
HyperFuzzer: An Efficient Hybrid Fuzzer for Virtual CPUs
Xinyang Ge

Microsoft Research

xing@microsoft.com

Ben Niu

Microsoft

beniu@microsoft.com

Robert Brotzman

Penn State University

rcb44@cse.psu.edu

Yaohui Chen

Facebook

yaohway@gmail.com

HyungSeok Han

KAIST

hyungseok.han@kaist.ac.kr

Patrice Godefroid

Microsoft Research

pg@microsoft.com

Weidong Cui

Microsoft Research

wdcui@microsoft.com

ABSTRACT
In this cloud computing era, the security of hypervisors is critical

to the overall security of the cloud. In particular, the security of

CPU virtualization in hypervisors is paramount because it is imple-

mented in the most privileged CPU mode. Blackbox and graybox

fuzzing are limited to finding shallow virtual CPU bugs due to its

huge search space. Whitebox fuzzing can be used for systematic

analysis of CPU virtualization, but existing implementations rely

on slow hardware emulators to enable dynamic symbolic execution.

In this paper, we present HyperFuzzer, the first efficient hybrid

fuzzer for virtual CPUs. Our key observation is that a virtual CPU’s

execution is determined by the VM state. Based on this observation,

we design a new fuzzing setup that uses complete VM states as

fuzzing inputs, and a new fuzzing technique we call Nimble Sym-

bolic Execution to enable dynamic symbolic execution for CPU

virtualization running on bare metal. Specifically, it uses the hard-

ware to log the control flow efficiently, and then reconstructs an

approximate execution trace from only the control flow and the

fuzzing input. The reconstructed execution trace is surprisingly

sufficient for precise dynamic symbolic execution of virtual CPUs.

We have built a prototype of HyperFuzzer based on Intel Proces-

sor Trace for Microsoft Hyper-V. Our experimental results show

that HyperFuzzer can run thousands of tests per second, which is 3

orders of magnitude faster than using a hardware emulator. When

compared with a baseline using full (control+data) execution traces,

HyperFuzzer can still generate 96.8% of the test inputs generated

by the baseline. HyperFuzzer has found 11 previously unknown

virtual CPU bugs in the Hyper-V hypervisor, and all of them were

confirmed and fixed.

CCS CONCEPTS
• Security and privacy → Software and application security;
Systems security.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484748

KEYWORDS
fuzzing, symbolic execution, virtualization, hypervisor

ACM Reference Format:
Xinyang Ge, Ben Niu, Robert Brotzman, Yaohui Chen, HyungSeok Han,

Patrice Godefroid, andWeidong Cui. 2021. HyperFuzzer: An Efficient Hybrid

Fuzzer for Virtual CPUs. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3460120.3484748

1 INTRODUCTION
Hardware-assisted virtualization is one of the most disruptive tech-

nologies in the past two decades. The increasing growth of the cloud

computing industry makes virtualization more prevalent than ever.

As a result, most people today run their computation tasks on top

of virtualization either explicitly or implicitly.

Root mode Non-root mode

Ring 0 Virtual CPU (Both) Virtual I/O (Type-1)

Ring 3 Virtual I/O (Type-2) Virtual I/O (Type-1)

Table 1: The CPU mode where virtual CPU and virtual I/O
are implemented in type-1 and type-2 hypervisors on x86.

Hypervisors implement the abstraction of virtualmachines (VMs)

and allow them to share resources on a single physical machine.

This makes the security of hypervisors paramount for the cloud—

Microsoft offers up to $250,000 bounty for a single bug in Hyper-

V [7]. A hypervisor has two main tasks: CPU virtualization and I/O

virtualization as listed in Table 1. While I/O virtualization can be im-

plemented in a less-privileged user-mode process [11] or offloaded

to dedicated hardware [2], CPU virtualization is at the heart of a

hypervisor and implemented in the most privileged CPU mode (e.g.,

root mode, ring 0 on x86). Therefore, a security vulnerability in CPU

virtualization can lead to catastrophic consequences (e.g., allowing

a malicious VM to take control of the entire physical machine).

Searching for CPU virtualization bugs is challenging because

the search space consists of all possible architectural states. This

huge search space is reflected in the almost 5,000 dense pages of

the latest Intel Software Developer Manual [32] that describes the

interface implemented by a modern CPU. For example, one bug

https://doi.org/10.1145/3460120.3484748
https://doi.org/10.1145/3460120.3484748
https://doi.org/10.1145/3460120.3484748

we found in this work requires that (1) the guest VM runs in the

16-bit protected mode, (2) attempts to execute an instruction from

a memory-mapped I/O region, and (3) places a specific instruction

at the guest physical address 0. It is almost impossible for random

testing to hit all these conditions at once to trigger the bug.

Existing solutions for securing hypervisors are insufficient. For-

mal verification techniques have been applied to individual compo-

nents of commercial hypervisors [37] or to simpler non-commercial

hypervisors [13, 21, 31, 36], but they currently do not scale to full-

fledged commercial hypervisors like those deployed in the pub-

lic cloud. Manually-written [6, 14] or randomly-generated [4, 8–

10, 44, 45] tests are unlikely to catch bugs involving complex trigger

conditions (like the one mentioned above) due to their blackbox
or graybox nature. For example, the state-of-the-art hypervisor

fuzzer called Nyx [45] employs a coverage-guided graybox fuzzing

setup, and only finds ring-3 I/O virtualization bugs in KVM/QEMU.

Dynamic symbolic execution (for whitebox fuzzing) can be used to

search for bugs with complex trigger conditions, but existing white-

box fuzzing systems for hypervisors have low fuzzing throughput.

For instance, MultiNyx [24] incurs significant slowdown by execut-

ing the hypervisor on a hardware emulator [3] which itself runs

on a binary instrumentation framework [38].

This motivates us to build an efficient hybrid fuzzer tailored for

CPU virtualization in hypervisors. Hybrid fuzzing [17, 39, 48, 50, 53]

is an automatic test generation technique that combines coverage-

guided random input mutation with precise input generation based

on path constraints derived from dynamic symbolic execution [30].

Hybrid fuzzing has shown its effectiveness in finding security

vulnerabilities in user-mode programs: graybox fuzzing quickly

explores easy-to-find program paths with simple random input

mutations, while whitebox fuzzing extends the search frontier to

harder-to-find program paths with precise path constraint solving.

We introduce HyperFuzzer, the first efficient hybrid fuzzer for

virtual CPUs. In the rest of the paper, we refer to hypervisor as

its virtual CPU implementation unless specified otherwise. The

key observation driving the design of HyperFuzzer is that a virtual
CPU’s execution is determined by the VM’s state, not by the hypervi-
sor’s internal state. This is similar to a real CPU whose execution

is driven by the software state (e.g., registers and memory), not by

the CPU’s internal state.

Based on this observation, we design a new fuzzing setup for

HyperFuzzer. First, we use a complete VM state as the fuzzing

input. This allows HyperFuzzer to mutate both the instruction

to be executed by the VM and the architectural environment in

which the instruction is executed. Mutating the full VM state is

crucial for catching CPU virtualization bugs that depend on some

uncommon architectural state (e.g., 16-bit protected mode). Second,

we construct a VM’s state as a fuzzing input from scratch. We only

include data required for a valid architectural state in a fuzzing

input, which allows it to be as small as a few hundred bytes. The

small size of fuzzing inputs is important for effective input mutation

and fast VM restore. Third, we only fuzz the (short) virtual CPU

execution of the first VM trap triggered by a fuzzing input. We do

not need to fuzz the execution of multiple VM traps because each

subsequent trap can be explored by a different fuzzing input. The

short execution size of fuzzing sessions is important for precise

dynamic symbolic execution.

To make HyperFuzzer hybrid, we must support both coverage-

guided random mutation and precise input generation based on

dynamic symbolic execution. To make HyperFuzzer efficient, we

must run the hypervisor natively on a real CPU instead of on a

hardware emulator. This is seemingly contradictory because hybrid

fuzzing usually requires instrumentation or emulation to record the

execution of the fuzzing target. The key enabling technology for Hy-

perFuzzer is a new dynamic symbolic execution technique we call

Nimble Symbolic Execution (NSE). NSE uses hardware tracing, such
as Intel Processor Trace (PT) [32, Chap. 35], to record the complete

control flow of the virtual CPU’s execution in the hypervisor with

low performance overhead. The recorded control flow is obviously

sufficient for coverage-guided fuzzing [18, 46, 52]. Unfortunately, it

does not include data values for registers or memory locations, and

is thus insufficient for dynamic symbolic execution that requires

both the control and data flows.
To overcome this limitation, NSE reconstructs an approximate

execution trace based on the fuzzing input and the recorded control

flow of the virtual CPU. In principle, this reconstruction is incom-

plete because the hypervisor’s memory and register values during

the execution are not recorded and thus unknown. However, thanks

to our specific fuzzing setup and our key observation that the VM

state determines the execution of a virtual CPU, NSE reconstructs

execution traces with high precision sufficient for dynamic sym-

bolic execution. This allows HyperFuzzer to generate the majority

of new fuzzing inputs that would be generated by a baseline sys-

tem that uses a hardware emulator to record full-fidelity execution

traces but is orders-of-magnitude slower than HyperFuzzer.

