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ABSTRACT
Analytics with three-dimensional imagery from drones are driving
the next generation of remote monitoring applications. Today, there
is anunmetneed inproviding suchanalytics inan interactivemanner,
especially over weak Internet connections, to quickly diagnose and
solveproblems in thecommercial industryspaceofmonitoringassets
using drones in remote parts of the world. Existing mechanisms
either compromise on the quality of insights by not building 3D
imagesandanalyze individual 2D images in isolation,or spend tensof
minutes buildinga3D imagebeforeobtaininganduploading insights.
We present Visage, a system that accelerates 3D image analytics by
identifying smaller parts of the data that can actually benefit from
3D analytics and prioritizing building, and uploading the localized
3D images for those parts. To achieve this, Visage uses a graph to
represent raw 2D images and their relative content overlap, and
then identifies the various subgraphs using application knowledge
that are good candidates for localized 3D image based insights. We
evaluate Visage using data frommultiple real deployments and show
that it can reduce analytics-latency byup to four orders ofmagnitude.

CCS CONCEPTS
• Computing methodologies → 3D imaging; • Information
systems→Geographic informationsystems;Datastreaming;
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Figure 1: Time taken to create and transmit 3D images to the
cloud is hindering interactive analytics with drone data.

1 INTRODUCTION
The next wave of remotemonitoring is being enabled by on-demand
three-dimensional (3D) imagery frommanned or unmanned, aerial
and terrestrial vehicles, drones, and robots [18, 107, 111]. Raw images
captured in such settings are typically processed into a 3D image and
uploaded as an aggregate to the cloud for analysis. Such analyses are
increasingly used in commercial applications such as agriculture,
mining, construction, energy, forestry, and disaster management to
extract actionable insights [11, 21, 24, 35, 70].

Three-dimensional imagery is necessary to analyze structural,
geometric, volumetric, and other holistic properties of real-world
objects. For example, the structural integrity of a building, wind
turbine, or a long stretch of railroad/pipeline requires 3D images to
measure various geometric properties for calculating micro-stresses
and changes [15, 97, 125]. However, there is an unmet need in run-
ning such analyses interactively. Currently, constructing a single 3D
image of the entire surveyed region takes tens of minutes to hours
for typical surveys [85, 126].

Data needed for 3D image construction is typically obtained as
individual 2D image frames (or simply a frame) from cameras in
motion that capture a very small part of the landscape. Hence, any
information that is useful to gain a specific 3D insight is typically
spread across multiple such frames. A simplistic approach of analyz-
ing each frame individually, or in groups determined by temporal
or spatial locality (GPS location of the camera), is often inadequate
for obtaining accurate 3D insights. Temporal locality is not enough
because frames needed for constructing a specific object of interest
may be acquired over a period of time (such as images from different
angles). Whereas, spatial locality is not sufficient because frames of
interest may be captured from various distant locations.

Correlating across space and time quickly grows into a complex
time-consuming task. Existing video-analytics techniques do not
efficiently support cross-correlating information across 100-1000s of
frames that are spatially and temporally distributed (typical for 3D
imaging). State-of-the-art 3D solutions first consolidate the entire
data by stitching the frames into a single large 3D image that virtually
represents the landscape. This stitched image is then uploaded to
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cloud applications for generating insights. This process, however,
takes several minutes and hinders interactive applications [85, 126].

The problem of timely 3D image analysis is most prominent in
manual/automatic drone, robotic, and vehicle-based surveys, of the
remote parts of the world, where edge deployments face both com-
pute and network bottlenecks. We will focus the rest of this paper
on such settings that we refer to collectively as drone surveys. Our
goal is to help analyze 3D imagery from drone surveys interactively
over weak network connections to cloud services.

Interactive drone data analytics is necessary for various real-
world application scenarios: (1) Informed exploration: Drone opera-
tors need to analyze the data collected to quickly plan thenext survey
so that they canmake the best use of timewhile in the field (drone-as-
a-service operators need to immediately correct for erroneous data
acquisitions, scan an anomaly at a slower speed or closer distance
for clarity, to capture a different part of the spectrum with a spe-
cialized camera, etc.) [36, 48, 83], (2) Proactive maintenance: Help a
maintenance engineer quickly operate the drone and act on insights
immediately rather than having them revisit the remote location
multiple times (e.g. monitoring/maintaining pipelines, power-lines,
or solar panels in remote areas) [15, 38], (3) Disaster mitigation: To
rapidly analyze drone images and provide timely insights to agen-
cies that manage ongoing environmental disasters (e.g. wildfires
and flooding) [59]. However, two significant challenges, of limited
compute and network capacity, hinder interactive drone data analytics,
as illustrated in Figure 1.

