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Abstract
Computational methodologies have shown promise in advanc-
ing diagnostic and intervention research in the domain of Autism
Spectrum Disorder (ASD). Prior works have investigated speech
features to assess disorder severity and also to differentiate be-
tween children with and without an ASD diagnosis. In this
work, we explore short term dynamic functionals of speech
features both within and across speakers to understand if local
changes in speech provide information toward phenotyping of
ASD. We compare the contributions of static and dynamic func-
tionals representing conversational speech toward the clinical
diagnosis state. Our results show that predictions obtained from
a combination of dynamic and static functionals have compa-
rable or superior performance to the predictions obtained from
just static speech functionals. We also analyze the relationship
between speech production and ASD diagnosis through correla-
tion analyses between speech functionals and manually-derived
behavioral codes related to autism severity. The experimental
results support the notion that dynamic speech functionals cap-
ture complementary information which can facilitate enriched
analysis of clinically-meaningful behavioral inference tasks.
Index Terms: dynamic functionals, diagnosis, developmental
disorder

1. Introduction
ASD refers to a range of neuro-developmental disorders char-
acterized by an early onset of significant social-communicative
challenges along with restrictive, repetitive behaviors and inter-
ests. Recent studies report continual increase in prevalence of
ASD in children from 1 in 59 children in 2014 to 1 in 54 chil-
dren in 20201. ASD diagnosis is a complex, challenging and
time-consuming process as it relies on behavior symptoms in
the absence of any reliable biological markers or medical tests.

While there are ongoing efforts to better understand the
association between genetic and neuro-biological factors and
ASD, a significant amount of research has been invested in
building computational tools for domain experts and creating
objective measures for early diagnostics, intervention planning
and assessment. In particular, different physiological and be-
havioral signal-based features are being extensively studied to
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identify features that capture behavioral traits relevant to exist-
ing diagnostic instruments (ADOS [1], ADI-R [2]) in order to
support behavioral phenotyping and stratification in the context
of diagnosis and subsequent intervention.

Previous studies [3, 4] have explored computational ap-
proaches for validating behavioral markers and inferring ASD
diagnosis predictions using observable behavioral information
obtained from conversations involving children and interlocu-
tors. For instance, Bone et al. [5] analyzed the association
between objective signal-derived prosodic cues and subjec-
tive perceptions of prosodic awkwardness in settings of story
retelling from adolescents with an ASD diagnosis; [6] studied
lexical features to characterize the verbal behavior of children
with ASD and non-ASD developmental disorders. However,
since most of the literature relies on individual features com-
puted for each speaker individually based on short-term vocal
and lexical cues, they may not capture the full extent of two
interlocutors’ coordination and reciprocity, which is important
when characterizing ASD.

Behavioral patterns in interactions are inherently dynamic
in nature, and features derived from local changes reflect this
behavior better when compared to those derived from global
changes. In recent years, multiple works have proposed the
use of various forms of conversational speech dynamics as fea-
tures for downstream inference tasks. For example, emotion
recognition has benefited from the use of temporal dynamics
in form of autoregressive methods and spectral moments [7],
hidden Markov models [8], nonlinear dynamics [9], and more
recently recurrent neural networks [10, 11]. Curhan et al. [12]
showed that measures of vocal activity level, conversational en-
gagement, prosodic emphasis, and mirroring can help predict-
ing negotiation trends. Deception detection [13] from vocal
cues have been recently shown to improve by capturing the con-
versational dynamics [14, 15]. In the clinical domain, the dy-
namics captured by spectral energy variability have been shown
to an indicator of depression [16, 17]. [18] has reported superior
performance in couples therapy outcome prediction using dy-
namic functionals. Warlaumont et al. [19] has found measures
of conversational dynamics, both at short and long timescales,
can vary in between population with and without ASD diagno-
sis. Vocal arousal dynamics in child-psychologist interaction
was shown to distinguish between high and low ASD severity
[20]. In this work, this motivates us to capture dynamics based
on the aggregated turns of each interlocutor to encode important



