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Abstract

Most of today’s AI systems focus on using self-

attention mechanisms and transformer archi-

tectures on large amounts of diverse data to

achieve impressive performance gains. In this

paper, we propose to augment the transformer

architecture with an external attention mecha-

nism to bring external knowledge and context

to bear. By integrating external information

into the prediction process, we hope to reduce

the need for ever-larger models and increase the

democratization of AI systems. We find that the

proposed external attention mechanism can sig-

nificantly improve the performance of existing

AI systems, allowing practitioners to easily cus-

tomize foundation AI models to many diverse

downstream applications. In particular, we fo-

cus on the task of Commonsense Reasoning,

demonstrating that the proposed external at-

tention mechanism can augment existing trans-

former models and significantly improve the

model’s reasoning capabilities. The proposed

system, Knowledgeable External Attention for

commonsense Reasoning (KEAR), reaches hu-

man parity on the open CommonsenseQA re-

search benchmark with an accuracy of 89.4%

in comparison to the human accuracy of 88.9%.

1 Introduction

Transformers (Vaswani et al., 2017) have revolu-

tionized many areas of AI with state-of-the-art per-

formance in a wide range of tasks (Devlin et al.,

2018; Dosovitskiy et al., 2020). The most notable

and effective component in a Transformer model

is the self-attention mechanism, which enables the

model to dynamically leverage different parts of

the input for computation with no information loss

for even the most distant parts in input. With

the success of pre-trained models (Devlin et al.,

2018; Liu et al., 2019), the Transformer and its self-

attention mechanism have been widely adopted as

the cornerstone of foundation models trained on

huge amounts of data (Bommasani et al., 2021).

One phenomenon found during the development

of Transformer models is that models with larger

size tend to have better learning abilities, espe-

cially when combined with large-scale data (Ka-

plan et al., 2020). This has prompted the recent

boom of super large Transformer models, ranging

from BERT (Devlin et al., 2018) with 110 million

parameters, to GPT-3 (Brown et al., 2020) with

175 billion parameters. Nevertheless, numerous

studies have shown that the corresponding under-

standing and generation capabilities of these huge

models are still behind humans (Bommasani et al.,

2021). Furthermore, the sheer size of these models

already poses serious practical challenges in utiliza-

tion, deployment, interpretation, and environmental

impact (Patterson et al., 2021). Thus, the recent

“scaling-up” approach to Transformer-based NLP

modeling is unsustainable and has been questioned

in recent studies (Bommasani et al., 2021).

In this paper, we take a step back and exam-

ine the mechanism of current Transformer-based

models. Self-attention was designed to allow the

model to better analyze the inner structure of input

data, and the model is trained to have its parameters

grasp and memorize all the content and patterns of

the training data. When the model is given a novel

input X , the implicitly stored knowledge in the

parameters about related information is activated

to facilitate the analysis of X . This could partly

explain why larger models pre-trained with more

data have an advantage in performance.

While Transformer models process input by

looking inward via self-attention, we propose to

make the model look outward by providing it

with related context and knowledge from vari-

ous sources. We then let the model conduct self-

attention on the input while also computing exter-

nal attention to the knowledge (Figure 1). As the

context and knowledge can usually be stored in



an non-parametric and symbolic way (e.g., plain

text, knowledge graph and dictionary entries), even

moderately-sized Transformer models can perform

exceptionally well on NLP tasks. This approach

allows one to shrink the size of Transformer-based

foundation models, which is critical to the accessi-

bility and democratization of AI technology. This

approach is also analogous to the way humans con-

duct intelligence; we often resort to search engines,

dictionaries, or information from other people in

order to navigate the world.

Another benefit of the external attention is that,

as the related knowledge is stored outside of the

model, practitioners can easily update the knowl-

edge source to change the behavior of their models.

For example, one could add or delete entries from

a knowledge graph or rewrite certain paragraphs in

Wikipedia. By explicitly representing knowledge,

the decision process of the model becomes much

more transparent and explainable.

