Comprehensive Reachability Refutation and Witnesses Generation via Language and Tooling Co-Design

MARK MARRON, Microsoft Research, USA
DEEPAK KAPUR, University of New Mexico, USA

This paper presents a core programming language calculus, BosqeIR, that is uniquely suited for automated reasoning. The co-design of the language and associated strategy for encoding the program semantics into first order logic enables the translation of BosqeIR programs, including the use of collections and dynamic data structures, into decidable fragments of logic that are efficiently dischargeable using modern SMT solvers. This encoding is semantically precise and logically complete for the majority of the language and, even in the cases where completeness is not possible, we use heuristics to precisely encode common idiomatic uses. Using this encoding we construct a program checker BSQChk that is focused on the pragmatic task of providing actionable results to a developer for possible program errors. Depending on the program and the error at hand this could be a full proof of infeasibility, generating a witness input that triggers the error, or a report that, in a simplified partial model of the program, the error could not be triggered.

1 INTRODUCTION

This paper introduces a novel core programming language calculus, BosqeIR, a strategy for encoding the language semantics into first order logic, and the BSQChk program checker. These three components are designed as a group with the goal of creating a programming system that was highly amenable to automated reasoning and mechanization using SAT Modulo Theory (SMT) theorem provers [3, 11].

A core design principle of the BosqeIR language is the elimination of foundational sources of undecidability and complexity commonly seen in programming language semantics – iteration/recursion, mutability, and referential observability. The BosqeIR semantics also employ carefully chosen definitions of language features, including sources of non-determinism, numeric type definitions, formalizing various out-of-* limits, etc., to ensure the encodings to first order logic are simple, compact (or at least finite), and easily dischargeable. This regularized programming model enables us to encode most of the language semantics in fully precise strongest postcondition form using decidable fragments of first order logic.

By construction the base theories needed by the BSQChk checker for the core BosqeIR operations are limited to uninterpreted functions, integer arithmetic, and bitvectors UF+IA+BV [3]. The extension to include most container operations introduces several quantified formula forms that are contained in the decidable theory of quantified bitvector formula QBVF [56]. As all of these theories are decidable, the BSQChk system can refute or generate witnesses for many errors in BosqeIR programs. Even in the presence of general recursion the BSQChk checker has a pair of refutation and model generation algorithms that can precisely handle common idiomatic forms while safely falling back to best-effort modes when unavoidable.

Our approach to program checking, and thus the design of the BSQChk checker, is pragmatic. Ideally a developer would like to have a fully automatic proof that, under all possible executions, a given state is unreachable or to get debuggable witness input in the cases when the state is reachable (e.g. a bug exists). In practice this proof or input may not be possible to generate as it may involve recursive code our heuristics do not cover or the theorem prover may be unable to discharge the query in a reasonable time frame. Thus, we consider the following hierarchy of

Authors’ addresses: Mark Marron, Microsoft Research, USA, marron@microsoft.com; Deepak Kapur, Computer Science, University of New Mexico, USA.
confidence boosting results that the BSQCHK checker can produce such that in all cases it is able to provide useful feedback to a developer:

1a. Proof that the error is infeasible in all possible executions
1b. Feasibility witness input that reaches target error state
2a. Proof that the error is infeasible on a simplified set of executions
2b. No witness input found before search time exhausted

The 1a and 1b cases are our ideal outcomes where the checker either proves that the error is infeasible for all possible executions or provides a concrete witness that can be used to debug the issue. The 2a and 2b cases represent useful best effort results. While they do not entirely rule out (or witness) a given error, they do provide a substantial boost in a developers confidence that the error is infeasible on a subset of inputs [44].

To maximize the ability of the system to produce useful outcomes in this hierarchy we leverage the unique features of the BosQEIR language and novel encodings into efficiently checkable fragments of first order logic to power the following features:

Large & Inductive Model Capable – The BSQCHK checker is able to do witness input generation and refutation proofs even when they require reasoning over a large model (Section 2.1). In the case of general reduction/recursion (Section 2.4) the checker has heuristics to generate a witness input or proof without unrolling inductive operations.

Small Model Optimized – If there is a small witness input model then the BSQCHK checker can find it using mostly (or entirely) quantifier free solving (Section 2.2). For refutation we also use small width bit-vector sizes to determine if a state is unreachable in a limited approximation of the program (Section 2.3).

Focused Search Structure – In the case where the BSQCHK checker heuristics are unable to generate a witness or establish a refutation proof, it falls back to a classic unroll+explore strategy. Even in this scenario, the restrictions of the BosQEIR language and the encoding maximize the amount of content in efficiently decidable logic UF+IA+QBVF fragment and minimizes the state space that must be explored with iterative unrolling (Section 2.5).

The code in Figure 1 shows a BosQEIR implementation of a business application modeling example from Morgan Stanley’s Morphir framework [39]. The code snippet is focused on the availability function. This function computes the number of items still available to sell based on the number at start of the day (startOfDayPosition) and the list of buy transactions (buys) so far. As a precondition it asserts that the startOfDayPosition is non-negative and that the return value $return is bounded by the start of day value.

The code to compute the number of buy transactions that have been completed successfully and the sum of the quantities from these purchases is concisely expressed using the functor chain buys.filter(BuyAccepted()).map(x.quantity()).sum(). While this code is conceptually simple from a developer viewpoint, the actual strongest postcondition logic semantics for it are quite complex. They include a subset relation and predicate satisfaction relation on the filter, a quantified user defined binary relation with the map, and an inductively defined relation as a result of the sum. Thus, trying to prove that the postcondition is satisfied (or finding an input that demonstrates the error is possible) is a challenging task involving inductive reasoning, relationships between container sizes and contents, and quantified formula.

Despite these complexities the BSQCHK checker can model this code, in strongest postcondition form, as a logical formula in a decidable fragment of first-order logic! Further, the BSQCHK prover can instantaneously solve this formula.
function availability(startOfDayPosition: BigInt, buys: List<BuyResponse>): BigInt
 requires startOfDayPosition >= 0
 ensures $return <= startOfDayPosition
 {
 let sumOfBuys = buys.filter(BuyAccepted()].map(x.quantity()).sum() in
 startOfDayPosition = sumOfBuys;
 }

entity BuyAccepted provides BuyResponse {
 field productId: String;
 field price: Decimal;
 field quantity: BigInt; //<--- should be BigNat
}

Fig. 1. BosqueIR implementation of order processing code.

Using the following satisfying assignment as a witness input a developer can run the application, investigate the problem, and identify the appropriate course of action to resolve the issue.

\[
\text{startOfDayPosition} = 0 \land \text{buys} = \text{List}\{\text{BuyAccepted(“a”, 0.0, -1)}\}
\]

In this case the fix is, using the fact that the BosqueIR language supports BigNat in addition to BigInt numbers to ensure that the buy quantity is always non-negative.

With this simple change the BSQCHK tool can be run again, and even with the complexity of the logical structure, will instantaneously return that the program state where the ensures clause is false is unreachable. All of this analysis and proving is fully automated and does not require any assistance, knowledge of the underlying theorem prover, or use of specialized logical assertions by the developer.

This example shows how, carefully constructing the programming language with the specific intent of being translatable to efficiently solvable logic, enables the construction of tooling with sophisticated automated reasoning capabilities that provides compelling developer experiences. As such, this result represents an important step in the transformation of programming from a human labor intensive task into one where human ingenuity is augmented with a powerful set of automated tools. The contributions\(^1\) of this paper are:

- An core language calculus, BosqueIR, that is designed specifically in conjunction with and to support automated program analysis using modern SMT solvers (Section 3).
- Encoding the core of the BosqueIR language into an efficiently decidable fragment of first-order-logic, UF+IA+BV and optionally real arithmetic RA (Section 3).
- Encoding containers and operations on them (excluding reduce operations) into the decidable, QBVF, fragment of first-order logic (Section 4).
- Heuristics for processing container reduce operations and arbitrary recursion, without unrolling that remains in the UF+IA+QBVF fragment (Section 5).
- Introduces the BSQCHK checker (Section 2) which uses these techniques + novel methodologies enabled by the language and encoding to system to produce a tool that is effective at both refutation and witness generation in a range of scenarios.