Table 1: Demographic details of ADOS dataset

Category Statistics
Age(years) Range: 3.58-13.17 (mean, std): (8.61, 2.49)

Gender 123 male, 42 female
Non-verbal IQ Range: 47-141 (mean, std): (96.01, 18.79)

Clinical
Diagnosis

86 ASD
42 ADHD (Attention Deficit Hyperactivity Disorder)

14 mood/anxiety disorder
12 language disorder

10 intellectual disability, 1 no diagnosis

conversational and behavioral patterns of speech. More specif-
ically, we aim to understand the contribution of dynamic func-
tionals in characterizing behavioral patterns of children with an
ASD diagnosis.

We analyze the vocal speech patterns of children – both
those with and without an ASD diagnosis – engaged in inter-
action with clinicians. We present a correlation analysis to in-
terpret the relationship between the extracted features and man-
ually coded clinical ratings related to ASD diagnosis. We for-
mulate the prediction task as a binary classification problem
of differentiating between children with an ASD diagnosis and
those who do not. We compare the predictions using the fea-
tures derived from the static and dynamic functionals to better
understand the benefit of explicitly using dynamic functionals
for predicting the diagnosis state.

2. Conversational Data
The Autism Diagnostic Observation Schedule (ADOS)-2 [21]
instrument refers to a sequence of semi-structured activities be-
tween a child and a clinician to assess behavioral patterns as-
sociated with ASD. A typical ADOS-2 interaction session lasts
40-60 minutes, where a child is engaged in multiple subtasks to
evoke maximum response.

In this work, we choose to focus on the Emotions and Social
difficulties & annoyance subtasks from the Module 3 adminis-
tration, designed for verbally fluent children. In the Emotions
subtask, the child is asked questions related to the identification
of situations and activities that elicit different emotions. During
the Social difficulties & annoyance subtask, the child is asked
to describe his/her opinion on different social issues in differ-
ent circumstances (at home or school) and about their coping
strategies.

For this work, we carry out data standardization for each
speaker in each session after aligning the speaker’s turn us-
ing manually derived transcripts (following SALT transcription
guidelines [22]). We exclude sessions having fewer than 25
turns so as to enable reliable computation of 3rd and 4th or-

der dynamic functionals. After preprocessing, our final dataset
contains a total of 281 sessions from 165 children (144 ASD,
137 non-ASD). Almost every child contributed 2 interaction
sessions, corresponding to the 2 subtasks mentioned above.

3. Experimental Methodology
We conduct two sets of experiments, (i) correlation based anal-
yses between the extracted static and dynamic functionals and
ranked measures of the child’s ASD severity termed as Cali-
brated Severity Score (CSS) [21], and (ii) binary classification
between children with and without ASD diagnosis based on dif-
ferent sets of static and dynamic functionals. The former is un-
dertaken to understand the relationship between the extracted
functionals and the clinically-meaningful CSS, while the latter
is used to understand the additional predictive power that the
dynamic functionals present over the static functionals.

3.1. Acoustic-Prosodic and Turn-Taking Feature Analysis

All the speech features are extracted using openSMILE [23].
We consider features relating to acoustics, prosody, and voice
quality. All 15 dimensions of Mel Frequency Cepstral Coeffi-
cients (MFCC) and the 8 dimensions of Mel Frequency Band
(MFB) features are included in the spectral set. Loudness, pitch
envelope and their first order differences are considered as the
prosodic set, while voicing probability, local jitter, the differ-
ential frame-to-frame jitter, local shimmer, and the first order
difference of each of these features made up the voice-quality
set. All these features are computed for every 10ms interval of
the audio file.

After extracting the raw features, we calculate five static
functionals (mean, standard deviation, median, mininum, and
maximum) across each session in the dataset. For the static
functionals, we only consider the child’s turns. To calculate dy-
namic functionals, we first average the frames of each relevant
turn, and take the first, second, third, and fourth order differ-
ences within turn-pairs as our dynamic functionals as shown in
Figure 1. We define turn-pairs as consisting of consecutive turns
either between the same speaker or across different speakers.