We have implemented a prototype of HyperFuzzer based on Intel

PT for Microsoft Hyper-V. By launching a VM to directly trigger

a hypervisor’s native execution on a real CPU, HyperFuzzer can

run thousands of tests per second, which is 3 orders of magnitude

faster than using a hardware emulator like Bochs [3]. When com-

paring NSE against a baseline with full-fidelity execution traces

(control+data), we find that NSE can generate 96.8% of the new

fuzzing inputs generated by the baseline while only relying on the

recorded control flows and the fuzzing inputs. Finally, HyperFuzzer

has found 11 previously unknown virtual CPU bugs in the Hyper-V

hypervisor, including 6 security critical ones that allow a malicious

guest VM to compromise the underlying physical machine. All 11
bugs were confirmed and fixed.

In particular, we make the following contributions:

• The first efficient hybrid fuzzer for virtual CPUs without

using a slow hardware emulator.

• TheNimble Symbolic Execution technique that enableswhite-

box fuzzing for virtual CPUs with only a control-flow trace

recorded by the commodity hardware.

• An effective prototype of HyperFuzzer that has found 11

previously unknown virtual CPU bugs in the Hyper-V hy-

pervisor.

2 MOTIVATION
In this section, we use a real-world bug found by HyperFuzzer to

motivate our design. We first describe the bug, then explain the

root cause, and finally discuss the requirements for HyperFuzzer.

HyperFuzzer VM Testing VM

Fuzzing Inputs Run

Nimble Symbolic
Execution

Coverage-guided
Mutation (AFL)

Hypervisor

rax … rsp …
rip … cr0 …

00 00 00 … 00
……

0f 01 c1 // vmcall

cs … msr …

……

VM state
(restored by HyperFuzzer)

Trace
Buffer

Trace
Buffer

mapped

control flow

Intel PT

Figure 1: Overview of HyperFuzzer’s design.

This particular virtual CPU bug is triggered when the guest VM

is in the following state. It runs in the 16-bit protected kernel mode

with paging disabled and attempts to execute an instruction from

the memory-mapped I/O region of the Advanced Programmable

Interrupt Controller (APIC), which is mapped at the physical ad-

dress 0xFEE00000 on x86. The hypervisor traps all the guest’s APIC
accesses for emulation. In this case, the hypervisor detects that the

guest VM runs in the 16-bit mode, so it truncates the guest’s in-

struction pointer to the lower 16 bits. This causes the hypervisor to

erroneously emulate the guest’s instruction at the guest physical

address 0. This inconsistency crashes the hypervisor eventually.

The root cause of this bug is a misunderstanding of the architec-

tural difference between the 16-bit realmode and the 16-bit protected
mode on x86. While the effective address for data operands is 16-bit

for both modes, the instruction pointer is 16-bit in the former but

32-bit in the latter. Furthermore, this difference is not explicit in

Intel’s Software Developer Manual [32, Chapter 3]. The complexity

of the modern CPU architecture not only makes the virtual CPU

implementation error-prone, but also makes it difficult to find bugs

in its huge search space.

In order to catch tricky CPU virtualization bugs like the one

described above, we argue that HyperFuzzer must satisfy the fol-

lowing two requirements.

First, HyperFuzzer must mutate a VM’s entire state rather than

just the instructions it executes. When we construct the initial set

of fuzzing inputs for HyperFuzzer, we do not have any input that

is in the 16-bit protected mode. This mode is controlled by two

bits in the Global Descriptor Table (GDT) (CS.L = 0 and CS.D = 0).

Without mutating the entire VM state that includes the GDT, it is

impossible to trigger the bug described above.

Second, HyperFuzzer must enable precise input generation based

on dynamic symbolic execution. To generate a new VM state in

the 16-bit protected mode, HyperFuzzer needs to negate the two

bits in the guest GDT. This requires it to precisely track the path

constraints for the hypervisor’s check on the guest VM mode.

3 OVERVIEW
HyperFuzzer is an efficient hybrid fuzzer for CPU virtualization

in hypervisors. We focus on CPU virtualization because it is im-

plemented in the most privileged CPU mode (e.g., root mode, ring

0 on x86), and its bugs have serious security implications for the

whole system. We assume an adversary has complete control inside

a guest VM, which is consistent with the threat model used by

cloud operators. Specifically, we assume the adversary controls the

virtual disk image and thus controls the booting code and the guest

OS. This would allow the adversary to directly boot the guest VM

into a bug-inducing VM state to trigger a bug in the hypervisor.

We show the end-to-end fuzzing setup of HyperFuzzer in Fig-

ure 1. HyperFuzzer begins with a set of fuzzing inputs. Each fuzzing

input is a complete VM state including the VM’s registers and entire

memory. This allows HyperFuzzer to mutate both the instruction to

be executed by the VM and the architectural environment in which

the instruction is executed (e.g., the interrupt descriptor table, the

segment attributes, the page tables). Instead of taking a snapshot of

a traditional VM, we construct the seed fuzzing inputs from scratch

for two reasons. First, this allows us to make a VM’s state as small as

a few hundred bytes by only including data required architecturally.

The small size of the fuzzing inputs is important for HyperFuzzer’s

efficiency. Second, it allows us to construct an uncommon but archi-

tecturally valid VM state against the hypervisor. Such a VM state

may not be reached by a traditional operating system.

HyperFuzzer runs its fuzzing loop in the management VM of

Hyper-V (also known as the root partition [41]). For each fuzzing

input, HyperFuzzer creates a dedicated testing VM and resumes its

execution from the state specified in the input. The VM will trigger

some virtual CPU execution. HyperFuzzer then halts the VM after

its first trap into the hypervisor. During this process, HyperFuzzer

leverages efficient hardware tracing, such as Intel PT [32, Chap. 35],

to record the control flow of the virtual CPU’s execution during

the first trap.

For coverage-guided fuzzing, HyperFuzzer derives the hyper-

visor branch coverage from the recorded control flow, and feeds

the information to a coverage-guided fuzzer such as AFL [1]. The

coverage-guided fuzzer will maintain a list of interesting VM states

that have triggered new code coverage, and repeatedly apply ran-

dom mutations to them.

For whitebox fuzzing, HyperFuzzer marks the entire VM state

as symbolic, and performs Nimble Symbolic Execution (NSE) based

on the recorded control flow and the fuzzing input. NSE iterates

over the recorded instruction sequence, detects the hypervisor’s

accesses to the symbolic VM state, tracks the path constraints for

input-dependent conditional branches, and generates new inputs

by solving the negated constraints to flip these branches. The key

challenge for NSE is to perform these steps with only the recorded

control flow (i.e., no register or memory values are recorded).

4 DESIGN
In this section, we present the design of HyperFuzzer by focusing

on how it enables efficient dynamic symbolic execution for virtual

CPUs in the hypervisor. We first describe the fuzzing setup of Hy-

perFuzzer that enables hypervisor-only symbolic execution. Then

we present how it performs symbolic execution based on only the

control flow and the fuzzing input.

4.1 Fuzzing Setup
In HyperFuzzer, we use the complete VM state as the fuzzing input.

In general, a guest VM runs most of its instructions natively on the

VM

Hypervisor
Time

VM state

VMEXIT
VMENTER

VMEXIT

(a)

VM

Hypervisor
Time

VM state

VMEXIT

Done

(b)

Figure 2: (a) shows a generic scenario where the VM starts
execution from a specified state and constantly traps to the
hypervisor for emulation. HyperFuzzer realizes hypervisor-
only symbolic execution by forcing no execution inside the
VMand only analyzing the virtual CPU execution of the first
VM trap in the hypervisor as shown in (b).

CPU, and traps into the hypervisor only when the guest operation

needs to be intercepted for emulation, such as executing a special

instruction or accessing memory-mapped I/O regions. Therefore,

when the testing VM is resumed from a specified VM state, its

execution will alternate between the guest VM and the hypervisor,

and can potentially run indefinitely as shown in Figure 2a.

This is not ideal for dynamic symbolic execution because Hyper-

Fuzzer would have to analyze not only the hypervisor’s execution

but also the guest VM’s execution as both executions can update the

symbolic VM state. MultiNyx [24] presents a multi-level analysis

to enable symbolic execution across the VM and the hypervisor,

but their analysis adds complexity and performance overhead for

maintaining state across two CPU modes in symbolic execution.

HyperFuzzer uses a different fuzzing setup to enable a hypervisor-
only symbolic execution. As shown in Figure 2b, the VM state is

set up in such a way that the VM is immediately trapped into

the hypervisor to trigger its virtual CPU execution without any

execution in the VM. Furthermore, HyperFuzzer only traces the

virtual CPU execution of the first trap in the hypervisor, and halts

the VM after it.