2 BSQCHK OVERVIEW

The BSQCHK checker first builds the code under analysis and enumerates all possible error conditions. For each identified error the BSQCHK checker follows the algorithm shown in Figure 2.

\(^1\)This system forms the foundation of the Bosque Programming Language project under development at Microsoft Research and available as open source software – https://github.com/microsoft/BosqueLanguage.
The first step in this algorithm is to see if the error can be refuted under various definitions of simplified models of the program. As a low cost first check the refutation proofs are all attempted without considering any call context. If this fails then the proofs are attempted using the, more expensive, whole program encoding. In both the local and whole program proofs, small bit-widths are used and increased in size up to 16 bits. If the small bitwidth proofs are successful refutations (either locally or globally) then the system attempts a refutation proof with the full bit-widths (first locally and then whole program). If either of these is successful then the checker has shown that the error is infeasible on all executions and we achieved the highest quality, 1a, confidence level.

If the refutation proofs fail then we move on to searching for a witness input for the error. If we succeeded in proving the error infeasible for the small bitwidths, but then failed to prove the infeasibility for the full case, we also achieved the partial, 2a, confidence level as well. In the small witness search we incrementally expand the bitwidths up to size 16 and gradually increase the limit of unrolling allowed for recursive calls – based on timeout limits. If we find an input that reaches the target error then we have succeeded in producing a high value actionable result for the developer, 1b, in our quality confidence level. With this result we know there is a real failure and have a small input that can be used to trigger and debug it.

In the case we cannot generate a small witness we make a final witness generation attempt with the full bitwidth and, again, perform iterative unrolling of the remaining recursive calls. As in the small input case, if we find an input that reaches the target error then we have succeeded in producing a high value actionable result for the developer. Otherwise we produce our minimal success result, 2b, where we aggressively explored the input space and, while we cannot fully rule out the feasibility of the error, we believe it is very unlikely to be triggered in practice.

2.1 Large Model Witness Generation
Symbolic fuzzers or model checking [16, 23] techniques explore the input/execution space using heuristics to iteratively unblock control flow paths (either conditionals or loop iterations). Other techniques use input structure mutation and generation [57] to iteratively cover larger sets of the relevant input space for a program. These techniques have proven highly effective at finding bugs
with a small scope hypothesis \([24]\) – i.e. there exists a small input and/or small execution trace that will exercise the error. In practice many errors have this property but there are important scenarios, like cache invalidation logic or large lookup tables, where this hypothesis does not hold and these techniques will be of limited effectiveness. Consider the code:

```c
const cl = ListInt@[0, 1, 2, ..., 254, 333, 256 ];

function largeunroll(x: Int): Bool {
    if (!cl.contains(x)) then
        false
    else
        let i = cl.findIndex(x) in
        i == 255
    }
}

function largeinput(l: ListInt): Bool {
    l.size() == 256 && l.get(255) == 333 && !l.slice(0, 255).contains(333)
}
```

For techniques that use iterative state space expansion the `largeunroll` function requires unrolling the logic in `contains` and `findIndex` functions 255 steps before they observe the function returning `true`. This can be even more challenging for input state generation based exploration techniques which need to enumerate from the space of valid integers to find a single value. In the case of the `largeinput` function the problem becomes more complex as both the iteration space and the input need to be large, a List of 256 elements, in order to reach the path where the function returns `true`. While heuristics exist to increase the likelihood of finding these errors, e.g. seeding the input generator with constants from the program, in general iterative exploration techniques will exhaust their resource bounds without finding the error state.

The use of QBVF encodings enable the SMT solver to reason from both constraints related to the input and the target error. This allows it to easily generate satisfying witness values for the input that reach the target error state. Consider the formula that needs to be solved for the `largeunroll` function – which is trivially solvable and satisfiable with the assignment of `x = 333`:

\[
\exists n \in [0, \text{len}(lc)] \ s.t. \ \text{get}(n, cl) = x \land i == 255 \land \text{get}(i, cl) = x \land \text{get}(0, cl) = 0 \ldots \text{get}(255, cl) = 333
\]

The formula for the `largeinput` example when it is expected to return `true` is more interesting. It may seem we need to enumerate and solve for all 256 values in the formula.

```c
len(l) = 256 \land \text{get}(l, 255) = 333 \land \forall n \in [0, 255] \text{ get}(n, l) \neq 333
```

However, the method for solving satisfiability assignments in Z3 \([56]\) uses conditional model logic and is able to produce the compact model for the contents of `l` as `(ite (= n 255) 333 0)`. This example has neither a small iteration space nor a small input the logical witness input model is still compact and efficiently computable!

2.2 Small Model Witness Generation

In practice many of the error states that we are interested in checking for satisfy the small scope hypothesis. While the QBVF encoding approach can handle these cases, just like for the large models, we can further optimize the performance for smaller models. Although QBVF is decidable it is asymptotically and practically more expensive than solving over quantifier-free UF+IA+BV formula. Consider the example below where the function checks to see if there is an element in the list that satisfies the predicate `x * x == 0`.

```c
function smallwitness(l: ListInt): Bool {
    1.someOf_{x,x=x=0}()
}
```
Using the QBVF encoding to generate a witness input for when this function returns true requires us to solve the quantified formula:

\[\exists n \in [0, \text{len}(l)] \text{ s.t. } \forall n \in [0, \text{len}(l)] \left(\text{get}(n, l) = \text{havoc}_{\text{Int}}(n) \right) \]

To limit the introduction of quantifiers we use path splitting and implement a special small-model path in the library implementation that is optimized for generating easily solved quantifier free formula. An implementation of the `someOf` and `havoc` functions in the BosQUEIR standard library shows how this works:

```plaintext
function someOfP(l: ListInt): Bool {
    let ct = len(l) in
    if (ct == 0) then false
    elsif (ct == 1) then p(l.get(0))
    elsif (ct == 2) then p(l.get(0)) || p(l.get(1))
    elsif (ct == 3) then p(l.get(0)) || p(l.get(1)) || p(l.get(2))
    else quantified_someOfP(l) // full quantifier path
}
```

```plaintext
function havocListInt(c: Ctx): ListInt {
    let ct = havoc_(Int)(c) in
    if (ct == 0) then ListInt@{}
    elsif (ct == 1) then ListInt@(havocInt(c ⊕ 0))
    elsif (ct == 2) then ListInt@(havocInt(c ⊕ 0), havocInt(c ⊕ 1))
    elsif (ct == 3) then ListInt@(havocInt(c ⊕ 0), havocInt(c ⊕ 1), havocInt(c ⊕ 2))
    else quantified_havocListInt(c, ct) // full quantifier path
}
```

These implementations include small-model paths which produce quantifier free formula for lists of lengths less than 4. To construct a satisfying assignment to the input variables the SMT solver can, when possible, find one in the propositional fragment of the formula. This design also cleanly handles cases where there is a large constant or computed list, handled by the quantifier path, while still allowing most reasoning to take place on the quantifier-free formula.