3.2. Correlation Analysis

The correlational analysis is set up to estimate the associa-
tion between the functionals (static and dynamic) and manually
coded behavioral ratings (CSS) related to ASD diagnosis. CSS
is a metric quantifying ASD severity with relative independence
from individual characteristics such as age and verbal IQ on a
10 point scale. Because of the ranked nature of CSS, we chose
Spearman’s rho [24] for this analysis over Pearson’s correlation
coefficient. The correlation metrics serve as a knowledge-driven

Table 2: Top 5 features based on absolute correlation values for static functionals of different feature categories with CSS (the indices
for MFCCs and MFBs are shown in parentheses)

Prosodic Features Voice Quality Features Acoustic Features
feature func corr feature func corr feature func corr

Pitch Envelope Max. -0.1875 Voicing Min. 0.3053 MFCC(2) Min. 0.1852
Pitch Envelope Mean -0.1561 Voicing Diff Min. 0.1350 MFCC(0) Max. -0.1832

Pitch Diff Mean 0.1467 Dynamic Jitter Diff Median -.1287 MFB(7) Min. -0.1694
Pitch Envelope Min. 0.1308 Jitter Median 0.1263 MFB(4) Max. -0.1620

Loudness Mean 0.1260 Voicing Diff Max. 0.1175 MFCC(6) Min. -0.1603
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Figure 1: Static and dynamic functionals

Table 3: Top 5 features based on absolute correlation values for dynamic functionals of different feature categories with CSS (the
indices for MFCCs and MFBs are shown in parentheses)

Child - Child Psych - Psych Child - Psych
order feature func corr order feature func corr order feature func corr

1 MFCC(6) Max. 0.1999 1 Loudness Std. Dev. -0.3190 2 Loudness Max. -0.3026
3 MFCC(6) Min. -0.1893 1 MFB(0) Std. Dev. -0.3014 3 Loudness Max. -0.2977
1 Pitch Median 0.1748 4 MFB(0) Min. 0.2951 4 Loudness Min. 0.2856
1 MFCC(6) Std. Dev. 0.1715 1 MFB(0) Min. 0.2919 1 MFB(0) Std. Dev. -0.2745
3 MFCC(7) Std. Dev. 0.1700 2 Loudness Std. Dev. -0.2799 1 MFB(0) Min. 0.2712

way to select features then used to infer ASD diagnosis in the
next experiment.

3.3. Classification and Feature Selection

To understand the role of dynamic functionals in differentiating
between children with and without ASD diagnosis, we set up a
binary classification experiment to predict the output labels as
ASD or non-ASD. We consider five different classifiers for this
experiment, logistic regression, Support Vector Machine (SVM),
random forest, k-nearest neighbours and naive bayes classifier.
For each of the classifiers, we carry out 5-fold cross-validation
5 times to avoid overfitting the data.

We consider different combinations (feature-level fusion)
of static and dynamic functionals in our classification analysis
to investigate the extent of combined predictive power of both
static and dynamic functionals. Moreover, we report the classi-
fication F1 score of different order functionals individually and
along with static functionals to study the contributions of using
dynamic functionals over static ones.

To reduce the number of features used, we use a feature
selection strategy based on correlation-based feature ranking.
We calculate the Spearman’s correlation coefficients for each
feature from each set of functionals (dynamic or static) with
respect to the variable of interest (CSS in this case), and rank
them in descending order of correlation. In this process, we
exclude the features that are not statistically significant.

4. Results
In this section we report the findings based on the experiments
we conduct.

4.1. Correlation Analysis

Here, we perform correlation analysis to investigate details re-
garding the static and dynamic functionals capturing informa-
tion that can be used to make inferences related to behavioral
patterns in ASD. For this experiment, we compute Spearman’s
correlation coefficients between the CSS and mutually exclu-
sive sets of static and dynamic functionals.