This fuzzing setup has two advantages. First, by forcing no exe-

cution in the guest VM, it avoids performing symbolic execution

to track state changes in the VM. Second, it allows HyperFuzzer

to perform symbolic execution on a short virtual CPU execution

history, which helps make its analysis efficient and precise.

One concern here is whether analyzing the virtual CPU execution

over a single VM trap fundamentally limits HyperFuzzer’s code

reachability in the hypervisor. We argue that the majority of virtual

CPU implementation can be tested in this fashion. Since a virtual

CPU’s execution is determined by the VM state, a subsequent VM

trap can be potentially explored by a different VM state. For example,

to test the second VM trap in Figure 2a, we can conceptually capture

1 ; VMEXIT entrypoint
2 push rcx
3 mov rcx, gs:[0x10] ; load vCPU pointer
4 mov vcpu.rax[rcx], rax ; save guest GPRs
5 mov vcpu.rbx[rcx], rbx ;
6 ...
7 ; VMEXIT event emulation
8 mov rbx, vcpu.rbx[rdi] ; read guest RBX
9 cmp rbx, 5
10 je some_branch

Figure 3: An example of data propagation.

the VM state right before that trap, and use it as another fuzzing

input in Figure 2b.

The remaining question is how to ensure every VM state im-

mediately traps to the hypervisor when resumed. While we can

ensure the initial fuzzing inputs satisfy the requirement via careful

construction, it cannot be guaranteed after a VM state is randomly

mutated. HyperFuzzer detects such cases by running the testing

VM in the single-step mode to force a VM trap after the first instruc-
tion is executed in the VM. When such a single-step trap happens,

HyperFuzzer knows the VM state did not trigger an immediate VM

trap when resumed, and simply removes the fuzzing input from

further symbolic execution and/or mutations.

4.2 Nimble Symbolic Execution
HyperFuzzer performs dynamic symbolic execution based on the

fuzzing input and the control flow of the virtual CPU execution

recorded in our fuzzing setup (§4.1). Since it is different from the

traditional symbolic execution that requires a full execution trace,

we call it Nimble Symbolic Execution (NSE) to emphasize its effi-

ciency. What the control flow provides is a sequence of machine

instructions without any register or memory values. At a high level,

NSE introduces symbolic inputs and their concrete values when

the hypervisor accesses the VM state, emulates every instruction

in the sequence to update the concrete and symbolic stores, and

solves the negated path constraints at input-dependent branches

to generate new fuzzing inputs.

NSE faces two unique challenges. First, the recorded virtual CPU

execution may involve the hypervisor’s internal state. Since we

do not have a full execution trace, the concrete values of some

internal state may be unknown. Some unknown virtual CPU state

may affect NSE’s analysis if the unknown values are involved with

symbolic inputs. Second, the physical CPU can perform checks on

the VM state before trapping to the hypervisor, and NSE has to

account for these hidden checks when solving constraints. Next,

we describe how NSE tackles these two challenges.

4.2.1 Unknown Virtual CPU State. Some unknown virtual CPU

state may affect NSE’s analysis in two ways. First, if an unknown

value is used to decide the memory location to store a symbolic

input, NSE will lose track of the symbolic input since the memory

location is unknown. Second, if an unknown value is used in the

path constraint for an input-dependent conditional branch, NSE

will not be able to negate the path constraint to flip the branch. The

good news is that the second case is rare—our evaluation shows

that over 98% of the input-dependent conditional branches do not

depend on any unknown virtual CPU state (§6.3.1). This matches

our observation that the VM state determines the virtual CPU

execution. NSE simply ignores those input-dependent branches

that involve unknown virtual CPU state. In the rest of the section,

we focus on how NSE solves the first case.

We show an example in Figure 3. When a guest triggers a VM

trap, the hypervisor first saves all its general-purpose registers in

an internal data structure representing the current virtual CPU

(Line 2-6). When the hypervisor handles the trapping event for the

guest, it may fetch the guest’s register state from its virtual CPU

data structure, and emulates the operation accordingly (Line 8-10).

The main issue here is that the virtual CPU pointer is an internal

state of the hypervisor, so it cannot be derived from the fuzzing

input. Without knowing the pointer value, NSE will lose track of

the concrete value and symbolic expression for rbx at Line 8. Our
insight is that we do not need to know the actual pointer value. We

can just give it some concrete value v so that NSE can propagate

the symbolic expression and the concrete value of rbx through the

memory location specified by vcpu.rbx[v].
In general, for any missing memory address that is only used

for data propagation but not involved in path constraints, NSE can

assign an arbitrary value to it to keep the concrete value and the

symbolic expression propagated. However, these arbitrary values

for memory addresses must meet the underlying aliasing require-

ment (i.e., rcx at Line 3 and rdi at Line 8 are aliased addresses and

must have the same value). In the context of CPU virtualization, we

find that the aliasing relationship between the virtual CPU’s inter-

nal data structures does not depend on the guest VM state. Based

on this observation, we mitigate the problem of missing memory

addresses in the following way. We first take a memory dump of

the virtual CPU right before it starts processing a guest VM trap.

We only need to take the memory dump once. The intuition is that

this memory dump captures the aliasing relationship of the virtual

CPU’s internal data structures. When NSE emulates an instruction

that accesses some virtual CPU’s internal state, it takes the con-

crete value from the memory dump. To ensure the values from the

memory dump are not used in path constraints but only used for

input data propagation, NSE tracks if a concrete value or a symbolic

expression is derived from the memory dump.

4.2.2 Hidden Constraints. The hardware performs a series of checks

on the VM state before the execution is trapped into the hypervisor.

Since these checks are done inside the hardware, they are invisible

to NSE and thus cannot be captured in the path constraint gener-

ated by symbolic execution. Therefore, when NSE solves a path

constraint to find a new fuzzing input, this new input might violate

some (hidden) hardware check and be rejected by the hardware

without triggering any virtual CPU execution in the hypervisor.

Existing fuzzing solutions for user-mode code do not have this

problem because all constraints are (visible) software constraints.

Ideally, NSE should emulate and derive path constraints from

these implicit hardware checks described in the software developer

manual. However, it requires non-trivial engineering efforts because

these checks are complex and vary across CPU generations. Instead,

we find that NSE can apply the following two techniques to reduce

1 void emulate_taskswitch()
2 {
3 // To reach here, the processor has already
4 // verified (guest_eflags & 0x0001) != 0.
5 // Now, the hypervisor is checking another bit
6 // in guest_eflags.
7 if (guest_eflags & 0x4000) {
8 ...;
9 } else {
10 ...;
11 }
12 }

Figure 4: An example of the challenge caused by hardware
checks on the VM state.

1 void some_hyp_func()
2 {
3 if (a > 5) {
4 if (b == 8) { // <-- negate this one
5 ...; // this branch was taken originally
6 } else {
7 ...;
8 }
9 }
10 }

Figure 5: An example of unrelated constraint elimination.

unnecessary input-value changes when solving constraints and

effectively mitigate the problem of hidden hardware checks.

First, NSE enables bit-wise precision in its symbolic execution—

every bit in the fuzzing input has its own symbolic variable [47].

We show how bit-wise precision reduces input-value changes in Fig-

ure 4. Suppose the hardware has already checked bit 1 in guest_eflags
is set (otherwise it would have rejected the input). During the hy-

pervisor’s execution, it checks bit 14 of guest_eflags and enters

the else branch at line 10 as a result. To negate this branch, NSE

needs to find a new value that satisfies guest_eflags & 0x4000
!= 0. If NSE models guest_eflags as one symbolic variable, it

is possible for the constraint solver to find a new guest_eflags
whose bit 14 is set but bit 1 is cleared which violates the hardware

check. With per-bit symbolic variables, the constraint would be-

come guest_eflags_bit14 & 0x1 != 0, so only the bit 14 will

be modified in the new input.

Second, NSE applies the unrelated constraint elimination tech-

nique introduced in SAGE [30] to remove unrelated symbolic vari-

ables from the path constraint. Take the example shown in Figure 5.

If we want to flip the branch at line 4, the full path constraint would

be (a > 5)∧(b != 8). However, the input a is unrelated to the

branch constraint (b != 8). If we use the full path constraint, the

constraint solver may find an arbitrary value for the input a as

long as its new value is greater than 5. This could be a problem if

the hardware has a hidden check to require it to be less than some

constant value. Therefore, we eliminate branch constraints that do

not share symbolic variables with the negated branch in a transitive

manner to avoid unnecessary changes. In this example, the path

constraint would become (b != 8), which avoids changing the

Component Lang SLoC

Fuzzing Control (§5.1) C/C++ 6K

Hypervisor Tracing (§5.2) C 4K

Nimble Symbolic Execution (§5.3) C++ 38K

Table 2: Implementation of HyperFuzzer (SLoC)

input a. While prior systems [30, 50] leverage this technique for

performance optimization, it is essential to NSE in accounting for

hidden hardware checks and reducing hardware rejections.