First, constructing accurate 3D images takes time as several pairs
of non-local frames need to be inspected for content overlap, result-
ing in poor scalability. Stitching thousands of frames typically takes
several minutes to complete [85, 126]. This seemingly inherent pro-
cessing delay rules out any possibility of obtaining insights promptly
for existing solutions. Powerful edge systems can provide real-time
3D aerial imagery [98] as well as analytics with 3D imagery [40].
However, providing such analytics interactively with weakly pro-
visioned edge systems in a timely manner remains unsolved. Such
powerful edge servers are difficult and expensive to carry or deploy
in remote regions and ad-hoc situationswhere drones are often used.

Second, transferring either frames or the stitched 3D image or
objects to the cloud is a bottleneck. While 3D images are typically
4-10x smaller in size compared to total frames’ size, they are still
often several GBs in size, normalized per twenty minutes of survey-
ing by a typical drone[22]. Despite the promise of 5G networks in
urban areas, many remote areas where drones are typically used in
the commercial industry do not have broadband Internet, i.e. they
have below 3Mbps upload speeds, while download speeds may be
higher [19]. It is typical for the drone data generation rate to outpace
the internet upload speeds by over an order of magnitude [27, 41].
The problem is more dire when using LIDARs, multispectral, and/or
hyperspectral cameras that generate data of over 1Gbps [48, 83].

Furthermore, many applications require other information in the
cloud for analytics including historic data, data from other edge
locations, satellite imagery, weather station data, and sensors/cam-
era/data streams which are hard to replicate at the edge [94, 108].
Therefore, a system is needed that provides network-based optimiza-
tion as well as compute acceleration for interactive drone analytics.

In this paper,we present a new3D image data transfermechanism
called Visage, that runs at the edge and enables interactive analytics

on drone data. At a high level, Visage quickly converts raw frames
coming in from drones to a stream of small and localized 3D images.
Instead of constructing the full 3D image in one go, Visage incre-
mentally constructs only portions that can help the application gain
necessary insights quickly. Furthermore, it uses domain knowledge
to prioritize compute and network resources towards the smaller
3D images, based on their predicted importance for the application.

Performing these operations online as well as in parallel is para-
mount for interactive analytics. If performed sequentially, the upload
has to wait for the entire survey and the stitching to finish. How-
ever, performing the operations simultaneously is complicated as
the drone is still surveying and adding more frames.

We propose using a graph data-structure as the right abstraction
for interactive drone processing. The key insight behind choosing
a graph is that drone frames are related to each other from a content
overlap perspective, rather than from a purely temporal or spatial
perspective. It is the content of the frames that allows the stitching
of frames into a coherent 3D image.When considering more holistic
content-oriented aspects to find related frames, a graph data struc-
ture emerges naturally where each frame has content that overlaps
with many other frames that are neither spatially nor temporally
local. Existing techniques condense such a graph into a single 3D
image before performing analysis [32, 84] while we propose that the
graph be processed by prioritizing focus on the parts of the graph
that are more important for the interactive application. We achieve
this by making the following contributions:
� Application-focused 3D image processing: To speed up the pro-
cessing of frames, Visage not only leverages field-of-view overlap
(modeled as a graph of frames) as the localitymetric for converting
raw-frames to 3D images but also focuses such efforts only on
the relevant objects/features. Visage uses an application/domain
knowledge-basedmodel to identify such relevant objects/features
and uses only the raw-frames containing information about them
to prioritize building the associated local 3D image.
� Informed stream processing: The localized 3D images are built
incrementally and online by carefully selecting from newly added
raw-frames only those that are related by content to the 3D image
being built. The application/domain-model is additionally used to
identify the correct subset of the incoming frames to be streamed
from the drone.
� Progressive transfer: Lastly, the 3D images are sent to the cloud
by progressively enhancing their quality to further reduce the
latency to insights. Furthermore, the important objects/features
within the localized 3D images are enhanced in quality faster than
the rest of the image to further improve the bang-for-buck on the
network transfers.
Experimental results from simulated drone images as well as data

frommultiple deployments show that in Visage applications start
receiving important information and insights within minutes rather
than hours. Moreover, we improve latency by up to four orders of
magnitude compared to existingmethods, allwhile using only a com-
modity laptop as an edge andwith amodest 3Mbps uplink capacity.

2 MOTIVATION&BACKGROUND

High computational overhead of 3D image stitching: Drone
data is collected with high levels of overlap between images. The
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Figure 2: Drone analytics are complex: Left most �gure shows a typical aerial drone path (in red) with overlapping frames.
Overlap is caused not only by adjacent frames (blue boxes) but also by frames captured from multiple angles and distances
(purple boxes). Such overlap is needed for constructing high-quality 3D images which are used for holistic anomaly detection
such as the plants with no fruit (black boxes and its 3D image on the right). To save time, Visage identi�es and builds only
smaller 3D images that contain anomalies as opposed to stitching a large 3D image of the entire surveyed region.

overlap helps to align the individual 2D images into a larger 3D
image. Drones typically capture images such that there is a 40�90%
overlap between adjacent frames [28, 33, 87] (as shown in Figure 2)
to help obtain high quality 3D images. The quality metric shown
in Figure 2 is that of coverage in terms of 3D pixels per square inch.
Computer vision techniques, in the form of a �stitching� software,
are then used to �t the 2D images into a virtual 3D space called a
point cloud using techniques such as structure from motion [82],
binocular/trinocular matching [7, 135], and feature map constraint
satisfaction [23]. These are computationally intensive operations
that are super linear in time complexity as they compare and match
image feature content across several pairs of frames for �tting the
2D images successfully into the 3D point cloud (we describe this
process in more detail in the next section).