In this paper, we use the commonsense reason-

ing task CommonsenseQA (Talmor et al., 2019)

as a case study in leveraging external attention

to obtain and integrate information related to the

input. Given a commonsense question and a

choice, we retrieve knowledge from three external

sources: a knowledge graph (ConceptNet), dictio-

nary (Wiktionary) and labeled training data (Com-

monsenseQA and 16 related QA datasets). The

retrieved knowledge is directly appended to the

input and sent to the language model with no re-

vision to the underlying architecture. We show

that with the proposed external attention, the accu-

racy of commonsense reasoning using a DeBERTa-

xxlarge model (He et al., 2020) can be significantly

boosted from 83.8% to 90.8% on the dev set, while

fine-tuned large-scale models like GPT-3 can only

achieve 73.0%. The ensembled version of our

model, Knowledgeable External Attention for com-

monsense Reasoning (KEAR), reaches an accuracy

of 93.4% on the dev set and 89.4% on the test set,

surpassing human performance (88.9%) for the first

time (Talmor et al., 2019).

The benefits of our approach extend beyond com-

monsense reasoning. First, the external attention

dramatically reduces our system’s dependence on

large-scale models, i.e., achieving human parity

with models up to 1.5B parameters. Second, the ex-

ternal information is obtained via computationally

efficient methods, such as information retrieval and

word matching, adding little computational cost to

the main model. Third, the text-level concatena-

tion of input and knowledge leads no change to the

Transformer model, enabling existing systems to

easily adopt this new external attention mechanism.

2 Method

We first describe our external attention framework

in Sec 2.1. Next, we describe our external knowl-

edge sources in Sec 2.2. Last, we present additional

modeling techniques for improving commonsense

reasoning in Sec 2.3. We present empirical results

of our techniques in Sec 3.

Problem Formulation. We focus on the

multiple-choice question answering task in this

paper, where the goal is to select the correct

answer from a given list c1, c2, ..., cn for a

commonsense question q. The output of the model

is a distribution P on {1, 2, ..., n}.

2.1 Attention

Self Attention. The majority of recent language

models are based on the Transformer architecture

(Vaswani et al., 2017). One of the most important

components in Transformer is the self-attention

mechanism, which can be formulated as

Q = HlWq,K = HlWk,V = HlWv,

A =
QKT

√
d

, Hl+1 = softmax(A)V, (1)

where Hl ∈ R
N×d is the input hidden vectors to

the l-th Transformer layer, Wq,Wk,Wv ∈ R
d×d

are projection matrices, N is the input length and

d is the hidden vector’s dimension. The inputs

to the first Transformer layer are usually the em-

beddings of the tokenized input text, denoted as

H0 = X = [x1, x2, ..., xN ]1. In the multi-choice

question answering context, the input text is a con-

catenation of the question and a specific choice.

External Attention. For commonsense question

answering, the required information needed to an-

swer the question is usually absent from the input.

Thus, we need to integrate external knowledge into

the model. In this work, we denote the extra knowl-

edge in text format as K = [xK1 , xK2 , ..., xKNk
].

There are many ways to integrate the external

knowledge into the model. In this paper we con-

catenate the knowledge to the input text: H0 =

1We do not differentiate between tokens and their embed-
dings in the following discussion. Following previous work,
we prepend a [CLS] token to the input.
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Figure 1: Our proposed method of Knowledgeable External Attention for commonsense Reasoning (KEAR).

Related knowledge is retrieved from external sources, e.g., knowledge graph, dictionary and training data, using

the input as key and then integrated with the input. While additional external attention layers can be added to the

Transformer blocks, we adopt text-level concatenation for external attention, incurring no structural change to the

model architecture.

[X;K] = [x1, ..., xN , xK1 , ..., xKNk
]. The advan-

tage of this input-level integration is that the exist-

ing model architecture does not need to be modified.

Then, applying self-attention on H0 can make the

model freely reason between the knowledge text

and the question/choices, therefore equipping the

model with enhanced reasoning capacity.

2.2 Knowledge Retrieval

The knowledge to append to the input for external

attention is crucial for getting the correct prediction.

For commonsense reasoning, we collect three ex-

ternal knowledge sources to complement the input

questions and choices.

Knowledge Graph. Knowledge graphs (KG)

contain curated facts that can help with common-

sense reasoning. We follow KCR (Lin, 2020) to

retrieve a relevant relation triple in the ConceptNet

graph (Speer et al., 2017). Suppose the question

entity is eq and the choice contains entity ec
2. If

there is a direct edge r from eq to ec in ConceptNet,

we choose this triple (eq, r, ec). Otherwise, we re-

trieve all the triples originating from ec. We score

each triple j by the product of its confidence wj

(provided by ConceptNet) and the defined relation

type weight trj : sj = wj · trj = wj · N
Nrj

, where

rj is the relation type of j, N is the total number

of triples originating from ec, Nrj is the number

of triples with relation rj among these triples. We

then choose the triple with highest weight. Finally,

if the selected triple is (e1, r, e2), we format the

knowledge from the KG as KKG = [e1 r e2].

