

Three Explorations on Pre-Training an Analysis, an Approach, and an Architecture

Xinlei Chen

Microsoft V+L Summer Talk Series, 09/10/2021

facebook

Artificial Intelligence Research

Pre-Training is Important

Slide credit: https://rohit497.github.io/Recent-Advances-in-Vision-and-Language-Research/

Outline of this Talk

1. (analysis) visual feature pre-training for V + L tasks

2. (approach) self-supervised representation learning with SimSiam

3. (architecture) vision transformers for self-supervised learning

https://arxiv.org/abs/2001.03615 https://github.com/facebookresearch/grid-feats-vqa

Analysis: In Defense of Grid Features for Visual Question Answering

CVPR 2020: Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

facebook Artificial Intelligence Research

Bottom-Up Attention

- Idea: representing images with regions
 - Use multiple, spatially-localized features to represent an image
 - "Bottom-up" because the regions are selected without top-down input from text and only from image pixels

Bottom-Up Attention

- Implementation
 - Pre-train a Faster R-CNN detector on Visual Genome
 - Tasks: object detection and attribute classification
 - Backbone: ResNet
 - Given an image:
 - 1. (Region Selection) top-scored regions are selected from Region Proposal Network
 - 2. (Region Feature Computation) average pooled features are extracted per-region after RolPool and conv layers
- Has dominated leaderboards since its proposal, still used today

Bottom-Up Attention

- Why is it successful?
 - Intuitive advantages over grid features:
 - Localize individual objects better
 - Capture coarse and fine details
 - Can model object interactions explicitly
- However, multiple factors have changed in comparison to prior work:
 - Pre-training task: classification vs. detection
 - Pre-training dataset: ImageNet vs. VG

• ...

 We conducted a controlled study to understand better

Basic Setups

- Fix pre-training task & dataset
 - Visual Genome Object + Attribute detection
- Fix backbone & input size
 - ResNet-50, 600x1000
- Fix evaluation task & metric
 - VQA, VQA score (accuracy)
- Fix VQA model
 - Pythia (2018 challenge winner)

Study 1: Grid Features from the Same Layer

Study 1: Grid Features from the Same Layer

Sattina	pre-tra	VQA	
Setting	task datase		score
regions	Detection	VG	64.3
grids	Detection	VG	63.6
(prior) grids	Classification	ImageNet	60.8

- Resulting grid features almost work out-of-the-box
- Much closer to the bottom-up region features than previous grid ones pre-trained on ImageNet

Study 2: Improve Pre-training for Grids

- Pre-trained detector
 - R-CNN, R stands for regions
 - Likely highly optimized for region-level tasks
- Our modification
 - Break the spatial representation
 of regions in R-CNN
 - 14x14 RolPool → 1x1
 - Dilated C5 to apply fc layers per-region

Ours

Study 2: Improve Pre-training for Grids

Study 2: Improve Pre-training for Grids

Sottina	detector	VQA		
Setting	RolPool	AP	score	
regions	1 / 1 /	1 1	<u>64.3</u>	
grids	14814	4.1	63.6	
regions	11	0	63.9	
grids		2.9	<u>64.4</u>	

- 1x1 RolPool hurts detection and region features but helps grids
- Grid features can work as well as regions for VQA

Study 3: Number of Visual Features

- Motivation
 - N Regions are sparsely sampled; and grids are densely sampled
 - So N is usually smaller than H×W, which can benefit grid features
- Observation
 - Region features benefit from a larger N recall is important
 - Even with bigger N (\approx H×W), regions & grids are still at par

Attention Visualizations

Q: Is this a summer scene? GT-A: no A(R): no \checkmark A(G): no \checkmark

R: region featuresG: grid features

Q: What is the player doing? GT-A: throwing frisbee A(R): A(G): catching frisbee ✓ playing frisbee ✓

Attention Visualizations, cont.