2.3 Small Refutation Construction

In the BSQCHK checker our approach for 2b, from the confidence hierarchy, is to turn one of the challenges of using fixed width bit-vectors – reasoning with large widths can be computationally expensive – into a strength since reasoning with small widths is very efficient. Consider the example below when we want to check if this function returns false.

```plaintext
function smallproof(x: Int): Bool {
    let ll = l.append(ListInt@{x}, ListInt@{1, 3}) in
    ll.contains(3)
}
```

From the code we can see that, regardless of the input value, the second list contains the constant 3 and so the return value is trivially true. In many cases, including our example, we can interpret all the operations and show that the false return value is infeasible (the formula is `unsat`) entirely with a small width bitvector (anything 2 or larger). In practice `unsat` stability is quite common and, unless an error is blocked by an overflow error, then like in our example the proof of infeasibility almost always generalizes to the full bit width [25]. This technique combines with the optimizations in Section 2.2 to, heuristically, further optimize witness generation when they exist for small container sizes.

2.4 Heuristically Decidable Induction

By design the majority of the standard library container operations can be encoded in decidable fragments of first order logic and in, BosQUEIR programs, the use of explicit recursion is discouraged.
However, the

BosqeIR language does support the use of arbitrary recursive computation and there are times when it is needed. In these cases we still want to do best effort refutation proofs and/or witness input generation. The cover set method for mechanizing induction [58] allows us to implement a heuristic tactic that transforms inductive definitions into a closed form that can be encoded in our decidable fragment.

Suppose a programmer implements Peano numbers using the standard inductive successor axioms and, the recursive add and add3, functions defined below. They might also include an assertion that the implementation is associative, i.e. \(add(\langle x, add(y, z) \rangle) = add(\langle x, y \rangle, z) \). In the BosqeIR language this is done by computing the two values and asserting the equality explicitly.

```plaintext

concept Peano ()
  entity Zero provides Peano ()
  entity Succ provides Peano ( field val: Peano; )

function add(x: Peano, y: Peano): Peano {
  switch(y) {
    case Zero => x
    case Succ @{z} => Succ @{ add(x, z)}
  }
}

function add3(a: Peano, b: Peano, c: Peano): Peano {
  let rl = add(a, add(b, c))
  let rr = add(add(a, b), c)
  if(rl != rr) then error
  else rr
}
```

Proving the infeasibility of the error statement requires discharging an inductive proof over the recursive structure of add. In general this problem is undecidable but, in many cases, we can use the construction of a cover set and a list of clauses that capture the inductive proof obligations. These obligations can then be encoded as guards for the desired property and, if successfully discharged, complete the inductive proof.

For this example the cover set generation heuristic produces a set of constraints that match the principle of mathematical induction: the basis step is to instantiate the second argument of \(add \) to be \(Zero \), and the induction step is to instantiate the second argument to be \(Succ@\{w\} \) with the induction hypothesis generated by instantiating the second argument to be \(w \).

Thus in our example the basis step is generated by instantiating \(c \) to be \(Zero \) producing a subgoal (without any induction hypothesis since there are no recursive calls to add in the first equation):

\[
\hat{\top} \equiv add(a, add(b, Zero)) = add(\langle add(a, b), Zero \rangle)
\]

The induction step is generated by instantiating \(c \) to be \(Succ@\{c\} \) with the induction hypothesis obtained by instantiating \(c \) to be \(c \):

\[
\hat{\hat{\top}} \equiv add(a, add(b, c)) = add(add(a, b, c)) \Rightarrow add(a, add(b, Succ@\{c\})) = add(\langle add(a, b), Succ@\{c\} \rangle)
\]

Using the equality rules implied by the definition of add, the validity of both of these subgoal can also be discharged.

This technique is powerful enough to support our needs wrt. container functors not convertable to QBVF and also generalizes to handle a wide range of inductive proofs arising from common idiomatic uses of recursion. In addition to the generality of the cover set method it also has the desirable property that it does not require a costly iterative unrolling-and-check algorithm and instead only performs a single guarded clause expansion – i.e. in our encoding we simply introduce the guarded formula \(\hat{\top} \land \hat{\hat{\top}} \Rightarrow rl = rr \) as the closed form guarded constraint.
2.5 Focused Semi-Decision Search

Despite the wide range of techniques we use to encode a program in decidable fragments of first order logic, there are inherently times when the heuristics will fail. In these cases we accept that no proof of infeasibility can be constructed and instead fall back to the 2b case in out hierarchy of confidence boosting results.

In this mode we use brute force iterative unrolling of recursive functions and the library calls that cannot be encoded in QBVF. This is a simple semi-decision procedure for generating a witness input for a given error state but has limited effectiveness when the number of candidate calls to unroll is large. However, by the BosqeIR language design and encodings in the BSQChk checker we eliminate most of these candidates in practice. This results is a drastic reduction in the search space and increases the overall success rate of the procedure.

3 BOSQUEIR CORE AND ENCODING

This section provides the syntax and operators of the BosqeIR language with an emphasis on features that are not widely seen in existing programming IRs and/or that are particularly important for encoding to first order logic that is efficiently solvable by modern SMT solvers. Our encoding is a deep embedding that tries to push as much knowledge about the program structure as possible explicitly into the logical encoding.

3.1 Primitives

The BosqeIR language provides the standard assortment of primitive types and values including a special none value (None type), a Bool, Nat and Int numbers, safe BigNat and BigInt numbers, along with Float, Decimal, and Rational numbers. The BosqeIR String type represents immutable unicode string values. The language also includes support for commonly used types/values in modern cloud applications like, ISO times, SHA hashcodes, UUIDs, and other miscellany.

The Nat and Int types are mapped to fixed-width bitvectors. The choice of bitvectors allows us to support nonlinear operations while remaining in a decidable fragment of logic. The BigInt and BigNat types are more interesting as they are mapped to SMT Int. For non-linear operations we support both an over approximate encoding to uninterpreted functions + a simple axiomatization as well as a precise mode that uses the underlying NLA solver.

For solver performance we consider tradeoffs between precise encodings of semantics and versions that, in some cases, admits infeasible or excludes feasible execution traces. One of the places we allow this relaxation is in the encoding of Float, Decimal, and Rational numbers. We provide 3 flavors of encoding for these values in the BosqeIR system:

- Exact – where Float and Decimal are represented as a fixed width IEEE value and Rational is represented explicitly using the semantics of the underlying integer number representation. This can be computationally costly but is precise and will never generate an incorrect refutation or infeasible witness input.
- Conservative – where Float, Decimal, and Rational are defined as opaque sorts and all operations on them are uninterpreted functions with simple axiomatizations. This is efficiently decidable and a safe over-approximation so is sound for refutation but prone to generating infeasible witness inputs.
- Approximate – where Float, Decimal, and Rational are defined as Real sorts. This is the default encoding and, in theory, can admit both admit infeasible or exclude feasible execution traces. In practice the situations where these approximations negatively influence the outcome are limited and the overall increase in performance + success rate in refutation and witness input generation is a sweet spot for practical usage.
3.2 Self Describing Types

Structural **Tuple** and **Record** types provide standard forms of self describing types. One notable aspect is the presence of optional indecies or properties. In most languages this would lead to problems with analysis and require dynamic runtime support when accessing optional properties. However, as we enforce a **closed world assumption** on **BosqeIR** programs we can compute the actual set of concrete tuple/record types that may appear in the program.

Using the theory of constructors is a natural way to encode the tuple and record types. Since the **BosqeIR** language enforces a closed world compilation model we can generate all possible concrete **Tuple** and **Record** values that the program operates on. Consider a program that uses the tuple \([\text{Int}, \text{Bool}]\) and the record \{f: \text{Int}, g: \text{String}\}. The SMT constructor encoding for these types would be:

\[
\text{type Tuple[\text{Int},\text{Bool}] = cons of BV * Bool}
\]
\[
\text{type Record\{f: \text{Int}, g: \text{String}\} = cons of BV * String}
\]

This representation results in substantial simplifications when reasoning about operations on these values as lookups are simply constructor argument resolutions instead of requiring the analysis of various dynamic properties — e.g. looking up a property value based on a key in a dictionary structure.

