Dynamic Redeployment to Counter Congestion/Starvation in Vehicle Sharing Systems

Supriyo Ghosh, Pradeep Varakantham
School of Information Systems, Singapore Management University

Yossiri Adulyasak, Patrick Jaillet
Singapore MIT Alliance for Research and Technology (SMART), MIT
Motivation: Bike Sharing Systems

- Examples
 - Bike Sharing (Capital Bikeshare, Hubway, etc.): 747 active systems
Motivation: Bike Sharing Systems

- Examples
 - Bike Sharing (Capital Bikeshare, Hubway, etc.): 747 active systems
- Alternative transportation to reduce carbon emissions and traffic congestion
Motivation: Bike Sharing Systems

- Problem: Lost demand because of insufficient vehicles at right places/times
- Increased use of private transportation and hence carbon emissions
- Reduced revenue
Related Work

- Static Redeployment (once at the end of day)
 - Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
 - Issue - Stations are imbalanced during the day.
Related Work

- Static Redeployment (once at the end of day)
 - Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
 - Issue - Stations are imbalanced during the day.

- Dynamic Redeployment (matching of producer and consumer station)
 - Shu et al. (2013, 2010), O’Mahony and Shmoys (2015)
 - Issue - Does not consider the routing cost which is a major cost driver.
Related Work

- **Static Redeployment (once at the end of day)**
 - Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
 - Issue - Stations are imbalanced during the day.

- **Dynamic Redeployment (matching of producer and consumer station)**
 - Shu et al. (2013, 2010), O’Mahony and Shmoys (2015)
 - Issue - Does not consider the routing cost which is a major cost driver.

- **Myopic/Online Redeployment**
 - Schuijbroek et al. (2013), Pfommer et al. (2014), Singla et al. (2015)
 - Issue - Perform poorly in reality as it does not consider the future demands.
Related Work

- **Static Redeployment (once at the end of day)**
 - *Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)*
 - Issue - Stations are imbalanced during the day.

- **Dynamic Redeployment (matching of producer and consumer station)**
 - *Shu et al. (2013, 2010), O’Mahony and Shmoys (2015)*
 - Issue - Does not consider the routing cost which is a major cost driver.

- **Myopic/Online Redeployment**
 - *Schuijbroek et al. (2013), Pfrommer et al. (2014), Singla et al. (2015)*
 - Issue - Perform poorly in reality as it does not consider the future demands.

- **Our Approach:**
 - MILP to jointly consider dynamic routing and redeployment problem *[DRRP]*
 - Lagrangian dual decomposition to improve the scalability.
 - Abstraction mechanism by grouping the nearby base stations to reduce the decision problems.
Challenge

- Input: A DRRP is compactly defined using following tuple

\[\langle S, V, C^\#, C^*, d^\#, 0, d^*, 0, \{\sigma_v^0\}, F, R, P \rangle \]
Challenge

- Input: A **DRRP** is compactly defined using following tuple

\[\langle S, V, C^#, C^*, d^#_0, d^*_0, \{\sigma^0_v\}, F, R, P \rangle \]

- Outputs:
 - Number of vehicles to be redeployed, \(y \)
 - Routes for carriers, \(z \) to make redeployments
Challenge

- Input: A DRRP is compactly defined using following tuple
 \[
 \left(S, V, \#C, C^*, d^#, 0, d^*, 0, \{\sigma^0_v\}, F, R, P \right)
 \]

- Outputs:
 - Number of vehicles to be redeployed, \(y \)
 - Routes for carriers, \(z \) to make redeployments

- Objective: Maximize revenue (increasing satisfied demand + reducing carrier fuel costs)
Approach: Linear Optimization

\[
\min_{y^+, y^-, z} - \sum_{t, k, s, s'} R_{s, s'}^t k \cdot x_{s, s'}^t k + \sum_{t, v, s, s'} P_{s, s'} \cdot z_{s, s', v}^t
\]

Maximize revenue
Approach: Linear Optimization

Maximize revenue

Flow preservation of bikes at stations
Approach: Linear Optimization

\[
\min_{y^+,y^-,z} \sum_{t,k,s,s'} R^{t,k}_{s,s'} \cdot x^{t,k}_{s,s'} + \sum_{t,v,s,s'} P_{s,s'} \cdot z^t_{s,s',v} \\
\]

Maximize revenue

Flow preservation of bikes at stations

Actual flow \(\propto\) Observed Flow

\[
d^\#_{s} + \sum_{k,\bar{s}} x^{t,k}_{\bar{s},s} - \sum_{k,s'} x^{t,k}_{s,s'} + \sum_{v} (y^{-,t}_{s,v} - y^{+,t}_{s,v}) = d^\#_{s} + 1, \ \forall t, s
\]

\[
x^{t,k}_{s,s'} \leq d^\#_{s} \cdot \frac{F^{t,k}_{s,s'}}{\sum_{k,\bar{s}} F^{t,k}_{s,\bar{s}}}, \ \forall t, k, s, s'
\]
The right trade-off between minimizing lost demand (maximizing revenue) and reducing cost due to carriers.

