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Abstract

Most of today’s Al systems focus on using self-
attention mechanisms and transformer archi-
tectures on large amounts of diverse data to
achieve impressive performance gains. In this
paper, we propose to augment the transformer
architecture with an external attention mecha-
nism to bring external knowledge and context
to bear. By integrating external information
into the prediction process, we hope to reduce
the need for ever-larger models and increase the
democratization of Al systems. We find that the
proposed external attention mechanism can sig-
nificantly improve the performance of existing
Al systems, allowing practitioners to easily cus-
tomize foundation Al models to many diverse
downstream applications. In particular, we fo-
cus on the task of Commonsense Reasoning,
demonstrating that the proposed external at-
tention mechanism can augment existing trans-
former models and significantly improve the
model’s reasoning capabilities. The proposed
system, Knowledgeable External Attention for
commonsense Reasoning (KEAR), reaches hu-
man parity on the open CommonsenseQA re-
search benchmark with an accuracy of 89.4%
in comparison to the human accuracy of 88.9%.

1 Introduction

Transformers (Vaswani et al., 2017) have revolu-
tionized many areas of Al with state-of-the-art per-
formance in a wide range of tasks (Devlin et al.,
2018; Dosovitskiy et al., 2020). The most notable
and effective component in a Transformer model
is the self-attention mechanism, which enables the
model to dynamically leverage different parts of
the input for computation with no information loss
for even the most distant parts in input. With
the success of pre-trained models (Devlin et al.,
2018; Liu et al., 2019), the Transformer and its self-
attention mechanism have been widely adopted as
the cornerstone of foundation models trained on

huge amounts of data (Bommasani et al., 2021).

One phenomenon found during the development
of Transformer models is that models with larger
size tend to have better learning abilities, espe-
cially when combined with large-scale data (Ka-
plan et al., 2020). This has prompted the recent
boom of super large Transformer models, ranging
from BERT (Devlin et al., 2018) with 110 million
parameters, to GPT-3 (Brown et al., 2020) with
175 billion parameters. Nevertheless, numerous
studies have shown that the corresponding under-
standing and generation capabilities of these huge
models are still behind humans (Bommasani et al.,
2021). Furthermore, the sheer size of these models
already poses serious practical challenges in utiliza-
tion, deployment, interpretation, and environmental
impact (Patterson et al., 2021). Thus, the recent
“scaling-up” approach to Transformer-based NLP
modeling is unsustainable and has been questioned
in recent studies (Bommasani et al., 2021).

In this paper, we take a step back and exam-
ine the mechanism of current Transformer-based
models. Self-attention was designed to allow the
model to better analyze the inner structure of input
data, and the model is trained to have its parameters
grasp and memorize all the content and patterns of
the training data. When the model is given a novel
input X, the implicitly stored knowledge in the
parameters about related information is activated
to facilitate the analysis of X. This could partly
explain why larger models pre-trained with more
data have an advantage in performance.

While Transformer models process input by
looking inward via self-attention, we propose to
make the model look outward by providing it
with related context and knowledge from vari-
ous sources. We then let the model conduct self-
attention on the input while also computing exter-
nal attention to the knowledge (Figure 1). As the
context and knowledge can usually be stored in



an non-parametric and symbolic way (e.g., plain
text, knowledge graph and dictionary entries), even
moderately-sized Transformer models can perform
exceptionally well on NLP tasks. This approach
allows one to shrink the size of Transformer-based
foundation models, which is critical to the accessi-
bility and democratization of Al technology. This
approach is also analogous to the way humans con-
duct intelligence; we often resort to search engines,
dictionaries, or information from other people in
order to navigate the world.

Another benefit of the external attention is that,
as the related knowledge is stored outside of the
model, practitioners can easily update the knowl-
edge source to change the behavior of their models.
For example, one could add or delete entries from
a knowledge graph or rewrite certain paragraphs in
Wikipedia. By explicitly representing knowledge,
the decision process of the model becomes much
more transparent and explainable.