Dictionary. Although pre-trained language mod-

els are exposed to large-scale text data, the long

tail distribution of words means that the quality

of a word’s representation is highly dependent on

that word’s frequency in the pre-training corpus.

2In CommonsenseQA dataset, both eq and ec are provided.
Otherwise, we can use entity linking to find related knowledge
graph nodes to the input text.



Dictionaries, on the other hand, can provide ac-

curate semantic explanation of words regardless

of their frequency in datasets. To help understand

key concepts in the question and answer, we fol-

low DEKCOR (Xu et al., 2021) to use the Wik-

tionary definitions of the question and answer con-

cepts as external knowledge. For every concept,

we fetch the first (most frequent) definition from

Wiktionary using its closest lexical match. Let dq
be the definition text for eq and dc be the definition

text for ec, we format the dictionary knowledge as

Kdict = [eq : dq; ec : dc].

Training Data. Although recent language mod-

els are giant in terms of the number of parameters,

recent studies show that they cannot perfectly mem-

orize all the details of their training data (Anony-

mous, 2022).

To tackle this challenge, we propose to retrieve

relevant questions and answers from the training

data as additional knowledge. We use BM25

(Schütze et al., 2008) to retrieve top M relevant

questions and answers from the training data. We

build the query and index using the concatenation

of question, ConceptNet triples and Wiktionary

definitions. For each retrieved question from the

training data, we drop the knowledge part and em-

ploy the retrieved question and its ground-truth

answer as external knowledge. During training, for

query x, we filter itself from the retrieved results to

avoid data leakage. Suppose the retrieved questions

and answers are {(x1, c1), (x2, c2), ..., (xM , cM )},

we format the knowledge from training data as

Ktrain = [x1 c1;x2 c2; · · · ;xM cM ].

Different from Anonymous (2022) where the re-

trieval questions are only obtained from the same

dataset, we experiment with three sources of train-

ing data for retrieval: i) CSQA training data, ii)

CSQA+OBQA+RiddleSense, a small collection of

datasets focusing on ConceptNet knowledge, and

iii) a pool of 17 datasets focusing on commonsense

reasoning (we describe details of these 17 datasets

in the Appendix).

Finally, we concatenate the retrieved knowledge

from our three sources to form a final knowledge

input: K = [KKG;Kdict;Ktrain]. In practice, the

semicolon is replaced by the separator token (e.g.,

[SEP]). We name our knowledge retrieval and

integration technology as Knowledgeable External

Attention for commonsense Reasoning (KEAR),

shown in Figure 1.

2.3 General Methods to Improve

Commonsense Reasoning

Prior works have proposed other methods to im-

prove general NLU performance, and it is there-

fore natural to wonder if these methods also works

for commonsense reasoning. Here, we explore

two general methods for improving commonsense

reasoning performance: i) using different text en-

coders and ii) virtual adversarial learning.

Text Encoders. Previous methods for natural lan-

guage understanding (NLU) (Xu et al., 2021; Yan

et al., 2020; Wang et al., 2020; Khashabi et al.,

2020) have tried using BERT (Devlin et al., 2018),

RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,

2019), T5 (Raffel et al., 2019), ELECTRA (Clark

et al., 2020) and DeBERTa (He et al., 2020) as

the text encoder, achieving state-of-the-art per-

formance on the GLUE benchmark (Wang et al.,

2019). Thus, we evaluate these models as encoders

for the commonsense reasoning task.

Virtual Adversarial Training (VAT). Previous

works show that virtual adversarial training (VAT,

Miyato et al. (2018)) can improve the performance

for general NLU and question answering tasks

(Jiang et al., 2020; Cheng et al., 2021). In the

multiple-choice commonsense reasoning task, the

goal is to minimize the cross-entropy loss:

min
θ

E(x,y)∼D[CE(f(x; θ), y)] (2)

where f produces the model prediction (distribu-

tion P on the choices), θ represents the model pa-

rameters, y is the one-hot ground-truth answer vec-

tor, CE is cross entropy, and D is the empirical

data distribution. VAT first finds the update δ that

leads to the largest change in the predicted distri-

bution, subject to a Lp-norm constraint. Then, a

consistency regularization loss term is added to

minimize the difference in the function’s output

when compared to the input variation δ:

min
θ

E(x,y)∼D[CE(f(x; θ), y)+ (3)

α max
∥δ∥2≤ε

CE(f(x; θ), f(x+ δ; θ))], (4)

where α and ε are hyperparameters.