We employ a data driven approach to solve DRRP. That is set partitioning problem, a known NP-Hard problem.

\[
\min_{y^+, y^-, z} \sum_{t, k, s, s'} R_{s, s'}^t \cdot x_{s, s'}^t, k + \sum_{t, v, s, s'} P_{s, s'} \cdot z_{s, s', v}^t
\]

Maximize revenue

Flow preservation of bikes at stations

\[
d_s^#, t + \sum_{k, s} x_{s, s}^t, k - \sum_{k, s'} x_{s, s'}^t, k + \sum_v (y_{s, v}^-, t - y_{s, v}^+, t) = d_s^#, t+1, \forall t, s
\]

Actual flow \(\propto\) Observed Flow

Flow preservation of vehicles in carriers

\[
x_{s, s'}^t, k \leq d_s^#, t \cdot \frac{F_{s, s'}^t, k}{\sum_{k, s} F_{s, s'}^t, k}, \forall t, k, s, s'
\]

\[
d_v^*, t + \sum_{s \in S} [(y_{s, v}^+, t - y_{s, v}^-, t)] = d_v^*, t+1, \forall t, v
\]
Approach: Linear Optimization

\[
\text{Minimize} \quad y^+, y^-, z \quad \text{subject to} \quad \sum_{t,k,s,s'} R_{s,s'}^{t,k} \cdot x_{s,s'}^{t,k} + \sum_{t,v,s,s'} P_{s,s'} \cdot z_{s,s',v}^{t} \leq 0
\]

\[
d_{s}^{\#}: t \left(\sum_{k,s} x_{s,s}^{t,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \sum_{v} \left(y_{s,v}^{t} - y_{s,v}^{+,t} \right) \right) = d_{s}^{\#} + 1, \quad \forall t, s
\]

\[
x_{s,s'}^{t,k} \leq d_{s}^{\#} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,s} F_{s,s}^{t,k}}, \quad \forall t, k, s, s'
\]

\[
d_{v}^{*,t} + \sum_{s \in S} \left[\left(y_{s,v}^{t} - y_{s,v}^{+,t} \right) \right] = d_{v}^{*,t+1}, \quad \forall t, v
\]

\[
\sum_{k \in S} z_{s,k,v}^{t} - \sum_{k \in S} z_{k,s,v}^{t-1} = \sigma_{v}^{t}(s), \quad \forall t, s, v
\]

\[
\sum_{j \in S, v \in V} z_{s,j,v}^{t} \leq 1, \quad \forall t, s
\]

Maximize revenue

Flow preservation of bikes at stations

Actual flow \propto Observed Flow

Flow preservation of vehicles in carriers

Enforcing right movement of carriers between stations

<table>
<thead>
<tr>
<th>Category</th>
<th>Decision Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y^+, y^-, z</td>
<td>Flow of bikes in stations</td>
</tr>
<tr>
<td></td>
<td>$x_{s,s'}^{t,k}$</td>
<td>Flow of bikes in carriers</td>
</tr>
<tr>
<td></td>
<td>$P_{s,s'}$</td>
<td>Probability of demand</td>
</tr>
<tr>
<td></td>
<td>$d_{s}^{#}: t$</td>
<td>Number of bikes at stations</td>
</tr>
<tr>
<td></td>
<td>$F_{s,s'}^{t,k}$</td>
<td>Total number of bikes in carriers</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{v}^{t}(s)$</td>
<td>Number of bikes served in vehicles</td>
</tr>
<tr>
<td></td>
<td>$\sum_{j \in S, v \in V} z_{s,j,v}^{t}$</td>
<td>Number of carriers between stations</td>
</tr>
</tbody>
</table>
Approach: Linear Optimization

\[
\begin{align*}
\min & \quad y^+, y^-, z \\
& \quad \sum_{t,k,s,s'} R_{s,s'}^t, R_{s,s}^t \cdot x_{s,s'}^t + \sum_{t,v,s,s'} P_{s,s'}^t \cdot z_{s,s',v}^t
\end{align*}
\]