In this paper, we use the commonsense reason-
ing task CommonsenseQA (Talmor et al., 2019)
as a case study in leveraging external attention
to obtain and integrate information related to the
input. Given a commonsense question and a
choice, we retrieve knowledge from three external
sources: a knowledge graph (ConceptNet), dictio-
nary (Wiktionary) and labeled training data (Com-
monsenseQA and 16 related QA datasets). The
retrieved knowledge is directly appended to the
input and sent to the language model with no re-
vision to the underlying architecture. We show
that with the proposed external attention, the accu-
racy of commonsense reasoning using a DeBERTa-
xxlarge model (He et al., 2020) can be significantly
boosted from 83.8% to 90.8% on the dev set, while
fine-tuned large-scale models like GPT-3 can only
achieve 73.0%. The ensembled version of our
model, Knowledgeable External Attention for com-
monsense Reasoning (KEAR), reaches an accuracy
of 93.4% on the dev set and 89.4% on the test set,
surpassing human performance (88.9%) for the first
time (Talmor et al., 2019).

The benefits of our approach extend beyond com-
monsense reasoning. First, the external attention
dramatically reduces our system’s dependence on
large-scale models, i.e., achieving human parity
with models up to 1.5B parameters. Second, the ex-
ternal information is obtained via computationally
efficient methods, such as information retrieval and
word matching, adding little computational cost to

the main model. Third, the text-level concatena-
tion of input and knowledge leads no change to the
Transformer model, enabling existing systems to
easily adopt this new external attention mechanism.

2 Method

We first describe our external attention framework
in Sec 2.1. Next, we describe our external knowl-
edge sources in Sec 2.2. Last, we present additional
modeling techniques for improving commonsense
reasoning in Sec 2.3. We present empirical results
of our techniques in Sec 3.

Problem Formulation. We focus on the
multiple-choice question answering task in this
paper, where the goal is to select the correct
answer from a given list c¢j,ca,...,c, for a
commonsense question q. The output of the model
is a distribution P on {1, 2, ...,n}.

2.1 Attention

Self Attention. The majority of recent language
models are based on the Transformer architecture
(Vaswani et al., 2017). One of the most important
components in Transformer is the self-attention
mechanism, which can be formulated as

Q=HW, K=HW,V =HW,,
QK"
Vd
where H; € RV*4 is the input hidden vectors to
the [-th Transformer layer, W, W, W, € Rdxd
are projection matrices, NV is the input length and
d is the hidden vector’s dimension. The inputs
to the first Transformer layer are usually the em-
beddings of the tokenized input text, denoted as
Hy = X = [x1,72,...,2y]". In the multi-choice
question answering context, the input text is a con-

catenation of the question and a specific choice.

A= , Hj11 = softmax(A)V, (1)

External Attention. For commonsense question
answering, the required information needed to an-
swer the question is usually absent from the input.
Thus, we need to integrate external knowledge into
the model. In this work, we denote the extra knowl-
edge in text format as K = [zf 2i ,xﬁk]
There are many ways to integrate the external
knowledge into the model. In this paper we con-
catenate the knowledge to the input text: Hy =

"We do not differentiate between tokens and their embed-

dings in the following discussion. Following previous work,
we prepend a [CLS] token to the input.
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Figure 1: Our proposed method of Knowledgeable External Attention for commonsense Reasoning (KEAR).
Related knowledge is retrieved from external sources, e.g., knowledge graph, dictionary and training data, using
the input as key and then integrated with the input. While additional external attention layers can be added to the
Transformer blocks, we adopt text-level concatenation for external attention, incurring no structural change to the

model architecture.

[(X; K] = [21,...,xn,2{,...,2} ]. The advan-
tage of this input-level integration is that the exist-
ing model architecture does not need to be modified.
Then, applying self-attention on Hj can make the
model freely reason between the knowledge text
and the question/choices, therefore equipping the
model with enhanced reasoning capacity.

2.2 Knowledge Retrieval

The knowledge to append to the input for external
attention is crucial for getting the correct prediction.
For commonsense reasoning, we collect three ex-
ternal knowledge sources to complement the input
questions and choices.

Knowledge Graph. Knowledge graphs (KG)
contain curated facts that can help with common-
sense reasoning. We follow KCR (Lin, 2020) to
retrieve a relevant relation triple in the ConceptNet
graph (Speer et al., 2017). Suppose the question

entity is e, and the choice contains entity e If
there is a direct edge r from e to e. in ConceptNet,
we choose this triple (eq, 7, e.). Otherwise, we re-
trieve all the triples originating from e.. We score
each triple j by the product of its confidence w;
(provided by ConceptNet) and the defined relation
type weight 2 s; = wj - tr, = wj - A%, where
r; is the relation type of j, N is the total number
of triples originating from e., N, is the number
of triples with relation r; among these triples. We
then choose the triple with highest weight. Finally,
if the selected triple is (e1,r, e3), we format the
knowledge from the KG as Kk = [e1 7 ea].