R: region features **G**: grid features

A(R): 106 X

 $A(R): 5 \times$

Q: Has the pizza been eaten? GT-A: no

A(R): no 🗸

A(R): red X A(G): red and white $\sqrt{}$

A(G): 193 X

Q: What breed of dog is this? GT-A: pug

Q: What is the person doing? GT-A: cutting

Q: What color are the curtains?

GT-A: red and white

Q: How many boats do you see? GT-A: 7

Q: What is the bus number?

GT-A: 29

A(R): texting X

A(G): 4 X

"Grids ~ Regions" Holds Across:

- Different backbones
 - ResNet-50, ResNeXt-101
- Different VQA models
 - Pythia (2018 challenge winner), MCAN (2019 winner)
- Different VQA tasks
 - VQA 2.0, VizWiz dataset (focusing on blind users)
- Different other tasks
 - COCO image captioning

Study 4: Why Our Grid Features Work?

- 1. Pre-training task
 - VG object + attribute detection offers more powerful features
- 2. Input image size
 - Classification default:
 448x448
 - Detection default: 600x1000
 - Grids can get even better with higher resolutions

pre-train	input size	VQA score
	448x448	<u>60.8</u>
ImageNet	600x1000	61.5
	800x1333	61.5
	448x448	63.2
VG	600x1000	<u>64.4</u>
	800x1333	64.6

Study 5: How Important is Attributes?

Q: What color is the hydrant? A: red

• Intuitively useful for questions concerning attributes

Benefits of Grid Features: Simplify Pipeline

- Without region-related computations, grid features are obtained by single forward-pass of a ConvNet
- This can make end-to-end optimization of visual representations easier for V and L

- Without region-related computations, grid features offer significant speed-ups (10 to 40+ times)
- Light-weight: visual features can be extracted online, allowing explorations of early-fusion models between V and L

MoVie: Revisiting Modulated Convolutions for Visual Counting and Beyond, ICLR 2021

Grid Features can Work Really Well

mathad	faaturaa	VQA Score (Single Model)		
method	reatures	test-dev	test-std	
BUTD (2017 winner)		65.32	65.67	
Pythia (2018 winner)	Region	70.01	70.24	
MCAN (2019 winner)		72.80	-	
Ours (2020 winner)	Grid	73.98	74.16	

VQA 2020 Challenge Winner: Our Improved Grid Features

Grid Features can Work Really Well, cont.

mathad	facturas	VQA Score (Single Model)		
method	Teatures	test-dev	test-std	
BUTD (2017 winner)		65.32	65.67	
Pythia (2018 winner)	Region	70.01	70.24	
MCAN (2019 winner)		72.80	-	
Ours (2020 winner)	Grid	73.98	74.16	
AliceMind (2021 winner)	Region + Grid	77.71	-	

VQA 2020 Challenge Winner: Our Improved <u>Grid</u> Features VQA 2021 Challenge Winner: Region + <u>Grid</u> Features

ArXiv: <u>https://arxiv.org/abs/2011.10566</u>, CVPR 2021 Code: <u>https://github.com/facebookresearch/simsiam</u>

Approach: Exploring Simple Siamese Representation Learning

Xinlei Chen

Kaiming He

facebook Artificial Intelligence Research

Many Exciting Frameworks

[He et al, CVPR 2020] [Chen et al, ICML 2020] [Grill et al, NeurIPS 2020] [Caron et al, NeurIPS 2020]

Common: Siamese/twin/dual Networks

• Supervised learning:

• (a natural analogy in) Un-/Self-supervised learning:

Well, Not Quite..

- Undesired *trivial* solution exist:
 - Predicting constant (C) for everything, representation collapses

• Countering strategies?