\[
d_s^{\#}, t + \sum_{k,\tilde{s}} x_{\tilde{s},s}^{t-k,k} - \sum_{k,\tilde{s}} x_{\tilde{s},s}^{t,k} + \sum_v (y_{s,v}^{-t} - y_{s,v}^{+t}) = d_s^{\#}, t+1, \forall t, s
\]

\[
x_{s,s'}^{t,k} \leq d_s^{\#}, t \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,\tilde{s}} F_{s,\tilde{s}}^{t,k}}, \quad \forall t, k, s, s'
\]

\[
d_v^{*, t} + \sum_{s \in S} [(y_{s,v}^{+t} - y_{s,v}^{-t})] = d_v^{*, t+1}, \quad \forall t, v
\]

\[
\sum_{k \in S} z_{s,k,v}^t - \sum_{k \in S} z_{k,s,v}^{t-1} = \sigma_v^t(s), \quad \forall t, s, v
\]

\[
\sum_{j \in S, v \in V} z_{s,j,v}^t \leq 1, \quad \forall t, s
\]

\[
y_{s,v}^{+t} + y_{s,v}^{-t} \leq C_v^* \cdot \sum_{i \in S} z_{i,v}^t, \quad \forall t, s, v
\]

Maximize revenue

Flow preservation of bikes at stations

Actual flow \propto Observed Flow

Flow preservation of vehicles in carriers

Enforcing right movement of carriers between stations

Redeployment should respect the routing strategy
Key Idea 1: Lagrangian Dual Decomposition (LDD)

- Observation:
 - Minimal dependency between y (redeployment) and z (routing variables)

\[
\begin{align*}
\min_{y,z} & - \sum_{t,k,s,s'} R_{s,s'}^{t,k} \cdot x_{s,s'}^{t,k} + \sum_{t,v,s,s'} P_{s,s'} \cdot z_{s,s'}^{t,v} \\
\text{s.t.} & \quad d_{s}^{\#},t + \sum_{k,s} x_{s,s'}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \sum_{v} (\hat{y}_{s,v}^{t} - \hat{y}_{s,v}^{t}) = d_{s}^{\#},t+1, \forall t, s \\
& \quad x_{s,s'}^{t,k} \leq d_{s}^{\#},t \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,s} F_{s,s'}^{t,k}}, \forall t, k, s, s' \\
& \quad d_{v}^{*,t} + \sum_{s \in S} [(\hat{y}_{s,v}^{t} - \hat{y}_{s,v}^{t})] = d_{v}^{*,t+1}, \forall t, v \\
& \quad \sum_{k \in S} z_{s,k,v}^{t} - \sum_{k \in S} z_{k,s,v}^{t-1} = \sigma_{v}^{t}(s), \forall t, s, v \\
& \quad \sum_{j \in S, v \in \mathcal{V}} z_{s,j,v}^{t} \leq 1, \forall t, s \\
& \quad \hat{y}_{s,v}^{t} + \hat{y}_{s,v}^{t} \leq C_{v}^{*} \cdot \sum_{i} z_{s,i,v}^{t}, \forall t, s, v
\end{align*}
\]
Key Idea 1: Lagrangian Dual Decomposition (LDD)

- Observation:
 - Minimal dependency between y (redeployment) and z (routing variables)

\[
\begin{align*}
\min_{y,z} & \quad - \sum_{t,k,s,s'} R_{s,s'}^{t,k} \cdot x_{s,s'}^{t,k} + \sum_{t,v,s,s'} P_{s,s'} \cdot z_{s,s'}^{t,v} \\
\text{s.t.} & \quad d_{s}^{t} + \sum_{k,s'} x_{s,s'}^{t-k,k} - \sum_{k,s} x_{s,s}^{t,k} + \\
& \quad \sum_{s,s'} (\hat{y}_{s,v}^{t} - \tilde{y}_{s,v}^{t}) = d_{s}^{t+1}, \forall t, s
\end{align*}
\]

