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Abstract

Transformer-based pretraining techniques have
achieved impressive performance on learning
cross-model representations for various multi-
modal tasks. However, off-the-shelf models do
not take advantage of commonsense knowledge
and logical reasoning that are crucial to many real-
world tasks. To this end, we introduce a novel pre-
training approach - Knowledge Based Vision and
Language Pretraining (KB-VLP) - which uses
knowledge graph embeddings extracted from text
and detected image object tags to enhance the
learning of semantically aligned and knowledge-
aware representations, and improve the models
generalization, and interpretability. KB-VLP
is pretrained on a large image-text corpus and
automatically extracted knowledge embeddings,
and then finetuned on several downstream vision-
language tasks. Experiments show that KB-VLP
significantly improves the performance on VQA,
GQA, NLVR2 and OKVQA tasks compared with
the baselines.

1. Introduction
Large-scale pretraining models have dramatically improved
the quality of natural language processing (NLP) and vision-
language models. Although these methods use image and
text information as inputs and learn image-text alignments
via well designed pretraining tasks, most still lack the ex-
ternal commonsense knowledge necessary for many tasks.
The external knowledge is usually hard or impossible to
be learned from standard dataset. More specifically, ex-
isting models: a) can often disregard the shared and com-
plementary information provided by different modalities;
b) largely ignore the structure of the knowledge graph and
commonsense reasoning. To overcome these challenges, we
argue that models should not only consider multiple modal-
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ities (i.e., vision and language) but also the rich structural
and logical information embedded in commonsense knowl-
edge. In this paper, we develop a general-purpose vision-
language pretraining method, Knowledge Based Vision and
Language Pretraining (KB-VLP). We leverage a knowledge
graph (Wikipedia) which has more than nine million entities
and corresponding relations. The knowledge graph provides
rich information that could be useful for many downstream
tasks related to vision-language understanding.

To summarize our contribution: i) We develop a knowledge-
reasoning self-supervised pretraining approach using a
knowledge graph structure to learn multi-modal representa-
tions, which includes physical properties, and ontological
qualia/relations that might be hard/impossible to recover
from text alone; ii) We adapt knowledge-reasoning-patches
rather than use text and image bounding box features. Our
approach enables the model to identify the types of knowl-
edge, the space of entities, etc. that we are interested in and
which may not be captured by the standard objects detected
via bounding box approaches. We promote these newer rep-
resentations to handle a broader space of visual semantics
than previous methods. iii) We leverage the Wikipedia
knowledge graph as the commonsense knowledge base,
which includes entities, corresponding relations and infor-
mation for general-purpose applications on multi-modal
tasks, we present experiments and analysis to demonstrate
the effectiveness of our approach.

2. Related Work
Multi-modal representation learning is essential for vision-
language tasks, such as image-captioning, visual question
answering and visual commonsense reasoning. Large-
scale Transformer architectures (Vaswani et al., 2017) have
achieved impressive performance by pretraining represen-
tations for NLP problems (Peters et al., 2018; Devlin et al.,
2018; Yang et al., 2019; Liu et al., 2019; Radford et al., 2019;
Brown et al., 2020). Recent work on vision-language pre-
training (VLP) has shown that these large-scale pretraining
methods can also lead to effective cross-modal representa-
tions (Lu et al., 2019a; Tan & Bansal, 2019; Zhou et al.,
2019; Chen et al., 2019; Alberti et al., 2019; Li et al., 2020a;
2019; 2020b; Zhang et al., 2021; Kim et al., 2021). Although
many researchers are paying attention to the importance of
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multi-modal pretraining, until recently many had not used
external knowledge graph information in these methods.
While there are works using knowledge during pretraining
of language models (Yu et al., 2020; Xu et al., 2021; Ros-
set et al., 2021; Zhou et al., 2020; He et al., 2020a; Xiong
et al., 2019; He et al., 2020b; Agarwal et al., 2021), most
have not been applied to multi-modal transformers (e.g. for
vision and language). Additionally, several of the proposed
architectures are domain-specific and are hard to extend to
new tasks. In this paper, we introduce a knowledge-based
pretraining model using the transformer architecture for
multi-modal understanding and reasoning. The knowledge
representations in our method can be easily extracted on
massive data. Our proposed KB-VLP architecture shows
how the structural knowledge and reasoning information ex-
tracted from text and images facilitates learning more robust
and knowledge-aware representations for vision-language
tasks.