The **BosqeIR** language also supports self describing **union** types — e.g. \(\text{Int} \mid \text{None} \mid \text{Int} \mid \text{String} \mid [\text{Bool}, \text{Bool}]\). These unions are not encoded using direct constructors. Instead we use an abstract value encoding, Section 3.5, for these unions and also for **tuples**/**records** with optional entries (which are logically equivalent to union types).

3.3 Nominal Types

The **BosqeIR** language supports a nominal type system that allows the construction of object-oriented style type inheritance structures. Abstract **Concepts** provide a means for inheritance and multi-inheritance via **Conjunction**. The nominal type system differs from many oo-type systems in that the **Concepts** are always abstract and can never be concretely instantiated while **Entity** (class) types are always concrete and can never be subclassed.

This design simplifies the representation encoding, and as with the tuples and records, we can enumerate all possible concrete object types and encode them using the theory of constructors. Consider a program that uses the entity **entity Foo** \{ field a: Float; field b: [Int, Bool] \}. The SMT constructor encoding for this types would be:

\[
\text{type Foo = cons of Real * Tuple[Int,Bool]}
\]

3.4 Key Types and Equality

Equality is a multifaceted concept in programming [43] and ensuring consistent behavior across the many areas it surfaces in a modern programming language such as ==, .equals, Set.has, and List.sort, is source of subtle bugs [22]. This complexity further manifests when equality can involve referential identity which introduces issue of needing to model aliasing relations on values, in addition to their structural data, in order to understand the equality relation. The fact that **reference equality** is chosen as a default, or is an option, is also a bit of an anachronism as reference equality heavily ties the execution semantics of the language to a hardware model in which objects are associated with a memory location.

To avoid these behavioral complications, and the need to model aliasing, the **BosqeIR** language is **referentially transparent**. The only values which may be compared for equality are special primitive values including none, booleans, primitive integral numbers, strings, and then **tuples**/**records** made from other equality comparable values. In our encoding we want to ensure that this equality
relation is equivalent to term equality in the SMT solver. In their base representations these types all map to different SMT kinds so cannot be compared directly. Thus, we introduce a uniform representation for Key Types that boxes all of the values into a uniform SMT kind and tags them with the underlying type. As an example consider the SMT encoding for a program that uses the types None, Bool, Int, String, and the tuple/record definitions from above:

```
type KeyValueRepr =
  None @ box
| Bool @ box of Bool
| Int @ box of BV
| String @ box of (Seq BV8)
| Tuple[Int,Bool] @ box of Tuple[Int,Bool]
| Record{f:Int,g:String} @ box of Record{f:Int,g:String}
```

With this representation we can equality compare any KeyType values with the SMT term = semantics making the equality operations trivially decidable in UF! In conjunction with the immutability of the values (Section 3.6) this ensures that BosqueIR code is referentially transparent and functions do not need to use frame rules [34].

3.5 Abstract Types

The BosqueIR language allows for type generalization in a number of contexts – optional fields in records/tuples create types that may contain many different concrete records/tuples, abstract Concept types may be implemented by many concrete Entity types, and the language also allows unrestricted union types. One approach would be to use the closed world assumption and create a datatype for each possible abstract type in a program. In addition to the large number of types created, this can also result in large amounts of data reshaping when assigning between variables of different union types. Consider assigning an Int | Bool typed variable to an Int | Bool | None typed variable or to an Any typed variable. In these cases each assignment would involve extracting the concrete value from the source value and injecting it into the representation for the target value. This results in type checks and switches on each assignment and a quadratic (worst case) number of cases to handle assignments between all possible options.

Instead we use only two representations for all generalized types that appear in the program. One representation, KeyValue, as described above is for any key valued abstract type. Another representation, Value, is for all other abstract values and includes a representation for key types that are combined with non-key types. For each concrete type in the program we define a unary constructor that maps the concrete type into a KeyValue (above) or Value representation:

```
type ValueRepr =
  Foo @ box of TypeTag * Foo
```

```
type Value =
  KeyValue @ cons of TypeTag * KeyValue
| Value @ cons of TypeTag * ValueRepr
```

This encoding eliminates the need extensive for reshaping when assigning between most pairs of abstract types, even in the special case of converting between KeyValue/Value representations is a single op, and does not require any type specific logic on the concrete type. The extraction/injection operations from these representations to concrete values are also simple single ops that, in most cases, can be done without any additional type tag checking.
3.6 Operations

The expression language for BosqeIR is shown in Figure 3. By construction the language maps directly to the SMTLIB expression language in many cases.

Primitive expressions include special constants like true, false, none, literal numeric values like i or f, literal strings s, and variables (either local, global, or argument). The BosqeIR language has the standard assortment of numeric and logical Operators which, thanks to our type encodings, map mostly to the semantics of the operations in UF+IA+BV. The only exceptions are the integral operations which we provide bounds checking on [40] – which are errors when over/under flows occur for Nat/Int values.

The constructor operations in the language are all simple and explicit operations with a type name + full list of values. These all map naturally to the SMT theory of constructors.

There are similar sets of operations for tuples, records, and objects. There is the standard index (e.n where n is a constant), or named property/field accessor (e.f). The language also includes bulk data operations for projecting out (or updating the values in) a set of indicies and creating a new tuple or a set of properties/fields creating a new record. The bulk update version handles the dynamic dispatch (and invariant checking) if the type of e is not unique as well. Finally, there is a tuple append operator (@) which appends two tuples which do not have any optional fields, a record disjoint join operator (_) which creates a new record from the (disjoint) set of properties in the two argument records, and a nominal type field merge using the properties/values from the right-hand side expression.

Due to the construction of the BosqeIR semantics, with referential transparency and no mutation, the encoding of BosqeIR functions closely matches the call to the corresponding SMT implemented function. The only modification is to encode the possibility of an error result in addition to the declared result type, T, of the BosqeIR function. We do this in the expected way by making the return type of every SMT function a ResultT and, at the call site, either propagating the error or continuing on the computation.

For type testing we again leverage the closed world design of the BosqeIR language and enumerate the non-trivial subtype relations and encode them as binary functions. We note that we don’t need to encode many uninteresting subtypes that are statically known to be infeasible, e.g. tuples are never subtypes of record types, or trivially true, e.g. only none is not a subtype of Some.
- `ListStructure`: empty | `ListT[@{e₁, ..., e_j}]` | slice(l, a, b) | `concat2(l₁, l₂)`...
- `ListProperty`: `fill(n, a)` | range(l, h) | havoc | ...
- `ListCompute`: `map_fn(l)` | `filter_p(l)` | ...
- `ListAccess`: `size(l)` | `get(l, n)` | ...
- `ListPred`: `has_p(l)` | `find_p(l)` | `findLast_p(l)` | `count_p(l)` | ...
- `ListIterate`: `reduce_fn(l)` | `reduceOrderd_fn(l)` | ...

![Fig. 4. BosqueIR `List<T>` Operations](image)

There are two asserts in the language. Both of them produce an `error_T` return value for the function. The distinction in these `Assert` operations allows us to separate all possible errors into two groups – the `error_trgt` value for the specific error we are interested in and the `error_other` value for any other error that occurs.

The remaining `Cond/`Switch control flow and `Let` binding operations are self explanatory and map simply to the SMTLIB `ite` and `let` constructs.

Finally, we note that all of these expressions are deterministic and that none of them mutate any state. Interestingly none of these design choices individually seem surprising on their own and individually every one of them can be seen in existing programming languages. However, when taken in their totality they result in a remarkably simple encoding into first order logic in a way that is highly amenable to solution with modern SMT solving techniques!