Contrastive Learning

- Explicitly requires dissimilarity for views from different images
 - Still requires similarity for views from the same image
 - So, predicting constant is no longer optimal
- Popular loss function:
 - InfoNCE
 - $-\log \frac{\exp(p \cdot p'/\tau)}{\exp(p \cdot p'/\tau) + \sum_{n \in \mathcal{N}} \exp(p \cdot n/\tau)}$
 - $\ensuremath{\mathcal{N}}$ is the set of views from other images as negatives
 - τ is a temperature parameter

Contrastive Learning

Other strategies

- Balanced online clustering (SwAV)
 - A cluster-center based output representation, p is used to pick center
 - Key: making sure that cluster sizes are balanced (Sinkhorn-Knopp)
 - Constant solution is less likely because otherwise all points are assigned to a singular cluster

• BYOL

- Introduces an additional MLP (predictor), and uses momentum encoder
 - Momentum encoder
 - Exponential moving average (EMA) of base encoder weights
 - So, weights are not updated by gradients
 - But need to maintain two copies of weights

All These are Rich & Fancy..

But can a Simple Siamese Network just Work?

PyTorch-like Code for SimSiam

Algorithm 1 SimSiam Pseudocode, PyTorch-like

```
# f: backbone + projection mlp
# h: prediction mlp
for x in loader: # load a minibatch x with n samples
   x1, x2 = aug(x), aug(x) # random augmentation
   z1, z2 = f(x1), f(x2) \# projections, n-by-d
  p1, p2 = h(z1), h(z2) # predictions, n-by-d
  L = D(p1, z2)/2 + D(p2, z1)/2 \# loss
   L.backward() # back-propagate
   update(f, h) # SGD update
def D(p, z): # negative cosine similarity
   z = z.detach() # stop gradient
   p = normalize(p, dim=1) # l2-normalize
   z = normalize(z, dim=1) # l2-normalize
   return - (p*z).sum(dim=1).mean()
```


- Notes:
 - Symmetrized loss
 - *l*₂ normalized cosine similarity by default
 - Gradient is only back propagated through predictor
 - Stop-grad on other

SimSiam Simplifies Those Frameworks

- SimCLR w/o negatives
- SwAV w/o online clustering
- BYOL w/o momentum encoder

• MoCo w/o negatives or momentum encoder

Basic Settings of Experiments

- Encoder: ResNet-50 + 3-layer projector MLP
 - Projector MLP: from SimCLR
 - Sync BatchNorm: from SimCLR/BYOL
- Predictor MLP:
 - From BYOL
 - Bottleneck structure, with smaller hidden dimension than input/output
- Pre-training:
 - SGD + momentum optimizer: following MoCo, no large-batch optimizers (LARS)
 - 100-epoch pre-training
- Evaluation:
 - Linear 1000-way classifier of frozen ResNet pool-5 features on ImageNet train/val

Stop-Grad is Crucial for SimSiam

 \sqrt{d}

output std

0

0

top-1

67.7±0.1

0.1

epochs

monitor 1: std of *p*

- Without it, representation collapses
 - Implicit for momentum encoder

setting

w/ stop-grad

w/o stop-grad

100

w/ stop-grad

w/o stop-grad

epochs

loss curve

-0.5

training loss

-1

0

Predictor is Important

• Tried different settings:

similarity <</p>

stop-grad

predictor h

• Not crucial: predictor can be removed without collapsing (later)

Robustness: Losses

- Cosine vs. soft-max cross-entropy
 - Can work out-of-box
 - Relates to SwAV: a similar loss there
- Symmetrized vs. not
 - Symmetrized is better
 - Likely because it trains "longer"
 - SimSiam has advantage over BYOL:
 - Does not need to forward <u>again</u> on the momentum encoder

setting	top-1
cosine	68.1
cross-entropy	63.2

setting	top-1
symmetrized	68.1
asymmetric	64.8
asymmetric, 2x	67.3

Batch Normalization

- Batch normalization is required for SimSiam
 - SyncBN on each view separately
 - Weight decay applied to BN parameters (different from BYOL, SimCLR)
- Analysis of BN on MLPs

case	proj. hidden	proj. output	pred. hidden	pred. output	top-1
none					34.6
hidden-only					67.4
default					68.1
all					unstable