3. KB-VLP Approach for Vision-Language
Pretraining

When humans reason about the world, they usually do so
via multiple modalities and combine sensory information
with external knowledge. Inspired by this idea, we intro-
duce a new pretraining approach, Knowledge Based Vision
and Language Pretraining (KB-VLP), which uses a multi-
layer transformer model to learn unified representations on
external knowledge and vision-language inputs. Given an
image-text pair, we extract the knowledge information from
the text and image and convert them to knowledge graph em-
beddings. These embeddings are used as additional inputs
for pretraining. Figure 1 shows an illustration of KB-VLP.
In this section, we first present how we extract the external
knowledge from the knowledge base and then we introduce
the details of our pretraining approach.

3.1. Extracting Knowledge

For our experiments we chose the Wikidata knowledge base
(Vrandecic & Krotzsch, 2014) as a source of external knowl-
edge. This contains a large number of relevant and important
real-world entities. Given a piece of text T with n words
{w0, ..., wn}, we first perform named entity recognition on
T based on the wikidata knowledge graph and generate an
entity set E, which has m named entities {e0, ..., em}. Each
entity has a span in T with length of one or more words.
After the named entity recognition, words in T can be sep-
arated into two subsets P and Q. The first subset P has p
words {w0, ..., wp}, that construct the recognized entities.
The second subset Q has q words {w0, ..., wq}, which are
the remaining words excluding the recognized entities. Next,
these named entities are converted to knowledge graph em-
beddings. We use the open-license tool, Wikipedia2Vec

(Yamada et al., 2020), for obtaining embeddings of words
and entities from Wikipedia. This tool implements the con-
ventional skip-gram model to learn the embeddings of words
and its extension to learn the embeddings of entities (Ya-
mada et al., 2016; Yamada & Shindo, 2019). These models
enables us to learn embeddings of words and entities simul-
taneously, and places similar words and entities close to
one another in a continuous vector space. In this paper, we
use the embedding model based on the English language
Wikipedia-20180420 set. To extract as much external knowl-
edge as we can, we convert both P and Q as embedding
vectors. For subset P , we directly use its corresponding
entities in E, and each entity has an embedding vector. For
subset Q, we use the original English words and each word
has an embedding vector. The embeddings of entities in E
and words in Q are combined together as the knowledge
embeddings for the text T . Figure 2 in Appendix A shows
the pipeline of knowledge extraction.

3.2. Input

KB-VLP represents each image-text pair as five parts
(w, kw, t, v, kt), where w is the sequence of word embed-
dings for the text, t is the word embedding sequence for
the image object tags, v is the set of region feature vectors
for the image, kw is the sequence of knowledge embedding
vectors extracted from the text, and kt is the sequence of
knowledge embedding vectors extracted from the object
tags.

For each image-text pair, most of the existing VLP models
represent the input pair as a sequence of word embeddings
for the text, and a set of region vectors for the image. In-
spired by Li et al. (2020b) and Zhang et al. (2021), we adopt
an additional input, a sequence of object tags, which are
used as anchor points to ease the learning of image-text
alignment. These object tags are the category names or
semantically similar words of detected objects in the im-
age. For generating v, we used a X152-C4 architecture
as the object detection model (OD), which is initialized
from an ImageNet-5K checkpoint (Deng et al., 2009). The
OD model is pretrained on four vision datasets including
Visual Genome (Krishna et al., 2016), COCO (Lin et al.,
2014), Objects365 (Shao et al., 2019) and OpenImagesV5
(Kuznetsova et al., 2020). Given an image, the pretrained
OD model generated the set of detected object names and
the set of region features. Each region feature contains an
vector of the image feature with 2048 dimension and a posi-
tional encoding of the region with 6 dimension. The image
feature vector is concatenated with the positional encoding
to construct the vectors in v, where each region vector in v
has 2054 dimension. In pretraining, t uses the object tags in
image captioning datasets and answer text in visual question
answering datasets.
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Figure 1. The KB-VLP model: Given an image-text pair, the input is represented as a tuple (w, kw, v, t, kt), where w is the text
embedding sequence, kw is the text-KB-patch embedding sequence for the related text entities in the knowledge base, v is the image
region bonding-box feature embedding sequence, t is the object tag embedding sequence, and kt is the image-KB-patch embedding
sequence for the related image entities from the knowledge base.

