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Comprehensive Reachability Refutation and Witnesses

Generation via Language and Tooling Co-Design

MARK MARRON,Microsoft Research, USA
DEEPAK KAPUR, University of New Mexico, USA

This paper presents a core programming language calculus, BosqeIR, that is uniquely suited for automated
reasoning. The co-design of the language and associated strategy for encoding the program semantics into
first order logic enables the translation of BosqeIR programs, including the use of collections and dynamic
data structures, into decidable fragments of logic that are efficiently dischargeable using modern SMT solvers.
This encoding is semantically precise and logically complete for the majority of the language and, even in the
cases where completeness is not possible, we use heuristics to precisely encode common idiomatic uses. Using
this encoding we construct a program checker BSQChk that is focused on the pragmatic task of providing
actionable results to a developer for possible program errors. Depending on the program and the error at hand
this could be a full proof of infeasibility, generating a witness input that triggers the error, or a report that, in
a simplified partial model of the program, the error could not be triggered.

1 INTRODUCTION

This paper introduces a novel core programming language calculus, BosqeIR, a strategy for
encoding the language semantics into first order logic, and the BSQChk program checker. These
three components are designed as a group with the goal of creating a programming system that
was highly amenable to automated reasoning and mechanization using SAT Modulo Theory (SMT)
theorem provers [3, 11].
A core design principle of the BosqeIR language is the elimination of foundational sources

of undecidability and complexity commonly seen in programming language semantics – itera-
tion/recursion, mutability, and referential observability. The BosqeIR semantics also employ
carefully chosen definitions of language features, including sources of non-determinism, numeric
type definitions, formalizing various out-of-* limits, etc., to ensure the encodings to first order logic
are simple, compact (or at least finite), and easily dischargeable. This regularized programming
model enables us to encode most of the language semantics in fully precise strongest postcondition
form using decidable fragments of first order logic.

By construction the base theories needed by the BSQChk checker for the core BosqeIR opera-
tions are limited to uninterpreted functions, integer arithmetic, and bitvectors UF+IA+BV [3]. The
extension to include most container operations introduces several quantified formula forms that
are contained in the decidable theory of quantified bitvector formula QBVF [56]. As all of these
theories are decidable, the BSQChk system can refute or generate witnesses for many errors in
BosqeIR programs. Even in the presence of general recursion the BSQChk checker has a pair of
refutation and model generation algorithms that can precisely handle common idiomatic forms
while safely falling back to best-effort modes when unavoidable.

Our approach to program checking, and thus the design of the BSQChk checker, is pragmatic.
Ideally a developer would like to have a fully automatic proof that, under all possible executions,
a given state is unreachable or to get debuggable witness input in the cases when the state is
reachable (e.g. a bug exists). In practice this proof or input may not be possible to generate as
it may involve recursive code our heuristics do not cover or the theorem prover may be unable
to discharge the query in a reasonable time frame. Thus, we consider the following hierarchy of

Authors’ addresses: Mark Marron, Microsoft Research, USA, marron@microsoft.com; Deepak Kapur, Computer Science,
University of New Mexico, USA.
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1:2 Mark Marron and Deepak Kapur

confidence boosting results that the BSQChk checker can produce such that in all cases it is able to
provide useful feedback to a developer:

1a. Proof that the error is infeasible in all possible executions
1b. Feasibility witness input that reaches target error state
2a. Proof that the error is infeasible on a simplified set of executions
2b. No witness input found before search time exhausted

The 1a and 1b cases are our ideal outcomes where the checker either proves that the error is
infeasible for all possible executions or provides a concrete witness that can be used to debug the
issue. The 2a and 2b cases represent useful best effort results. While they do not entirely rule out
(or witness) a given error, they do provide a substantial boost in a developers confidence that the
error is infeasible on a subset of inputs [44].

To maximize the ability of the system to produce useful outcomes in this hierarchy we leverage
the unique features of the BosqeIR language and novel encodings into efficiently checkable
fragments of first order logic to power the following features:

Large & Inductive Model Capable – The BSQChk checker is able to do witness input gen-
eration and refutation proofs even when they require reasoning over a large model (Sec-
tion 2.1). In the case of general reduction/recursion (Section 2.4) the checker has heuristics
to generate a witness input or proof without unrolling inductive operations.

Small Model Optimized – If there is a small witness input model then the BSQChk checker
can find it using mostly (or entirely) quantifier free solving (Section 2.2). For refutation we
also use small width bit-vector sizes to determine if a state is unreachable in an limited
approximation of the program (Section 2.3).

Focused Search Structure – In the case where the BSQChk checker heuristics are unable
to generate a witness or establish a refutation proof, it falls back to a classic unroll+explore
strategy. Even in this scenario, the restrictions of the BosqeIR language and the encoding
maximize the amount of content in efficiently decidable logic UF+IA+QBVF fragment and
minimizes the state space that must be explored with iterative unrolling (Section 2.5).

The code in Figure 1 shows a BosqeIR implementation of a business application modeling
example from Morgan Stanley’s Morphir framework [39]. The code snippet is focused on the
availability function. This function computes the number of items still available to sell based
on the number at start of the day (startOfDayPosition) and the list of buy transactions (buys) so
far. As a precondition it asserts that the startOfDayPosition is non-negative and that the return
value $return is bounded by the start of day value.

The code to compute the number of buy transactions that have been completed successfully
and the sum of the quantities from these purchases is concisely expressed using the functor chain
buys.filter𝐵𝑢𝑦𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑().map𝑥.𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦().sum(). While this code is conceptually simple from a developer
viewpoint, the actual strongest postcondition logic semantics for it are quite complex. They include
a subset relation and predicate satisfaction relation on the filter, a quantified user defined binary
relation with the map, and an inductively defined relation as a result of the sum. Thus, trying to
prove that the postcondition is satisfied (or finding an input that demonstrates the error is possible)
is a challenging task involving inductive reasoning, relationships between container sizes and
contents, and quantified formula.

Despite these complexities the BSQChk checker can model this code, in strongest postcondition
form, as a logical formula in a decidable fragment of first-order logic! Further, the BSQChk prover
can instantaneously solve this formula.
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function availability(startOfDayPosition: BigInt , buys: List𝐵𝑢𝑦𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ): BigInt

requires startOfDayPosition >= 0

ensures $return <= startOfDayPosition

{

let sumOfBuys = buys.filter𝐵𝑢𝑦𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 ().map𝑥.𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ().sum() in
startOfDayPosition - sumOfBuys;

}

...

entity BuyAccepted provides BuyResponse {

field productId: String;

field price: Decimal;

field quantity: BigInt; // <--- should be BigNat
}

Fig. 1. BosqueIR implementation of order processing code.

Using the following satisfying assignment as a witness input a developer can run the application,
investigate the problem, and identify the appropriate course of action to resolve the issue.

𝑠𝑡𝑎𝑟𝑡𝑂 𝑓 𝐷𝑎𝑦𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0 ∧ 𝑏𝑢𝑦𝑠 = 𝐿𝑖𝑠𝑡𝐵𝑢𝑦𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒@{𝐵𝑢𝑦𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑{“𝑎”, 0.0,−1}}
In this case the fix is, using the fact that the BosqeIR language supports BigNat in addition to

BigInt numbers to ensure that the buy quantity is always non-negative.
With this simple change the BSQChk tool can be run again, and even with the complexity of the

logical structure, will instantaneously return that the program state where the ensures clause is
𝑓 𝑎𝑙𝑠𝑒 is unreachable. All of this analysis and proving is fully automated and does not require any
assistance, knowledge of the underlying theorem prover, or use of specialized logical assertions by
the developer.
This example shows how, carefully constructing the programming language with the specific

intent of being translatable to efficiently solvable logic, enables the construction of tooling with
sophisticated automated reasoning capabilities that provides compelling developer experiences.
As such, this result represents an important step in the transformation of programming from a
human labor intensive task into one where human ingenuity is augmented with a powerful set of
automated tools. The contributions1 of this paper are:
• An core language calculus, BosqeIR, that is designed specifically in conjunction with and
to support automated program analysis using modern SMT solvers (Section 3).
• Encoding the core of the BosqeIR language into a efficiently decidable fragment of first-
order-logic, UF+IA+BV and optionally real arithmatic RA (Section 3).
• Encoding containers and operations on them (excluding reduce operations) into the decidable,
QBVF, fragment of first-order logic (Section 4).
• Heuristics for processing container reduce operations and arbitrary recursion, without
unrolling that remains in the UF+IA+QBVF fragment (Section 5).
• Introduces the BSQChk checker (Section 2) which uses these techniques + novel method-
ologies enabled by the language and encoding to system to produce a tool that is effective
at both refutation and witness generation in a range of scenarios.