The overlapping nature of the imagery results in massive amount
of raw data that forces the construction of the 3D image to happen
at the edge especially so for weak Internet connections that we are
targeting. As shown in Figure 2, raw imagery can be up to 25x more
than the size of the corresponding 3D image. This is an incredible
acceleration opportunity to exploit.

Analyzing 3D images: 3D images are projected on to 2D surfaces
to create �unique-frames� as they contain a unique pixel per area
that they cover. These unique frames are then transferred to the
cloud where they are analyzed in detail. For example, in an orchard,
each unique frame containing a tree could be projected onto a 2D
�cylindrical� image going around the tree. This cylindrical projec-
tion provides holistic (e.g. fruit count), volumetric (e.g. tree trunk
and foliage volume), geometric (e.g. total branch length), and other
structural analytics.

However, not all portions of the landscape are required to be an-
alyzed in such detail and therefore the 3D images and projections
must be considered only where necessary. Most �insights� derived
from real-world scenarios tend to be sparse. For example, in 100s
of acres large orchard, the insight of interest might be to identify a
handful of under-performing trees (e.g. low fruit count). Therefore,
the drone operator may upload only those images and seek advice
from an expert interactively as to what more images (e.g. with a
di�erent camera type such as hyperspectral/multispectral or with
higher resolution) of the speci�c trees they want while the operator

is still in the orchard. In the absence of an interactive option, the
upload and analysis would require the operator to come back another
day for further data acquisition, thus wasting time and resources.

Existing drone systems combine all the frames into a single 3D
image as they typically do not target wide area interactive appli-
cations such as the ones we want to focus on. In this work, we set
out to only build and project the portions of the 3D image that can
provide insights or at least prioritize and accelerate those portions.
Thus, in the case of the orchard for example, we use only the frames
of those trees of interest (by the help of traditional image inference
techniques) and then prioritize the building of their 3D models alone
instead of a 3D model of the entire orchard.

However, the information required to understand which projec-
tions to choose, which pixels to choose in each projection, and what
frames to use to get those projections to an acceptable quality etc., are
all application related choices and therefore, we must extract such
knowledge to solve this problem e�ciently. Visage leverages this
knowledge available only at the application layer by incorporating
them as domain-speci�c models used when building the 3D image.

Large data transfer to cloud: 3D stitching to create unique frames
is typically done at an edge location near the area of interest, simply
because the amount of raw data generated (greater than 32Mbps per
camera is typical) is well beyond the network capacity available in
these remote locations.

However, the analysis on the data is commonly performed at a
remote location such as the cloud. There are several reasons for
this including: (1) the human/machine consumer for the data is not
present at the edge, (2) the area being studied is geographically
large/spread-out such that no single edge can realistically cover it,
and multiple drone pilots are simultaneously operating and aggre-
gating the data in the cloud, (3) an edge that is powerful enough for
the applications cannot be deployed in these remote locations, and
(4) applications in this space often combine drone data with other
datasets present in the cloud, e.g. older imagery, satellite imagery,
weather data, and other application/domain data. Therefore, we see
that this is primarily an edge-assisted data-transfer problem, rather
than a pure edge-compute one.

Even with improved stitching, transferring the required unique-
frames to applications running remotely over weak links in a timely
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manner is still challenging. Unique-frames (large panoramic stitched
images) can each be 10s of MBs to a few GBs[22] in size and there
can be 10s of unique-frames per survey. While existing image or
video compressors can reduce the volume of the unique-frames to be
transmitted, the achievable compression ratio to quality tradeo� is
still not acceptable as these projections often contain mostly unqiue
information not present in other unique-frames.

We propose exploiting application knowledge and looking into
the semantics of each segment/feature/object in unique-frames and
then sending those data fragments that are more important to the ap-
plication at a higher priority/quality, while delaying the sending of or
reducing the quality of or even arti�cially �synthesizing� less impor-
tant fragments (such as background sky, soil, or lawn in unique frame
ofa tree inanorchard) to improve thebang-for-buckon thenetwork.

3 VISAGE OVERVIEW
In this section, we present the goals of the design and the architecture
of Visage, motivated by our customers' requirements.