Dictionary. Although pre-trained language mod-
els are exposed to large-scale text data, the long
tail distribution of words means that the quality
of a word’s representation is highly dependent on
that word’s frequency in the pre-training corpus.

*In CommonsenseQA dataset, both eq and e, are provided.

Otherwise, we can use entity linking to find related knowledge
graph nodes to the input text.



Dictionaries, on the other hand, can provide ac-
curate semantic explanation of words regardless
of their frequency in datasets. To help understand
key concepts in the question and answer, we fol-
low DEKCOR (Xu et al., 2021) to use the Wik-
tionary definitions of the question and answer con-
cepts as external knowledge. For every concept,
we fetch the first (most frequent) definition from
Wiktionary using its closest lexical match. Let d,
be the definition text for e, and d.. be the definition
text for e., we format the dictionary knowledge as
Kiict = [eq : dg; ec = dc).

Training Data. Although recent language mod-
els are giant in terms of the number of parameters,
recent studies show that they cannot perfectly mem-
orize all the details of their training data (Anony-
mous, 2022).

To tackle this challenge, we propose to retrieve
relevant questions and answers from the training
data as additional knowledge. We use BM25
(Schiitze et al., 2008) to retrieve top M relevant
questions and answers from the training data. We
build the query and index using the concatenation
of question, ConceptNet triples and Wiktionary
definitions. For each retrieved question from the
training data, we drop the knowledge part and em-
ploy the retrieved question and its ground-truth
answer as external knowledge. During training, for
query x, we filter itself from the retrieved results to
avoid data leakage. Suppose the retrieved questions
and answers are {(x1, 1), (x2,¢2), ..., (Tar,car) }s
we format the knowledge from training data as
Kinain = [71 c1322 €25+ 520 Cpl-

Different from Anonymous (2022) where the re-
trieval questions are only obtained from the same
dataset, we experiment with three sources of train-
ing data for retrieval: i) CSQA training data, ii)
CSQA+OBQA+RiddleSense, a small collection of
datasets focusing on ConceptNet knowledge, and
iii) a pool of 17 datasets focusing on commonsense
reasoning (we describe details of these 17 datasets
in the Appendix).

Finally, we concatenate the retrieved knowledge
from our three sources to form a final knowledge
input: K = [Kxg; Kdict; Kirain]- In practice, the
semicolon is replaced by the separator token (e.g.,

[SEP]1). We name our knowledge retrieval and
integration technology as Knowledgeable External
Attention for commonsense Reasoning (KEAR),
shown in Figure 1.

2.3 General Methods to Improve
Commonsense Reasoning

Prior works have proposed other methods to im-
prove general NLU performance, and it is there-
fore natural to wonder if these methods also works
for commonsense reasoning. Here, we explore
two general methods for improving commonsense
reasoning performance: i) using different text en-
coders and ii) virtual adversarial learning.

Text Encoders. Previous methods for natural lan-
guage understanding (NLU) (Xu et al., 2021; Yan
et al., 2020; Wang et al., 2020; Khashabi et al.,
2020) have tried using BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019), T5 (Raffel et al., 2019), ELECTRA (Clark
et al., 2020) and DeBERTa (He et al., 2020) as
the text encoder, achieving state-of-the-art per-
formance on the GLUE benchmark (Wang et al.,
2019). Thus, we evaluate these models as encoders
for the commonsense reasoning task.

Virtual Adversarial Training (VAT). Previous
works show that virtual adversarial training (VAT,
Miyato et al. (2018)) can improve the performance
for general NLU and question answering tasks
(Jiang et al., 2020; Cheng et al., 2021). In the
multiple-choice commonsense reasoning task, the
goal is to minimize the cross-entropy loss:

minE(, ) pCE(f(z:60),9)] @

where f produces the model prediction (distribu-
tion P on the choices), f represents the model pa-
rameters, y is the one-hot ground-truth answer vec-
tor, CE is cross entropy, and D is the empirical
data distribution. VAT first finds the update ¢ that
leads to the largest change in the predicted distri-
bution, subject to a L,-norm constraint. Then, a
consistency regularization loss term is added to
minimize the difference in the function’s output
when compared to the input variation J:

mein E(x,y)ND[CE(f(xS 0),y)+ 3
o max CE(f(z;0), f(x +0:0))], (4

where « and ¢ are hyperparameters.