2 BSQCHK OVERVIEW

The BSQChk checker first builds the code under analysis and enumerates all possible error condi-
tions. For each identified error the BSQChk checker follows the algorithm shown in Figure 2.
1This system forms the foundation of the Bosque Programming Language project under development at Microsoft Research
and availble as open source software – https://github.com/microsoft/BosqueLanguage.

https://github.com/microsoft/BosqueLanguage
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Fig. 2. BSQChk checker workflow.

The first step in this algorithm is to see if the error can be refuted under various definitions of
simplified models of the program. As a low cost first check the refutation proofs are all attempted
without considering any call context. If this fails then the proofs are attempted using the, more
expensive, whole program encoding. In both the local and whole program proofs, small bit-widths
are used and increased in size up to 16 bits. If the small bitwidth proofs are successful refutations
(either locally or globally) then then system attempts a refutation proof with the full bit-widths
(first locally and then whole program). If either of these is successful then the checker has shown
that the error is infeasible on all executions and we achieved the highest quality, 1a, confidence
level.
If the refutation proofs fail then we move on to searching for a witness input for the error. If

we succeeded in proving the error infeasible for the small bitwidths, but then failed to prove the
infeasibility for the full case, we also achieved the partial, 2a, confidence level as well. In the small
witness search we incrementally expand the bitwidths up to size 16 and gradually increase the
limit of unrolling allowed for recursive calls – based on timeout limits. If we find an input that
reaches the target error then we have succeeded in producing a high value actionable result for the
developer, 1b, in our quality confidence level. With this result we know there is a real failure and
have a small input that can be used to trigger and debug it.

In the case we cannot generate a small witness we make a final witness generation attempt with
the full bitwidth and, again, perform iterative unrolling of the remaining recursive calls. As in
the small input case, if we find an input that reaches the target error then we have succeeded in
producing a high value actionable result for the developer. Otherwise we produce our minimal
success result, 2b, where we aggressively explored the input space and, while we cannot fully rule
our the feasibility of the error, we believe it is very unlikely to be triggered in practice.

2.1 Large Model Witness Generation

Symbolic fuzzers or model checking [16, 23] techniques explore the input/execution space using
heuristics to iteratively unblock control flow paths (either conditionals or loop iterations). Other
techniques use input structure mutation and generation [57] to iteratively cover larger sets of the
relevant input space for a program. These techniques have proven highly effective at finding bugs
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with a small scope hypothesis [24] – i.e. there exists a small input and/or small execution trace that
will exercise the error. In practice many errors have this property but there are important scenarios,
like cache invalidation logic or large lookup tables, where this hypothesis does not hold and these
techniques will be of limited effectiveness. Consider the code:

const cl = List𝐼𝑛𝑡 @{0, 1, 2, ..., 254, 333, 256 };

function largeunroll(x: Int): Bool {

if (!cl.contains(x)) then
false

else
let i = cl.findIndex(x) in
i == 255

}

function largeinput(l: List𝐼𝑛𝑡 ): Bool {

l.size() == 256 && l.get (255) == 333 && !l.slice(0, 255).contains (333)

}

For techniques that use iterative state space expansion the largeunroll function requires
unrolling the logic in contains and findIndex functions 255 steps before they observe the function
returning true. This can be even more challenging for input state generation based exploration
techniques which need to enumerate from the space of valid integers to find a single value. In the
case of the largeinput function the problem becomes more complex as both the iteration space
and the input need to be large, a List of 256 elements, in order to reach the path where the function
returns true. While heuristics exist to increase the likelihood of finding these errors, e.g. seeding
the input generator with constants from the program, in general iterative exploration techniques
will exhaust their resource bounds without finding the error state.

The use of QBVF encodings enable the SMT solver to reason from both constraints related to the
input and the target error. This allows it to easily generate satisfying witness values for the input
that reach the target error state. Consider the formula that needs to be solved for the largeunroll
function – which is trivially solvable and satisfiable with the assignment of 𝑥 = 333:

∃𝑛 ∈ [0, 𝑙𝑒𝑛(𝑙𝑐)) s.t. 𝑔𝑒𝑡 (𝑛, 𝑐𝑙) = 𝑥 ∧ 𝑖 == 255 ∧ 𝑔𝑒𝑡 (𝑖, 𝑐𝑙) = 𝑥 ∧ 𝑔𝑒𝑡 (0, 𝑐𝑙) = 0 . . . 𝑔𝑒𝑡 (255, 𝑐𝑙) = 333

The formula for the largeinput example when it is expected to return true is more interesting.
It may seem we need to enumerate and solve for all 256 values in the formula.

𝑙𝑒𝑛(𝑙) = 256 ∧ 𝑔𝑒𝑡 (𝑙, 255) = 333 ∧ ∀𝑛 ∈ [0, 255) 𝑔𝑒𝑡 (𝑛, 𝑙) ≠ 333

However, the method for solving satisfiability assignments in Z3 [56] uses conditional model
logic and is able to produce the compact model for the contents of 𝑙 as (ite (= n 255) 333 0).
This example has neither a small iteration space nor a small input the logical witness input model
is still compact and efficiently computable!

2.2 Small Model Witness Generation

In practice many of the error states that we are interested in checking for satisfy the small scope
hypothesis. While the QBVF encoding approach can handle these cases, just like for the large
models, we can further optimize the performance for smaller models. Although QBVF is decidable
it is asymptotically and practically more expensive than solving over quantifier-free UF+IA+BV
formula. Consider the example below where the function checks to see if there is an element in the
list that satisfies the predicate x * x == 0.

function smallwitness(l: List𝐼𝑛𝑡 ): Bool {

l.someOf𝑥∗𝑥==0()
}



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294
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Using the QBVF encoding to generate a witness input for when this function returns true requires
us to solve the quantified formula:

∃𝑛 ∈ [0, 𝑙𝑒𝑛(𝑙)) s.t. 𝑔𝑒𝑡 (𝑛, 𝑙) ∗ 𝑔𝑒𝑡 (𝑛, 𝑙) = 0 ∧ ∀𝑛 ∈ [0, 𝑙𝑒𝑛(𝑙)) 𝑔𝑒𝑡 (𝑛, 𝑙) = ℎ𝑎𝑣𝑜𝑐𝐼𝑛𝑡 (𝑛)
To limit the introduction of quantifiers we use path splitting and implement a special small-model

path in the library implementation that is optimized for generating easily solved quantifier free
formula. An implementation of the someOf and havoc functions in the BosqeIR standard library
shows how this works:

function someOf𝑝 (l: List𝐼𝑛𝑡 ): Bool {

let ct = len(l) in
if(ct == 0) then false
elif(ct == 1) then p(l.get(0))

elif(ct == 2) then p(l.get(0)) || p(l.get(l))

elif(ct == 3) then p(l.get(0)) || p(l.get(l)) || p(l.get(2))

else quantified_someOf𝑝 (l) //full quantifier path
}

function havoc𝐿𝑖𝑠𝑡𝐼𝑛𝑡 (c: Ctx): List𝐼𝑛𝑡 {

let ct = havoc_{Int}(c) in
if(ct == 0) then List𝐼𝑛𝑡 @{}

elif(ct == 1) then List𝐼𝑛𝑡 @{havoc𝐼𝑛𝑡 (c ⊕ 0)}

elif(ct == 2) then List𝐼𝑛𝑡 @{havoc𝐼𝑛𝑡 (c ⊕ 0), havoc𝐼𝑛𝑡 (c ⊕ 1)}

elif(ct == 3) then List𝐼𝑛𝑡 @{havoc𝐼𝑛𝑡 (c ⊕ 0), havoc𝐼𝑛𝑡 (c ⊕ 1), havoc𝐼𝑛𝑡 (c ⊕ 2)}

else quantified_havoc𝐿𝑖𝑠𝑡𝐼𝑛𝑡 (c, ct) //full quantifier path

}

These implementations include small-model paths which produce quantifier free formula for
lists of lengths less than 4. To construct a satisfying assignment to the input variables the SMT
solver can, when possible, find one in the propositional fragment of the formula. This design also
cleanly handles cases where there is a large constant or computed list, handled by the quantifier
path, while still allowing most reasoning to take place on the quantifier-free formula.

2.3 Small Refutation Construction

In the BSQChk checker our approach for 2b, from the confidence hierarchy, is to turn one of the
challenges of using fixed width bit-vectors – reasoning with large widths can be computationally
expensive – into a strength since reasoning with small widths is very efficient. Consider the example
below when we want to check if this function returns false.

function smallproof(x: Int): Bool {

let ll = l.append(List𝐼𝑛𝑡 @{x}, List𝐼𝑛𝑡 @{1, 3}) in
ll.contains (3)

}

From the code we can see that, regardless of the input value, the second list contains the constant
3 and so the return value is trivially true. In many cases, including our example, we can interpret
all the operations and show that that the false return value is infeasible (the formula is unsat)
entirely with a small width bitvector (anything 2 or larger). In practice unsat stability is quite
common and, unless an error is blocked by an overflow error, then like in our example the proof of
infeasibility almost always generalizes to the full bit width [25]. This technique combines with the
optimizations in Section 2.2 to, heuristically, further optimize witness generation when they exist
for small container sizes.