For each text-image pair, we also extract the knowledge
graph embeddings kw and kt from both the text and the
image. The text in each pair is used for knowledge extraction
and constructing kw. We use the objects tags in each image
for knowledge extraction and generating kt. To speed up
pretraining, we extract the knowledge embeddings for all
the training pairs and load them in memory for training.

3.3. Pretraining Objective

KB-VLP is pretrained with two types of objectives:
sequence-level and token-level. Sequence-level objective
distinguishes the representations of the text, image and the
external knowledge. Token-level objective distinguishes
the semantic space of inputs. Thus, we propose the novel
KB-VLP pretrainig loss Lpretraining as Lpretraining =
LSL + LTL, where LSL is the loss from sequence-level
pretraining and LTL is the loss from token-level pretraining.
Next, we introduce the details for each loss.

Sequence-Level Objective. The sequence-level loss LSL

is a four-way contrastive loss. Given the input tuples
(w, kw, v, t, kt) from dataset D, we construct negative in-
puts by polluting the tuples to compute the loss. At each
time, we keep the correct tuple or replace one of tuple el-
ements including the text, tags or knowledge with a ran-
dom element from another document, which results in
three different types of polluted tuples: (wneg, k

w, v, t, kt),
(w, kw, v, tneg, k

t) and (w, kwneg, v, t, k
t
neg). The correct

tuple remains unchanged on 50% of occasions. In the re-
maining 50%, the three types of negative samples have

equal probability of being generated. During pretraining,
KB-VLP model aims to predict whether the tuple is cor-
rect or polluted. Following the tradition of Transformer-
based pretraining, the encoding of the [CLS] token is used
as the representation of the tuple input. We passed this
encoding of [CLS] to a fully-connected layer f(.) and
predict four classes: the tuple is correct (c=0), w is un-
matched (c=1), t is unmatched (c=2) or kw, kt are un-
matched (c=3). Then the sequence-level loss is defined
as LSL = −E(w,t,v,kw,kt;c)∼D log p(c|f(w, t, v, kw, kt)).

Token-Level Objective. The token-level loss LTL has
two parts. Firstly, we use the masked token loss LMTL (De-
vlin et al., 2018) on the text elements (w and t). Secondly,
on the knowledge embeddings kw and kt, we design a novel
polluted knowledge loss LPKL. On 85% of occasions, the
embeddings do not change. In the remaining 15%, the em-
bedding vector can be polluted. It has 50% probability of
being replaced with a random embedding vector of a word
in the Wikipedia2Vec dictionary and 50% probability of
staying as the original embedding. As the number of words
and entities in Wikipedia are very large, predicting the orig-
inal words or entities of polluted embeddings is inefficient
for pretraining. Thus, we design two different objectives
for the knowledge embeddings from the text and image.
For the text knowledge embedding, the model only predicts
whether the embedding is the original one (cw = 0) or has
been randomly replaced (cw = 1). For the image knowledge
embedding, the model predicts the original words or entities
from a subset, which contains only the words or entities for
object tags. Based on this design, the token-level loss is
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VQA NLVR2 GQA OK-VQA