3 Experiments

3.1 Setup

Data. We focus on the CommonsenseQA
(CSQA, Talmor et al., 2019) benchmark. Common-



senseQA is a widely used multiple-choice ques-
tion answering dataset that requires commonsense
knowledge. It contains 12k questions created us-
ing ConceptNet (Speer et al., 2017). For an edge
(subject, relation, object) in ConceptNet, Talmor
et al. (2019) retrieves other object concepts with the
same subject and relation as distractors for a ques-
tion. A human worker is then asked to i) write a
question containing the subject and with the object
as the correct answer, ii) pick the most distractive
answer from the retrieved concepts, and iii) write
another distractor for the question. The final ques-
tion contains 5 choices, with one correct choice,
two random retrieved concepts, one human-picked
concept, and one human-curated answer.

Model Setup. We feed the input text into a pre-
trained text encoder (e.g., DeBERTa) and take the
representation v € R4 of the [CLS] token, where
d is the dimension of the encoder. We set the seg-
ment id as O for the question and answer text, and 1
for the appended knowledge text. The final predic-
tion is computed via softmax(v’'d), where b € R?
is a parameter vector and the softmax is computed
over all five choices for a question. We then mini-
mize the cross entropy error during training.

Implementation Details. We finetune the model
using the AdamW optimizer. The batch size is
set to 48 or smaller to fit the batch on to a single
GPU. We train the model for 10 epochs and take
the best result on the dev set. We choose best
the weight decay in {0,0.01,0.1}. The learning
rate are chosen from {le — 5,2e — 5,3e — 6} for
all encoders except for DeBERTa; following the
DeBERTa paper (He et al., 2020) we use a smaller
learning rate, chosen from {4e — 6, 6¢ — 6,9¢ —6}.
We use the DeBERTa v2 model from Huggingface
Transformers (Wolf et al., 2020), and choose from
the pretrained model or model finetuned on MNLI.
For VAT, we choose o € {0.1,1.0,10.0} and set
e = le — 5. For VAT on DeBERTa-xxlarge, we
follow SiFT (He et al., 2020) that normalizes the
word vectors before adding the perturbation §, and
set ¢ = le — 4. For knowledge from training data,
we choose the best from the three retrieval source
datasets. We run each experiment with 3 different
seeds and present results from the best run.

3.2 Effects of Individual Components

Effect of the Encoders. As shown in Table 1,
there is a positive correlation between general per-
formance on NLI tasks and commonsense reason-

Encoder CSQA MNLI #Para
Fine-tuned GPT-3 73.0 82.1 175B
RoBERTa-large 76.7 90.2  355M
ALBERT-xxlarge 81.2 90.6 235M
ELECTRA-base 75.0 88.8 110M
ELECTRA-large 81.3 909 335M
DeBERTa-xlarge 82.9 91.7 900M
DeBERTa-xxlarge 83.8 91.7 1.5B
DeBERTaV3-large  84.6 91.8 418M
T5-11B 8351 913  11B

Table 1: CSQA dev set accuracy for various encoders.
We append the accuracy on MNLI dataset (in-domain)
for each encoder as a reference. MNLI scores are from
the corresponding GitHub repositories. *: from Liu et al.
(2021).

ing abilities on CommonsenseQA. Notice that the
fine-tuned GPT-3 model with 175 billion param-
eters could only achieve 73.0% on the dev set
of CommonsenseQA. Based on these results, we
choose ELECTRA-large and DeBERTa variants
(He et al., 2020, 2021) as the encoders for subse-
quent experimentation.

Method Dev Acc(%)
Baselines

ELECTRA-large 81.3
DeBERTa-xxlarge 83.8
DeBERTaV3-large 84.6
With VAT

ELECTRA-large + VAT 82.1
DeBERTa-xxlarge + SiFT 84.4
DeBERTaV3-large + VAT 85.2

Table 2: Results on virtual adversarial training.