Goal-1: Reducing Computation. Identifying which 3D images to
prioritize to meet interactive needs is hard. Using an inference model
on every frame to help identify the parts of the surveyed region
that are of interest to the application can be expensive especially
given the fact that frames have a lot of overlap with other frames. A
balanced approach is needed to broadly look for interesting aspects
without duplicating the inference e�orts by avoiding frames that
overlap excessively with frames that have already been searched. As
soon as the regions of interest are found, inference must focus on
frames that have overlapping content to help quickly identify the set
of frames needed to construct the 3D image of the interesting aspect.

Goal-2: E�cient deduplication. Ideally, drone data streaming
should aim to send no more than one pixel per representative unit of
area in the region surveyed. This reduces the network and compute
requirements for analytics. Building a 3D image from a collection of
overlapping 2D images bene�ts not only holistic analytics but also
eliminates redundancies from data. However, 3D image construc-
tion is a slow process and the downstream latency bene�ts must
be balanced with the upstream processing latency. Hence, the 3D
construction must be prioritized on parts that are important to the
application. That way, the network usage can be optimized with
more important bits taking preference over others.

Goal-3: Dynamically prioritized streaming. For applications
running remotely over a weak link, Visage must start streaming
the most important pixels of the most important unique-frames (e.g.
a unique-frame of a cracked railroad segment is more important than
the unique frame of a segment that is bent), to improve the bang-for-
buck from the weak network. However, new raw frames can change
the relative importance of the data to be uploaded as more important
aspects may be discovered. Therefore, Visage needs to keeps track
of unique frames (and various segments within them) and upload
them in the order of their relative importance to applications.

3.1 System Architecture
Visage is designed for interactive sessions between a surveyor and an
operator. The operator is a person or an autonomous agent present
at the edge location where the drone survey needs to take place.
The surveyor is a person or an autonomous agent which is remotely

interacting with the operator via a cloud agent that analyzes 3D
images. The surveyor provides the operator with a large region of
interest to be surveyed and an image segmentation model, such as
MobileNet V2[103], with segment types that the surveyor considers
important (di�erent importance level can be set for each segment
type). Figure 3 shows this as the domain-spec inference model.

The operator then feeds the region of interest into a drone speci�c
navigation planning software [29, 86] that helps chart a path that
the drone follows for the fastest and most battery/energy optimal
way to survey the region. The raw frames from the drone are then
streamed to Visage that runs on a laptop or workstation(s) carried
to the �eld by the operator represented as the "Edge" box in Fig-
ure 3. The streaming from the drone is performed on an ISM band
frequency using a custom protocol between the drone and a joystick
that is attached to the edge. The edge is implemented as a collection
of Docker [30] containers in a Kubernetes[60] environment, where
it can easily run on a single laptop or a cluster of ruggedized servers
that can be mounted in a vehicle with the operator.

The raw frames are �rst absorbed into the graph data store. The
nodes of this graph represent images and the edge, and their weights
represent how much potentially overlapping content the images
may have with respect to each other based on the camera viewing
angle (described in Section 4).

The graph is then searched by the localized stitching agent using
a random walk for frames that contain aspects that are important
for the application using the domain-spec model. As soon as such as-
pects are found, the stitching agent aggressively searches connected
frames to start building a localized 3D image and the corresponding
unique frame as shown by the stitching component in Figure 3.

Theprogressiveencodingagent thenstartsworkingon theunique
frames that are generated to encode them into a number of layers and
segments with varying priorities. The priority data uploader uses
these encoded segments and starts transmitting them to the cloud
in the descending order of priority. In mobile and remote settings,
the edge is connected to the cloud in our setting typically using a
3/4/5G or LTE connection. In some settings, the edge is stationed
permanently at a remote outpost (where the drones are also often
stored) connected via broadband.

The cloud component receives the segments and progressively
enhances the unique-frames by decoding them and feeds them to the
surveyor. The surveyor analyzes the unique-frames as the segments
are received and sends insights to the surveyor who then decides
which parts of the region need attention or more detailed surveying
and instructs the operator accordingly.

4 VISAGE DESIGN & IMPLEMENTATION

4.1 Frame-Graph Data Store
As data is ingested into Visage, either streamed live (or deferred)
from the drones, it is stored in the form of a weighted graph data
structure with frames as vertices. Two frames are connected via an
edge if they have any potential overlap and the weight of the edge
represents the amount of potential overlap. This graph is stored as a
Python-based adjacency list and is used in next components to build
3D images and unique-frames.