4 BosqueIR Containers and Encoding

Containers and operations on them play a major role in most programs but, as a design principle, BosqueIR programs do not allow loops and the language is designed to discouraged the extensive use of explicit recursion. Instead the BosqueIR language includes a rich set of container datatypes and functor based operations on them. In practice these operations, and parameterizeable functors, are sufficient to cover the majority of iterative operations [1].

The semantics of these containers and operations inherently involve reasoning over the (symbolic) range of the containers contents. As a result many features of these libraries cannot be handled using the quantifier free encoding techniques described in Section 3. Instead we introduce a novel encoding for the container library code that is entirely in the decidable fragments of logic we previously used along with the QBVF [56] fragment of first-order logic.

4.1 `List<T>` Type and Operations

Figure 4 shows an example of the operations provided for the `List` type\(^2\). The `List` type provides a random access model for an immutable `Nat` indexed set of values. In practice this is often implemented as a contiguous memory array or using RRB-vectors [47]. However, as we see in this section, there are alternative representations that are more useful for formal reasoning.

The semantics of BosqueIR collections use distinct types/implementations for each instantiation of a `List` type and each functor use is statically defunctionalized. This ensures that two lists of different content types have distinct representations and every function call is first order.

The `List` type has a number of basic constructors including the empty constant and a literal constructor `ListT[@{e₁, ..., e_j}]`. In addition there are the expected set of `concat`, `slice`, `fill`, `size`, `get`, etc. operations which have the usual semantics.

\(^2\)The BosqueIR language provides a rich set of collections including `Set` and `Map` types but, as the principles we use for `List` types extend in the expected manner, we focus on `List<T>` in this section.
We also provide a special \textit{havoc} constructor. This constructor takes an opaque context token and returns a list with a symbolic length and contents that when accessed are havoc values themselves. This constructor (and similar constructors for other types) are the only form of non-determinism allowed in BosqueIR programs. The following code illustrates the use of a havoc:

```plaintext
function main (): Bool {
    let l = List\text{Int}::havoc(0) in
    if (empty(l)) then false
    else get(l, 0) == 0
}
```

In this sample the \textit{havoc} constructor can create a length 0 list and take the first branch (to return false) or a list with at least one element. The get operation causes a call to the havoc constructor for Int which can return 0, and the function will be true, or an arbitrary nonzero number to make the result false.

To motivate this section we use the following running example that illustrates the challenges and subtleties of efficiently reasoning over the BosqueIR collection libraries:

```plaintext
function main (c: Int , args : List\text{Int}): Bool {
    let la = List\text{Int}@{1, 2, 3} in
    let lb = List\text{Int}::fill(c, 0) in
    let lc = List\text{Int}::concat(la, args, lb) in
    let ld = lc.map|\text{x}|| in
    let le = ld.filter<10|| in
    le.someOf\text{-}a()
}
```

In this code sample several lists are constructed using both constant and symbolic values, via the function arguments \text{c} and \text{args}, processed with the functors \text{map} and \text{filter}, finally we perform a logical computation on the resulting list. The first line constructs a constant list with 3 elements while the second line constructs a list of \text{c} elements all of which are set to 0. The next line builds a list, \text{lc}, that is the concatenation of these two lists with the symbolic input list \text{args}. Next we construct the list \text{ld} by applying the function \text{abs}(\text{x}) to every element in the list \text{lc}. The call to \text{filter} then creates a sublist of elements from \text{ld} that satisfy the predicate \text{x} < 10. In the test operations we do a test to see if there exists any element in the \text{le} list, via the \text{someOf} functor, that satisfies the predicate \text{x} = 0.

The emphasis on including a rich set of functor operations as part of the code BosqueIR language makes it possible to write large portions of an application without resorting to explicit iterative or recursive code and then dealing with the challenges of loop or inductive invariant generation. Thus, we can optimize the BSQCHK reasoning for handling operations on this known set of functors and use a more general technique as a fallback for explicitly recursive code (Section 5). However, we still face the challenge that operations inherently involve reasoning over the (symbolic) ranges of the container contents.

To address the challenge of quantified semantics in the container and operator specifications we note that the operations of interest can actually be divided into three categories. The first is operations that can be handled via encoding with quantifier free algebraic data-types as shown in Section 4.2. The next is a set of functors that, fundamentally, require quantified logic in their ground terms as described in Section 4.3. Finally, we introduce a special lemma for handling sublist selection based operations in Section 4.4. The combination of these techniques gives us an optimized encoding for, the majority of, our container library code in decidable fragments of logic.
4.2 Theory of Constructors

The direct way to model the core container types in the BOSQUEIR language would be to define a SMT constructor using a size component and a contents array. While conceptually simple, this approach has the problems of bringing another theory, arrays, into the logic and also results in many operations, such as append, requiring quantification over the result array contents. Instead we use the fact that BOSQUEIR equality is limited to primitive values – i.e. containers cannot be compared for equality and thus we do not need to preserve structural equality in the encoding.

With this observation we can take the view that, instead of one list constructor kind \(List = BV * Array \), there are actually many constructors and we can encode the \(List \) type\(^3\) using the following algebraic structure:

```plaintext
type List =
    empty
| const3 of BV * BV * BV
| fill of BV * BV
| concat2 of List * List
| concat3 of List * List * List
| map[x] of List
| filter x < 10 of List
| havoc of \( \sigma \)
```

This algebraic structure is generated per-program based on the uses of each container type. With this encoding many collection operations reduce to simple quantifier free formula. Additional simplification logic in the operator definitions minimizes the nesting depth of the constructor trees as illustrated in the SMT implementations for the \(\text{concat2} \) and \(\text{map}[x] \) functors:

```plaintext
fun op_concat2 ((l1 List) (l2 List)) List =
    if (l1 = empty ∧ l2 = empty)
        empty
    elif (l1 = empty)
        l2
    elif (l2 = empty)
        l1
    else
        concat2(l1, l2)

recfun op_map[x] ((l List)) List =
    if (l = empty)
        empty
    elif (l = const3(a, b, c))
        const3([a], [b], [c])
    elif (l = fill(c, v))
        fill(c, [v])
    elif (l = concat2(ll, lr))
        op_concat2(op_map[x](ll), op_map[x](lr))
    ... else
        map[x](l)
```

These examples show how the solver can perform substantial algebraic simplification to, in many cases, entirely eliminate the need to expand and reason about the more complex constructor operations. In the case of \(\text{op_map}[x] \) when the argument list size is zero we trivially drop the function application and just return the \(\text{empty} \) list. More interestingly are the cases of \(\text{fill} \) where we can expand and then reconstruct the fill with the map function applied to the single fill argument and \(\text{concat2} \) where, similarly, we can expand the argument and apply the operation down to the two

\(^3\)For brevity we assume lists are of type \(\text{Int} \) when not otherwise specified.
sublists. In our motivating example these simplifications, and similar simplifications in \texttt{filter}, allow us to finitize a large part of the \texttt{List} processing and show that \texttt{ld} is equivalent to:

```plaintext
concat3(
    const(1, 2, 3),
    map_{|x|}(havoc(|n|)),
    fill(c, 0)
)
```

Similarly, accessor operations can be reduced to use algebraic traversals of the constructor trees in many cases. In our example the \texttt{someOf} operation would be implemented as follows:

```plaintext
recfun someof_{\omega}(\text{List}) =
  if (\text{List} = \text{empty})
    false
  elif (\text{List} = \text{const}(a, b, c))
    a = 0 \lor b = 0 \lor c = 0
  elif (\text{List} = \text{fill}(c, v))
    v = 0 \land c \neq 0
  elif (\text{List} = \text{concat}(l1, l2))
    someof_{\omega}(l1) \lor someof_{\omega}(l2)
  else
    // havoc constructor
    \exists n, n < l1.size() \land l1.get(n) = 0
```

As shown in this example there are many cases where we can finitize the access formula but in some cases, like the \texttt{map}_{|x|}(ll) or the havoc branches, we cannot fully eliminate the use of quantified expressions.