5 IMPLEMENTATION
In this section, we describe the implementation of HyperFuzzer.

We implement a prototype of HyperFuzzer on the Intel VMX plat-

form [32, Chap. 23] for Microsoft Hyper-V [41]. The prototype has

three major components: fuzzing control, hypervisor tracing, and

Nimble Symbolic Execution (as shown in Table 2). Next, we describe

these components in detail.

5.1 Fuzzing Control
The fuzzing control component runs inside the host’s manage-

ment VM. It is responsible for initializing the testing VM, loading

a fuzzing input to set up the testing VM, configuring the hypervi-

sor for tracing, and passing the control flow trace to graybox and

whitebox fuzzing.

Each fuzzing input is a binary file specifying a VM state that

contains register and memory values. We construct these initial

fuzzing inputs manually based on expert knowledge. This allows

us to craft fuzzing inputs arbitrarily without following modern op-

erating system conventions. We make the size of the initial fuzzing

inputs as small as possible to make random mutation more effective

in coverage-guided fuzzing. We do so by eliminating data structures

that are unnecessary for the virtual CPU function being fuzzed. For

instance, paging is not required for the 32-bit protected mode, so

we can eliminate the guest page tables and make the fuzzing input

as small as a few hundred bytes when constructing the state for a

32-bit VM. For virtual CPU features only reachable from a 64-bit

VM, we allocate 2 page table pages to setup 512GB identity mapping

using 1GB huge pages in the guest VM. This helps minimize the

number of memory pages required for guest page tables.

To support hypervisor-only analysis, we set up the initial fuzzing

inputs in such a way that the testing VM traps into the hypervisor

upon executing the first instruction. However, this cannot be guar-

anteed for new fuzzing inputs after they are mutated. To handle

this case, we use the Monitor Trap Flag (MTF) [32, Chap. 25.5.2]

provided by Intel VMX to force the testing VM to trap into the

hypervisor after executing the first instruction. When HyperFuzzer

detects an MTF VM exit from the testing VM, it simply removes

the fuzzing input from further analysis.

We use AFL [1] for graybox fuzzing and implement whitebox

fuzzing based on NSE. We use the Z3 SMT solver [22] in whitebox

fuzzing to do constraint solving. We implement HyperFuzzer as a

hybrid fuzzer by integrating whitebox fuzzing into the main fuzzing

loop of AFL. The pseudo code is shown in Figure 6. Specifically, we

modify AFL’s code to invoke whitebox fuzzing every time when

1 list interesting_input_queue;
2

3 void save_if_interesting(input)
4 {
5 coverage = test(input);
6 if (has_new_coverage(coverage))
7 interesting_input_queue.push_back(input);
8 }
9

10 void fuzz_one(input)
11 {
12 list new_white_inputs = WhiteboxFuzzing(input);
13 foreach (new_input in new_white_inputs)
14 save_if_interesting(new_input);
15

16 list new_gray_inputs = GrayboxFuzzing(input);
17 foreach (new_input in new_gray_inputs)
18 save_if_interesting(new_input);
19 }
20

21 void AFL(init_input_list)
22 {
23 foreach (init_input in init_input_list)
24 save_if_interesting(init_input);
25

26 while (true) {
27 foreach (input in interesting_input_queue)
28 fuzz_one(input);
29 }
30 }

Figure 6: Pseudo code for HyperFuzzer’s hybrid fuzzing.

AFL mutates an “interesting” input that triggers new code coverage.

The whitebox fuzzing runs symbolic execution using NSE on the

given input and generates some new fuzzing inputs. These new

fuzzing inputs are tested, and those that trigger new code coverage

are added into the queue of interesting fuzzing inputs. Note that

AFL initializes this queue by testing all initial fuzzing inputs.

5.2 Hypervisor Tracing
We record the control flow of the hypervisor using Intel PT [32,

Chap. 35]. We modify the Hyper-V hypervisor to enable the control

flow tracing for each virtual CPU. Specifically, we allocate a trace

buffer for each virtual CPU, and instrument the virtual CPU switch

routine to swap the trace buffers when a different virtual CPU is

scheduled onto the physical processor. We do not need to trace the

VM execution in HyperFuzzer, so we resume/pause Intel PT tracing

when the execution enters/leaves the hypervisor. Parsing an Intel

PT trace requires the hypervisor’s code. We retrieve the code pages

from the hypervisor memory dump (cf. Section 4.2.1).

5.3 Nimble Symbolic Execution
We implement NSE for Intel x86 ISA from scratch because exist-

ing symbolic execution engines require full execution traces and

cannot handle unknown values. Our prototype supports common

x86 instructions such as arithmetic, logical, memory access, AVX,

and branch instructions. It also has a basic understanding of other

instructions (e.g., what are the source and destination operands)

and implements a default policy for instructions that are not spe-

cially handled (e.g., clear the value and symbolic expression of the

destination operand).

NSE initializes symbolic variables when it detects the hypervisor

accessing the VM state during instruction emulation. The values

of general-purpose registers in the VM fall through to the hypervi-

sor on the trap. Thus NSE simply marks them as symbolic in the

symbolic store and initializes the concrete store with their values

specified in the fuzzing input when starting the symbolic execu-

tion. To access a memory page in the VM, the hypervisor maps

the underlying physical page to its own address space. To handle

such memory accesses, NSE detects the invocation of the memory

mapping function during symbolic execution. Then it marks the

mapped page as symbolic in the symbolic store, and populates the

concrete store with the memory page’s content specified in the

fuzzing input. Finally, we need some special handling for system
registers that are passed by the hardware to the hypervisor through

the Virtual Machine Control Structure (VMCS) [32, Chap. 24]. To

access a field in VMCS, the hypervisor uses the dedicated VMREAD
instruction. NSE emulates this instruction to initialize the symbolic

expression and the concrete value for a system register when it is

accessed by the hypervisor.

NSE captures a memory dump of the hypervisor when it is re-

booted to leverage its internal state in dynamic symbolic execution.

First, NSE uses data stored in read-only memory pages directly

because they are not updated since the memory dump is captured.

Second, NSE uses data from writable pages in a conservative man-

ner. Specifically, NSE maintains a flag to track if a concrete value

or a symbolic expression contains data from writable pages in the

hypervisor memory dump. This has two benefits: it allows NSE

to recover more memory addresses used for input propagation,

and NSE can use the flag to ignore path constraints that contain

dynamic values from the hypervisor dump (see Section 4.2.1).

6 EVALUATION
In this section, we present our experimental results with Hyper-

Fuzzer. For evaluation purposes, we implement a baseline system

based on the Bochs emulator [3] that can collect full execution
traces of the hypervisor including both its control and data flows.

When running our experiments, we aim to answer the following

questions.

(1) Efficiency (§6.2):

• Run time (§6.2.1): How long does it take to run a single

test?

• Throughput (§6.2.2):What is HyperFuzzer’s fuzzing through-

put?

(2) Precision (§6.3):

• Completeness (§6.3.1): What fraction of input-dependent

conditional branches can NSE identify?

• Divergences (§6.3.2): What fraction of inputs generated

by NSE can correctly flip their targeted branches?

(3) Coverage (§6.4): How is HyperFuzzer’s code coverage com-

pared with graybox-only or whitebox-only fuzzing?

(4) Bugs (§6.5): Can HyperFuzzer find previously unknown vir-

tual CPU bugs in the Hyper-V hypervisor?

Initial Expanded

Hypercalls 157 1091

Task Switch 5 186

APIC Emu. 56 521

MSR Emu. 2 476

Table 3: The number of fuzzing inputs in the initial and ex-
panded fuzzing sets for different virtualization interfaces.

In the rest of this section, we first present our experimental

methodology, and then describe our experimental results in detail.

6.1 Experimental Methodology
6.1.1 Experiment Setup. We run all experiments on a workstation

with a quad-core Intel i7-6700K processor and 16GB RAM.We focus

our experiments on four virtualization interfaces: hypercalls, hard-

ware task switch [32, Chap. 7] emulation, advanced programmable

interrupt controller (APIC) emulation, and model-specific register

(MSR) emulation. We pick these interfaces because they either have

a big attack surface (e.g., hypercalls) or previously-reported bugs

(e.g., Task Switch). We do not cover all virtualization interfaces due

to the manual efforts required for understanding and constructing

initial fuzzing inputs for these.

We manually create a number of initial fuzzing inputs [12] for

Task Switch, APIC and MSR based on Intel Software Developer

Manual [32]. For instance, we have one fuzzing input for reading

and the other for writing an MSR. For hypercalls, we generate a

single initial fuzzing input for each hypercall API. Specifically, we

leverage an existing tool [5] to randomly generate parameters based

on the parameter’s type.

Our evaluation requires a large number of fuzzing inputs to

conduct the experiments. We run HyperFuzzer on the initial seed

fuzzing inputs for 120 minutes to generate a new set of fuzzing

inputs. In this new set, some inputs are generated by whitebox

symbolic executions, and others are generated by graybox random

mutations. We then keep all the new inputs that triggered new

code coverage, and discard others. We refer to the remaining set as

the expanded fuzzing set (see Table 3). Note that we divide fuzzing

inputs in the expanded fuzzing set based on the virtualization in-

terface it exercises for the purpose of evaluation. In practice, we

do not need to differentiate what virtualization interface a fuzzing

input exercises.