In Table 2, we report the five most correlated static func-
tionals for each of the feature categories and in Table 3 we re-
port the five most correlated dynamic functionals for each of the
categories involving either same speaker or different speakers.
In each case, we consider the significantly correlated function-
als only (p < 0.05).

4.2. Classification Experiment

The goal of the classification experiment is to investigate the
possibility of predicting ASD diagnosis based on static and dy-
namic functionals (both individually and in combination). As
mentioned in previous sections, the classification experiment is
formulated as a 2-class problem of predicting either ASD or
non-ASD.

For all the experiments, the first n ranked statistically sig-
nificant static and dynamic functionals are considered as input
to classifiers. The value of n is chosen separately for each fea-



1st 1st + 2nd 1st + 2nd + 3rd 1st + 2nd +
3rd + 4th

order of the dynamic functional(s) used

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775
F1

 m
ac

ro
 sc

or
e

Dynamic
Static and dynamic
Static
Baseline (majority classifier)

(a) Logistic Regression

1st 1st + 2nd 1st + 2nd + 3rd 1st + 2nd +
3rd + 4th

order of the dynamic functional(s) used

0.65

0.70

0.75

0.80

0.85

F1
 m

ac
ro

 sc
or

e

Dynamic
Static and dynamic
Static
Baseline (majority classifier)

(b) Support Vector Machine
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(c) K Nearest Neighbor
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(d) Random Forest
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Figure 2: Classification experiment results: macro-averaged F1
scores vs. different orders of dynamic functionals used

ture set from 2 to 35 based on the classification performance.
We consider only child-child and child-psychologist dynamic
functionals as input to the classifiers, as our primary focus is on
analyzing the behavioral dynamics of the children. It is impor-
tant to understand that for each order of dynamic functionals,
we also consider the preceding order differences cumulatively.
For example, the dynamic functional of 3rd order also includes
the 1st and 2nd order dynamic functionals. Since we build each
dynamic functional set in a cumulative way, the resulting se-
lected features do not always include equal proportions of each
contributing dynamic or static functional subset.

For each of the mentioned classifiers, we report the perfor-
mance considering only static functionals, cumulative dynamic
functionals, and also static and cumulative dynamic functionals
together in terms of classification F1 score as shown in Fig-
ure 2. We consider the majority classifier (every sample is as-
signed to whichever is the majority class in the training set) as
the baseline and report its performance in the same plot to better
understand the improvement in classification performance after
incorporating static and dynamic functionals.

4.3. Summary of observations

While Table 2 shows pitch envelope provides maximum cor-
relation for static functionals, Table 3 reveals MFCC and loud-
ness showing greater absolute correlation for dynamic function-
als. Quite interestingly, within psychologist (i.e., psych - psych)
correlations are found to be higher followed by child - psych
dynamics; this is consistent with the observation that the psy-
chologist adjusts their dynamics according to the clinical state
of the child [25]. Results from Figure 2 suggest a combination
of static and dynamic functionals offers the best performance
in the majority of the cases. Amongst the dynamic functionals,
the 1st order differences work the best, indicating that higher
order functionals viz., 2nd, 3rd and 4th order differences are
not contributing as much to the classification problem; it may
also be the case that the feature selection is perhaps overfitting
or ineffective.

5. Conclusion
Speech features are being extensively studied to understand and
characterize ASD in the context of behavioral analysis and phe-
notyping. In this work, we report the relevance of different com-
bination of static and dynamic speech functionals with respect
to clinically-determined disorder severity in terms of the corre-
lation metric. We examine the role of dynamic functionals in-
dividually and in combination with static functionals to predict
ASD diagnosis. Furthermore, we show the top ranked static and
dynamic functionals (based on correlation metric) carry mean-
ingful insights to classify the behavioral patterns of children
with and without ASD diagnosis.

In the future we plan to extend this work with lexical fea-
tures in order to gain a comprehensive understanding about be-
havioral traits of children during such interactions. We also plan
to explore other feature selection techniques in order to improve
classification performance based on static and dynamic func-
tionals.
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