4.3 Simply Quantified Formula

Common approaches to handling quantified formula in SMT solvers often involve the use of instantiation triggers or other heuristics. Unfortunately, these approaches suffer from poor performance and solver instability \cite{33}. Further, they fundamentally introduce incompleteness into the engine and prevent the construction of models. As model generation is one of our key objectives we want to have a decision procedure for these formula.

As described in Section 3 the \textsc{BosqueIR} language specifies the \texttt{Nat} type as a fixed width integer and is represented using the theory of fixed-width bitvectors. With this choice of integer encoding, and our fixed set of quantification forms, we can ensure that all quantified variables are scoped to just bitvector values which puts the formula in the theory of quantified bitvector formula (QBVF). If we look at the \texttt{map} formula from the \texttt{someOf} implementation we see it has the following structure:

```plaintext
\exists n, n < ll.size() \land ll.get(n) = 0
```

As the \texttt{n} in this formula is the only quantified variable and it is a bitvector, it is clear this formula is in the QBVF fragment. As such it is both decidable and there exist efficient techniques exist for solving these problems in practice \cite{42, 56}.

4.4 ISequence Lemma

The combination of algebraic datatypes and simple quantifiers is sufficient to encode many container operations in the \textsc{BosqueIR} standard library. However, subset based computations like \texttt{filter} are still problematic. These computations have four properties that define their semantics. For a \texttt{List}_{\text{Int}} \texttt{l}, a predicate \texttt{p}, and the output list \texttt{lp}:

1. \(x \in l \land p(x) \Rightarrow x \in lp \)
(2) $x \in lp \Rightarrow p(x) \land x \in l$
(3) The multiplicity of $x \in lp$ and $x \in l$ are equal
(4) The order of elements in lp matches l

The first 2 conditions can be easily specified using simple quantifiers but the multiplicity and ordering properties are more complex. Instead we present an auxiliary datastructure, an $ISequence$ which is a integer indexed sequence of bitvector values and an uninterpreted function $iseq_p$. We can also use the $iseq$ function to compute the result of the $countIf$ function and, as the underlying function uses are identical to constructing the $ISequence$ for filter it is trivial to show that $l.filter(p).size() = l.countIf(p)$. We use a similar form of auxiliary operations to implement sorting, uniqueness, and join constructs.

Returning to our running example, the definition of le would be equivalent to the formula:

$$concat3(\text{\texttt{const}}(1, 2, 3),\text{\texttt{filter}}\langle l0\rangle(\text{\texttt{map}}(\text{\texttt{havoc}}(\sigma)), \text{\texttt{iseq}}\langle l0\rangle(\text{\texttt{map}}(\text{\texttt{havoc}}(\sigma)))), \text{\texttt{fill}}(c, 0))$$

Now suppose we want to try and prove that our running example function always returns true – that is le $someOf_{=}()$ is false is unsatisfiable. If we try to check this formula we will find that the proof fails, but since the formula is decidable, we can instead ask the solver to produce a model that satisfies the formula when the function returns false – that is le $someOf_{=}()$ is false is satisfiable.

Applying the algebraic rules for $someOf$ simplifies this to the checks that each of the three sublists is false. The first sublist is always false as it is constant and does not contain 0. The args sublist can easily be made false for $someOf$ check by setting it to be the empty list. Finally, we can make the fill list false for the predicate by setting the input parameter c to 0 as well. If we update the code to, say assign $lb = ListInt :: fill(c + 1, 0)$, then the proposition that the method returning false is unsatisfiable will reduce to the \lor of the results on the three sublists and now the fill option will always be true and the proof will succeed.

5 COVER SET METHOD FOR INDUCTIVE REASONING

In the previous section we built a specialized encoding for the most common container operations in $BOSQUEIR$ programs. However, there are some functors that we cannot handle fully even with quantified templates. Additionally, we want to imbue the BSQCHK system with a powerful and robust methodology for proving the safety of programs which use general recursion. Remarkably there exists such a method, the cover set method (Section 5.1) for mechanizing induction [58]. This technique is powerful enough to support our needs wrt. the remaining reduce style container functors and also generalizes to handle a wide range of inductive proofs. In addition to the generality
of the cover set method it also has the desirable property that it does not require an costly iterative unrolling-and-check algorithm \[45, 53\] and instead only performs a single guarded clause expansion.

5.1 Cover Set Background

The cover set method for mechanizing induction was introduced in 1988 \[58\] in an equational programming language framework in the paradigm of term rewriting approach for automating inductive reasoning. Function definitions in that framework are given in ML style in a recursive fashion, for different cases for constructing a data type on which the function is defined. As a simple illustration, the data type Natural is defined by a constant 0 and a successor function \(s\) with the implicit property that \(0 \neq s(x)\) and \(s\) is free to imply that \(s(x) = s(x) \implies x = y\). A binary function + is recursively defined as:

\[
x + 0 = x
\]
\[
x + s(y) = s(x + y)
\]

The cover set method computes induction schema from recursively defined terminating function definitions. The key idea is to use the well-founded ordering used to establish a proof of termination of the function definition to (i) select variables(s) in a function call to perform induction and (ii) generation of induction hypotheses for instantiation of induction variables from recursive calls of the function in its body, which are guaranteed to be lower in the well-founded order. The variable(s) on which a function definition recurses is selected for generating induction scheme and hence performing induction.

The above definition of + is terminating over natural numbers. Since the definition is recursing on the second argument, the induction variable to be chosen is the second argument \(y\) of +. In the first case when \(y = 0\), there is no recursive call to + in the right side; this corresponds to the basis step of an induction proof in which the second argument is instantiated to be 0. In the second case when the second argument is not equal to 0 and equal to \(s(y)\) for some \(y\), there is a recursive call to + with \(y\) as its second argument, so the induction hypothesis is generated by instantiating the second argument to be \(y\) and the conclusion goal is generated by instantiating the second argument to be \(s(y)\). The reader would notice that this induction scheme is precisely the principle of mathematical induction on natural numbers.

The cover set method formalizes this approach to automating proofs by induction, addressing three important aspects in inductive proofs: (i) choice of well-founded ordering and (ii) variables to perform induction on, and (iii) the induction hypothesis (hypotheses) to be generated. It consists of a finite set of tuples corresponding to each case in the function definition; the first component in the tuple is the condition on the input under which the function computes the result, and the second component is a finite set of instantiations of the input for generating different induction hypothesis for each recursive call; if there is no recursive call, then no instantiation for any induction hypothesis is generated and is thus left as the empty set; if there are multiple recursive calls, then there are multiple instantiations.

5.2 Revisiting Add

To show the details of the coverset construction and proof we revisit the definition of add from Section 2.4 (defined using infix notation for simplicity).

```plaintext
function +(x: Peano, y: Peano): Peano {
    switch(y) {
        case Zero => x
        case Succ@z => Succ@(x + z)
    }
}
```
Assuming the definition is terminating and is complete, a cover set is generated from the function definition as follows: For each case of the switch statement, there is a tuple consisting of a boolean condition for which the case expression applies; this boolean condition is the conjunction of the boolean condition for the case and the negation of the conjunction of the conditions of all the cases before it. The second component of the tuple is a finite (possibly empty) set of substitutions serving as instantiations for generating induction hypotheses. From add, the cover set includes two tuples:

\[
\{ < y = 0, \{ \} >, < y = s(w) \land \neg(y = 0), \{ w \} > \}.
\]

To prove of the associativity of:

\[x + (y + z) = (x + y) + z \]

Observe the variables \(y \) and \(z \) appear as second arguments in subterms with \(+\); however, only \(z \) appears as the second argument on both sides, so it is heuristically preferred.

