•	 Photos of a sequence of consecutive buildings were 
taken, not a single building.

We conducted the following experiment: N = 100 noisy and 
occluded segments of buildings, and their ratios (  and ), 
were sequentially drawn randomly according to the distribution 
in Table 4. These segments passed the inference process in Section 
4.4, and predicted ratios were calculated. Next, we observed all 
sub-sequences of predicted ratios of length  for all  
for  For each sub-sequence, we ranked how much it 
matches to each true sub-sequence of length  For example, 
say  and we observe the predicted ratios of buildings (12, 
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13, 14). Then we calculate its distance from all true triplets of 
buildings, (1, 2, 3), (2, 3, 4), etc. The chosen distance is the  
distance between the vectors of the ratios. We define accuracy as:

	(2)

In other words, the accuracy for sub-sequence length  and top-
ranking l is the average number of predicted sub-sequences of 
length  that match their true sub–sequences, where matching 
is considered if it is among the top l possibilities (a possibility is 
ranked higher if the distance is lower).

5.2. Results
In Figure 11 partial tables of accuracy scores, for a sequence 
of 10 and 100 buildings, are presented. Few insights can be 
extracted from it. For example, statistically, localization in a 
100–buildings sequence, with predicting building rations of 
only 8 buildings, is enough to have more than 50% probability 
to identify the correct sub-sequence. When also considering the 
second most probable match (this can be useful if they are very 
far geographically and we can eliminate one of them by another 
localization method), only 3 buildings are enough to achieve 
50% accuracy. In Figure 12, we also demonstrate localization in 
a 10–buildings sequence with a sub-sequence of length 4.

6.	Discussion
In this paper, we have proposed a method for a completely 
unsupervised fitting procedure to texture-less maps of cuboid 
and bicuboid buildings. The only form of supervision our 

method incorporates is in the geometric prior of the fitted 
model. The paper gives an interesting insight into how much 
of the information required for fitting is actually in the 
silhouette of the object, and how far can one get with only 
implicit supervision through the use of a geometric prior. Even 
though we have demonstrated the effectiveness of our method 
only for restrictive models (one or two adjacent cuboids), the 
method should have no conceptual limitation in supporting 
any simple polygon primitive or composition of primitives, 
including prismal and pyramidal geometries, and even geodesic 
domes. Non-polygonal shapes, like conical, cylindrical and 
hemispherical geometries, cannot be solved by this method 
without significant expansion, since their faces are defined by the 
infinite number of vertices. Also, their pose cannot be properly 
described. In the future, it would be interesting to examine these 
polygonal and non-polygonal shapes, which would expand the 

Figure 10: Accuracy scores for sub-sequences matching. For a 
sequence of 100 random buildings, each cell describes the probability 
to correctly locate a sub–sequence by building ratios estimation.

Figure 11: Accuracy scores for sub-sequences matching. For a 
sequence of 10 random buildings, each cell describes the probability 
to correctly locate a sub–sequence by building ratios estimation.

Figure 12: Example of matching a sub-sequence on 4 buildings in a 
10 buildings sequence. We attempt to locate the starting building for 
the predictions of the buildings in red. For each building, we present 
the probability of it being the first building in the sub-sequence, by 
calculating the negative distance between predicted and ground truth 
ratios, and softmaxing it. It can be seen that the highest probability 
was received for the correct building: the first building in red.

Figure 13: Effect of segmentation noise on 3D reconstruction. 
From left to right: (a) High level of noise on segmentation map. (b) 
Failed attempt of 3D reconstruction. (c) No noise on segmentation 
map. (d) Successful attempt of 3D reconstruction.

Figure 14: Effect of different levels of noise around the contour 
of the silhouette in the segmentation map, on the average pixel 
location estimation error. Although there is a denoising step in the 
pipeline, the graph shows how high levels of noise in the initial 
segmentation map can harm the final result.
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types of buildings we can support, and see how the relaxation in 
the model’s rigor affect accuracy, for better or maybe for worse.

Another important aspect of our method is explainability. 
We have shown how guiding the training towards specific 
intermediate results has not only produced human legible 
milestones, which help in understanding the network’s 
decision making, but also improves performance. This is in 
contrast to the popular assumption that a network should be 
free to find its own intermediate representation and warrants 
further investigation between the trade-offs of a network’s 
expressiveness and the concepts of curriculum learning.

Finally, we have also demonstrated how the method could be 
applied to the problem of small scale localization — an important 
and complementary problem to ubiquitous GPS solutions. We 
believe that carrying a lightweight representation of a region, and 
using a few simple camera shots to localize oneself accurately 
could have powerful implications on modern day urban 
navigation experiences. Furthermore, other fitting approaches 
have demonstrated that 3D reasoning is attainable using similar 
concepts to ours. Successfully incorporating this concept into 
our method would produce a power scheme, which may be able 
to populate entire cities with 3D building schematics just from 
sparse street-level images within its streets. These two examples 
demonstrate how much potential such a system may have, and 
therefore we hope to see it continue growing in the near future.

Figure 15: Above: some common urban occluding elements extracted 
from the Cityscapes dataset. These elements are used in the training 
process as occlusion augmentation to the binary segmentation maps. 
Below: subtracting the top right element from a building silhouette. 
Note how the element was flipped and resized before the subtraction.

Figure 16: More results on photographs and illustrations of single 
and double cuboids.

7.	Appendix
Listing 1. Random box generator in homogeneous coordinates
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