Effect of Virtual Adversarial Training. Table 2
shows that VAT can improve commonsense reason-
ing accuracy for of the models under consideration.
ELECTRA-large exhibits the largest increase in ac-
curacy (0.8%). Thus, we apply VAT to ELECTRA-
large for the following experiments.

Effect of External Attention. As shown in Ta-
ble 3, all of the proposed knowledge sources
bring gains in commonsense reasoning accuracy
across all base encoder models. The dictionary,
knowledge graph and training data bring 0.5%,
2.1% and 2.5% improvement, respectively, when
DeBERTaV3-large (He et al., 2021) is the base en-
coder model. We find that the best training data



Method E-1+V D-xxl DV3-l
Base 82.1 83.8  84.6
+ KG 852 864  86.7
+ Dictionary 83.8 84.0  85.1
+ Training data ~ 84.0 86.4 87.1

Table 3: Applying external attention to different knowl-
edge sources. E-14+V stands for ELECTRA-large with
VAT, D-xxl stands for DeBERTa-xxlarge, DV3-1 stands
for DeBERTaV3-large.

Method Dev Acc(%)
ELECTRA-large + KEAR 88.7
DeBERTa-xlarge + KEAR 89.5
DeBERTa-xxlarge + KEAR 90.8
DeBERTaV3-large + KEAR 91.2
Ensemble (39 models w/ KEAR) 93.4

Table 4: CSQA deyv set results with different encoders
and ensembles.

retrieval source depends on the exact encoders, and
we present a detailed comparison in the Appendix.
This demonstrates the effectiveness of our proposed
knowledge retrieval and concatenation methods.

Method Single Ensemble
BERT+OMCS 62.5 -
RoBERTa 72.1 72.5
RoBERTa+KEDGN - 74.4
ALBERT - 76.5
RoBERTa+MHGRN 754 76.5
ALBERT + HGN 77.3 80.0
T5 78.1 -
UnifiedQA 79.1 -
ALBERT+KCR 79.5 -
ALBERT + KD 80.3 80.9
ALBERT + SFR - 81.8
DEKCOR 80.7 83.3
Human - 88.9
KEAR (ours) 86.1 894

Table 5: Results on test set from the leaderboard. The
human performance is ensemble of 5 workers (Talmor
etal., 2019).

3.3 Combining the Techniques

Table 4 shows the results of KEAR, which com-
bines the best techniques in previous experiments,
i.e., VAT and external attention to all knowledge
sources, to further boost the performance. The
best single model (DeBERTaV3-large + KEAR)

achieves 91.2% accuracy on the dev set. We fur-
ther ensemble 39 models with 12 ELECTRA mod-
els, 12 DeBERTaV3 models, 11 DeBERTa-xxlarge
models and 4 DeBERTa-xlarge models. Our en-
semble model reaches 93.4% accuracy on the dev
set. Table 5 shows the official leaderboard result on
the hidden test set. Our ensemble model exceeds
the previously best DEKCOR model by over 6%
and exceeds the human performance (88.9%) by
0.5%.

4 Related work

Many previous works have proposed ways of in-
corporating external knowledge sources into Trans-
former architectures. For commonsense question
answering, specialized knowledge graphs like Con-
ceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019a) are the most popular choices for exter-
nal knowledge source. Lin et al. (2019) constructs
a scheme graph from concepts in the question and
choices, and uses an LSTM to reason on paths be-
tween question and choice concepts. Feng et al.
(2020) further proposes the multi-hop graph rela-
tion network (MHGRN) for reasoning on paths be-
tween concepts. Yasunaga et al. (2021) constructs
a joint graph containing the QA context and KG,
then use graph neural networks to reason over the
two knowledge sources.

Another line of work explores less structured
knowledge such as Wikipedia and dictionaries for
commonsense reasoning (Xu et al., 2021; Chen
et al., 2020; Lv et al., 2020). Bhakthavatsalam et al.
(2020) combine the knowledge from ConceptNet,
WordNet and other corpora to form 3.5M generic
statements and show that this knowledge can help
boost accuracy and explanation quality.