The Role of Stop-Grad

• Hypothesis

- Provides a different trajectory that alternates between optimizing two sets of variables:
 - θ , network parameters
 - η , hidden representation for an image x, indexed by x
- Objective function:
 - $L(\theta, \eta) = \mathbb{E}_{x, \mathcal{T}} \left[\left\| \mathcal{F}_{\theta} (\mathcal{T}(x)) \eta_x \right\|_2^2 \right]$
 - \mathcal{T} stands for transformations, or augmentations to the input image

The Role of Stop-Grad

- Optimization for $L(\theta, \eta) = \mathbb{E}_{x, \mathcal{T}} \left[\left\| \mathcal{F}_{\theta} (\mathcal{T}(x)) \eta_x \right\|_2^2 \right]$
 - General alternative optimization:
 - Fix η , θ can be optimized with normal gradient decent
 - Fix θ , η can be updated with the expectation $\mathbb{E}_{\mathcal{T}}[\mathcal{F}_{\theta}(\mathcal{T}(x))]$ over transformations
 - SimSiam: One-step alternation:
 - θ is updated with one-step of gradient decent
 - η is updated with one sample of \mathcal{T} only $\mathcal{F}_{\theta}(\mathcal{T}(x)) \rightarrow$ approximating $\mathbb{E}_{\mathcal{T}}[\mathcal{F}_{\theta}(\mathcal{T}(x))]$
- Hypothesis of the predictor
 - Fills the gap between single-sample and expectation over transformations

Proof-of-Concept 1

- <u>Multi-step</u> alternation:
 - Update θ multiple times (with SGD) before updating η again

	1-step	10-step	100-step	1-epoch
top-1	68.1	68.7	68.9	67.0

- Has a "momentum encoder" effect that computes predictions with weights from previous iterations
- Suggest alternating optimization is a valid formulation

Proof-of-Concept 2

- Remove predictor
 - Replace it with a *moving average* of previous $\mathcal{F}_{\theta}(\mathcal{T}(x))$
 - This is to approximate the expectation $\mathbb{E}_{\mathcal{T}}[\mathcal{F}_{\theta}(\mathcal{T}(x))]$

setting	top-1
default, w/ predictor	68.1
w/o predictor	0.1
w/o predictor, w/ moving average	55.0

• Supportive of the hypothesis that predictor is related to expectations

Comparisons to Others, ImageNet

method	batch size	negative pairs	momentum encoder	100-ер	200-ер	400-ep	800-ep
SimCLR	4096			66.5	68.3	69.8	70.4
MoCo	256			67.4	69.9	71.0	72.2
BYOL	4096			66.5	70.6	73.2	74.3
SwAV	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

• SimSiam is batch size friendly, momentum encoder free, and competitive

Comparisons to Others, VOC Detection

Pre-train	AP50	AP75	AP
Supervised	74.4	42.4	42.7
SimCLR	75.9	46.8	50.1
MoCo	77.1	48.5	52.5
BYOL	77.1	47.0	49.9
SwAV	75.5	46.5	49.6
SimSiam (Optimal)	77.3	48.5	52.5

• All methods generally perform well, and *outperform* ImageNet supervised pre-training

Are Siamese Networks the Bare Minimum?

- A natural and effective tool to learn invariance
 - Invariance: Two views of the same concept should produce the same output
 - While invariance like "*translation*" can be baked into "*convolutions*" as **inductive biases**, more complex transformations (e.g., color, scale, rotation) are harder to design the counterparts
 - In such cases, Siamese network at least serves as a strong data-driven baseline
 - Further removal of inductive biases?
 - MoCo v3, ViT can also work (next!)