2.4 Heuristically Decidable Induction

By design the majority of the standard library container operations can be encoded in decidable
fragments of first order logic and in, BosqeIR programs, the use of explicit recursion is discouraged.
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However, the BosqeIR language does support the use of arbitrary recursive computation and
there are times when it is needed. In these cases we still want to do best effort refutation proofs
and/or witness input generation. The cover set method for mechanizing induction [58] allows us to
implement a heuristic tactic that transforms inductive definitions into a closed form that can be
encoded in our decidable fragment.

Suppose a programmer implements Peano numbers using the standard inductive successor axioms
and, the recursive add and add3, functions defined below. They might also include an assertion that
the implementation is associative, i.e. 𝑎𝑑𝑑 (𝑥, 𝑎𝑑𝑑 (𝑦, 𝑧)) = 𝑎𝑑𝑑 ((𝑥,𝑦), 𝑧). In the BosqeIR language
this is done by computing the two values and asserting the equality explicitly.

concept Peano {}

entity Zero provides Peano {}

entity Succ provides Peano { field val: Peano; }

function add(x: Peano , y: Peano): Peano {

switch(y) {

case Zero => x

case Succ@{z} => Succ@{add(x, z)}

}

}

function add3(a: Peano , b: Peano , c: Peano): Peano {

let rl = add(a, add(b, c))

let rr = add(add(a, b), c)

if(rl != rr) then error
else rr

}

Proving the infeasibility of the error statement requires discharging an inductive proof over the
recursive structure of add. In general this problem is undecidable but, in many cases, we can use the
construction of a cover set and a list of clauses that capture the inductive proof obligations. These
obligations can then be encoded as guards for the desired property and, if successfully discharged,
complete the inductive proof.

For this example the cover set generation heuristic produces a set of constraints that match the
principle of mathematical induction: the basis step is to instantiate the second argument of 𝑎𝑑𝑑 to
be Zero, and the induction step is to instantiate the second argument to be 𝑆𝑢𝑐𝑐@{𝑤} with the
induction hypothesis generated by instantiating the second argument to be𝑤 .

Thus in our example the basis step is generated by instantiating 𝑐 to be Zero producing a subgoal
(without any induction hypothesis since there are no recursive calls to add in the first equation):

† ≡ 𝑎𝑑𝑑 (𝑎, 𝑎𝑑𝑑 (𝑏, 𝑍𝑒𝑟𝑜)) = 𝑎𝑑𝑑 (𝑎𝑑𝑑 (𝑎, 𝑏), 𝑍𝑒𝑟𝑜)

The induction step is generated by instantiating 𝑐 to be 𝑆𝑢𝑐𝑐@{𝑐} with the induction hypothesis
obtained by instantiating 𝑐 to be 𝑐:

†† ≡ 𝑎𝑑𝑑 (𝑎, 𝑎𝑑𝑑 (𝑏, 𝑐)) = 𝑎𝑑𝑑 (𝑎𝑑𝑑 (𝑎, 𝑏), 𝑐) ⇒ 𝑎𝑑𝑑 (𝑎, 𝑎𝑑𝑑 (𝑏, 𝑆𝑢𝑐𝑐@{𝑐})) = 𝑎𝑑𝑑 (𝑎𝑑𝑑 (𝑎, 𝑏), 𝑆𝑢𝑐𝑐@{𝑐})

Using the equality rules implied by the definition of add, the validity of both of these subgoal
can also be discharged.

This technique is powerful enough to support our needs wrt. container functors not convertable
to QBVF and also generalizes to handle a wide range of inductive proofs arising from common
idiomatic uses of recursion. In addition to the generality of the cover set method it also has the
desirable property that it does not require a costly iterative unrolling-and-check algorithm and
instead only performs a single guarded clause expansion – i.e. in our encoding we simply introduce
the guarded formula † ∧ †† ⇒ 𝑟𝑙 = 𝑟𝑟 as the closed form guarded constraint.
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2.5 Focused Semi-Decision Search

Despite the wide range of techniques we use to encode a program in decidable fragments of first
order logic, there are inherently times when the heuristics will fail. In these cases we accept that
no proof of infeasibility can be constructed and instead fall back to the 2b case in out hierarchy of
confidence boosting results.
In this mode we use brute force iterative unrolling of recursive functions and the library calls

that cannot be encoded in QBVF. This is a simple semi-decision procedure for generating a witness
input for a given error state but has limited effectiveness when the number of candidate calls to
unroll is large. However, by the BosqeIR language design and encodings in the BSQChk checker
we eliminate most of these candidates in practice. This results is a drastic reduction in the search
space and increases the overall success rate of the procedure.

3 BOSQUEIR CORE AND ENCODING

This section provides the syntax and operators of the BosqeIR language with an emphasis on
features that are not widely seen in existing programming IRs and/or that are particularly important
for encoding to first order logic that is efficiently solvable by modern SMT solvers. Our encoding is
a deep embedding that tries to push as much knowledge about the program structure as possible
explicitly into the logical encoding.

3.1 Primitives

The BosqeIR language provides the standard assortment of primitive types and values including
a special none value (None type), a Bool, Nat and Int numbers, safe BigNat and BigInt numbers,
along with Float, Decimal, and Rational numbers. The BosqeIR String type represents im-
mutable unicode string values. The language also includes support for commonly used types/values
in modern cloud applications like, ISO times, SHA hashcodes, UUIDs, and other miscellany.

The Nat and Int types are mapped to fixed-width bitvectors. The choice of bitvectors allows us
to support nonlinear operations while remaining in a decidable fragment of logic. The BigInt and
BigNat types are more interesting as they are mapped to SMT Int. For non-linear operations we
support both an over approximate encoding to uninterpreted functions + a simple axiomatization
as well as a precise mode that uses the underlying NLA solver.
For solver performance we consider tradeoffs between precise encodings of semantics and

versions that, in some cases, admits infeasible or excludes feasible execution traces. One of the
places we allow this relaxation is in the encoding of Float, Decimal, and Rational numbers. We
provide 3 flavors of encoding for these values in the BosqeIR system:
• Exact – where Float and Decimal are represented as a fixed width IEEE value and Rational

is represented explicitly using the semantics of the underlying integer number representa-
tion. This can be computationally costly but is precise and will never generate an incorrect
refutation or infeasible witness input.
• Conservative – where Float, Decimal, and Rational are defined as opaque sorts and
all operations on them are uninterpreted functions with simple axiomatizations. This is
efficiently decidable and a safe over-approximation so is sound for refutation but prone to
generating infeasible witness inputs.
• Approximate – where Float, Decimal, and Rational are defined as Real sorts. This is
the default encoding and, in theory, can admit both admit infeasible or exclude feasible
execution traces. In practice the situations where these approximations negatively influence
the outcome are limited and the overall increase in performance + success rate in refutation
and witness input generation is a sweet spot for practical usage.
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3.2 Self Describing Types

Structural Tuple and Record types provide standard forms of self describing types. One notable
aspect is the presence of optional indecies or properties. In most languages this would lead to
problems with analysis and require dynamic runtime support when accessing optional properties.
However, as we enforce a closed world assumption on BosqeIR programs we can compute the
actual set of concrete tuple/record types that may appear in the program.
Using the theory of constructors is a natural way to encode the tuple and record types. Since

the BosqeIR language enforces a closed world compilation model we can generate all possible
concrete Tuple and Record values that the program operates on. Consider a program that uses
the tuple [Int, Bool] and the record {f: Int, g: String}. The SMT constructor encoding for
these types would be:

type Tuple [𝐼𝑛𝑡,𝐵𝑜𝑜𝑙 ] = cons of BV * Bool

type Record {𝑓 :𝐼𝑛𝑡,𝑔:𝑆𝑡𝑟𝑖𝑛𝑔} = cons of BV * String

This representation results in substantial simplifications when reasoning about operations on
these values as lookups are simply constructor argument resolutions instead of requiring the
analysis of various dynamic properties –e.g. looking up a property value based on a key in a
dictionary structure.
The BosqeIR language also supports self describing union types – e.g. Int | None or Int |

String | [Bool, Bool]. These unions are not encoded using direct constructors. Instead we use
an abstract value encoding, Section 3.5, for these unions and also for tuples/records with optional
entries (which are logically equivalent to union types).