Recently, there are approaches to generate facts
from pretrained language models to complement
missing facts in the external knowledge source.
Bosselut et al. (2019) and Hwang et al. (2020)
finetunes a pretrained model on ATOMIC for com-
monsense knowledge graph completion. Liu et al.
(2021) directly prompts the GPT-3 model (Brown
et al., 2020) to get knowledge for reasoning.

Beyond commonsense reasoning, external
knowledge can also help boost performance on
other language processing tasks like open domain
question answering (Yu et al., 2021), relation clas-
sification (Yu et al., 2020a), dialog response gener-
ation (Ghazvininejad et al., 2018), conversational
QA (Qin et al., 2019), multilingual NLU (Fang



et al., 2021) and text generation (Yu et al., 2020b).
Compared with prior work that uses extra modules
(e.g., GNNs) or extra models (e.g., GPT-3), our ex-
ternal attention framework is extremely lightweight.
It operates via a combination of non-parametric re-
trieval and text concatenation, which we show is
highly effective, able to surpass human parity on
the CommonsenseQA task.

5 Conclusion

We propose external attention as a lightweight
framework for retrieving and integrating external
knowledge for language understanding. Compared
with self-attention which benefits from ever increas-
ing model sizes, external attention can bring related
information from external sources to supplement
the input. We demonstrate that this strategy can
lead to considerable gains in performance with lit-
tle additional computational cost. By leveraging
knowledge from knowledge graphs, dictionaries
and training data, we show that our technology,
KEAR, achieves human parity on the Common-
senseQA benchmark task for the first time. For
future work, we will apply the technique to other
NLP tasks to improve language model performance
with external knowledge.
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A Datasets

We use a combination of 17 datasets for our largest-
scale training data retrieval. The datasets include
aNLI (Bhagavatula et al., 2019), SWAG (Zellers
et al., 2018), RACE (Lai et al., 2017) (we only
use the middle-school subset), CODAH (Chen
et al., 2019), RiddleSense (Lin et al., 2021), SciTail
(Khot et al., 2018), Com2Sense (Singh et al., 2021),
AI2 Science Questions (Clark et al., 2019), Wino-
Grade (Sakaguchi et al., 2019), CommonsenseQA
(Talmor et al., 2019), CommonsenseQA2.0 (Tal-
mor et al., 2021), ASQ (Fu et al., 2019), OBQA
(Mihaylov et al., 2018), PhysicallQA (Bisk et al.,
2020), SociallQA(Sap et al., 2019b), CosmosQA
(Huang et al., 2019) and HellaSWAG (Zellers et al.,
2019). We present details of the datasets that we
use for training data retrieval in Table 6.

Dataset Task #Train #Label
aNLI NLI 170k 2
SWAG MC 73.5k 4
RACE-Middle MRC  87.9k 4
CODAH MC 1672 4
RiddleSense MC 3512 5
SciTail NLI 23.6k 2
Com2Sense MC 808 2
Al2Science MC 1232 4
WinoGrade CoRef 40.4k 2
CSQA MC 9741 5
CSQA2.0 CLF 9264 2
ASQ MC 8872 2
OBQA MC 4960 4
PhysicallQA MC 16.1k 2
SociallQA MC 33.4k 3
CosmosQA MRC  25.3k 4
HellaSWAG NSP 39.9k 4

Table 6: The datasets used for training data retrieval.
NLI stands for natural language inference, MC is mul-
tiple choice, MRC is machine reading comprehension,
CLF is classification, NSP is next sentence prediction.

B Retrieval Sources

We present results comparing different sources of
training data retrieval in Table 7. The best choice
of retrieval source varies with encoders and the
techniques applied; in general the 17-dataset pool
achieve the best performance for DeBERTa, but for
ELECTRA retrieving from the CSQA training set
alone can get the best performance.

Model CSQA 3-Data 17-Data
E-14+V 84.0 82.9 82.8
D-xxl1 86.2 86.1 86.4
DV3-1 87.0 87.1 87.1
E-1+V, best  88.5 88.2 87.1
D-xxl, best 89.8 90.5 90.8
DV3-I,best 91.0 91.2 91.2

Table 7: Performance on CSQA dev set of model w.r.t
source of training data retrieval. “Best” means our best
model combining all the techniques. E-1+V stands for
ELECTRA-large with VAT, D-xxI stands for DeBERTa-
xxlarge, DV3-I stands for DeBERTaV3-large.