Visage uses the camera metadata (location, direction, focus, �eld
of view etc.) to help reduce the search space when looking for frames
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Figure 3: Visage's Architecture: Visage ingests live frames from drones. A domain inference model is used for continually
identifying which new frames to stitch into 3D images, which the unique-frames are generated from. Using the domain models,
semantic-aware progressive encoder, encodes segments in a �ne-grained priority-aware manner. The uploader progressively
transmits data to cloud following the order of a priority pyramid. Finally, the progressive decoder, decodes the data at the cloud.

that may potentially overlap with each other without even looking at
the pixel data, as opposed to using an exhaustive and thus expensive
computer vision based search of similar features to identify overlaps.
Each frame is tagged by the drone with its location (GPS) as well as
the direction (roll, pitch, yaw, and focus) in which the camera was
pointing at the time of capturing the frame. This information is used
to a build a three-dimensional cone with a cuto�-distance, beyond
which the focus is considered moot, to represent the �eld of view of
the frame. For each newly added frame, its cone's intersection with
all other existing cones in a radial distance from the location of the
camera is calculated. An edge is added for every cone intersection
and the weight of the edge [0-1] is set in proportion to the relative
size of the intersection.

We calculate these intersections using a PostGIS [89] geometric
database instance. Each new cone is �rst added to the database, then
a query is posed to search for all the intersecting cones within a ra-
dius bound which is equal to the cuto�-distance. Such 3D geometric
queries, while sounding complex, are a well optimized query type in
vector calculus based databases that are typically answered in under
a millisecond even for 1,000 cones [91, 92] which is signi�cantly
more cones than what we �nd within typical cuto�-distances used
in our settings.

4.2 Localized Stitching

Visage uses a novel local stitching approach where, instead of build-
ing a global 3D image with all the frames, it constructs a set of local
3D images of areas of interest to the application. Visage uses domain-
knowledge based segmentation model (and other data sources de-
scribed further) to identify sub-regions (henceforth referred to as seg-
ments) that are important for the application and stitches the corre-
sponding frames into a localized 3D image. The challenge lies in iden-
tifying theareasof interest froma largesetof frameswithout running
computationally heavy inference models on every frame. Towards
this, Visage uses a two phase approach. First, it discovers a frame
from an unexplored area of interest using a random walk approach
on an area-tracking data structure. Once such a frame is found, it uses
a greedy approach on the graph data store to �nd all frames that over-
lap with the segment of interest and builds the 3D image with those
frames. A detailed description each of these components follows.

Identifying segments of interest: Typically, Visage uses domain-
speci�c segmentation and labeling models to identify important
segments to prioritize. Such a domain-model can be supplied by the

application developer. Alternatively, they can choose one from the
model library that we have built for various scenarios in agriculture,
energy, and other commercial industry verticals and simply adjust
the importance of each segment type to their desire (e.g., the foliage
is more important than the trunk). Additionally, Visage also accepts
direct input from the operator or the surveyor as to which areas to
prioritize over others (e.g. speci�c aisles of trees or speci�c trees in
an orchard). Lastly, historic information or other imagery (such as
satellite imagery that is signi�cantly low in resolution and can also
be out of date) can be used to supplement the domain-model.

Discovering unexplored segments of interest: The goal of this
phase is to quickly and e�ciently discover new segments that have
not been stitched or are being stitched into a localized 3D image.
Visage tracks the explored areas, i.e., areas for which the 3D model
has been constructed, in an �area-tracking� data structure. For this,
we use another instance of PostGIS [90].

In order to avoid searching all frames for new segments of interest,
Visage uses a random walk to search for newly obtained frames for
important segments while relying on the area-tracking data store to
record old frames that have already been explored with the domain-
model. Visage picks frames with the less amount (a con�gurable
value) of intersection with the areas that are marked as already ex-
plored in the area-tracking database as new frames can overlap with
old frames. This search completes when the surveyed region has
been fully covered in the area-tracking database.

Another optimization we use when detecting important segments
is to run the domain models on a lower resolution version of the
frames. However, this can come at the cost of reduced accuracy.
We explore this trade-o� using pro�ling (shown in more detail in
Section 5) and show that for typical high-resolution drone frames,
segmentation is often just as accurate when the frames are reduced
in resolution by up to 36%.

Creating localized 3D images: Visage uses a set of well known
3D mapping and panoramic image stitching techniques for creating
3D imagery with several sequential stages. The �rst stage involves
laying out frames on a virtual canvass based on their geolocation and
then extracting precise pixel correspondences in each overlapping
pair of frames. We extract local visual features, speci�cally, scale
invariant key-points such as DoG [69] and Daisy feature descriptors
[124]. However, other alternatives (SIFT [69], Superpoint [26]) can
be used as well. The key-points are compared by computing pair-
wise Euclidean distances between feature descriptor vectors at the
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matching stage. Feature matching is accomplished by solving ap-
proximate nearest neighbors in the feature descriptor space and the
pixel matches are further re�ned using robust estimation techniques
that leverages epipolar geometry constraints [46].