3.3 Nominal Types

The BosqeIR language supports a nominal type system that allows the construction of object-
oriented style type inheritance structures. Abstract Concepts provide a means for inheritance and
multi-inheritance via Conjunction. The nominal type system differs from many oo-type systems in
that the Concepts are always abstract and can never be concretely instantiated while Entity (class)
types are always concrete and can never be subclassed.
This design simplifies the representation encoding, and as with the tuples and records, we can

enumerate all possible concrete object types and encode them using the theory of constructors.
Consider a program that uses the entity entity Foo { field a: Float; field b: [Int,
Bool]}. The SMT constructor encoding for this types would be:

type Foo = cons of Real * Tuple [𝐼𝑛𝑡,𝐵𝑜𝑜𝑙 ]

3.4 Key Types and Equality

Equality is a multifaceted concept in programming [43] and ensuring consistent behavior across the
many areas it surfaces in a modern programming language such as ==, .equals, Set.has, and List.sort, is
source of subtle bugs [22]. This complexity further manifests when equality can involve referential
identity which introduces issue of needing to model aliasing relations on values, in addition to
their structural data, in order to understand the equality relation. The fact that reference equality is
chosen as a default, or is an option, is also a bit of an anachronism as reference equality heavily
ties the execution semantics of the language to a hardware model in which objects are associated
with a memory location.

To avoid these behavioral complications, and the need tomodel aliasing, the BosqeIR language is
referentially transparent. The only values which may be compared for equality are special primitive
values including none, booleans, primitive integral numbers, strings, and then tuples/records made
from other equality comparable values. In our encoding we want to ensure that this equality
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relation is equivalent to term equality in the SMT solver. In their base representations these types
all map to different SMT kinds so cannot be compared directly. Thus, we introduce a uniform
representation for Key Types that boxes all of the values into a uniform SMT kind and tags them
with the underlying type. As an example consider the SMT encoding for a program that uses the
types None, Bool, Int, String, and the tuple/record definitions from above:

type KeyValueRepr =

None@box

| Bool@box of Bool

| Int@box of BV

| String@box of (Seq BV8)

| Tuple [𝐼𝑛𝑡,𝐵𝑜𝑜𝑙 ] @box of Tuple [𝐼𝑛𝑡,𝐵𝑜𝑜𝑙 ]
| Record {𝑓 :𝐼𝑛𝑡,𝑔:𝑆𝑡𝑟𝑖𝑛𝑔}@box of Record {𝑓 :𝐼𝑛𝑡,𝑔:𝑆𝑡𝑟𝑖𝑛𝑔}

type KeyValue =

cons of TypeTag * KeyValueRepr

With this representation we can equality compare any KeyType values with the SMT term
= semantics making the equality operations trivially decidable in UF! In conjunction with the
immutability of the values (Section 3.6) this ensures that BosqeIR code is referentially transparent
and functions do not need to use frame rules [34].

3.5 Abstract Types

The BosqeIR language allows for type generalization in a number of contexts – optional fields
in records/tuples create types that may contain many different concrete records/tuples, abstract
Concept types may be implemented by many concrete Entity types, and the language also allows
unrestricted union types. One approach would be to use the closed world assumption and create
a datatype for each possible abstract type in a program. In addition to the large number of types
created, this can also result in large amounts of data reshaping when assigning between variables
of different union types. Consider assigning an Int | Bool typed variable to an Int | Bool |
None typed variable or to an Any typed variable. In these cases each assignment would involve
extracting the concrete value from the source value and injecting it into the representation for the
target value. This results in type checks and switches on each assignment and a quadratic (worst
case) number of cases to handle assignments between all possible options.
Instead we use only two representations for all generalized types that appear in the program.

One representation, KeyValue, as described above is for any key valued abstract type. Another
representation, Value, is for all other abstract values and includes a representation for key types
that are combined with non-key types. For each concrete type in the program we define a unary
constructor that maps the concrete type into a KeyValue (above) or Value representation:

type ValueRepr =

Foo@box of TypeTag * Foo

type Value =

KeyValue@cons of TypeTag * KeyValue

| Value@cons of TypeTag * ValueRepr

This encoding eliminates the need extensive for reshaping when assigning between most pairs of
abstract types, even in the special case of converting between KeyValue/Value representations is a
single op, and does not require any type specific logic on the concrete type. The extraction/injection
operations from these representations to concrete values are also simple single ops that, in most
cases, can be done without any additional type tag checking.
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Primitive := none | true | false | i | f | s | v | ...
Operator := (¬|−)𝑒 | 𝑒1 (+| − | ∗ |/)𝑒2 | 𝑒1 (∧|∨)𝑒2 | 𝑒1 (< | =)𝑒2

Cons := [Exp1, . . . , Exp𝑗 ] | {𝑓1 = Exp1, . . . , 𝑓𝑗 = Exp𝑗 } | EntityName@(Exp1, . . . , Exp𝑗 )
TupleOp := Exp.𝑛 | Exp.[𝑛1, . . . , 𝑛𝑘 ] | Exp.[𝑛1 = Exp1, . . . , 𝑛𝑘 = Exp𝑘 ] | Exp ⊕ Exp

RecordOp := Exp.𝑝 | Exp.{𝑝1, . . . , 𝑝𝑘 } | Exp.{𝑝1 = Exp1, . . . , 𝑝𝑘 = Exp𝑘 } | Exp ⊎ Exp
EntityOp := Exp.𝑓 | Exp.{𝑓1, . . . , 𝑓𝑘 } | Exp.{𝑓1 = Exp1, . . . , 𝑓𝑘 = Exp𝑘 } | Exp← Exp

Invoke := fn(Exp1, . . . , Exp𝑗 )
TypeTest := Exp istype Type

Assert := error𝑡𝑟𝑔𝑡 | error𝑜𝑡ℎ𝑒𝑟
Cond := if Exp𝑐 then Exp𝑡 (elif Exp𝑐 then Exp𝑡 ) ∗ else Exp𝑓

Switch := switch(Exp) (case Primitive => Exp | case pattern => Exp) ∗
Let := let (𝑣 = Exp) + in Exp

Exp := Primitive | Operator | Cons | *Op | Invoke | TypeTest | Assert | Cond | Switch | Let

Fig. 3. BosqueIR Expressions

3.6 Operations

The expression language for BosqeIR is shown in Figure 3. By construction the language maps
directly to the SMTLIB expression language in many cases.
Primitive expressions include special constants like true, false, none, literal numeric values

like i or f, literal strings s, and variables (either local, global, or argument). The BosqeIR language
has the standard assortment of numeric and logical Operators which, thanks to our type encodings,
map mostly to the semantics of the operations in UF+IA+BV. The only exceptions are the integral
operations which we provide bounds checking on [40] – which are errors when over/under flows
occur for Nat/Int values.

The constructor operations in the language are all simple and explicit operations with a type
name + full list of values. These all map naturally to the SMT theory of constructors.

There are similar sets of operations for tuples, records, and objects. There is the standard index
(𝑒.𝑛 where 𝑛 is a constant), or named property/field accessor (𝑒.𝑓 ). The language also includes
bulk data operations for projecting out (or updating the values in) a set of indecies and creating a
new tuple or a set of properties/fields creating a new record. The bulk update version handles the
dynamic dispatch (and invariant checking) if the type of 𝑒 is not unique as well. Finally, there is
a tuple append operator (⊕) which appends two tuples which do not have any optional fields, a
record disjoint join operator (⊎) which creates a new record from the (disjoint) set of properties in
the two argument records, and a nominal type field merge using the properties/values from the
right-hand side expression.
Due to the construction of the BosqeIR semantics, with referential transparency and no mu-

tation, the encoding of BosqeIR functions closely matches the call to the corresponding SMT
implemented function. The only modification is to encode the possibility of an error result in
addition to the declared result type, T, of the BosqeIR function. We do this in the expected way
by making the return type of every SMT function a 𝑅𝑒𝑠𝑢𝑙𝑡𝑇 and, at the call site, either propagating
the error or continuing on the computation.
For type testing we again leverage the closed world design of the BosqeIR language and

enumerate the non-trivial subtype relations and encode them as binary functions. We note that we
don’t need to encode many uninteresting subtypes that are statically known to be infeasible, e.g.
tuples are never subtypes of record types, or trivially true, e.g. only none is not a subtype of Some.
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ListStructure := empty | List𝑇@{𝑒1, . . . , 𝑒 𝑗 } | slice(𝑙, 𝑎, 𝑏) | concat2(𝑙1, 𝑙2) . . .
ListProperty := fill(𝑛, 𝑣) | range(𝑙, ℎ) | havoc | . . .

ListCompute := mapfn (𝑙) | filterp (𝑙) | . . .

ListAccess := size(𝑙) | get(𝑙, 𝑛) | . . .

ListPred := hasp (𝑙) | findp (𝑙) | findLastp (𝑙) | countp (𝑙) | . . .

ListIterate := reducefn (𝑙) | reduceOrderdfn (𝑙) | . . .