Model Dev Test-std Dev Test-P Dev Test-std R@1 R@5 R@10 ACC-full

NSM (Drew A. Hudson, 2019) – – – – – 63.17 – – – –
ViLBERT (Lu et al., 2019a) 70.63 70.92 – – – – – – – –
VL-BERT (Su et al., 2020) 70.50 70.83 – – – – – – – –
VisualBERT (Li et al., 2019) 70.80 71.00 67.40 67.00 – – – – – –
LXMERT (Tan & Bansal, 2019) 72.42 72.54 74.90 74.50 60.00 60.33 – – – –
12-in-1 (Lu et al., 2019b) 73.15 – – 78.87 – 60.65 – – – –
UNITER-B (Chen et al., 2019) 72.27 72.46 77.14 77.87 – – – – – –
Oscar-B (Li et al., 2020b) 73.16 73.44 78.07 78.36 61.19 61.58 34.50 63.95 73.47 30.07
KB-VLP (ours) 73.63 73.89 78.23 78.44 62.40 62.57 41.10 72.05 82.28 33.41

Table 1. Results of KB-VLP on across VQA, GQA, NLVR2 and OK-VQA show that our model can consistently outperform existing VLP
baselines on most of the tasks.

defined as LTL = LMTL + LPKL.

3.4. Pretraining Corpus

We use the public corpus of Zhang et al. (2021) for pretrain-
ing. This corpus contains image-text pairs from several ex-
isting vision-language datasets, including COCO (Lin et al.,
2014), Conceptual Captions (Sharma et al., 2018), SBU cap-
tions (Ordonez et al., 2011), Flickr30k (Young et al., 2014),
GQA, VQA, VG-QAs, and a subset of OpenImages. As
KB-VLP uses external knowledge during pretraining, we
also add the training set from the OK-VQA (Marino et al.,
2019) dataset to help the model learn how to align the exter-
nal knowledge with the image-text pairs. The final corpus
has about 5.65 million images, 2.5 million QA pairs, 4.68
million captions, and 1.67 million pseudo-captions. More
implementation details are presented in appendix B.

4. Adapting to Vision-Language Tasks
After pretraining, we apply KB-VLP to several downstream
vision-language understanding tasks including VQA, GQA,
NLVR and OK-VQA. Each task poses different knowledge
and reasoning challenges. The details of adapting KB-VLP
on them are described in Appendix C and D.

5. Experiments
We conduct experiments on VQA, GQA, NLVR2 and OK-
VQA and compare our model against several baseline mod-
els. Table 1 presents the overall performance on the four
tasks. Results show that KB-VLP outperforms the baseline
models consistently. On VQA and NLVR2, KB-VLP has
better performance than all other baselines both on the Dev
split and the Test split. The results on both datasets show
that external knowledge can help text-image alignments and
enhance the ability for visual understanding. On the GQA

task, although our model does not outperform the Neural
State Machine (NSM) (Drew A. Hudson, 2019), which is
a neural network designed for structural learning and rea-
soning with strong structural priors, our model outperforms
other VLP baselines. This provides evidence that adding
access to additional knowledge at pretraining time can im-
prove the structural learning and reasoning ability of the
learned embeddings. In future, using stronger structural pri-
ors could be an interesting path to explore. On OK-VQA, we
compare KB-VLP with the Oscar (Li et al., 2020b) pretrain-
ing model. The OK-VQA dataset requires models to use
external knowledge to answer questions. As existing VLP
models such as Oscar do not use such information during
pretraining, KB-VLP provides a significant improvement
on this dataset and task. We also perform qualitative analy-
sis on the OK-VQA dataset in Appendix E and clustering
analysis in Appendix F.

6. Conclusion
This paper proposes a new VLP method, KB-VLP, which
in addition to text-image pairs, uses the text and image tags
as queries to extract external knowledge from Wikipedia
and takes that as additional input to the model. KB-VLP
is pretrained with two novel pretraining tasks on a public
corpus of ∼9M image-text pairs and finetuned on a set of
vision-language downstream tasks. Experiments on four
datasets demonstrate that KB-VLP has better performance
compared to the baselines and in particular is successful at
answering questions that require external knowledge.
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Appendix:

A. Overview of the Knowledge Extraction
Pipeline

Figure 2 presents the overview of our knowledge extraction
pipeline. Details can be found in section 3.1.