3 Experiments

3.1 Setup

Data. We focus on the CommonsenseQA

(CSQA, Talmor et al., 2019) benchmark. Common-



senseQA is a widely used multiple-choice ques-

tion answering dataset that requires commonsense

knowledge. It contains 12k questions created us-

ing ConceptNet (Speer et al., 2017). For an edge

(subject, relation, object) in ConceptNet, Talmor

et al. (2019) retrieves other object concepts with the

same subject and relation as distractors for a ques-

tion. A human worker is then asked to i) write a

question containing the subject and with the object

as the correct answer, ii) pick the most distractive

answer from the retrieved concepts, and iii) write

another distractor for the question. The final ques-

tion contains 5 choices, with one correct choice,

two random retrieved concepts, one human-picked

concept, and one human-curated answer.

Model Setup. We feed the input text into a pre-

trained text encoder (e.g., DeBERTa) and take the

representation v ∈ R
d of the [CLS] token, where

d is the dimension of the encoder. We set the seg-

ment id as 0 for the question and answer text, and 1

for the appended knowledge text. The final predic-

tion is computed via softmax(vTb), where b ∈ R
d

is a parameter vector and the softmax is computed

over all five choices for a question. We then mini-

mize the cross entropy error during training.

Implementation Details. We finetune the model

using the AdamW optimizer. The batch size is

set to 48 or smaller to fit the batch on to a single

GPU. We train the model for 10 epochs and take

the best result on the dev set. We choose best

the weight decay in {0, 0.01, 0.1}. The learning

rate are chosen from {1e− 5, 2e− 5, 3e− 6} for

all encoders except for DeBERTa; following the

DeBERTa paper (He et al., 2020) we use a smaller

learning rate, chosen from {4e−6, 6e−6, 9e−6}.

We use the DeBERTa v2 model from Huggingface

Transformers (Wolf et al., 2020), and choose from

the pretrained model or model finetuned on MNLI.

For VAT, we choose α ∈ {0.1, 1.0, 10.0} and set

ε = 1e − 5. For VAT on DeBERTa-xxlarge, we

follow SiFT (He et al., 2020) that normalizes the

word vectors before adding the perturbation δ, and

set ε = 1e− 4. For knowledge from training data,

we choose the best from the three retrieval source

datasets. We run each experiment with 3 different

seeds and present results from the best run.

3.2 Effects of Individual Components

Effect of the Encoders. As shown in Table 1,

there is a positive correlation between general per-

formance on NLI tasks and commonsense reason-

Encoder CSQA MNLI #Para

Fine-tuned GPT-3 73.0 82.1 175B

RoBERTa-large 76.7 90.2 355M

ALBERT-xxlarge 81.2 90.6 235M

ELECTRA-base 75.0 88.8 110M

ELECTRA-large 81.3 90.9 335M

DeBERTa-xlarge 82.9 91.7 900M

DeBERTa-xxlarge 83.8 91.7 1.5B

DeBERTaV3-large 84.6 91.8 418M

T5-11B 83.51 91.3 11B

Table 1: CSQA dev set accuracy for various encoders.

We append the accuracy on MNLI dataset (in-domain)

for each encoder as a reference. MNLI scores are from

the corresponding GitHub repositories. 1: from Liu et al.

(2021).

ing abilities on CommonsenseQA. Notice that the

fine-tuned GPT-3 model with 175 billion param-

eters could only achieve 73.0% on the dev set

of CommonsenseQA. Based on these results, we

choose ELECTRA-large and DeBERTa variants

(He et al., 2020, 2021) as the encoders for subse-

quent experimentation.

Method Dev Acc(%)

Baselines

ELECTRA-large 81.3

DeBERTa-xxlarge 83.8

DeBERTaV3-large 84.6

With VAT

ELECTRA-large + VAT 82.1

DeBERTa-xxlarge + SiFT 84.4

DeBERTaV3-large + VAT 85.2

Table 2: Results on virtual adversarial training.