Fig. 4. BosqueIR List<T> Operations

There are two asserts in the language. Both of them produce an error𝑇 return value for the
function. The distinction in these Assert operations allows us to separate all possible errors into two
groups – the error𝑡𝑟𝑔𝑡 value for the specific error we are interested in and the error𝑜𝑡ℎ𝑒𝑟 value for
any other error that occurs.
The remaining Cond/Switch control flow and Let binding operations are self explanatory and

map simply to the SMTLIB ite and let constructs.
Finally, we note that all of these expressions are deterministic and that none of them mutate any

state. Interestingly none of these design choices individually seem surprising on their own and
individually every one of them can be seen in existing programming languages. However, when
taken in their totality they result in a remarkably simple encoding into first order logic in a way
that is highly amenable to solution with modern SMT solving techniques!

4 BOSQUEIR CONTAINERS AND ENCODING

Containers and operations on them play a major role in most programs but, as a design principle,
BosqeIR programs do not allow loops and the language is designed to discouraged the extensive
use of explicit recursion. Instead the BosqeIR language includes a rich set of container datatypes
and functor based operations on them. In practice these operations, and parameterizeable functors,
are sufficient to cover the majority of iterative operations [1].

The semantics of these containers and operations inherently involve reasoning over the (symbolic)
range of the containers contents. As a result many features of these libraries cannot be handled
using the quantifier free encoding techniques described in Section 3. Instead we introduce a novel
encoding for the container library code that is entirely in the decidable fragments of logic we
previously used along with the QBVF [56] fragment of first-order logic.

4.1 List<T> Type and Operations

Figure 4 shows an example of the operations provided for the List type2. The List type provides
a random access model for an immutable Nat indexed set of values. In practice this is often
implemented as a contiguous memory array or using RRB-vectors [47]. However, as we see in this
section, there are alternative representations that are more useful for formal reasoning.

The semantics of BosqeIR collections use distinct types/implementations for each instantiation
of a List type and each functor use is statically defunctionalized. This ensures that two lists of
different content types have distinct representations and every function call is first order.
The List type has a number of basic constructors including the empty constant and a literal

constructor List𝑇 @{𝑒1, . . . , 𝑒 𝑗 }. In addition there are the expected set of concat, slice, fill, size,
get, etc.. operations which have the usual semantics.

2The BosqeIR language provides a rich set of collections including Set and Map types but, as the principles we use for
List types extend in the expected manner, we focus on List<T> in this section.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Comprehensive Reachability Refutation and Witnesses Generation via Language and Tooling Co-Design 1:13

We also provide a special havoc constructor. This constructor takes an opaque context token and
returns a list with a symbolic length and contents that when accessed are havoc values themselves.
This constructor (and similar constructors for other types) are the only form of non-determinism
allowed in BosqeIR programs. The following code illustrates the use of a havoc:

function main(): Bool {

let l = List𝐼𝑛𝑡 ::havoc (0) in
if (empty(l)) then false
else get(l, 0) == 0

}

In this sample the havoc constructor can create a length 0 list and take the first branch (to return
false) or a list with at least one element. The get operation causes a call to the havoc constructor
for Int which can return 0, and the function will be true, or an arbitrary nonzero number to make
the result false.
To motivate this section we use the following running example that illustrates the challenges

and subtleties of efficiently reasoning over the BosqeIR collection libraries:

function main(c: Int , args: List𝐼𝑛𝑡 ): Bool {

let la = List𝐼𝑛𝑡 @{1, 2 , 3} in
let lb = List𝐼𝑛𝑡 ::fill(c, 0) in
let lc = List𝐼𝑛𝑡 :: concat(la, args , lb) in

let ld = lc.map |𝑥 | () in
let le = ld.filter<10() in

le.someOf=0()

}

In this code sample several lists are constructed using both constant and symbolic values, via the
function arguments c and args, processed with the functors map and filter, finally we perform a
logical computation on the resulting list. The first line constructs a constant list with 3 elements
while the second line constructs a list of c elements all of which are set to 0. The next line builds
a list, lc, that is the concatenation of these two lists with the symbolic input list args. Next we
construct the list ld by applying the function abs(x) to every element in the list lc. The call to
filter then creates a sublist of elements from ld that satisfy the predicate x < 10. In the test
operations we do a test to see if there exists any element in the le list, via the someOf functor, that
satisfies the predicate x = 0.

The emphasis on including a rich set of functor operations as part of the code BosqeIR langugae
makes it possible to write large portions of an application without resorting to explicit iterative or
recursive code and then dealing with the challenges of loop or inductive invariant generation. Thus,
we can optimize the BSQChk reasoning for handling operations on this known set of functors and
use a more general technique as a fallback for explicitly recursive code (Section 5). However, we
still face the challenge that operations inherently involve reasoning over the (symbolic) ranges of
the container contents.
To address the challenge of quantified semantics in the container and operator specifications

we note that the operations of interest can actually be divided into three categories. The first is
operations that can be handled via encoding with quantifier free algebraic data-types as shown
in Section 4.2. The next is a set of functors that, fundamentally, require quantified logic in their
ground terms as described in Section 4.3. Finally, we introduce a special lemma for handling sublist
selection based operations in Section 4.4. The combination of these techniques gives us an optimized
encoding for, the majority of, our container library code in decidable fragments of logic.
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4.2 Theory of Constructors

The direct way to model the core container types in the BosqeIR language would be to define
a SMT constructor using a size component and a contents array. While conceptually simple, this
approach has the problems of bringing another theory, arrays, into the logic and also results in
many operations, such as append, requiring quantification over the result array contents. Instead
we use the fact that BosqeIR equality is limited to primitive values – i.e. containers cannot be
compared for equality and thus we do not need to preserve structural equality in the encoding.
With this observation we can take the view that, instead of one list constructor kind 𝐿𝑖𝑠𝑡 =

𝐵𝑉 ∗ 𝐴𝑟𝑟𝑎𝑦, there are actually many constructors and we can encode the List type3 using the
following algebraic structure:

type List =

empty

| const3 of BV * BV * BV

| fill of BV * BV

| concat2 of List * List

| concat3 of List * List * List

| map |𝑥 | of List

| filter𝑥<10 of List

| havoc of 𝜎

This algebraic structure is generated per-program based on the uses of each container type. With
this encoding many collection operations reduce to simple quantifier free formula. Additional
simplification logic in the operator definitions minimizes the nesting depth of the constructor trees
as illustrated in the SMT implementations for the concat2 and map |𝑥 | functors:

fun op_concat2 ((l1 List) (l2 List)) List =

if (l1 = empty ∧ l2 = empty)

empty

elif (l1 = empty)

l2

elif (l2 = empty)

l1

else
concat2(l1, l2)

recfun op_map |𝑥 | ((l List)) List =

if (l = empty)

empty

elif (l = const3(a, b, c))

const3( |a |, |b |, |c |)
elif (l = fill(c, v))

fill(c, |v |)
elif (l = concat2(ll, lr))

op_concat2(op_map |𝑥 | (ll), op_map |𝑥 | (lr))
...

else
map |𝑥 | (l)

These examples show how the solver can perform substantial algebraic simplification to, in
many cases, entirely eliminate the need to expand and reason about the more complex constructor
operations. In the case of op_map |𝑥 | when the argument list size is zero we trivially drop the function
application and just return the empty list, More interestingly are the cases of fill where we can
expand and then reconstruct the fill with the map function applied to the single fill argument and
concat2 where, similarly, we can expand the argument and apply the operation down to the two

3For brevity we assume lists are of type Int when not otherwise specified.
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sublists. In our motivating example these simplifications, and similar simplifications in filter,
allow us to finitize a large part of the List processing and show that ld is equivalent to:

concat3(

const(1, 2, 3),

map |𝑥 | (havoc(𝜎1)),
fill(c, 0)

)

Similarly, accessor operations can be reduced to use algebraic traversals of the constructor trees
in many cases. In our example the someOf operation would be implemented as follows:

recfun someof=0 ((l List)) Bool =

if (l = empty)

false

elif (l = const3(a, b, c))

a = 0 ∨ b = 0 ∨ c = 0
elif (l = fill(c, v))

v = 0 ∧ c ≠ 0

elif (l = concat2(ll, lr))

someof=0(ll) ∨ someof=0(lr)

elif (l = map |𝑥 | (ll))
∃ n, n < ll.size() ∧ |ll.get(n) | = 0

...

else
//havoc constructor
∃ n, n < l.size() ∧ l.get(n) = 0

As shown in this example there are many cases where we can finitize the access formula but
in some cases, like the map |𝑥 |(ll) or the havoc branches, we cannot fully eliminate the use of
quantified expressions.

4.3 SimplyQuantified Formula

Common approaches to handling quantified formula in SMT solvers often involve the use of instan-
tiation triggers or other heuristics. Unfortunately, these approaches suffer from poor performance
and solver instability [33]. Further, they fundamentally introduce incompleteness into the engine
and prevent the construction of models. As model generation is one of our key objectives we want
to have a decision procedure for these formula.