As described in §5.1, we implement HyperFuzzer by integrat-

ing the symbolic execution-based input generation into the main

fuzzing loop of AFL [1] that performs coverage-guided random

mutation. In the rest of this section, hybrid fuzzing refers to this

implementation, graybox fuzzing includes only AFL’s coverage-

guided random mutation, and whitebox fuzzing includes only the

symbolic-execution-based input generation.

6.1.2 Bochs-Based Baseline. We implement a baseline system based

on the Bochs emulator [3] for our experiments. We use this baseline

system to demonstrate HyperFuzzer’s performance improvement

(§6.2), and to provide the ground truth for evaluating NSE’s effec-

tiveness when only given a control-flow trace (§6.3). As shown

Bochs PC Emulator (parent process)

Bochs PC Emulator (forked upon fuzzing an input)

Hypervisor

Testing VM
VM state

(restored by Agent VM)

Agent VM

Emulated System

Execution
Recorder

Per-instruction callback

Fuzzing Inputs

Input Fetcher Run

CPUID(Magic)

Mutation

Figure 7: The architecture of the Bochs-based baseline.

in Figure 7, we run the Hyper-V hypervisor inside Bochs and instru-

ment Bochs to enable dynamic symbolic execution for the hypervi-

sor. We choose Bochs because it emulates Intel’s modern hardware

virtualization extension (VMX) with high fidelity while other hard-

ware emulators (e.g., QEMU) either do not emulate VMX at all or in

a very limited fashion. We implement per-instruction callbacks in

Bochs to record both the control and data flow of the hypervisor’s

execution.

The fuzzing loop of the baseline system is similar to HyperFuzzer

except that it runs inside an emulator. We run an agent inside the

management VM to load a fuzzing input and trigger the hypervi-

sor’s execution. The agent requests a fuzzing input by executing

CPUID with a special leaf value, and Bochs then copies the fuzzing

input to the agent’s memory space. The agent triggers the hyper-

visor’s execution in a way similar to HyperFuzzer by launching a

testing VM and setting up its state based on the fuzzing input.

We optimize the performance of the baseline system by forking
the Bochs emulator process when it fuzzes a new input. This enables

it to quickly rollback the entire emulated system including the

hypervisor and the agent. This optimization improves the fuzzing

throughput of the baseline system by two orders of magnitude

compared to a naive approach that restarts the Bochs emulator

from an on-disk snapshot every single time.

6.2 Efficiency
We evaluate HyperFuzzer’s efficiency by comparing it with the

Bochs-based baseline system in two experiments. In the first exper-

iment, we measure the average run time for performing a single

test (without any mutation) or a single symbolic execution (with

constraint solving) in HyperFuzzer and the baseline system. For this

experiment, we integrate the Triton symbolic execution engine [43]

into the Bochs emulator. In the second experiment, we measure the

throughput of hybrid, graybox and whitebox fuzzing.

6.2.1 Run Time. We measure the average run time of a single test

or symbolic execution for HyperFuzzer and the baseline system

on the expanded fuzzing set and show the result in Table 4. The

average run time for a single test is less than 0.5ms for HyperFuzzer,

while the baseline system is 3 orders of magnitude slower. The

HyperFuzzer Bochs-Based Baseline

Testing NSE Testing Triton [43]

Hypercalls 0.48 781.89 683.73 4861.84

Task Switch 0.33 457.83 690.94 3499.39

APIC Emu. 0.36 212.66 696.31 2074.09

MSR Emu. 0.36 387.51 687.87 1871.94

Table 4: The efficiency comparison between HyperFuzzer
and Bochs-based baseline system in performing a single test
and symbolic execution. Numbers in this table are in mil-
liseconds.

Hybrid Graybox Whitebox

Hypercalls 979.40 2945.03 35.63

Task Switch 1369.95 4378.22 106.88

APIC Emu. 1774.05 3650.68 210.85

MSR Emu. 1171.24 3967.35 76.67

Table 5: The throughput (# tests/sec) of hybrid, graybox and
whitebox fuzzing.

Input-Dep Branches New Inputs

Hypercalls 98.1% 96.8%

Task Switch 98.8% 98.9%

APIC Emu. 98.2% 99.2%

MSR Emu. 98.3% 99.2%

Table 6: The completeness evaluation of NSE. The percent-
ages listed are the fraction of input-dependent conditional
branches and new fuzzing inputs identified/generated by
NSE (based on the control flow and fuzzing input) compared
to the baseline set (based on full execution traces).

average run time for a single symbolic execution is between 212ms

and 782ms, while the baseline system is 4 to 10 times slower. The

ratio difference changes because both systems spend a significant

amount of time on constraint solving. However, HyperFuzzer is

still more efficient than the baseline system. We attribute this to

the implementation differences between the two systems.

6.2.2 Throughput. We evaluate HyperFuzzer’s throughput by run-

ning hybrid, graybox and whitebox fuzzing on the initial fuzzing

inputs for 120 minutes and reporting the average number of tests

per second in Table 5. We can see that hybrid fuzzing can run 1000’s

of tests per second, and graybox fuzzing’s throughput is 2 to 3 times

higher than that. The reported throughput for whitebox fuzzing is

higher than the number calculated based on the average run time of

symbolic execution. This is because not every tested fuzzing input

is passed to the symbolic execution in the allotted time (120 min-

utes). HyperFuzzer’s fuzzing throughput is 3 orders of magnitude

higher than the baseline system because only a small fraction of

fuzzing inputs that trigger new code coverage are tested with NSE.

6.3 Precision
We evaluate NSE’s precision by measuring what fraction of input-

dependent conditional branches it can correctly identify and then

flip. The former defines completeness, while the latter is measured by

counting divergences. A divergence occurs whenever a new input

generated to exercise a specific program path actually takes an

unintended path.

6.3.1 Completeness. We use the expanded fuzzing set to measure

completeness. We pick this data set to reduce the bias of using NSE

generated inputs to evaluate its effectiveness because this data set

contains fuzzing inputs generated by graybox fuzzing as well. For

each fuzzing input, we record the hypervisor’s full execution trace

(control+data) by using the Bochs-based baseline system. We then

run our core symbolic execution engine over the full execution trace

in order to compute a baseline set of input-dependent conditional

branches and new fuzzing inputs. To runNSE, we extract the control

flow from full execution traces as if it were logged by Intel PT. Then

to measure completeness, we compare the baseline set of the input-

dependent conditional branches and the new fuzzing inputs with

those computed by NSE based on the extracted control-flow-only

trace.

In other words, in order to isolate the effects of full (control+data)

versus control-flow-only execution traces, we run our core symbolic

execution engine on both Bochs-based traces and Intel PT traces

to measure completeness. In contrast, we deliberately do not use

Triton on the Bochs-based traces since such a comparison would

then obfuscate the results with other factors such as the quality

of two different symbolic execution engines, constraint generators

and solvers.

We show the experimental results in Table 6.We can see that NSE

can identify at least 98.1% of input-dependent conditional branches

and generate at least 96.8% of new fuzzing inputs in the baseline set

that are obtained from full execution traces. Note that we count each

occurrence of an input-dependent branch instruction in the trace

separately. The common reason for NSE to miss an input-dependent

conditional branch is that the hypervisor mixes the input with its

internal state, which is unknown to NSE. When this happens, NSE

sets the new value to unknown and stops tracking its symbolic

expression. This under-approximation of the symbolic state is also

the reason why NSE never misidentifies an input-dependent branch

that is not in the baseline set (no false positives, by construction).

Furthermore, the main reason for NSE to miss a new fuzzing input

is that NSE fails to identify its corresponding branch as an input-

dependent branch.

6.3.2 Divergences. In this section, we describe our experimental

results on divergences by measuring what fraction of inputs gener-

ated by NSE can actually flip its targeted branch. In this experiment,

we run whitebox fuzzing on the expanded fuzzing set. For every

newly generated fuzzing input, we test it and save its control flow.

Then we compare it with the control flow of its “parent” input (the

one we used to generate the new fuzzing input) to check if it flips

the targeted branch successfully.

We show the experimental results in Figure 8. We run the exper-

iment in three setups to evaluate the effectiveness of mitigations

Hypercall Task Switch APIC Emu. MSR Emu.

20%

40%

60%

80%

100%

Success Rejected Diverged

Figure 8: HyperFuzzer’s divergence rate on newly generated
fuzzing inputs. Success means the newly generated fuzzing
input successfully flips its targeted branch. Rejected means
it is rejected by hardware checks. Diverged means it fails to
flip its targeted branch. For each virtualization interface, we
progressively show the results from left to right: (1) without
unrelated constraint elimination and bit-wise symbolic vari-
ables, (2) with unrelated constraint elimination but without
bit-wise symbolic variables, and (3) with both.

described in §4.2.2 for hidden hardware checks: (1) without unre-

lated constraint elimination and bit-wise symbolic variables, (2)

with unrelated constraint elimination but without bit-wise symbolic

variables, and (3) with both. We present their results from left to

right for each virtualization interface, respectively. For each setup,

we measure the percentages of newly generated fuzzing inputs

that flip the input-dependent branches as intended (Success), get

rejected due to violating hardware checks (Rejected), or fail to flip

the intended branches (Diverged).