B. Pretraining Implementation Details
KB-VLP uses the Transformer architecture from BERT-
Base, initialized with parameters from BERT models. We
use two linear projection matrices WI and WK to trans-
form the image region features and knowledge embeddings
the dimensionality of the BERT-Base model 768. As the
knowledge embeddings contain both English words and
knowledge graph entities. We add the positional embed-
dings to each knowledge embedding vectors so they follow
the same positional order as the text from which they are
derived. The AdamW optimizer is picked for model opti-
mization and the learning rate is set to 5e−5. KB-VLP is
trained for at least one million steps with a batch size of
768.

C. Adapting to Vision-Language Tasks
VQA. VQA is one of the most widely used visual question
answering datasets. Following Antol et al. (2015), the model
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Figure 2. Overview of extracting knowledge on a text piece: given a text piece, we first perform named entity recognition on it and detect
a set of entities and rest of words. Then, we use the Wikipedia2Vec tool to extract pretrained Wikipedia embedding vectors for each entity
and word as our knowledge piece vectors for vision-language pretraining.

is required to answer natural language questions based on an
image. Given an image and a question, the task is to select
the correct answer from a multi-choice list. We use the VQA
v2.0 dataset (Antol et al., 2015) for our experiments. VQA
v2.0 is constructed based on the COCO image corpus and
the dataset is split into a training set with 83k images and
444k questions, a validation set with 41k images and 214k
questions and a test set with 81k images and 448k questions.
The model picks the corresponding answer from a shared
set of 3,129 answer candidates.

For VQA, the model takes one input sequence, which con-
tains the concatenation of a question, object tags, region
features, and extracted knowledge from the question and
tags. Then KB-VLP [CLS] token is fed to a linear classifier
for predicting the answer. Following Li et al. (2020b), we
treat VQA as a multi-label classification problem. Each an-
swer is assigned a soft target score based on its relevancy to
the human answer responses, and we finetune the model by
minimizing the cross-entropy loss against those soft target
scores. At inference, we simply use a Softmax function for
prediction.

GQA. GQA’s evaluation is similar to VQA. The differ-
ence is that GQA dataset focuses on evaluating the reasoning
capability of the model to answer a question. Our experi-
ments are conducted on the public GQA dataset (Hudson &
Manning, 2019). In the multi-choice setting, GQA requires
model to choose an answer for each question from a shared
answer set containing 1,852 candidate answers.

NLVR2. The Natural Language Visual Reasoning for Real
(NLVR2) dataset (Suhr et al., 2019) asks a model to deter-
mine if a natural language statement is true or not of a pair
of images. When fine-tuning, we construct two input se-

quences, each containing the concatenation of the text, an
image and the extracted knowledge from text and the image.
Then, the [CLS] tokens for the two sequences are concate-
nated as the joint input for a binary classifier to predict
whether the statement is true.

OK-VQA. Outside Knowledge Visual Question Answer-
ing (OK-VQA) (Marino et al., 2019) is a new dataset that
asks models to draw upon outside knowledge to answer
questions. This dataset has 14,055 open-ended questions on
COCO images and each question has 10 human annotated
answers. We filter for questions with high-confidence an-
swers in which 5 out of 10 annotated answers are the same
(leaving 7,400 questions). As OK-VQA is designed to test
how models use external knowledge, there are a substantial
number of highly dissimilar answer candidates. This dif-
ferentiates it from simpler multi-choice settings like VQA
or GQA. Thus, we treat answer selection as an image-text
retrieval task. During training, we formulate the task as
a binary classification problem. Given an aligned tuple
containing the image, question, answer, tags and extracted
knowledge, we randomly select a different image, different
knowledge or a different answer to construct a misaligned
tuple. The [CLS] token is then used as the input to a bi-
nary classifier to predict whether the input is aligned or
misaligned. During testing, we use the probability score to
rank each answer for a given image-question pair and top-K
retrieval results are used as the metric for evaluation. Also,
we test our model on the whole testing set and calculate
the accuracy based on the method described in Marino et al.
(2019).
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htb
Model Oscar-B KB-VLP