ArXiv: <u>https://arxiv.org/abs/2104.02057</u>, ICCV 2021 Code: <u>https://github.com/facebookresearch/moco-v3</u>

Architecture: An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen*

Saining Xie*

Kaiming He

facebook Artificial Intelligence Research

Vision Transformer (ViT)

- Less inductive bias
 - Translation invariance
 - Flat architecture
 - Not pyramidal

- Scalable
 - w/ bigger model
 - w/ larger data

[Dosovitskiy et al, ICLR 2021]

Baseline: MoCo v3

Algorithm 1 MoCo v3: PyTorch-like Pseudocode

```
# f_q: encoder: backbone + proj mlp + pred mlp
# f_k: momentum encoder: backbone + proj mlp
# m: momentum coefficient
# tau: temperature
```

```
for x in loader: # load a minibatch x with N samples
x1, x2 = aug(x), aug(x) # augmentation
q1, q2 = f_q(x1), f_q(x2) # queries: [N, C] each
k1, k2 = f_k(x1), f_k(x2) # keys: [N, C] each
```

```
loss = ctr(q1, k2) + ctr(q2, k1) # symmetrized
loss.backward()
```

```
update(f_q) # optimizer update: f_q
f_k = m*f_k + (1-m)*f_q # momentum update: f_k
```

```
# contrastive loss
def ctr(q, k):
    logits = mm(q, k.t()) # [N, N] pairs
    labels = range(N) # positives are in diagonal
    loss = CrossEntropyLoss(logits/tau, labels)
    return 2 * tau * loss
```

ResNet-50	top-1		
MoCo v2	72.2		
MoCo v3 (TPU)	73.8		
MoCo v3 (GPU)	74.6		

- Momentum encoder + Contrastive learning
- Removed:
 - Momentum queue
- Added:
 - Predictor
 - Other BYOL recipes
 - "BYOL w/ negatives"
 - BYOL top-1: 74.3

Study Setups

- Encoder: ViT-B/16
 - For 224x224 input, it leads to 196 patches, each with size 16x16
- Pre-training:
 - AdamW optimizer, typical for transformer architectures
 - 4096 batch size, 100-epoch
- Linear-eval:
 - 1000-way classifier on ImageNet 1K, on frozen ViT [class] features

Instability Issues

- Large batch size, large lr training is more challenging for ViT
 - "Dips": instability influences training
 - Indicating training is only "partially" successful, and "partially" failed
 - LAMB does not fix the issue

[You et al, ICLR 2020]

Trick to Improve Instability

- Random patch projection
 - I.e., Stop-Grad right after patch projection
 - Narrows down solution space
- Generally helpful
 - Works with SimCLR, BYOL, etc.
- Not a fundamental solution
 - Sensitive to initialization

Siamese-based Frameworks

- Such frameworks generally transfer **well**
 - Yield reasonable results

- Behave differently
 - Contrastive learning-based methods have an edge on ViT

Quantitative Comparison of Frameworks

method	contrastive	momentum encoder	R-50	ViT-S	ViT-B
MoCo v3			73.8	72.5	76.5
SimCLR			70.4	69.0	73.9
BYOL			74.3	71.0	73.9
SwAV			71.8	67.1	71.6

 All tend to work out-of-the-box, w/ MoCo v3 an overall winner in ViT

BatchNorm Helps ViT

- Yields 1% improvement by replacing LayerNorm
 - Best: 81.0 w/ ViT-L/7

 However, incurs instability if applied to attention block

Transformer Encoder

End-to-End Fine-Tuning

- MoCo v3 pre-training helps *beyond* linear-eval
 - Good initialization for end-to-end fine-tuning

method	pre-train data	ViT-S	ViT-B	ViT-L
Masked patch pred.	JFT-300M	-	79.9	-
DEiT	-	79.9	81.8	n/a
DINO	ImageNet-1K	81.5	82.8	n/a
MoCo v3	ImageNet-1K	81.4	83.2	84.1

lake-Aways

- 1. Grid features work just as well as region features for V + L
 - <u>https://github.com/facebookresearch/grid-feats-vqa</u>

- 1. Simple Siamese network can learn without collapsing
 - <u>https://github.com/facebookresearch/simsiam</u>

- 2. ViT works with Siamese based frameworks, subject to instability
 - <u>https://github.com/facebookresearch/moco-v3</u>