The results show that the two techniques for minimizing changes

to the original fuzzing input are effective in reducing hardware re-

jections. For task switch, 100% of newly generated fuzzing inputs

are rejected by the hardware when neither mitigation is enabled.

This is because Intel CPUs perform 11 different checks before pass-

ing the control to the hypervisor for emulation [32, Chap. 25.4.2].

Another interesting observation here is that the two techniques

help reduce both hardware rejections and software divergences.

In our experiment, unrelated constraint elimination significantly

reduces software divergences when fuzzing hypercalls. The root

cause of these divergences is related to an implementation detail

of NSE. Specifically, NSE always uses a concrete memory address

when emulating a memory operation even if its address is symbolic

(i.e., NSE does not support symbolic pointers [16, 23]). This can

cause inconsistencies when the constraint solver assigns a new

value to a symbolic variable previously used as a memory address.

In the particular case of hypercalls, the hypercall number is first

range-checked by the hypervisor and then used as an index to fetch

the corresponding hypercall handler from a function pointer table.

When flipping a conditional branch inside the hypercall handler,

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

Hybrid
Graybox
Whitebox

(a) Hypercalls

0 20 40 60 80 100 120

1000

1200

1400

1600

1800

2000

Hybrid
Graybox
Whitebox

(b) Task Switch

0 20 40 60 80 100 120

1000

1500

2000

2500

3000

3500

4000

4500

Hybrid
Graybox
Whitebox

(c) APIC Emu.

0 20 40 60 80 100 120

1000

2000

3000

4000

Hybrid
Graybox
Whitebox

(d) MSR Emu.

Figure 9: Edge coverage of hybrid, graybox and whitebox fuzzing. X axis spans the time range from 0 to 120 minutes. Y axis
represents the aggregated number of unique control-flow edges covered by each fuzzing configuration.

NSE can assign a different hypercall number as long as it satisfies

the aforementioned range check if the range check is included in
the path constraint. This eventually leads to a divergence as the

subsequent test can no longer reach the same hypercall handler, not

tomention the conditional branch it intends to flip. Both eliminating

unrelated constraints and using bit-wise symbolic variables can

help exclude the range check from the path constraint. It is obvious

that eliminating unrelated constraints can do it when the range

check is indeed unrelated to the branch we try to flip. Using bit-

wise symbolic variables also helps because the hypercall number is

specified as a bit field and mixed with other bit-level flags. When

symbolic variables are bit-wise, we avoid including the hypercall

number in the path constraint for a branch that checks the other

bit-level flags.

Divergences remain after we apply both techniques. The main

reason for these divergences is that NSEmisses some input-dependent

conditional branches. When such a branch is missed, its branch

constraint is also missed in the path constraint when NSE tries to

flip a subsequent branch. Then the generated new input may violate

the missing branch’s constraint and thus lead to a divergence.

6.4 Coverage
In this section, we report our experiments on coverage. The goal

is to check if, and by how much, HyperFuzzer achieves a better

coverage than graybox-only or whitebox-only fuzzing. In our exper-

iments, we run the graybox, whitebox and hybrid fuzzing separately

on the initial fuzzing input set for 120 minutes. Then we count the

aggregated number of unique control-flow edges covered by each

fuzzing configuration. To measure the coverage for each virtualiza-

tion interface, we exclude the inputs and their coverage if they do

not trigger the targeted interface. Note that the expanded fuzzing

set described in Table 3 is constructed based on “interesting” fuzzing

inputs (those that trigger new code coverage) generated from this

experiment.

Our experimental results on edge coverage are shown in Figure 9.

We can see that hybrid fuzzing outperforms graybox-only and

whitebox-only fuzzing. The coverage difference between graybox

and hybrid fuzzing is small for Task Switch because the code for

Task Switch is relatively simpler than the other three virtualization

interfaces. The coverage jumps in hybrid fuzzing for hypercalls and

MemSafe IntOvf Logical MemLeak

Hypercalls 3 1 0 1

Task Switch 0 0 1 0

APIC Emu. 0 0 3 0

MSR Emu. 0 0 2 0

Table 7: Summary of real-world hypervisor bugs found by
HyperFuzzer.

APIC emulation are likely because random mutation just triggered

some new code paths.

Whitebox-only fuzzing has the worst coverage in our experi-

ments. We analyze the code paths covered by graybox fuzzing but

not by whitebox fuzzing and find that there are two main reasons

for whitebox fuzzing to miss them. First, NSE does not support

symbolic pointers. For example, some guest VM state can be used

as an index to a function pointer table. Without symbolic pointers,

NSE will not be able to generate a new fuzzing input with a dif-

ferent index to the function pointer table. However, it is possible

for random mutation to modify the index and lead to a different

function. Second, the hardware checks are invisible to whitebox

fuzzing. When whitebox fuzzing tries to flip a branch, the gener-

ated new input may violate a hidden hardware check. When this

happens, whitebox fuzzing will result in a hardware rejection and

make the targeted path unreachable. We evaluate the prevalence of

hardware rejections in §6.3.2. On the other hand, it is possible for

random mutation to generate a new input that happens to flip the

branch. Therefore, we believe hybrid fuzzing is the right approach

for hypervisors.

6.5 Bug Analysis
HyperFuzzer has found 11 previously unknown virtual CPU bugs

in the Hyper-V hypervisor as summarized in Table 7. Out of the 11

bugs, 6 are security critical because a malicious guest VM can exploit

them to compromise the hypervisor. The other 5 bugs are less

critical because they only affect the testing VM itself. HyperFuzzer

detects the 11 bugs based on signals like assertion violations (e.g.,

logical bugs) and crashes (e.g., memory safety). Most of the bugs

reported here were found within hours of fuzzing.

We manually analyze the 11 bugs found by HyperFuzzer and

find that all the 6 logical bugs require symbolic-execution-based

input generation.

• Task Switch (1 bug): This bug requires a special task segment

to be triggered.

• APIC Emulation (3 bugs): Two bugs require a specific guest

mode (e.g., 16-bit protected mode) to be triggered. The third

bug requires a special opcode (RDTSC) to be triggered.

• MSR Emulation (2 bugs): Both bugs require a special MSR

index and value to be triggered.

The final VM states triggering these bugs were found thanks

to NSE combined with coverage-guided random mutation. The

latter helps explore trivial branches, while the former is effective

for unlocking those hard-to-reach branches. For instance, NSE is

able to go through the switch cases in the hypervisor’s instruction

emulation code to generate the RDTSC opcode required for one of

the APIC emulation related bugs.

7 LIMITATIONS
HyperFuzzer is currently limited to hypervisors running on the

Intel VMX platform due to its dependency on Intel PT. This makes

it unable to reach a hypervisor’s platform-dependent code. For

example, certain MSRs are only available on AMD processors, and

bugs in their emulation code will not be captured by HyperFuzzer.

HyperFuzzer does not support multiple virtual CPUs for white-

box fuzzing, which limits its ability to find race condition bugs

in the hypervisor. Such support requires new techniques for both

control-flow tracing and dynamic symbolic execution. We leave it

for future work.

We have demonstrated NSE’s high effectiveness in performing

dynamic symbolic execution over a control-flow trace (§6.3) of

Hyper-V hypervisor’s virtual CPU. However, it may not be univer-

sally applicable to all targets. We believe that NSE works well for

targets whose execution is driven by the inputs, such as an image

parser or the virtual CPUs focused by this work. But NSE may

not work well for programs whose input can be tangled with the

internal state, which is unknown when only a control-flow trace

is captured. For example, the behavior of a stateful web server de-

pends on both the incoming input and its current state. A potential

research direction is to systematically identify the critical internal

data to log for dynamic symbolic execution.

8 RELATEDWORK
HyperFuzzer is the first efficient hybrid fuzzer for virtual CPUs.

Its main difference from previous work is that it does not rely on

instrumentation or emulation to record the full program execu-

tion for symbolic execution. Instead, it only records the program’s

control flow by using commodity hardware tracing and is able to

perform precise dynamic symbolic execution on top of the control

flow trace. In this section, we discuss previous work on hybrid

fuzzing, hypervisor testing, and hardware tracing.

8.1 Hybrid Fuzzing
Fuzzing means automatic test generation and execution with the

goal of finding security vulnerabilities [28, 49].

Blackbox random fuzzing is the simplest form of fuzzing: it either

mutates well-formed application inputs or directly generates inputs,

and then tests the application with these new inputs [25]. Blackbox

random fuzzing provides a simple fuzzing baseline. It is effective

for some simple targets [42], but its effectiveness is limited: the

probability of generating new interesting inputs is low [49].