Effect of Virtual Adversarial Training. Table 2

shows that VAT can improve commonsense reason-

ing accuracy for of the models under consideration.

ELECTRA-large exhibits the largest increase in ac-

curacy (0.8%). Thus, we apply VAT to ELECTRA-

large for the following experiments.

Effect of External Attention. As shown in Ta-

ble 3, all of the proposed knowledge sources

bring gains in commonsense reasoning accuracy

across all base encoder models. The dictionary,

knowledge graph and training data bring 0.5%,

2.1% and 2.5% improvement, respectively, when

DeBERTaV3-large (He et al., 2021) is the base en-

coder model. We find that the best training data



Method E-l+V D-xxl DV3-l

Base 82.1 83.8 84.6

+ KG 85.2 86.4 86.7

+ Dictionary 83.8 84.0 85.1

+ Training data 84.0 86.4 87.1

Table 3: Applying external attention to different knowl-

edge sources. E-l+V stands for ELECTRA-large with

VAT, D-xxl stands for DeBERTa-xxlarge, DV3-l stands

for DeBERTaV3-large.

Method Dev Acc(%)

ELECTRA-large + KEAR 88.7

DeBERTa-xlarge + KEAR 89.5

DeBERTa-xxlarge + KEAR 90.8

DeBERTaV3-large + KEAR 91.2

Ensemble (39 models w/ KEAR) 93.4

Table 4: CSQA dev set results with different encoders

and ensembles.

retrieval source depends on the exact encoders, and

we present a detailed comparison in the Appendix.

This demonstrates the effectiveness of our proposed

knowledge retrieval and concatenation methods.

Method Single Ensemble

BERT+OMCS 62.5 -

RoBERTa 72.1 72.5

RoBERTa+KEDGN - 74.4

ALBERT - 76.5

RoBERTa+MHGRN 75.4 76.5

ALBERT + HGN 77.3 80.0

T5 78.1 -

UnifiedQA 79.1 -

ALBERT+KCR 79.5 -

ALBERT + KD 80.3 80.9

ALBERT + SFR - 81.8

DEKCOR 80.7 83.3

Human - 88.9

KEAR (ours) 86.1 89.4

Table 5: Results on test set from the leaderboard. The

human performance is ensemble of 5 workers (Talmor

et al., 2019).

3.3 Combining the Techniques

Table 4 shows the results of KEAR, which com-

bines the best techniques in previous experiments,

i.e., VAT and external attention to all knowledge

sources, to further boost the performance. The

best single model (DeBERTaV3-large + KEAR)

achieves 91.2% accuracy on the dev set. We fur-

ther ensemble 39 models with 12 ELECTRA mod-

els, 12 DeBERTaV3 models, 11 DeBERTa-xxlarge

models and 4 DeBERTa-xlarge models. Our en-

semble model reaches 93.4% accuracy on the dev

set. Table 5 shows the official leaderboard result on

the hidden test set. Our ensemble model exceeds

the previously best DEKCOR model by over 6%

and exceeds the human performance (88.9%) by

0.5%.

4 Related work

Many previous works have proposed ways of in-

corporating external knowledge sources into Trans-

former architectures. For commonsense question

answering, specialized knowledge graphs like Con-

ceptNet (Speer et al., 2017) and ATOMIC (Sap

et al., 2019a) are the most popular choices for exter-

nal knowledge source. Lin et al. (2019) constructs

a scheme graph from concepts in the question and

choices, and uses an LSTM to reason on paths be-

tween question and choice concepts. Feng et al.

(2020) further proposes the multi-hop graph rela-

tion network (MHGRN) for reasoning on paths be-

tween concepts. Yasunaga et al. (2021) constructs

a joint graph containing the QA context and KG,

then use graph neural networks to reason over the

two knowledge sources.

Another line of work explores less structured

knowledge such as Wikipedia and dictionaries for

commonsense reasoning (Xu et al., 2021; Chen

et al., 2020; Lv et al., 2020). Bhakthavatsalam et al.

(2020) combine the knowledge from ConceptNet,

WordNet and other corpora to form 3.5M generic

statements and show that this knowledge can help

boost accuracy and explanation quality.

Recently, there are approaches to generate facts

from pretrained language models to complement

missing facts in the external knowledge source.