Given thousands of pixel correspondences over many pairs of
images, we use an approach called structure-from-motion (SfM) to
simultaneously reconstruct the 3D positions of all the triangulated
3D points and the cameras positions associated with each of the input
images. At its core, SfM computation involves solving a very large
nonlinear least squares optimization problem, which is also referred
to as bundle adjustment [118]. Then, given the optimized camera po-
sition, orientations and the estimated 3D points, we estimate a coarse
ground plane by robustly �tting a 3D plane to the reconstructed 3D
points. The input images are then warped onto the ground plane by
transforming each input frame via a 2D homography transformation
that can be computed from the estimated camera pose parameters. Fi-
nally, all the overlapping warped frames obtained from the previous
step are seamlessly merged by using image stitching algorithms that
aim to compute good seams and adjust the pixel colors between over-
lapping image areas such that the seams are visually in-distinctive
and gives the impression of a single seamless image.

The stitching of a localized 3D image using the above process
can be started as soon as a su�cient number of frames have been
found to cover the segment of interest in consideration. Once a frame
from with a segment of interest is discovered, Visage uses the graph
data store (Section 4.1) to �nd the most relevant other frames and
constructs the 3D image. Each stitching job independently decides
which frames to consider for the stitching. For the selection, those
frames are considered that are most likely to contain the pixels cor-
responding to the important segment that triggered the current
localized 3D image in the �rst place.

To identify such frames, using the graph data store, the frames
with the most overlap (ones with the highest edge weights) in prox-
imity to the geographic location of detected important segments are
traversed. The stitching job, exhaustively runs the domain-model on
each such frame (not a random walk) to decide whether to include
that frame or not, as it knows that the important segment is highly
likely to be found here. However, the stitching itself starts only when
enough number of such frames from multiple directions have been
identi�ed in order to create a high quality 3D image of the important
segment. In our implementation, this is simply a timeout of an alarm
that is reset each time a new frame is added live by the drone that
overlaps with any of the frames that are considered already a part
of the stitching job. This is enforced at the frame ingestion time.

4.3 Semantic encoder & prioritized transfer
Localized 3D images are then projected onto 2D surfaces such as a
plane (an aisle of trees) or a cylinder (around a tree) so that analysis
with traditional computer vision pipelines becomes easier. Even
with deduplication through 3D image reconstruction, the resulting
unique-frame (or projections) sizes are huge, i.e., they can contain
10-100s million pixels with sizes of 10�100s MBs [85]. However, not
all of the data in the frame is useful for the application. Most of
the frame is often irrelevant and unimportant information, e.g., sky,
lawn, background of the orchard for studying fruit trees.

Also, drones are con�gured to capture pessimistically high res-
olution images (4K is common with 32bit pixel depth) as a way to

Figure 4: An example showing how a unique-frame is pro-
duced, encoded, segmented, and prioritized di�erentially to
reduce analytics latency.

ensure that the acquired data can serve future needs of applications
that may demand higher resolution. However, 1080P or lower resolu-
tions are often enough for analysis in today's applications. Moreover,
among the segment types output by the domain-model, not all are
equally important. For example, the fruit on a tree could be more
important than the tree itself for an orchard. The encoder's goal is
is to tie the resolution and quality of each segment of unique-frames
to application requirements, which we call �semantic-aware encod-
ing�. By doing so, we are able to compress further beyond any given
image encoder. For example, we can use high quality JPEG (or any
given codec) encoding for the segments containing fruit while a low
quality JPEG encoding can be used for other segments. This enables
a segment-di�erentiated encoding that leads to orthogonal savings.
We take this to the extreme by having a progressively encoded option.

Figure 4 illustrates the process of semantic-aware progressive
encoding. Once a unique-frame is generated, it is decomposed by the
domain-model into multiple small segments with di�erentsemantics
(e.g., tree, grass, sky). Then each segment is compressed with base-
delta encoders (JPEG-XR [34] used in our implementation), i.e., a
base �le containing the minimal and most important data, followed
by multiple delta �les each enhancing the base.

By breaking down unique-frames into such �ne-granularity data,
Visage is able to aggressively shrink the transmission volume and the
network latency to start analytics. It �rst only sends the minimal, yet
the most important �les (typically only 0.01% of the unique-frame
size) which identify the segment types, boundaries and locations
(segmentation masks). Then, it progressively sends the rest of the
data and gradually enhances �delity of data in a way that prioritizes
the requirements of the application. Thus, by using a combination of
progressive image encoding and prioritized transfer of segments,Vis-
age is able to improve the perceived latency for remote applications.

4.4 Prioritized Data Transfer Engine
As shown in Figure 4, data transfer is done via a priority queue
schema. This engine retains a priority index structure maintaining
an ordered queue of items to be transferred (we use a PostgreSQL DB
instance to track the priority of each �le). Each item in this priority
index is a pointer to a �le to be transferred, either segmentation mask,
base �le, delta �le, unique frame, or frame. The mapping of �les to
priority indexes is a con�gurable component in the data transfer
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Figure 5: An example of how a unique-frame is progressively decoded in the cloud so that tasks can run as soon as their expected
segments and quality have reached. Arti�cially �synthesized� segments are used when only the mask is received and they are
are intentionally darkened in this illustration to make them easy to spot. The �synthesized� segments are, however, hard to
spot for humans and certain ML models thereby o�ering instant visualization and reducing latency for applications.

engine. In our implementation, for each newly encoded segment,
the engine uses the associated segment type to dynamically decide
the priority of the base �le, and uses this priority to relatively decide
the priority of the delta �les. For example, if the mask determines
the priority of the �tree� segment to be `5', the delta �les are given
priority `4.5'. Raw data is given a low priority.