Plants and Animals 0.32 0.43 +0.11
Science and Technology 0.25 0.35 +0.10
Sports and Recreation 0.38 0.43 +0.05
Geo, History, Lang, and Culture 0.34 0.48 +0.14
Brands, Companies, and Products 0.28 0.30 +0.02
Vehicles and Transportation 0.32 0.46 +0.13
Cooking and Food 0.34 0.44 +0.10
Weather and Climate 0.36 0.45 +0.09
People and Everyday 0.34 0.39 +0.05
Objects, Material and Clothing 0.39 0.35 -0.04
Other 0.36 0.43 +0.07

Table 2. Accuracy of each question type in OK-VQA.

D. Fine-tuning Settings
VQA. During training, we randomly sample a set of 2k
images from the validation set as our validation set, the rest
of images in training and validation sets are used in the
VQA fine-tuning. We finetune the model for 30 epochs with
a learning rate of 5e−5 and a batch size of 192.

GQA. The inputs for the GQA dataset are similar to the
inputs for VQA, which is the concatenation of the question,
object tags, region features, and extracted knowledge pieces.
We finetune KB-VLP on an unbalanced “all-split” set for
seven epochs with a learning rate 5e−5 and the batch size
of 192.

NLVR2. On the NLVR2 dataset we follow the method
described in C. We finetune the model for 35 epochs with a
learning rate of 5e−5 and a batch size of 144.

OK-VQA. After filtering the question-answer pairs with
high-confidence, the training set contains 4,690 questions
and the testing set contains 2710 questions. We finetune
KB-VLP 200 epochs on the filtered dataset with batch size
128. We use the learning rate 2e−5 and linearly decreases.
We finetune the baseline model with the same parameter
setting.

E. Qualitative Analysis on Experiments
Category Results on OK-VQA. Here we present qualita-
tive analyses to illustrate how external knowledge influences
the output of the pretraining model. We choose OK-VQA
dataset for the qualitative analysis because the questions in
this dataset most clearly benefit from external knowledge.
Based on the types of knowledge required, questions in OK-
VQA are categorized into 11 categories and the accuracy
results of each category are reported in Table 2. In most
categories, KB-VLP outperforms the Oscar model. This
observation illustrates that the external knowledge used in

KB-VLP includes many different aspects. Specifically, on
categories ”Plants and Animals”, ”Geo, History, Lang, and
Culture” and ”Vehicles and Transportation”, KB-VLP pro-
vides the most significant improvements.

Correct Examples from KB-VLP. Existing VLP mod-
els are not able to learn much additional knowledge about
these categories from general image captioning or visual
question-answering datasets. The knowledge embeddings
used in KB-VLP provide structural relations among entities
that cannot be reflected from image-text pairs. Figure 3 has
three examples comparing the answers generated by KB-
VLP and Oscar. Comparing their generated answers, we find
that the Oscar model is limited to visual detection and KB-
VLP has stronger visual understanding and reasoning ability.
For example, in the second example, the generated answer
from Oscar is ”Salty” instead of the correct answer ”Rough”.
Presumably the Oscar model detects the sea and associates
this with a frequently co-occurring word rather than cor-
rectly inferring the context of the question. Similarly, in the
first example, Oscar thinks the city is ”Chinatown” instead
of ”Tokyo”. Without external knowledge, Oscar may not be
able to learn the knowledge that Chinatown is not a city but
Tokyo is a city.

Figure 4 presents more examples highlighting cases where
KB-VLP generates the correct answer but Oscar does not.
These examples are from several different categories and
external knowledge is important to answer them. For exam-
ple, the first question in the top row ”What event is this?”
requires the model to know that a concert usually has musi-
cians and an audience. The second question in the bottom
row ”What item in this room is usually to wash hands?”
requires knowledge about how the objects in the scene are
used. The second question in the top row asks the model
to find similar feline animals like the cat, which can only
be provided using external knowledge about other types of
cats.