Redeployment

\[
\begin{align*}
x_{s,s}^{t,k} & \leq d_{s}^{t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,s'} F_{s,s'}^{t,k}}, \forall t, k, s, s' \\
d_{v}^{t} + \sum_{s \in S} [(\hat{y}_{s,v}^{t} - \tilde{y}_{s,v}^{t})] = d_{v}^{t+1}, \forall t, v
\end{align*}
\]

\[
\begin{align*}
\sum_{k \in S} z_{s,k,v}^{t} - \sum_{k \in S} z_{k,s,v}^{t-1} & = o_{v}^{t}(s), \forall t, s, v \\
\sum_{j \in S, v \in V} z_{s,j,v}^{t} & \leq 1, \forall t, s \\
\hat{y}_{s,v}^{t} + \tilde{y}_{s,v}^{t} & \leq c_{v}^{*} \cdot \sum_{i} z_{s,i,v}^{t}, \forall t, s, v
\end{align*}
\]
Key Idea 1: Lagrangian Dual Decomposition (LDD)

- **Observation:**
 - Minimal dependency between y (redemption) and z (routing variables)

\[
\begin{align*}
\min_{y,z} & - \sum_{t,k,s,s'} R^{t,k}_{s,s'} \cdot x^{t,k}_{s,s'} + \sum_{t,v,s,s'} P_{s,s'} \cdot z^{t}_{s,s',v} \\
\text{s.t.} & \quad d^{\#}_{s,t} + \sum_{k,s} x^{t-k,k}_{s,s} - \sum_{k,s'} x^{t,k}_{s,s'} + \\
& \quad \sum (\tilde{y}^{t}_{s,v} - \hat{y}^{t}_{s,v}) = d^{\#}_{s,t+1}, \forall t, s \\
& \quad x^{t,k}_{s,s} \leq \frac{d^{\#}_{s,t} \cdot F^{t,k}_{s,s'}}{\sum_{s,k} F^{t,k}_{s,s'}}, \forall t, k, s, s' \\
& \quad d^{*}_{v,t} + \sum_{s \in S} [(\hat{y}^{t}_{s,v} - \tilde{y}^{t}_{s,v})] = d^{*}_{v,t+1}, \forall v, t \\
& \quad \sum_{k \in S} z^{t}_{s,k,v} - \sum_{k \in S} z^{t-1}_{k,s,v} = \sigma^{t}_{v}(s), \forall t, s, v \\
& \quad \sum_{j \in S, v} z^{t}_{s,j,v} \leq 1, \forall t, s \\
& \quad \hat{y}^{t}_{s,v} + \tilde{y}^{t}_{s,v} \leq C^{*}_{v} \cdot \sum_{i} z^{t}_{s,i,v}, \forall t, s, v
\end{align*}
\]

\text{Redeployment}
Key Idea 1: Lagrangian Dual Decomposition (LDD)

Observation:
- Minimal dependency between y (redeployment) and z (routing variables)
- Lagrangian Dual decomposition on joint constraints
- Update price variable in the master function.

\[
\min_{y,z} \sum_{t,k,s,s'} R_{s,s'}^{t,k} \cdot x_{s,s'}^{t,k} + \sum_{t,v,s,s'} P_{s,s'}^{t} \cdot z_{s,s'}^{t},
\]

\[
\text{s.t.} \quad d_{s}^{#,t} + \sum_{k,s} x_{s,s'}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \sum_{t,s} (\hat{y}_{s,v}^{t} - \check{y}_{s,v}^{t}) = d_{s}^{#,t+1}, \quad \forall t, s
\]

Redeployment

\[
x_{s,s'}^{t,k} \leq d_{s}^{#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,s} F_{s,s'}^{t,k}}, \quad \forall t, k, s, s'
\]

\[
d_{v}^{*,t} + \sum_{s \in S} [(\hat{y}_{s,v}^{t} - \check{y}_{s,v}^{t})] = d_{v}^{*,t+1}, \quad \forall t, v
\]

Routing

\[
\sum_{k \in S} z_{s,k,v}^{t} - \sum_{k \in S} z_{k,s,v}^{t-1} = \sigma_v^{t}(s), \quad \forall t, s, v
\]

\[
\sum_{j \in S,v \in V} z_{s,j,v}^{t} \leq 1, \quad \forall t, s
\]

\[
\hat{y}_{s,v}^{t} + \check{y}_{s,v}^{t} \leq C^* \sum_{t,v} z_{s,v}^{t}, \quad \forall t, s
\]
Key Idea 1: Lagrangian Dual Decomposition (LDD)