Whitebox fuzzing [30] combines fuzzing with dynamic test gen-

eration [29], which consists of symbolically executing the program

under test dynamically, gathering constraints on inputs from condi-

tional branches encountered along the execution, and then negating

and solving these constraints with a constraint solver. Solutions of
satisfiable constraints are mapped to new inputs that exercise dif-

ferent program execution paths. Whitebox fuzzing can typically

generate inputs that exercise more code than other approaches

because it is more precise [27], which explains why it has been im-

plemented in several popular open-source tools [15, 19]. However,

it is more complex to engineer and its throughput is lower than

blackbox fuzzing.

Graybox fuzzing extends blackbox fuzzing with whitebox fuzzing
techniques. It approximates whitebox fuzzing by eliminating some

of its components to reduce engineering cost and complexity while

retaining some of its intelligence. AFL [1] is a popular open-source

fuzzer which extends random fuzzing with code-coverage-based

search heuristics, but without any symbolic execution, constraint

generation or solving. Despite of its simplicity, AFL was shown to

find many bugs missed by pure blackbox random fuzzing.

Hybrid fuzzing [17, 35, 39, 48, 50, 53] combines graybox fuzzing

techniques with whitebox fuzzing. The goal is to explore trade-offs

to determine when and where simpler techniques are sufficient

to obtain good code coverage, and use more complex techniques,

like symbolic execution and constraint solving, only when the

simpler techniques are stuck. HFL [35] brings hybrid fuzzing to the

kernel space by performing dynamic symbolic execution based on

hardware emulation [19] and handling kernel-specific challenges

such as inferring system call dependencies.

As the first efficient hybrid fuzzer for virtual CPUs, HyperFuzzer

has two main differences when compared with HFL. First, they

have different fuzzing targets. To fuzz hypervisors, HyperFuzzer

performs hypervisor-only analysis by focusing on the hypervisor

execution over a single VM trap. Second, HyperFuzzer leverages

hardware tracing to achieve precise and efficient symbolic execution

by using NSE while HFL is based on hardware emulation.

8.2 Hypervisor Testing
Amit et al. [14] adapts Intel’s tools for testing a physical CPU to

virtual CPUs implemented by a hypervisor. The CPU testing tool

generates a sequence of random instructions to execute on the

virtual CPU and checks for architectural state divergences in com-

parison to a reference implementation such as a CPU simulator.

The tool does not take any feedback from the hypervisor execution

(i.e., blackbox testing), but relies on its intimate awareness of x86

architecture to generate comprehensive test cases.

MultiNyx [24] systematically generates test cases for a hypervi-

sor by applying dynamic symbolic execution to the whole system.

To do so, MultiNyx runs the hypervisor on an instrumented Bochs

emulator [3], which itself runs on top of the Pin binary instrumen-

tation framework [38]. MultiNyx combines traces across multiple

levels to realize the dynamic symbolic execution for test case gen-

eration. This leads to high performance overhead because of the

emulation cost and the complexity in reasoning about multi-level

traces for symbolic execution.

PokeEMU [40] performs symbolic execution on a high-fidelity

emulator (e.g., Bochs) to generate test cases for other virtual CPU

implementations (e.g., hypervisors). PokeEMU does not reason

about the execution of the system under test. Therefore, a corner

case that is only present in the hypervisor may not be uncovered

based on the analysis of a different virtual CPU implementation.

Hyper-Cube [44] implements a blackbox hypervisor fuzzer based

on a custom operating system running a custom bytecode inter-

preter. Hyper-Cube’s blackbox nature makes it less likely to hit hy-

pervisor bugs involving complex conditions. Furthermore, Hyper-

Cube does not mutate the VM’s architectural state in which the

bytecode gets interpreted. This can limit its testing coverage as the

hypervisor depends on the VM’s architectural state when emulating

an operation.

Nyx [45] is a coverage-guided graybox hypervisor fuzzer. It runs

a target hypervisor in a guest VM via nested virtualization, and

records its coverage using Intel PT. It relies on Hyper-Cube to

drive the workload, so it shares the same limitation that the VM’s

architectural environment is not mutated. Furthermore, its lack

of whitebox fuzzing for precise input generation limits its search

space. In fact, Nyx has been reported to only find bugs in ring-3 I/O

device emulation code in QEMU (not in KVM’s virtual CPU code

running in ring-0).

As discussed in §2, in order to catch tricky virtual CPU bugs, Hy-

perFuzzer must be able to mutate a VM’s entire state (e.g., modify

the GDT) and generate precise inputs based on dynamic symbolic

execution (e.g., generate the RDTSC opcode). Hypervisor fuzzers

like Hyper-Cube and Nyx do not meet either requirement. There-

fore, they would miss the 6 bugs described in §6.5 that require

symbolic execution and/or VM state mutation.

8.3 Hardware Tracing
Intel PT [32, Chap. 35] is today’s most practical hardware tracing

technology. It can record complete control flow with low perfor-

mance overhead and without modifying the tracing target. It can

also record fine-grained timestamps. Intel PT has been used in the

following scenarios.

Fuzzing. Several systems [18, 46, 52] use Intel PT to enable

coverage-guided graybox fuzzing. kAFL [46] implements a coverage-

guided fuzzer for arbitrary OS kernels running inside a VM by

enabling hardware tracing, such as Intel PT, from the hypervisor.

kAFL has only been applied to OS kernel components and is limited

to coverage-guided fuzzing. PTRIX [18] combines AFL with Intel

PT to fuzz commercial-off-the-shelf (COTS) program binaries in

an efficient manner. It achieves high efficiency by mapping highly-

compressed Intel PT traces to code coverage without reconstructing

the exact control flow. PTFuzz [52] enables graybox binary-only

fuzzing by taking the control flow recorded by Intel PT as the feed-

back. It overcomes the inaccurate coverage representation in AFL

by using the actual transitions between basic blocks logged in the

control-flow trace.

Pointer Analysis. SNORLAX [34] uses the control flow recorded

by Intel PT to perform points-to analysis and use its timestamps

to determine thread interleaving. Compared with traditional static

pointer analysis, this hardware-assisted approach limits the analysis

to the recorded execution path and achieves higher accuracy.

Reverse Debugging. REPT [20, 26] is a reverse debugging tool

based on Intel PT. It can infer data values based on the control

flow recorded by Intel PT and the final program state captured in

a memory dump. Despite its ability in recovering an approximate

execution history, REPT cannot be directly applied to hybrid fuzzing

because taking a memory dump for each run is too expensive.

Failure Reproduction. This is an important and hard problem in

software engineering. Existing failure reproduction techniques [33,

51] face the challenge of path explosion and high overhead due

to the extra logging. Execution Reconstruction (ER) [54] is a new

production failure reproduction technique which harnesses failure

reoccurrences to iteratively perform hardware-assisted control/data

tracing and symbolic execution which identifies what key data

should be logged for a successful failure reproduction.

A common theme shared by previous work on pointer analysis,

reverse debugging and failure reproduction is that the recorded

execution path can achieve better accuracy than traditional static
analysis that has to examine all possible execution paths. In con-

trast, HyperFuzzer leverages Intel PT for whitebox fuzzing: starting

from an incomplete execution history (i.e., only the control flow),

HyperFuzzer is able to reconstruct enough of the execution to per-

form dynamic symbolic execution, path constraint generation and

solving that is nearly as precise as traditional approaches that rely

on a complete execution history.

9 CONCLUSION
We have presented HyperFuzzer, the first efficient hybrid fuzzer

for virtual CPUs. HyperFuzzer achieves both efficiency and pre-

cision by leveraging hardware tracing to record the control flow

of the hypervisor efficiently, and by introducing a new fuzzing

technique called Nimble Symbolic Execution to perform precise

symbolic execution by using only the recorded control flow and

the fuzzing input. We implemented a prototype of HyperFuzzer for

Microsoft Hyper-V hypervisor. Our experiments show that Hyper-

Fuzzer achieves high fuzzing throughput, and can identify and flip

most input-dependent branches. More importantly, HyperFuzzer

has found 11 previously unknown virtual CPU bugs in the Hyper-V

hypervisor, and all of them were confirmed and fixed.

ACKNOWLEDGMENTS
We thank our shepherd, Yajin Zhou, and other reviewers for their

insightful feedback. We are very grateful for all the help from our

colleagues at Microsoft. In particular, Aditya Bhandari, Alexander

Grest, David Hepkin, Daniel King, Eric Lee, Sunil Muthuswamy,

Sai Ganesh Ramachandran, Bruce Sherwin, David Zhang provided

tremendous help and valuable perspectives for integrating Hyper-

Fuzzer with the Windows Hyper-V hypervisor and resolving the

bugs found by HyperFuzzer. We also thank Hangchen Yu for his

internship work on enabling Intel PT tracing of the hypervisor.

REFERENCES
[1] American Fuzzy Lop. https://github.com/google/AFL.