Analysis on Failed Examples. Oscar only outperforms
KB-VLP on questions about ”Objects, Material and Cloth-
ing”. One potential reason for this is that these questions
require reliable object detection and rich knowledge about
how they are used. This higher learning complexity may
influence KB-VLP. It is possible that a larger knowledge
base and more pretraining steps would help improve per-
formance in this regard. Figure 5 presents three examples
that KB-VLP fails to generate correct answers. These exam-
ples reflect that rich external knowledge vectors in KB-VLP
may increase the complexity of visual understanding. For
instance, in the first image, KB-VLP generates the answer
”Electric Motor” instead of the correct answer ”Key”, be-
cause the model might learn high correlations between mo-
torcycle and electric motor from external knowledge vectors
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Figure 3. Three examples from OK-VQA that KB-VLP model generates correct answer but Oscar does not. Comparing the generated
answers from KB-VLP and Oscar indicates that Oscar model is limited to visual detection and KB-VLP has stronger reasoning and
understanding ability.

but fail to ground the knowledge to the question. Simi-
larly, KB-VLP generates the ”Playboy Bunny” instead of
the correct answer ”Mickey Mouse” and ”Jewelry” instead
of ”Cloth”. Although KB-VLP fails to generate correct
answers on these examples, the analysis on these failed sam-
ples demonstrates that external knowledge can enhance the
knowledge-awareness of existing VLP models.

F. Clustering Analysis on Image
Representations from KB-VLP

To better understand the representations in KB-VLP, we ran-
domly pick 50 image samples for each category in COCO
dataset. We use t-SNE algorithm on the output represen-
tations of image samples and present the 2-D clustering
visualization. Some interesting subset clustering results are
provided in Figure 6, 7. In Figure 6, the samples of wine
and beer are close with each other and samples of apple
and vegetable are also close. They are rarely in one image
but external knowledge embeddings provide latent relations.
Apple is also relatively close with mobile phone because
Apple is also a brand name, which has mobile phone prod-
ucts. In Figure 7, these four categories are all related to
transportation. Boat and bus are closer than the other two
because they share more similarities.

Broader Impacts
Multi-modal language and vision understanding has many
applications. Examples include: information retrieval and

tagging and designing accessible interfaces (i.e., image de-
scriptions and closed captioning). However, we need to care-
fully understand the limitations and problems presented by
the data that these methods are typically trained on. Datasets
are often not representative of all people and demographic
groups. A dataset crawled from the Internet is more likely
to capture affluent western concepts and examples. While
it is very challenging to create truly representative data, we
can characterize datasets to help avoid models trained on
them being applied in ways that are inappropriate. The fact
that these datasets are not representative of all groups is one
limitation of our work. Before a system such as the one
presented here is deployed more work would need to be
done to understand how such a model, in the context of an
application, may disadvantage or advantage certain people.
Training large models often consumes a lot of power and
we must not neglect the environment impact of this process.
During our experiments we made every effort to use the
computational resources efficiently.
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Figure 4. Examples from OK-VQA that KB-VLP model generates correct answer but Oscar does not.
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Figure 5. Three examples from OK-VQA that KB-VLP does not generate correct answers. In the first example, KB-VLP generates
”Electric Motor” instead of the correct answer ”Key”. In the second example, KB-VLP generates ”Playboy Bunny” instead of ”Mickey
Mouse” and in the third example, the model generate ”Jewelry” instead of ”Cloth”.

Figure 6. 2-D t-SNE visualization results on a subset of categories from COCO dataset. Wine and Beer are close with each other, Apple
and Vegetable are close with each other, and Apple and Mobile Phone are relatively close. Although each pair of categories are rarely in
one image, the external knowledge embeddings provide the latent relations for categories. Wine and beer are similar drinks. apple and
vegetable share similar properties. Apple is also the brand and has high correlations with mobile phone.
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Figure 7. These four categories are all related to transportation. Boat and Bus are closer than the other two because they share more
similarities.