- **Observation:**
 - Minimal dependency between y (redeployment) and z (routing variables)
 - Lagrangian Dual decomposition on joint constraints
 - Update price variable in the master function.
 - Primal extraction based on routing feasibility
 - Strong upper and lower bounds

\[
\min_{y,z} \sum_{t,k,s,s'} R_{s,s'}^{t,k} \cdot x_{s,s'}^{t,k} + \sum_{t,v,s,s'} P_{s,s'}^{t} \cdot z_{s,s',v}^{t} \\
\text{s.t. } d_{s}^{\#,t} + \sum_{k,s} x_{s,s'}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \\
\sum_{t,v,s,s'} (\hat{y}_{s,v}^{t} - \hat{y}_{s,v}^{t}) = d_{s}^{\#,t+1}, \forall t, s \\
\]

Redeployment

- \[x_{s,s'}^{t,k} \leq d_{s}^{\#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,s} F_{s,s'}^{t,k}}, \forall t, k, s, s'\]

- \[d_{v}^{*,t} + \sum_{s \in S} [(\hat{y}_{s,v}^{t} - \hat{y}_{s,v}^{t})] = d_{v}^{*,t+1}, \forall t, v\]

Routing

- \[\sum_{k \in S} z_{s,k,v}^{t} - \sum_{k \in S} z_{s,k,v}^{t-1} = \sigma_{v}^{t}(s), \forall t, s, v\]

- \[\sum_{j \in S, v \in V} z_{s,j,v}^{t} \leq 1, \forall t, s\]

- \[\hat{y}_{s,v}^{t} + \hat{y}_{s,v}^{t} - C^{*} = \sum_{i,v} z_{i,v}^{t}, \forall s, t\]
Key Idea 2: Abstraction

- Grouping of stations
 - Group base stations into abstract stations
 - Solve abstract problem using LDD
Key Idea 2: Abstraction

- Grouping of stations
 - Group base stations into abstract stations
 - Solve abstract problem using LDD
- Retrieve redeployment and routing strategy from solution to the abstract problem
 - Involves solving an optimization problem
LDD+Abstraction

Input: DRRP

Create abstract DRRP

Set dual variable $\alpha=0$

Solve abstract redeployment and routing slave

Extract primal solution

Output DRRP solution

Is Converged?

No

Update dual variable α

Yes

Retrieve routing solution for abstract station 1

Retrieve routing solution for abstract station n

Retrieve redeployment policy for base stations:
pickup/drop-off allowed if a carrier present in abstract station

Output abstract DRRP solution

LDD

School of Information Systems

Supriyo Ghosh

ICAPS 06/2015
One synthetic data set and two real data sets:
- Capital Bikeshare (305 stations, 6 carriers)
- Hubway (95 stations, 4 carriers)
- Strategy of redeployment and routing for the entire day (30 minute decisions)
- Obtain strategy from part of the datasets and execute on another part

Experimental Results

- One synthetic data set and two real data sets:
 - Capital Bikeshare (305 stations, 6 carriers)
 - Hubway (95 stations, 4 carriers)
- Strategy of redeployment and routing for the entire day (30 minute decisions)
- Obtain strategy from part of the datasets and execute on another part
Experimental Results

- One synthetic data set and two real data sets:
 - Capital Bikeshare (305 stations, 6 carriers)
 - Hubway (95 stations, 4 carriers)
- Strategy of redeployment and routing for the entire day (30 minute decisions)
- Obtain strategy from part of the datasets and execute on another part

Duality Gap less than 1% on 20 station problem
Experimental Results

- One synthetic data set and two real data sets:
 - Capital Bikeshare (305 stations, 6 carriers)
 - Hubway (95 stations, 4 carriers)
- Strategy of redeployment and routing for the entire day (30 minute decisions)
- Obtain strategy from part of the datasets and execute on another part

![Duality Gap less than 1% on 20 station problem](image)

![Significant improvement over CPLEX solving Global MIP](image)
Experimental Results on Real Datasets

- Comparison with current practice (abstraction + LDD)
 - Demand follows poisson with mean observed flow
 - CapitalBikeshare Data:
 - Revenue increased by 3%
 - Lost demand reduced by up to 33.76%