As described in Section 3 the BosqeIR language specifies the Nat type as a fixed width integer
and is represented using the theory of fixed-width bitvectors. With this choice of integer encoding,
and our fixed set of quantification forms, we can ensure that all quantified variables are scoped to
just bitvector values which puts the formula in the theory of quantified bitvector formula (QBVF). If
we look at the map formula from the someof implementation we see it has the following structure:

∃𝑛, 𝑛 < 𝑙𝑙 .𝑠𝑖𝑧𝑒 () ∧ |𝑙𝑙 .𝑔𝑒𝑡 (𝑛) | = 0

As the 𝑛 in this formula is the only quantified variable and it is a bitvector, it is clear this formula
is in the QBVF fragment. As such it is both decidable and there exist efficient techniques exist for
solving these problems in practice [42, 56].

4.4 ISequence Lemma

The combination of algebraic datatypes and simple quantifiers is sufficient to encodemany container
operations in the BosqeIR standard library. However, subset based computations like filter
are still problematic. These computations have four properties that define their semantics. For a
List𝐼𝑛𝑡 l, a predicate p, and the output list lp:

(1) 𝑥 ∈ 𝑙 ∧ 𝑝 (𝑥) ⇒ 𝑥 ∈ 𝑙𝑝
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(2) 𝑥 ∈ 𝑙𝑝 ⇒ 𝑝 (𝑥) ∧ 𝑥 ∈ 𝑙
(3) The multiplicity of 𝑥 ∈ 𝑙𝑝 and 𝑥 ∈ 𝑙 are equal
(4) The order of elements in 𝑙𝑝 matches 𝑙
The first 2 conditions can be easily specified using simple quantifiers but the multiplicity and

ordering properties are more complex. Instead we present an auxiliary datastructure, an ISequence
which is a integer indexed sequence of bitvector values and an uninterpreted function iseq𝑝(List
l) = 𝑠 , with the following constraints:

(1) ∀𝑛 ∈ [0, 𝑠𝑖𝑧𝑒 (𝑙)), 𝑝 (get(𝑙, 𝑛)) ⇒ ∃𝑖 ∈ [0, size(𝑠)) s.t. 𝑠 [𝑖] = 𝑛

(2) ∀𝑖 ∈ [0, size(𝑠)), 𝑝 (get(𝑙, 𝑠 [𝑖]))
(3) ∀𝑖 ∈ [0, size(𝑠)), 𝑠 [𝑖] ∈ [0, size(𝑙))
(4) ∀𝑖, 𝑗 ∈ [0, size(𝑠)), 𝑖 < 𝑗 ⇒ 𝑠 [𝑖] < 𝑠 [ 𝑗]
Assertions 1, 2 enforce that any indecies in the List l satisfying the predicate must appear in

the ISequence s and that every element in s contains an index in l that satisfies the predicate
– matching the subset requirements. Assertions 3, 4 enforce the size, multiplicity, and ordering
constraints by limiting the positions and range of values that can appear in the result ISequence.
These constraints all fall into the QBVF fragment and are dischargable by a SMT solver.

With this auxiliary operation filter is defined simply as a constructor of List * ISequence.
We can also use the iseq function to compute the result of the countIf functor and, as the
underlying function uses are identical to constructing the ISequence for filter it is trivial to show
that l.filter(p).size() == l.countIf(p). We use a similar form of auxiliary operations to
implement sorting, uniqueness, and join constructs.

Returning to our running example, the definition of le would be equivalent to the formula:
concat3(

const(1, 2, 3),

filter<10(map |𝑥 | (havoc(𝜎1)), iseq<10(map |𝑥 | (havoc(𝜎1)))),
fill(c, 0)

)

Now suppose we want to try and prove that our running example function always returns true –
that is le.someOf=0() is false is unsatisfiable. If we try to check this formula we will find that the
proof fails, but since the formula is decidable, we can instead ask the solver to produce a model that
satisfies the formula when the function returns false – that is le.someOf=0() is false is satisfiable.

Applying the algebraic rules for someof simplifies this to the checks that each of the three sublists
is false. The first sublist is always false as it is constant and does not contain 0. The args sublist can
easily be made false for someOf check by setting it to be the empty list. Finally, we can make the
fill list false for the predicate by setting the input parameter c to 0 as well. If we update the code
to, say assign lb = List𝐼𝑛𝑡::fill(c + 1, 0), then the proposition that the method returning
false is unsatisfiable will reduce to the ∨ of the results on the three sublists and now the fill option
will always be true and the proof will succeed.

5 COVER SET METHOD FOR INDUCTIVE REASONING

In the previous section we built a specialized encoding for the most common container operations
in BosqeIR programs. However, there are some functors that we cannot handle fully even with
quantified templates. Additionally, we want to imbue the BSQChk system with a powerful and
robust methodology for proving the safety of programs which use general recursion. Remarkably
there exists such a method, the cover set method (Section 5.1) for mechanizing induction [58]. This
technique is powerful enough to support our needs wrt. the remaining reduce style container
functors and also generalizes to handle a wide range of inductive proofs. In addition to the generality
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of the cover set method it also has the desirable property that it does not require an costly iterative
unrolling-and-check algorithm [45, 53] and instead only performs a single guarded clause expansion.

5.1 Cover Set Background

The cover set method for mechanizing induction was introduced in 1988 [58] in an equtaional
programming language framework in the paradigm of term rewriting approach for automating
inductive reasoning. Function definitions in that framework are given in ML style in a recursive
fashion, for different cases for constructing a data type on which the function is defined. As a
simple illustration, the data type Natural is defined by a constant 0 and a successor function 𝑠 with
the implicit property that 0 ≠ 𝑠 (𝑥) and 𝑠 is free to imply that 𝑠 (𝑥) = 𝑠 (𝑥) =⇒ 𝑥 = 𝑦. A binary
function + is recursively defined as:

𝑥 + 0 = 𝑥

𝑥 + 𝑠 (𝑦) = 𝑠 (𝑥 + 𝑦)
The cover set method computes induction schema from recursively defined terminating function
definitions. The key idea is to use the well-founded ordering used to establish a proof of termination
of the function definition to (i) select variables(s) in a function call to perform induction and (ii)
generation of induction hypotheses for instantiation of induction variables from recursive calls of
the function in its body, which are guaranteed to be lower in the well-founded order. The variable(s)
on which a function definition recurses is selected for generating induction scheme and hence
performing induction.

The above definition of + is terminating over natural numbers. Since the definition is recursing
on the second argument, the induction variable to be chosen is the second argument 𝑦 of +. In
the first case when 𝑦 = 0, there is no recursive call to + in the right side; this corresponds to the
basis step of an induction proof in which the second argument is instantiated to be 0. In the second
case when the second argument is not equal to 0 and equal to 𝑠 (𝑦) for some 𝑦, there is a recursive
call to + with 𝑦 as its second argument, so the induction hypothesis is generated by instantiating
the second argument to be 𝑦 and the conclusion goal is generated by instantiating the second
argument to be 𝑠 (𝑦). The reader would notice that this induction scheme is precisely the principle
of mathematical induction on natural numbers.
The cover set method formalizes this approach to automating proofs by induction, addressing

three important aspects in inductive proofs: (i) choice of well-founded ordering and (ii) variables to
perform induction on, and (iii) the induction hypothesis (hypotheses) to be generated. It consists
of a finite set of tuples corresponding to each case in the function definition; the first component
in the tuple is the condition on the input under which the function computes the result, and the
second component is a finite set of instantiations of the input for generating different induction
hypothesis for each recursive call; if there is no recursive call, then no instantiation for any induction
hypothesis is generated and is thus left as the empty set; if there are multiple recursive calls, then
there are multiple instantiations.

5.2 Revisiting Add

To show the details of the coverset construction and proof we revisit the definition of add from
Section 2.4 (defined using infix notation for simplicity).

function +(x: Peano , y: Peano): Peano {

switch(y) {

case Zero => x

case Succ@{z} => Succ@{x + z}

}

}
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Assuming the definition is terminating and is complete, a cover set is generated from the function
definition as follows: For each case of the switch statement, there is a tuple consisting of a boolean
condition for which the case expression applies; this boolean condition is the conjunction of the
boolean condition for the case and the negation of the conjunction of the conditions of all the cases
before it. The second component of the tuple is a finite (possibly empty) set of substitutions serving
as instantiations for generating induction hypotheses. From add, the cover set includes two tuples:
{< 𝑦 = 0, {} >, < 𝑦 = 𝑠 (𝑤)𝑎𝑛𝑑𝑛𝑜𝑡 (𝑦 = 0), {𝑤} >}.
To prove of the associativity of:

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧
Observe the variables 𝑦 and 𝑧 appear as second arguments in subterms with +; however, only 𝑧

appears as the second argument on both sides, so it is heuristically preferred.
The first tuple of the cover set for + generates the subgoal:

𝑧 = 0⇒ 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧,
since there is no induction hypothesis. The second tuple generates the subgoal:

((𝑧 = 𝑠 (𝑤) ∧ (𝑧 ≠ 0)) ∧ (𝑥 + (𝑦 +𝑤) = (𝑥 + 𝑦) +𝑤)) ⇒ 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧.