Bosselut et al. (2019) and Hwang et al. (2020)

finetunes a pretrained model on ATOMIC for com-

monsense knowledge graph completion. Liu et al.

(2021) directly prompts the GPT-3 model (Brown

et al., 2020) to get knowledge for reasoning.

Beyond commonsense reasoning, external

knowledge can also help boost performance on

other language processing tasks like open domain

question answering (Yu et al., 2021), relation clas-

sification (Yu et al., 2020a), dialog response gener-

ation (Ghazvininejad et al., 2018), conversational

QA (Qin et al., 2019), multilingual NLU (Fang



et al., 2021) and text generation (Yu et al., 2020b).

Compared with prior work that uses extra modules

(e.g., GNNs) or extra models (e.g., GPT-3), our ex-

ternal attention framework is extremely lightweight.

It operates via a combination of non-parametric re-

trieval and text concatenation, which we show is

highly effective, able to surpass human parity on

the CommonsenseQA task.

5 Conclusion

We propose external attention as a lightweight

framework for retrieving and integrating external

knowledge for language understanding. Compared

with self-attention which benefits from ever increas-

ing model sizes, external attention can bring related

information from external sources to supplement

the input. We demonstrate that this strategy can

lead to considerable gains in performance with lit-

tle additional computational cost. By leveraging

knowledge from knowledge graphs, dictionaries

and training data, we show that our technology,

KEAR, achieves human parity on the Common-

senseQA benchmark task for the first time. For

future work, we will apply the technique to other

NLP tasks to improve language model performance

with external knowledge.
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A Datasets

We use a combination of 17 datasets for our largest-

scale training data retrieval. The datasets include

αNLI (Bhagavatula et al., 2019), SWAG (Zellers

et al., 2018), RACE (Lai et al., 2017) (we only

use the middle-school subset), CODAH (Chen

et al., 2019), RiddleSense (Lin et al., 2021), SciTail

(Khot et al., 2018), Com2Sense (Singh et al., 2021),

AI2 Science Questions (Clark et al., 2019), Wino-

Grade (Sakaguchi et al., 2019), CommonsenseQA

(Talmor et al., 2019), CommonsenseQA2.0 (Tal-

mor et al., 2021), ASQ (Fu et al., 2019), OBQA

(Mihaylov et al., 2018), PhysicalIQA (Bisk et al.,

2020), SocialIQA(Sap et al., 2019b), CosmosQA

(Huang et al., 2019) and HellaSWAG (Zellers et al.,

2019). We present details of the datasets that we

use for training data retrieval in Table 6.

Dataset Task #Train #Label

αNLI NLI 170k 2

SWAG MC 73.5k 4

RACE-Middle MRC 87.9k 4

CODAH MC 1672 4

RiddleSense MC 3512 5

SciTail NLI 23.6k 2

Com2Sense MC 808 2

AI2Science MC 1232 4

WinoGrade CoRef 40.4k 2

CSQA MC 9741 5

CSQA2.0 CLF 9264 2

ASQ MC 8872 2

OBQA MC 4960 4

PhysicalIQA MC 16.1k 2

SocialIQA MC 33.4k 3

CosmosQA MRC 25.3k 4

HellaSWAG NSP 39.9k 4

Table 6: The datasets used for training data retrieval.

NLI stands for natural language inference, MC is mul-

tiple choice, MRC is machine reading comprehension,

CLF is classification, NSP is next sentence prediction.

B Retrieval Sources

We present results comparing different sources of

training data retrieval in Table 7. The best choice

of retrieval source varies with encoders and the

techniques applied; in general the 17-dataset pool

achieve the best performance for DeBERTa, but for

ELECTRA retrieving from the CSQA training set

alone can get the best performance.

Model CSQA 3-Data 17-Data

E-l+V 84.0 82.9 82.8

D-xxl 86.2 86.1 86.4

DV3-l 87.0 87.1 87.1

E-l+V, best 88.5 88.2 87.1

D-xxl, best 89.8 90.5 90.8

DV3-l, best 91.0 91.2 91.2

Table 7: Performance on CSQA dev set of model w.r.t

source of training data retrieval. “Best” means our best

model combining all the techniques. E-l+V stands for

ELECTRA-large with VAT, D-xxl stands for DeBERTa-

xxlarge, DV3-l stands for DeBERTaV3-large.