The first tuple of the cover set for \(+\) generates the subgoal:

\[z = 0 \Rightarrow x + (y + z) = (x + y) + z, \]

since there is no induction hypothesis. The second tuple generates the subgoal:

\[((z = s(w) \land (z \neq 0)) \land (x + (y + w) = (x + y) + w)) \Rightarrow x + (y + z) = (x + y) + z. \]

5.3 Recursively defined Functors on Containers

When proving inductive facts we switch from the constructor based definitions in Section 4 and instead use inductive definitions for every container operation. This simplifies the inductive reasoning that is required and can be trivially done as an equality assertion of the two definitions at the same time we are introducing the other cover set conjectures.

We illustrate below some examples on containers using functors such as map and reduce with inductive definitions. Consider a data type \(\text{list} \) generated using constructors \(\text{nil} \) and \(\text{cons} \). Define a binary function append on lists, a unary function rev and a unary function length with the usual semantics:

```haskell
function append(l1: IntList, l2: IntList): IntList {
    switch(l1) {
        case empty => l2,
        case cons@(h1, tl1) => cons(h1, append(tl1, l2))
    }
}

function length(l: IntList): Nat {
    switch(l) {
        case empty => 0,
        case cons@(h, tl) => length(tl) + 1
    }
}

function rev(l: IntList): IntList {
    switch(l) {
        case empty => l,
        case cons@(h, tl) => append(rev(tl), cons(h, nil))
    }
}

function reduce(l: IntList, op: fn(_: Int, _: Int) -> Int, id: Int): Int {
    switch(l) {
        case empty => id
    }
}
```

The above definitions are terminating and the associated coverset for append is: \(\{(l1 = \text{empty}, \{\}), (l1 \neq \text{empty} \land l1 = \text{cons}(h1, tl1)), \{tl1\}\} \).
Comprehensive Reachability Refutation and Witnesses Generation via Language and Tooling Co-Design

With `sum` recursively defined:

```scala
function sum(l: IntList): Int {
  switch(l) {
    case empty => 0
    case cons(h, tl) => h + sum(tl)
  }
}
```

Using the coverset method we can show that `reduce(l, fn(x, y) => x + y, 0) = sum(l)`.

The first subgoal, after substituting `l` by `empty`, is `reduce(empty, +, 0) = sum(empty)`, which simplifies by the definitions of `sum` and `reduce` to `0 = 0` which is valid.

The induction hypothesis generated from the coverset is `l != empty ∧ l = cons(h, tl) ∧ reduce(tl, +, 0) = sum(tl)`; the conclusion of the second subgoal, after substituting `cons(h, tl)` for `l`, is `reduce(cons(h, tl), +, 0) = sum(cons(h, tl))` which simplifies by the definitions of `reduce` and `sum` to `h + reduce(tl, +, 0) = h + sum(tl)`; with the use of the induction hypothesis `reduce(tl, +, 0) = sum(tl)`, the subgoal is proved.

5.4 Integration into Z3

A direct proof in Z3 can be obtained by computing instantiations of the universal variables in the definitions of `sum` and `reduce` above. The coverset can be used to find instantiations of the universal variables: in the first subgoal, terms (reduce l + 0) and (sum l) each simplify under the condition (= l empty) to 0 and 0, respectively. Similarly, in the second subgoal, (reduce tl + 0) and (sum tl) also simplify under the condition (and (not (= l empty)) (= l (cons h tl))) by instantiating the second cases of the definitions of `reduce` and `sum` to (+ h (reduce tl + 0)) and (+ (sum tl)) respectively, on which the induction hypothesis from the cover set applies. This is one major advantage of the cover set method that often appropriate instantiations can be generated from the cover set itself.

An indirect proof can be obtained by proving the unsatisfiability of the negated conjunction of the two subgoals generated using the coverset, with the definitions of `sum` and `reduce`.

5.5 Extensions

In a given conjecture, many function symbols may occur and, additionally, the same function symbol may occur with different sets of arguments. Each of these function symbols has an associated cover set from which an induction scheme can be generated. Then each of these induction schemes could be a candidate for attempting a proof by induction of the conjecture.

Given that SMT solvers are very efficient in handling very large formulas, it is feasible to simultaneously generate alternative subgoals generated from different induction schemes with the objective of trying them all with the hope that at least one would succeed.
5.6 Model Generation

The cover set method can also be used to generate a counter-example (model) from a false conjecture. In a proof attempt, one of the subgoals is likely not to succeed. If its variables are instantiated in a systematic way, a counter-example can be generated.

Consider a false conjecture, that \(\text{length}(\text{filter}(l, p)) = \text{length}(l) \), about a functor filter defined as:

```java
function filter(l: IntList, p: pred(_: Int) -> Bool): IntList {
    switch(l) {
        case empty => empty
        case cons(h, tl) => if(p(h)) then cons(h, filter(tl, p)) else filter(tl, p)
    }
}
```

Choosing the coverset defined by filter, there are three subgoals generated. The first is \(l = \text{empty} \Rightarrow \text{length}(\text{filter}(l, p)) = \text{length}(l) \) which can be easily proved by substituting empty for \(l \) and then using the definitions of length and filter.

The second (failing) subgoal is:

\[
(l \neq \text{empty} \land l = \text{cons}(h, tl) \land \neg(p(h)) \Rightarrow \text{length}(\text{filter}(tl, p)) = \text{length}(tl)) \Rightarrow \text{length}(\text{filter}(l, p)) = \text{length}(l).
\]

Substituting for \(\text{cons}(h, tl) \) for \(l \) in the conclusion of the subgoal and simplifying using the definitions of filter and length gives: \(\text{length}(\text{filter}(tl, p)) = \text{length}(tl) + 1 \) which after using the induction hypothesis gives \(\text{length}(tl) = \text{length}(tl) + 1 \) which is a contradiction.

A counter-example is generated in which \(l = \text{cons}(h, tl), tl = \text{empty} \) and \(h \) is such that \(p(h) = \text{false} \).

6 RELATED WORK

The approach to programming language design and checking presented in this paper represents a novel way to view and build on many longstanding research areas. From the language design standpoint we started from a blank slate and, for every design choice, asked how each feature impacted the analysis problem. From the tooling perspective we looked to the strengths and limitations of existing symbolic analysis, testing, and verification methodologies, and then, looked at how the new language semantics would allow us to build on these strengths and eliminate various weaknesses.

6.1 Language Design:

The goal of the BosqueIR language design was to enable the construction of powerful and practical analysis and developer tools. The approach taken was to identify language features that introduce difficult to reason about constructs and eliminate them.

Loops and Recursion: Loops are a foundational control flow construct in the Structured Programming paradigm [10, 15, 21]. However, precisely reasoning about them requires the construction of loop invariants. Despite substantial work on the topic [18, 32, 50, 51] the problem of automatically generating precise loop invariants remains an open problem. Instead, inspired by the empirical results in [1] which show most loops are actually just encoding a small set of common idioms, we entirely exclude loops from the BosqueIR language in favor of a comprehensive set of functors. Explicit recursion is still allowed, although discouraged, as a fall-back for algorithms where it is fundamentally needed or cannot be expressed with the standard set of functors. Thus, we still need to deal with the problem of verification conditions for the functors and inductive proofs for recursive calls but, as shown in Section 4 and Section 5 with clever encoding strategies, these problems are tractable.
Identity and Equality: Equality is a complicated concept in programming \([43]\). Despite this complexity it has been under-explored in the research literature and is often defined based on historical precedent and convenience. This can result in multiple flavors of equality living in a language that may (or may not) vary in behavior and results in a range of subtle bugs \([22]\) that surface in surprising ways.