<table>
<thead>
<tr>
<th></th>
<th>Whole day (5am-12am)</th>
<th>Peak period (5am-12pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.47 %</td>
<td>7.74 %</td>
</tr>
<tr>
<td>Mon</td>
<td>2.33 %</td>
<td>4.48 %</td>
</tr>
<tr>
<td>Tue</td>
<td>3.07 %</td>
<td>7.86 %</td>
</tr>
<tr>
<td>Wed</td>
<td>3.30 %</td>
<td>8.95 %</td>
</tr>
<tr>
<td>Thu</td>
<td>2.86 %</td>
<td>6.04 %</td>
</tr>
<tr>
<td>Fri</td>
<td>2.51 %</td>
<td>4.50 %</td>
</tr>
<tr>
<td>Sat</td>
<td>3.87 %</td>
<td>4.33 %</td>
</tr>
<tr>
<td>Sun</td>
<td>3.01 %</td>
<td>4.04 %</td>
</tr>
<tr>
<td>Lost demand reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>22.72 %</td>
<td>30.58 %</td>
</tr>
<tr>
<td>Mon</td>
<td>22.46 %</td>
<td>25.55 %</td>
</tr>
<tr>
<td>Tue</td>
<td>28.56 %</td>
<td>37.10 %</td>
</tr>
<tr>
<td>Wed</td>
<td>31.16 %</td>
<td>44.88 %</td>
</tr>
<tr>
<td>Thu</td>
<td>33.76 %</td>
<td>35.97 %</td>
</tr>
<tr>
<td>Fri</td>
<td>27.37 %</td>
<td>28.15 %</td>
</tr>
<tr>
<td>Sat</td>
<td>23.61 %</td>
<td>24.30 %</td>
</tr>
<tr>
<td>Sun</td>
<td>26.00 %</td>
<td>36.51 %</td>
</tr>
</tbody>
</table>

Table 9: Revenue and lost demand comparison
Experimental Results on Real Datasets

- Comparison with current practice (abstraction + LDD)
 - Demand follows poisson with mean observed flow
 - CapitalBikeshare Data:
 - Revenue increased by 3%
 - Lost demand reduced by up to 33.76%
 - Robust to small changes in mean demand

<table>
<thead>
<tr>
<th></th>
<th>Whole day (5am-12am)</th>
<th>Peak period (5am-12pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revenue gain</td>
<td>Lost demand reduction</td>
</tr>
<tr>
<td>Mean</td>
<td>3.47 %</td>
<td>22.72 %</td>
</tr>
<tr>
<td>Mon</td>
<td>2.33 %</td>
<td>22.46 %</td>
</tr>
<tr>
<td>Tue</td>
<td>3.07 %</td>
<td>28.56 %</td>
</tr>
<tr>
<td>Wed</td>
<td>3.30 %</td>
<td>31.16 %</td>
</tr>
<tr>
<td>Thu</td>
<td>2.86 %</td>
<td>33.76 %</td>
</tr>
<tr>
<td>Fri</td>
<td>2.51 %</td>
<td>27.37 %</td>
</tr>
<tr>
<td>Sat</td>
<td>3.87 %</td>
<td>23.61 %</td>
</tr>
<tr>
<td>Sun</td>
<td>3.01 %</td>
<td>26.00 %</td>
</tr>
</tbody>
</table>
Experimental Results on Real Datasets (2)

- Hubway Data:
 - Revenue increased by 5%
 - Lost demand reduced by 60% on average

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Gain (%)</td>
<td>3.94</td>
<td>5.93</td>
<td>4.45</td>
<td>5.90</td>
<td>6.27</td>
<td>2.20</td>
<td>3.15</td>
</tr>
<tr>
<td>Lost Demand Reduction(%)</td>
<td>42.6</td>
<td>60.7</td>
<td>58.5</td>
<td>54.7</td>
<td>77.2</td>
<td>69.8</td>
<td>74.0</td>
</tr>
</tbody>
</table>
Experimental Results on Real Datasets (2)

- Hubway Data:
 - Revenue increased by 5%
 - Lost demand reduced by 60% on average
- Better matching of demand and supply
 - Ideally all the points should lie on the identity line

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Gain (%)</td>
<td>3.94</td>
<td>5.93</td>
<td>4.45</td>
<td>5.90</td>
<td>6.27</td>
<td>2.20</td>
<td>3.15</td>
</tr>
<tr>
<td>Lost Demand Reduction (%)</td>
<td>42.6</td>
<td>60.7</td>
<td>58.5</td>
<td>54.7</td>
<td>77.2</td>
<td>69.8</td>
<td>74.0</td>
</tr>
</tbody>
</table>

Matching without redeployment

Matching using our redeployment
Summary

- Dynamic redeployment of bikes
- Important large-scale problem with relevance to many cities
- Two techniques (Decomposition, Abstraction) to improve scalability and provide near-optimal solutions
- Reduces lost demand by over 20% on both datasets
- Robust to small changes in demand
Questions???

supriyog.2013@phdis.smu.edu.sg
References