The data transfer engine uses a remote/cloud mounted folder
shared with the application in the cloud. The engine (implemented
in C++) runs as a container that monitors the folders being created
by stitching containers, understands their importance level (using
the priority index DB), and copies the data to the remote mounted
folder in that order. The transfer engine also allows preemption, i.e.,
it can stop mid-�le when needed and switch over to more important
ones. In addition, it handles failures and reboots by tracking its own
progress in the priority index DB. While priority-based data synchro-
nization solutions exist in other settings (Section 6), this is a new syn-
chronization mechanism for edge-cloud systems that supports pri-
orities and hierarchies when sending�les to a cloud storage service.

4.5 Decoder and arti�cial data generation
Unique-frames often contain a signi�cant number/amount of seg-
ments not useful to remote applications and surveyors, e.g., the
background elements when sending panoramic images of small ob-
jects. We use this as an opportunity to further optimize the latency
of insights to the surveyor.

The masks of segments of unique-frames arrive �rst in the cloud,
followed by the actual data of the unique-frames (base and delta
�les). These masks are typically 10,000� smaller in size compared
to the size of unique-frames generated at the edge. By just using
these masks, some statistics can be obtained in the cloud right away.
The presence of certain segment types indicated by the importance
level in masks can help applications perform certain tasks such as
counting, sizing, and anomaly detection.

In parallel, Visage uses the mask to �synthesize� pixels in blank
unimportant segments, therefore, o�ering instant visualization and
reducing latency to certain application tasks that accept �synthe-
sized� data (statistical ones) as described in the next section.

As shown in Figure 5, using the mask and a trained GAN, Visage
quickly generates a synthetic frame. After a short time, the base �le
of the most important segment (�tree� in our case) shows up. Then,
Visage o�ers a hybrid view of the images with real pixels for impor-
tant segments and faked data for less important segments. This is
especially useful for scenarios where the surveyor is a human who

interactively works with the operator for informed exploration. It
is also useful for DNNs that are over�t to high-quality training data
and hence require the low-importance segments to be present.

As time passes, the re�nement delta bits arrive and the rest of the
data (for less important segments) follows later when there is more
bandwidth available. In all cases, applications register for noti�ca-
tions from the �lesystem, which automatically triggers functions
and pipelines for each re�nement stage (as a way of tying image
quality with the task at hand).

4.6 Domain Inference & GAN Models
Both the inference model at edge and GAN model at cloud are de-
veloped speci�c for each domain, instead of each application, due to
the common features and characteristics shared in the same domain.

For the inference model, we currently use MobileNetV2 [103]
because of its low footprint and small size (3MB). Applications can
also specify a model of their choice at deployment time. In addition
to choosing or specifying a model, applications must indicate how
importance is calculated for each segment. To facilitate complex ap-
plications with many segment types, we implemented the following
automated approach to extract importance.

Developers can instead provide a black box (often containing an
upstream application) that helps us transparently understand the
importance order of segments. For each segment that Visage gen-
erates, we distort the pixels corresponding to that segment (e.g., by
adding noise) and feed the degraded image into the application black
box. We expect the black box to output a certain score when fed
with an image. By varying the degree of distortion on each segment
individually and observing the delta of the output score, Visage can
pro�le the relative importance of any segment. Visage then uses the
importance metric to create a mask for a image. In the absence of
such quanti�able insights, we work with a domain expert as well as
the customer to set the importance values for each segment.

To train an inference model, either public data on internet or his-
torical data collected can be used as the training sets. When labeled
data is easily available, we paired the label masks with their true
images. For settings without labeled data (the more usual case), we
use virtual reality environments to generate labeled images. For
example, raw drone frames are obtained from the Airsim [3] plat-
form which is used for stress testing the system as well as generating
synthetic/virtual labeled data for modelling. We hire video game con-
tent design companies[93] to develop these environments in Airsim.
Then we operate virtual drones in these environments and collect



ACM MobiCom '21, October 25�29, 2021, New Orleans, LA, USA Jha and Li, et al.

frames which are labeled automatically by the virtual reality engine.
Such generated image sets are for training not only domain-speci�c
inference models but also for the GANs in Visage.

For GAN models, the choice is abundant thanks to the fast paced
community of computer vision. In general, more complex GANs
often o�er more realistic synthesis, which might be favored con-
sidering that the cloud is no lack of powerful resources. In Visage,
however, we adopt a simple and classic one �pix2pix� [55], which is
able to translate a label mask to an image at a decent quality level
without compromising the visualization nor the applications (see
Figure 5, 9 and 10). The model size is only 200MB and can be trained
with a single RTX GPU (11GB) [80]. During image generation, its
throughput also shadows the network speedup.