[2] AWS Nitro System. https://aws.amazon.com/ec2/nitro/.

[3] Bochs x86 PC emulator. http://bochs.sourceforge.net/.

[4] Fuzzing Para-virtualized Devices in Hyper-V. https://msrc-blog.microsoft.com/

2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/.

[5] Hyperseed. https://github.com/Microsoft/MSRC-Security-Research/blob/master/

presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%20-

%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf.

[6] KVM Unit Tests. https://www.linux-kvm.org/page/KVM-unit-tests.

[7] Microsoft Hyper-V Bounty Program. https://www.microsoft.com/en-us/msrc/

bounty-hyper-v.

[8] Ventures into Hyper-V - Fuzzing hypercalls. https://labs.f-secure.com/blog/

ventures-into-hyper-v-part-1-fuzzing-hypercalls.

[9] Viridian Fuzzer. https://github.com/FSecureLABS/ViridianFuzzer.

[10] XenFuzz. https://www.openfoo.org/blog/xen-fuzz.html.

[11] Attacking the VM Worker Process. https://msrc-blog.microsoft.com/2019/09/11/

attacking-the-vm-worker-process/.

[12] https://github.com/MSRSSP/hyperfuzzer-seeds.

[13] Eyad Alkassar, Mark A Hillebrand, Wolfgang Paul, and Elena Petrova. 2010. Auto-

mated Verification of a Small Hypervisor. In Proceedings of the Third International
Conference on Verified Software: Theories, Tools, and Experiments (VSTTE).

[14] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran Shlomo. 2015.

Virtual CPU Validation. In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP).

[15] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI).

[16] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.

Engler. 2006. EXE: Automatically Generating Inputs of Death. In Proceedings of
the 13th ACM Conference on Computer and Communications Security (CCS).

[17] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,

Tao Wei, and Long Lu. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing. In

Proceedings of the 41st IEEE Symposium on Security and Privacy.
[18] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen, Xinyu Xing,

Long Lu, and Bing Mao. 2019. Ptrix: Efficient Hardware-Assisted Fuzzing for

COTS Binary. In Proceedings of the 14th ACM Asia Conference on Computer and
Communications Security.

[19] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A

Platform for In-Vivo Multi-Path Analysis of Software Systems. In Proceedings
of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[20] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu

Wang, and Insu Yun. 2018. REPT: Reverse Debugging of Failures in Deployed

Software. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[21] Mike Dahlin, Ryan Johnson, Robert Bellarmine Krug, Michael McCoyd, and

William Young. 2011. Toward the Verification of a Simple Hypervisor. In Pro-
ceedings of the 10th International Workshop on the ACL2 Theorem Prover and its
Applications.

[22] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In

Proceedings of the 14th International conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). Springer, 337–340.

[23] Bassem Elkarablieh, Patrice Godefroid, andMichael Y. Levin. 2009. Precise Pointer

Reasoning for Dynamic Test Generation. In Proceedings of the 18th International
Symposium on Software Testing and Analysis (ISSTA).

[24] Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy. 2018. MultiNyx: a Multi-

Level Abstraction Framework for Systematic Analysis of Hypervisors. In Pro-
ceedings of the Thirteenth EuroSys Conference.

[25] J. E. Forrester and B. P. Miller. 2000. An Empirical Study of the Robustness

of Windows NT Applications Using Random Testing. In Proceedings of the 4th
USENIX Windows System Symposium. Seattle.

[26] Xinyang Ge, Ben Niu, and Weidong Cui. 2020. Reverse Debugging of Kernel

Failures in Deployed Systems. In Proceedings of the 2020 USENIX Annual Technical
Conference (ATC’20). 281–292.

[27] Patrice Godefroid. 2011. Higher-Order Test Generation. In Proceedings of ACM
SIGPLAN 2011 Conference on Programming Language Design and Implementation
(PLDI).

[28] Patrice Godefroid. 2020. Fuzzing: Hack, Art, and Science. Communications of the
ACM 63, 2 (February 2020), 70–76.

[29] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

[30] Patrice Godefroid, Michael Y Levin, and David Molnar. 2008. Automated White-

box Fuzz Testing. In Proceedings of the 16th Annual Network and Distributed
System Security Symposium (NDSS).

[31] Ronghui Gu, Zhong Shao, HaoChen, XiongnanNewmanWu, Jieung Kim, Vilhelm

Sjöberg, and David Costanzo. 2016. CertiKOS: An Extensible Architecture for

Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[32] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3. https://software.intel.com/content/www/us/en/develop/articles/intel-

sdm.html.

[33] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for In-

House Debugging. In Proceedings of the 34th International Conference on Software
Engineering (ICSE).

[34] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy Diagnosis of

In-Production Concurrency Bugs. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP).

[35] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and

Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In Proceedings
of the 28th Network and Distributed Systems Security Conference (NDSS).

[36] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of
the 22nd ACM Symposium on Operating Systems Principles (SOSP).

[37] Dirk Leinenbach and Thomas Santen. 2009. Verifying the Microsoft Hyper-V

hypervisor with VCC. In Proceedings of the International Symposium on Formal
Methods.

[38] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:

Building Customized Program Analysis Tools with Dynamic Instrumentation.

ACM SIGPLAN Notices 40, 6 (2005), 190–200.
[39] Rupak Majumdar and Koushik Sen. 2007. Hybrid Concolic Testing. In Proceedings

of the 29th International Conference on Software Engineering (ICSE). IEEE, 416–426.
[40] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn Song, and

Petros Maniatis. 2012. Path-Exploration Lifting: Hi-Fi Tests for Lo-Fi Emulators.

In Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[41] Microsoft. Hyper-V Architecture. https://docs.microsoft.com/en-us/

virtualization/hyper-v-on-windows/reference/hyper-v-architecture.

[42] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the

reliability of UNIX utilities. Commun. ACM 33, 12 (Dec 1990).

[43] Florent Saudel and Jonathan Salwan. 2015. Triton: ADynamic Symbolic Execution

Framework. In Symposium sur la sécurité des technologies de l’information et des
communications. 31–54.

[44] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten

Holz. 2020. HYPER-CUBE: High-Dimensional Hypervisor Fuzzing. In Proceedings
of the 28th Network and Distributed Systems Security Conference (NDSS).

[45] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten

Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine

Types. In Proceedings of the 30th USENIX Security Symposium. Virtual Event.

[46] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and

Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.

In Proceedings of the 26th USENIX Security Symposium. 167–182.

[47] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (Oakland).

[48] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-

gna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.

In Proceedings of the 24th Network and Distributed System Security Symposium
(NDSS).

[49] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley.

[50] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A

Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Security Symposium.

[51] Cristian Zamfir and George Candea. 2010. Execution Synthesis: A Technique for

Automated Debugging. In Proceedings of the 5th European Conference on Computer
Systems (EuroSys).

[52] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu, and Erxue Min. 2018. PTFuzz:

Guided Fuzzing with Processor Trace Feedback. IEEE Access 6 (2018), 37302–
37313.

[53] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hardest Problems

My Way: Probabilistic Path Prioritization for Hybrid Fuzzing. In Proceedings of
the 27th Network and Distributed System Security Symposium (NDSS).

[54] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro Fonseca, and

Baris Kasikci. 2021. Execution Reconstruction: Harnessing Failure Reoccurrences

for Failure Reproduction. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (PLDI’21). Vir-
tual Event.

https://github.com/google/AFL
https://aws.amazon.com/ec2/nitro/
http://bochs.sourceforge.net/
https://msrc-blog.microsoft.com/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
https://msrc-blog.microsoft.com/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%20-%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%20-%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%20-%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf
https://www.linux-kvm.org/page/KVM-unit-tests
https://www.microsoft.com/en-us/msrc/bounty-hyper-v
https://www.microsoft.com/en-us/msrc/bounty-hyper-v
https://labs.f-secure.com/blog/ventures-into-hyper-v-part-1-fuzzing-hypercalls
https://labs.f-secure.com/blog/ventures-into-hyper-v-part-1-fuzzing-hypercalls
https://github.com/FSecureLABS/ViridianFuzzer
https://www.openfoo.org/blog/xen-fuzz.html
https://msrc-blog.microsoft.com/2019/09/11/attacking-the-vm-worker-process/
https://msrc-blog.microsoft.com/2019/09/11/attacking-the-vm-worker-process/
https://github.com/MSRSSP/hyperfuzzer-seeds
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	4 Design
	4.1 Fuzzing Setup
	4.2 Nimble Symbolic Execution

	5 Implementation
	5.1 Fuzzing Control
	5.2 Hypervisor Tracing
	5.3 Nimble Symbolic Execution

	6 Evaluation
	6.1 Experimental Methodology
	6.2 Efficiency
	6.3 Precision
	6.4 Coverage
	6.5 Bug Analysis

	7 Limitations
	8 Related Work
	8.1 Hybrid Fuzzing
	8.2 Hypervisor Testing
	8.3 Hardware Tracing

	9 Conclusion
	Acknowledgments
	References