5.3 Recursively defined Functors on Containers

When proving inductive facts we switch from the constructor based definitions in Section 4
and instead use inductive definitions for every container operation. This simplifies the inductive
reasoning that is required and can be trivially done as an equality assertion of the two definitions
at the same time we are introducing the other cover set conjectures.
We illustrate below some examples on containers using functors such as map and reduce with

inductive definitions. Consider a data type 𝑙𝑖𝑠𝑡 generated using constructors 𝑛𝑖𝑙 and 𝑐𝑜𝑛𝑠 . Define a
binary function append on lists, a unary function rev and a unary function length with the usual
semantics:

function append(l1: IntList , l2: IntList ): IntList {

switch(l) {

case empty => l2,

case cons@{h1, tl1} => cons(h1, append(tl1 , l2))

}

}

function length(l: IntList ): Nat {

switch(l) {

case empty => 0,

case cons@{h, tl} => length(tl) + 1

}

}

function rev(l: IntList ): IntList {

switch(l) {

case empty => l,

case cons@{h, tl} => append(rev(tl), cons(h, nil)),

}

}

The above definitions are terminating and the associated coverset for append is: {(𝑙1 = 𝑒𝑚𝑝𝑡𝑦, {}), (𝑙1 ≠
𝑒𝑚𝑝𝑡𝑦 ∧ 𝑙1 = 𝑐𝑜𝑛𝑠 (ℎ1, 𝑡𝑙1)), {𝑡𝑙1})}.

function reduce(l: IntList , op: fn(_: Int , _: Int) -> Int , id: Int): Int {

switch(l) {

case empty => id
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case cons@{h, tl} => op(h, reduce(tl, op, id))

}

}

With 𝑠𝑢𝑚 recursively defined:

function sum(l: IntList): Int {

switch(l) {

case empty => 0

case cons@{h, tl} => h + sum(tl)

}

}

Using the coverset method we can show that 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑙, 𝑓 𝑛(𝑥,𝑦) => 𝑥 + 𝑦, 0) = 𝑠𝑢𝑚(𝑙).
The cover set associated with the above terminating definition of 𝑠𝑢𝑚 is {(𝑙 = 𝑒𝑚𝑝𝑡𝑦, {}), (𝑙 ≠

𝑒𝑚𝑝𝑡𝑦 ∧ 𝑙 = 𝑐𝑜𝑛𝑠 (ℎ, 𝑡𝑙)), {𝑡𝑙})}. Using the cover set method, two goals are generated to prove the
conjecture:

𝑙 = 𝑒𝑚𝑝𝑡𝑦 ⇒ 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑙, +, 0) = 𝑠𝑢𝑚(𝑙)
𝑙 ≠ 𝑒𝑚𝑝𝑡𝑦 ∧ 𝑙 = 𝑐𝑜𝑛𝑠 (ℎ, 𝑡𝑙) ∧ 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑡𝑙, +, 0) = 𝑠𝑢𝑚(𝑡𝑙) ⇒ 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑙, +, 0) = 𝑠𝑢𝑚(𝑙).

The first subgoal, after substituting 𝑙 by 𝑒𝑚𝑝𝑡𝑦, is 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑒𝑚𝑝𝑡𝑦, +, 0) = 𝑠𝑢𝑚(𝑒𝑚𝑝𝑡𝑦), which
simplifies by the definitions of 𝑠𝑢𝑚 and 𝑟𝑒𝑑𝑢𝑐𝑒 to 0 = 0 which is valid.
The induction hypothesis generated from the coverset is 𝑙 ≠ 𝑒𝑚𝑝𝑡𝑦 ∧ 𝑙 = 𝑐𝑜𝑛𝑠 (ℎ, 𝑡𝑙)) ∧

𝑟𝑒𝑑𝑢𝑐𝑒 (𝑡𝑙, +, 0) = 𝑠𝑢𝑚(𝑡𝑙); the conclusion of the second subgoal, after substituting 𝑐𝑜𝑛𝑠 (ℎ, 𝑡𝑙) for 𝑙 , is
𝑟𝑒𝑑𝑢𝑐𝑒 (𝑐𝑜𝑛𝑠 (ℎ, 𝑡𝑙), +, 0) = 𝑠𝑢𝑚(𝑐𝑜𝑛𝑠 (ℎ, 𝑡𝑙)) which simplifies by the definitions of 𝑟𝑒𝑑𝑢𝑐𝑒 and 𝑠𝑢𝑚 to
ℎ+𝑟𝑒𝑑𝑢𝑐𝑒 (𝑡𝑙, +, 0) = ℎ+𝑠𝑢𝑚(𝑡𝑙); with the use of the induction hypothesis 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑡𝑙, +, 0) = 𝑠𝑢𝑚(𝑡𝑙),
the subgoal is proved.

5.4 Integration into Z3

A direct proof in Z3 can be obtained by computing instantiations of the universal variables in the
definitions of sum and reduce above. The coverset can be used to find instantiations of the universal
variables: in the first subgoal, terms (reduce l + 0) and (sum l) each simplify under the condition (= l
empty) to 0 and 0, respectively. Similarly, in the second subgoal, (reduce tl + 0) and (sum tl) also
simplify under the condition (and (not (= l empty)) (= l (cons h tl))) by instantiating the second cases
of the definitions of reduce and sum to (+ h (reduce tl + 0)) and (+ (sum tl)) respectively, on which
the induction hypothesis from the cover set applies. This is one major advantage of the cover set
method that often appropriate instantiations can be generated from the cover set itself.

An indirect proof can be obtained by proving the unsatisfiability of the negated conjunction of
the two subgoals generated using the coverset, with the definitions of sum and reduce.

5.5 Extensions

In a given conjecture, many function symbols may occur and, additionally, the same function symbol
may occur with different sets of arguments. Each of these function symbols has an associated cover
set from which an induction scheme can be generated. Then each of these induction schemes could
be a candidate for attempting a proof by induction of the conjecture.
Given that SMT solvers are very efficient in handling very large formulas, it is feasible to

simultaneously generate alternative subgoals generated from different induction schemes with the
objective of trying them all with the hope that at least one would succeed.
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5.6 Model Generation

The cover set method can also be used to generate a counter-example (model) from a false conjecture.
In a proof attempt, one of the subgoals is likely not to succeed. If its variables are instantiated in a
systematic way, a counter-example can be generated.

Consider a false conjecture, that length(filter(l, p)) == length(l), about a functor filter
defined as:

function filter(l: IntList , p: pred(_: Int) -> Bool): IntList {

switch(l) {

case empty => empty

case cons@{h,tl} => if(p(h)) then cons(h, filter(tl, p)) else filter(tl , p)

}

}

Choosing the coverset defined by filter, there are three subgoals generated. The first is 𝑙 =

𝑒𝑚𝑝𝑡𝑦 ⇒ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑙, 𝑝)) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) which can be easily proved by substituting empty for l
and then using the definitions of length and filter.
The second (failing) subgoal is: (𝑙 ≠ 𝑒𝑚𝑝𝑡𝑦 ∧ 𝑙 = 𝑐𝑜𝑛𝑠 (ℎ, 𝑡𝑙) ∧ ¬(𝑝ℎ) ⇒ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑡𝑙, 𝑝)) =

𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑙)) ⇒ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑙, 𝑝)) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙).
Substituting for cons(h, tl) for l in the conclusion of the subgoal and simplifying using the

definitions of filter and length gives: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑡𝑙, 𝑝)) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑙) + 1 which after using the
induction hypothesis gives 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑙) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑙) + 1 which is a contradiction.

A counter-example is generated in which l = cons(h, tl), tl = empty and h is such that p(h) = false.

6 RELATEDWORK

The approach to programming language design and checking presented in this paper represents
a novel way to view and build on many longstanding research areas. From the language design
standpoint we started from a blank slate and, for every design choice, asked how each feature
impacted the analysis problem. From the tooling perspective we looked to the strengths and
limitations of existing symbolic analysis, testing, and verification methodologies, and then, looked
at how the new language semantics would allow us to build on these strengths and eliminate
various weaknesses.

6.1 Language Design:

The goal of the BosqeIR language design was to enable the construction of powerful and practical
analysis and developer tools. The approach taken was to identify language features that introduce
difficult to reason about constructs and eliminate them.