5 EVALUATION

We present experimental results that validate our claims about the
bene�ts of using Visage. Our goals are to quantify the overheads and
bene�ts of individual components, and to also identify the end-to-
end latency bene�ts of Visage compared to other techniques.

5.1 Experimental setup

We use a mix of real-world and synthetic datasets as the stream of
data toprocess. Ineither case,weemulateavirtual droneby replaying
the captured stream of an actual/synthetic drone from the dataset.

Real-world datasets: We have deployed Visage in 8 di�erent real-
world customer trials across various commercial industry sectors
including agriculture, energy, and disaster management. For the
experiment, we focus on 3 main scenarios: 1) an information explo-
ration use-case surveying an agriculture farm, 2) a proactive main-
tenance use-case monitoring oil pipelines using a manned aircraft,
and 3) a disaster study/mitigation use-case responding to hurricane
damage with aerial drone imagery. We have studied a total 5TB of
frames from more than 500 drone surveys among the three scenarios.
Majority of the surveys had only one camera per drone, 15 of them
had two cameras per drone, 7 of them had four cameras per drone,
and lastly 1 of them had six cameras on the drone.

Synthetic datasets: In order to stress-test the system and also to
obtain large quantity of images with ground-truth labels from the vir-
tual reality environment (Section 4.6). The simulator is setup to con-
tinuously stream raw frames by operating a virtual aerial drone with
a single downward facing camera in the environment generated at a
rate of 20 frames per second each with a resolution of 1024x768 pixels.

Testbed:We use a Xeon [54] Desktop with NVIDIA GTX GPU [79]
to help replay the real-world datasets as well as run the Airsim drone
simulator, a Surface Book 2 [76] as the edge, and Azure Blob Stor-
age [75] as the remote destination. We use a 10Gbps link between the
drone emulator desktop and the edge laptop, essentially ensuring no
bottlenecks on this link. We emulate an upload link between the edge
and the cloud with di�erent speeds between 3 and 15 Mbps, typical of
remoteareas [19]wheredronesareoperated in thecommercial indus-
try. The network bandwidth is throttled by setting the maximum up-
load bandwidth for the �le share mounted on the edge. For more real-
istic network setting, towards the end of this section, we also summa-
rize the results from a real world deployment by analyzing the logs.

Figure 6: Edge resource proportionality of Visage. In general,
the larger the scale factor is, the more accurate the impor-
tance detection will be. This means that less redundant data
will be sent, enabling applications to achieve a target score
faster. Visage can increase this speedup with more compute
power at the edge to process higher resolution images.

Metrics: In addition to visual evaluationby domain experts and
standard latency or resource utilization metrics, we also adopt the
following metrics to compare Visage with other approaches.
� Region-weightedPeakSignal toNoiseRatio (R-PSNR)[123]:Aclassic

metricbasedonPSNRthatassesses the �delityof reconstructed/de-
compressed images by measuring per-pixel distortion between
the ground-true image and the reconstructed one. A higher value
indicates a higher �delity. Typical values in wireless transmission
of compressed images are 20-25dB [63, 113]. We adopt a �region-
weighted� version [123] of PSNR to focus more on regions that are
more important to the application, instead of treating all pixels
equally. For example, in the agriculture use-case, regions with
plants are weighted higher. Weights are determined by the appli-
cation and are consistent with the sensitivity scoring used in [127].

� Region-weighted Structural Similarity Index (R-SSIM)[123, 138]:
Another classic metric for assessing the �delity of reconstruct-
ed/decompressed images by measuring the structural similarity
between the ground truth and the reconstruction.R-SSIMis cal-
culated in a similar manner asR-PSNR.

� Object Coverage Ratiois a state-of-the-art metric to assess pro-
cessed images by employing a deep-learning model as the eval-
uator [55, 81, 96, 102, 132]. Unlike classical PSNR/SSIM, the deep-
learning based metric captures the features and semantics that are
critical to applications. A standard semantic segmentation DNN
(dilated ResNet) [136, 137] is adopted to obtain the pixel-count
ratio of chosen objects for a batch of images,e.g.,healthyforest
pixel coverage ratio. The better the image transmission approach,
the better is the ratio,i.e., the transmitted image is comparatively
closer to the original image at any given time.

� Object Countis a similar metric that also employs a deep-learning
based object detector [72] to count the number of chosen objects in
a batch of images [122], e.g., the number of trees in a unique-frame.

5.2 Individual Component Analysis

Important Segment Detection: Visage is able to adjust the bene-
�ts itdelivers toapplications inproportion to the importantsegments
detected. However, this depends on being able to use a GPU at the
edge for detecting important segments in the data. A central premise
of Visage is that powerful edge systems are not easily available in
remote regions and therefore, we perform the importance detection
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