The notion of identity based on memory allocation values also introduces the need to track this property explicitly in the language semantics – introducing the need for alias analysis and a strong distinction between pass-by-value and pass-by-ref semantics. This is another problem that has been studied extensively over the years \([19, 20, 28, 36, 37, 52]\) and remains an open and challenging problem. As with loops, our approach is to eliminate these challenges and complexities by eliminating the use of referential identity and restricting equality to a fixed set of data types where equality is simply term equality.

Mutability: Mutability is known to be a challenge when reasoning about code. It introduces a host of problems including the need to perform strong updates (i.e. retracting previously asserted facts) and computing frames \([48]\). There are a number of useful techniques, including various ownership type systems \([7, 8]\), or linear type systems \([17, 54, 55]\), for managing or isolating these issues which may be valuable to incorporate into the BosqueIR language in the future.

Determinism: Indeterminate behaviors, including undefined, under specified, or non-deterministic behavior, require a programmer or analysis tool to reason about and account for all possible outcomes. While truly undefined behavior, e.g. uninitialized variables, has disappeared from most languages, there is a large class of underspecified behavior, e.g. sort stability, map/dictionary enumeration order, etc., that remains. The inclusion of non-deterministic operations also results in code that cannot be reliably tested (flakey tests), where failing witness inputs may sometimes not fail, and as each non-deterministic choice point introduces a case split for reasoning, can greatly increase the cost of analyzing a codebase. These increase the complexity of the development process and, as time goes on, are slowly being seen as liabilities that should be removed \([6]\) so for the BosqueIR we have taken this to the logical conclusion and fully specify the behavioral semantics of every language operation.

6.2 Program Analysis

Given the rich literature on program analysis our focus in this section is how the language features, logic encodings, and features of the BSQCHK compare with other approaches.

Symbolic Verification: The BSQCHK checker is explicitly designed with full verification of correctness as a non-goal. The confidence boosting hierarchy in Section 1 specifically includes outcomes that are not verified and the workflow in Figure 2 does not have a path for manually adding lemmas or other manual proof steps. The use of powerful proof systems with extractable code \([12]\), languages with proof assistants like \([31]\), or dependently typed languages \([14, 46]\) show that it is practical to produce fully verified software in some domains today. However, using these languages/techniques require substantial manual effort and expertise including knowledge of the underlying theorem provers behavior, and the ability to formally model the desired behavior of the software. This places the use of these systems beyond the what is practical or cost effective for most applications. Work on Liquid Types \([49]\) and the Ivy language \([35]\) represent interesting approaches to verification by enforcing that the logic used in the types/code remains in decidable fragments of logic. This reduces the expertise and manual work required but does not eliminate it entirely and restricts the languages to problems which can be expressed entirely in the supported logical fragments.
In contrast the BSQCHK checker does not require a separate proof language or the manual insertion of lemmas, and supports arbitrary code in the BosqueIR language. However, an interesting question is how the proofs produced by full verification techniques can be ingested into the BSQCHK logical representation to enable fully-verified foreign function integration (FFI).

Cover Set Method and Term Rewriting: The cover set method \[58\] is motivated by the success in the use of the induction scheme supported in ACL2 \[26\] based on proving termination of lisp functions in which induction hypotheses are computed from recursive calls in their definition. The cover set method generalizes that idea from lists to arbitrary data types generated by a finite set of constructors in an equational programming language framework; further it also allows the use of sophisticated syntactic termination orderings. The cover set method as adapted to BosqueIR however functions more similarly to the induction scheme generation in ACL2 due to the nonequational structure of the programming language. The Imandra system \[45\] is a novel design that combines SMT reasoning with ACL2 style proving to support industrial uses.

Abstract Interpretation: Abstract interpretation and related dataflow analyses \[41\] are at the other end of the spectrum from full symbolic verification. This framework for proving properties of programs is very different since it is based on approximating the behavior a concrete program by that of an abstract program working on an abstract domain with the requirement, any property of the abstract program is indeed a property of the concrete program. This framework relies heavily on identifying a suitable abstract domain, implementing the approximation of the concrete operations on the abstract domain, and most importantly, defining a widening operator on the abstract domain for approximating the looping structure in finitely many steps leading to a fixed point. The analysis is done using forward collecting semantics. The choice of abstract domain and the associated widen operator are critical in the ability to prove useful properties of concrete properties of programs.

These analyses generally trade, large amounts of, precision for scalability. Although some analyses have been successfully used for verification, such as \[38\], they generally produce many false positives and care must be used in when/where these analyses are deployed \[13\]. Our current experience with the BSQCHK prover is that it can spend considerable time checking assertions that could easily be discharged by a more efficient data flow \[29\] or numeric analysis \[30\].

Symbolic Execution and Fuzzing: While verification and abstract interpretation are generally focused on over approximation to show that certain program states are infeasible, symbolic execution \[2, 4, 9, 23, 27\] and concrete fuzzing (white, grey, or black box) \[16, 57\] focus on exploring possible executions looking for error states. As discussed in Section 2, as long as the error of interest has a small scope property then these techniques are quite effective. However, in cases where the error requires a large number of path expansions, where the input must be large, or where there complex constraints on the input that block accessibility to the error, these techniques become substantially less effective. Since the full encoding in the BosqueIR tool can see both forward constraints from the input validation and backwards constraints from the error context it does not suffer from the same limitations and can easily find witness inputs even when the small context hypothesis does not hold.

Incorrectness Logic and Under Approximate Analysis: Incorrectness Logic \[44\] and other under approximate approaches \[5\], that cannot prove the absence of an error but instead can prove the presence of a fault, represent an interesting and recent development in the design space of program analysis. These systems look to fuse the power of symbolic representations to capture many concrete states while under (rather than over) approximating reachability. The goal is to build tools that provide a "no false positives" guarantee while still finding as many bugs as practical. A
property that the BSQChk also has as part of the workflow that maximizes actionable information for the developer.

Interestingly, one of the motivations for introducing Incorrectness Logic is that (p. 4) “...the exact reasoning of the middle line of the diagram [strongest post semantics] is definable mathematically but not computable (unless highly incomputable formulae are used to describe the post).” However, as shown in this paper, this middle line of exact and decidable semantics is practical to compute in most cases when the language semantics are designed appropriately. Further, by encoding the exact semantics in a decidable fragment of logic, the BosqeIR language and BSQChk checker provide the best of both the verification and fault detection worlds (it satisfies both correctness and incorrectness logics).

7 CONCLUSION

This paper presented an approach to programming language design that was centered around the co-design of the language and an encoding into decidable fragments of logic that are efficiently dischargeable using modern SMT solvers. The resulting language, BosqeIR, and the BSQChk automated checking tool show that this is an effective technique. The encoding is both semantically precise and complete for most of the language (and has effective heuristics for the incomplete fragments). This enables the BSQChk checker to provide actionable results to a developer for built-in errors as well as user specified asserts, data invariants, or pre/post conditions.

We are actively working with collaborators at Morgan Stanley to apply this methodology to the example code and regulatory examples that are currently implemented in the Morphir framework [39]. Our initial experience has been very positive with some small bugs, such as in our introductory example, found and the tool showing excellent performance in practice. Our big challenge at this point is the lack of explicit assertions in most of the code which limits us to checking for predefined error classes such as invalid casts of arithmetic overflow. We plan to investigate how to make including assertions simpler for developers and running the checker on larger quantities of code.

The ability to effectively reason about the precise behavior of an application creates opportunities for not only a powerful suite of checker tools but also for program synthesizers, code optimization tools and accelerator architecture support, and application lifecycle management systems. As a result we hope this new approach to thinking about programming and programming languages will lead to massively improved developer productivity, increased software quality, and enable a new golden age of developments in compilers and developer toolsing.

ACKNOWLEDGMENTS

Thanks to Stephen Goldbaum and Attila Mihaly for their insights into the Morgan Stanley Morphir Framework and their input on earlier iterations of the BosqeIR language.
REFERENCES