Loops and Recursion: Loops are a foundational control flow construct in the Structured Program-
ming paradigm [10, 15, 21]. However, precisely reasoning about them requires the construction of
loop invariants. Despite substantial work on the topic [18, 32, 50, 51] the problem of automatically
generating precise loop invariants remains an open problem. Instead, inspired by the empirical
results in [1] which show most loops are actually just encoding a small set of common idioms, we
entirely exclude loops from the BosqeIR language in favor of a comprehensive set of functors.
Explicit recursion is still allowed, although discouraged, as a fall-back for algorithms where it is
fundamentally needed or cannot be expressed with the standard set of functors. Thus, we still
need to deal with the problem of verification conditions for the functors and inductive proofs for
recursive calls but, as shown in Section 4 and Section 5 with clever encoding strategies, these
problems are tractable.
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Identity and Equality: Equality is a complicated concept in programming [43]. Despite this
complexity it has been under-explored in the research literature and is often defined based on
historical precedent and convenience. This can result in multiple flavors of equality living in a
language that may (or may not) vary in behavior and results in a range of subtle bugs [22] that
surface in surprising ways.
The notion of identity based on memory allocation values also introduces the need to track

this property explicitly in the language semantics – introducing the need for alias analysis and
a strong distinction between pass-by-value and pass-by-ref semantics. This is another problem
that has been studied extensively over the years [19, 20, 28, 36, 37, 52] and remains an open and
challenging problem. As with loops, our approach is to eliminate these challenges and complexities
by eliminating the use of referential identity and restricting equality to a fixed set of data types
where equality is simply term equality.

Mutability: Mutability is known to be a challenge when reasoning about code. It introduces a
host of problems including the need to perform strong updates (i.e. retracting previously asserted
facts) and computing frames [48]. There are a number of useful techniques, including various
ownership type systems [7, 8], or linear type systems [17, 54, 55], for managing or isolating these
issues which may be valuable to incorporate into the BosqeIR language in the future.

Determinism: Indeterminate behaviors, including undefined, under specified, or non-deterministic
behavior, require a programmer or analysis tool to reason about and account for all possible out-
comes. While truly undefined behavior, e.g. uninitialized variables, has disappeared from most
languages, there is a large class of underspecified behavior, e.g. sort stability, map/dictionary enu-
meration order, etc., that remains. The inclusion of non-deterministic operations also results in
code that cannot be reliably tested (flakey tests), where failing witness inputs may sometimes not
fail, and as each non-deterministic choice point introduces a case split for reasoning, can greatly
increase the cost of analyzing a codebase. These increase the complexity of the development process
and, as time goes on, are slowly being seen as liabilities that should be removed [6] so for the
BosqeIR we have taken this to the logical conclusion and fully specify the behavioral semantics
of every language operation.

6.2 Program Analysis

Given the rich literature on program analysis our focus in this section is how the language features,
logic encodings, and features of the BSQChk compare with other approaches.

Symbolic Verification: The BSQChk checker is explicitly designed with full verification of correct-
ness as a non-goal. The confidence boosting hierarchy in Section 1 specifically includes outcomes that
are not verified and the workflow in Figure 2 does not have a path for manually adding lemmas or
other manual proof steps. The use of powerful proof systems with extractable code [12], languages
with proof assistants like [31], or dependently typed languages [14, 46] show that it is practical to
produce fully verified software in some domains today. However, using these languages/techniques
require substantial manual effort and expertise including knowledge of the underlying theorem
provers behavior, and the ability to formally model the desired behavior of the software. This places
the use of these systems beyond the what is practical or cost effective for most applications. Work
on Liquid Types [49] and the Ivy language [35] represent interesting approaches to verification
by enforcing that the logic used in the types/code remains in decidable fragments of logic. This
reduces the expertise and manual work required but does not eliminate it entirely and restricts the
languages to problems which can be expressed entirely in the supported logical fragments.
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In contrast the BSQChk checker does not require a separate proof language or the manual
insertion of lemmas, and supports arbitrary code in the BosqeIR language. However, an interesting
question is how the proofs produced by full verification techniques can be ingested into the BSQChk
logical representation to enable fully-verified foreign function integration (FFI).

Cover Set Method and Term Rewriting: The cover set method [58] is motivated by the success
in the use of the induction scheme supported in ACL2 [26] based on proving termination of lisp
functions in which induction hypotheses are computed from recursive calls in their definition.
The cover set method generalizes that idea from lists to arbitrary data types generated by a finite
set of constructors in an equational programming language framework; further it also allows
the use of sophisticated syntactic termination orderings. The cover set method as adapted to
BosqeIR however functions more similarly to the induction scheme generation in ACL2 due to
the nonequational structure of the programming language. The Imandra system [45] is a novel
design that combines SMT reasoning with ACL2 style proving to support industrial uses.

Abstract Interpretation: Abstract interpretation and related dataflow analyses [41] are at the
other end of the spectrum from full symbolic verification. This framework for proving properties of
programs is very different since it is based on approximating the behavior a concrete program by
that of an abstract program working on an abstract domain with the requirement, any property of
the abstract program is indeed a property of the concrete program. This framework relies heavily on
identifying a suitable abstract domain, implementing the approximation of the concrete operations
on the abstract domain, and most importantly, defining a widening operator on the abstract domain
for approximating the looping structure in finitely many steps leading to a fixed point. The analysis
is done using forward collecting semantics. The choice of abstract domain and the associated widen
operator are critical in the ability to prove useful properties of concrete properties of programs.
These analyses generally trade, large amounts of, precision for scalability. Although some

analyses have been successfully used for verification, such as [38], they generally produce many
false positives and care must be used in when/where these analyses are deployed [13]. Our current
experience with the BSQChk prover is that it can spend considerable time checking assertions that
could easily be discharged by a more efficient data flow [29] or numeric analysis [30].

Symbolic Execution and Fuzzing: While verification and abstract interpretation are generally
focused on over approximation to show that certain program states are infeasible, symbolic exe-
cution [2, 4, 9, 23, 27] and concrete fuzzing (white, grey, or black box) [16, 57] focus on exploring
possible executions looking for error states. As discussed in Section 2, as long as the error of interest
has a small scope property then these techniques are quite effective. However, in cases where the
error requires a large number of path expansions, where the input must be large, or where there
complex constraints on the input that block accessibility to the error, these techniques become
substantially less effective. Since the full encoding in the BosqeIR tool can see both forward
constraints from the input validation and backwards constraints from the error context it does not
suffer from the same limitations and can easily find witness inputs even when the small context
hypothesis does not hold.

Incorrectness Logic and Under Approximate Analysis: Incorrectness Logic [44] and other under
approximate approaches [5], that cannot prove the absence of an error but instead can prove
the presence of a fault, represent an interesting and recent development in the design space of
program analysis. These systems look to fuse the power of symbolic representations to capture
many concrete states while under (rather than over) approximating reachability. The goal is to build
tools that provide a "no false positives" guarantee while still finding as many bugs as practical. A
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property that the BSQChk also has as part of the workflow that maximizes actionable information
for the developer.

Interestingly, one of the motivations for introducing Incorrectness Logic is that (p. 4) “...the exact
reasoning of the middle line of the diagram [strongest post semantics] is definable mathematically
but not computable (unless highly incomputable formulae are used to describe the post).” However,
as shown in this paper, this middle line of exact and decidable semantics is practical to compute
in most cases when the language semantics are designed appropriately. Further, by encoding the
exact semantics in a decidable fragment of logic, the BosqeIR language and BSQChk checker
provide the best of both the verification and fault detection worlds (it satisfies both correctness and
incorrectness logics).

7 CONCLUSION

This paper presented an approach to programming language design that was centered around the
co-design of the language and an encoding into decidable fragments of logic that are efficiently
dischargeable using modern SMT solvers. The resulting language, BosqeIR, and the BSQChk
automated checking tool show that this is an effective technique. The encoding is both semantically
precise and complete for most of the language (and has effective heuristics for the incomplete
fragments). This enables the BSQChk checker to provide actionable results to a developer for builtin
errors as well as user specified asserts, data invariants, or pre/post conditions.
We are actively working with collaborators at Morgan Stanley to apply this methodology to

the example code and regulatory examples that are currently implemented in the Morphir frame-
work [39]. Our initial experience has been very positive with some small bugs, such as in our
introductory example, found and the tool showing excellent performance in practice. Our big
challenge at this point is the lack of explicit assertions in most of the code which limits us to
checking for predefined error classes such as invalid casts of artihmatic overflow. We plan to
investigate how to make including assertions simpler for developers and running the checker on
larger quantities of code.

The ability to effectively reason about the precise behavior of an application creates opportunities
for not only a powerful suite of checker tools but also for program synthesizers, code optimization
tools and accelerator architecture support, and application lifecycle management systems. As a
result we hope this new approach to thinking about programming and programming languages
will lead to massively improved developer productivity, increased software quality, and enable a
new golden age of developments in compilers and developer tooling.
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