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Abstract

The primary focus of recent work with large-
scale transformers has been on optimizing the
amount of information packed into the model’s
parameters. In this work, we ask a complemen-
tary question: Can multimodal transformers
leverage explicit knowledge in their reasoning?
Existing, primarily unimodal, methods have
explored approaches under the paradigm of
knowledge retrieval followed by answer predic-
tion, but leave open questions about the qual-
ity and relevance of the retrieved knowledge
used, and how the reasoning processes over
implicit and explicit knowledge should be in-
tegrated. To address these challenges, we pro-
pose a - Knowledge Augmented Transformer
(KAT) - which achieves a strong state-of-the-
art result (+6% absolute) on the open-domain
multimodal task of OK-VQA. Our approach
integrates implicit and explicit knowledge in
an encoder-decoder architecture, while still
jointly reasoning over both knowledge sources
during answer generation. Additionally, ex-
plicit knowledge integration improves inter-
pretability of model predictions in our analysis.
Code and pre-trained models are released at
https://github.com/guilk/KAT.

1 Introduction

There has been a revival of interest in knowledge-
intensive tasks which require an external knowl-
edge source for humans to perform. Many applica-
tions in real-world scenarios, such as autonomous
AI agents, need to seamlessly integrate implicit
(i.e., commonsense) and explicit knowledge (e.g.,
Wikidata) to answer questions. In this work, we
investigate how to effectively integrate implicit and
explicit knowledge for reasoning. Tasks like Out-
side Knowledge Visual Question Answering (OK-
VQA) (Marino et al., 2019) require that models use
knowledge not present in the input to answer ques-
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Figure 1: Examples of knowledge-based VQA that re-
quires external knowledge. Success on this task requires
not only visual recognition, but also logical reasoning
to incorporate external knowledge about the world.

tions, making it an ideal test bed for investigating
this implicit-explicit knowledge trade-off.

Consider the examples from OK-VQA shown in
Figure 1. To answer the question in the left exam-
ple, the system needs to both ground organism to
bird through explicit knowledge and then apply the
implicit knowledge birds evolved from reptiles to
answer the question. Similarly for the question in
the right example, the system needs to recognize
boats and harbor and requires the implicit knowl-
edge anchors are used to stop boats from moving.
A key challenge here is to accurately link image
content to abstract external knowledge. There have
been a number of recent developments demonstrat-
ing the feasibility of incorporating external knowl-
edge into Question Answering models (Wang et al.,
2017b; Li et al., 2020b; Marino et al., 2021; Wu
et al., 2022; Garderes et al., 2020). Existing meth-
ods first retrieve external knowledge from external
knowledge resources, such as DBPedia (Auer et al.,
2007) and ConceptNet (Liu and Singh, 2004) be-
fore jointly reasoning over the retrieved knowledge
and image content to predict an answer.

However, most existing approaches have several
drawbacks. First, explicit knowledge retrieved us-
ing keywords from questions or image tags may be
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too generic, which leads noise or irrelevant knowl-
edge during knowledge reasoning. Second, exist-
ing work mainly focuses on explicit knowledge
which is often in the form of encyclopedia articles
or knowledge graphs. While this type of knowl-
edge can be useful, it is insufficient to answer many
knowledge-based questions. As shown in Figure 1,
questions require the system to jointly reason over
explicit and implicit knowledge, which is analo-
gous to the way humans do. To address these
challenges, we propose an approach, KAT, to ef-
fectively integrate implicit and explicit knowledge
during reasoning. The main contributions of our
work are as follows:
i) Knowledge extraction. We adopt two novel
methods for knowledge extraction that significantly
improve the quality and relevance of extracted
knowledge: for implicit knowledge, we design
new prompts to extract both tentative answers and
supporting evidence from a frozen GPT-3 model;
for explicit knowledge, we design a contrastive-
learning-based explicit knowledge retriever using
the CLIP model, where all the retrieved knowledge
are centered around visually-aligned entities.
ii) Reasoning in an encoder-decoder trans-
former. We design a novel reasoning module
in KAT to perform jointly reasoning over explicit
and implicit knowledge during answer generation,
which is trained by using an end-to-end encoder-
decoder transformer architecture.
iii) OK-VQA performance. KAT sets a new state
of the art on the challenging OK-VQA (Marino
et al., 2019) benchmark, and significantly outper-
forms existing approaches.

2 Related Work

Vision-Language Transformer. Multimodal
transformers have made significant progress
over the past few years, by pre-trained on large-
scale image and text pairs, then finetuned on
downstream tasks. VisualBERT (Li et al., 2019),
Unicoder-VL (Li et al., 2020a), NICE (Chen
et al., 2021b), and VL-BERT (Su et al., 2020)
propose the single-stream architecture to work
on both images and text. ViLBERT (Lu et al.,
2019) and LXMERT (Tan and Bansal, 2019)
propose a two-stream architecture to process
images and text independently and fused by a
third transformer in ta later stage. While these
models have shown to store in-depth cross-modal
knowledge and achieved impressive performance

on knowledge-based VQA (Marino et al., 2021;
Wu et al., 2022; Luo et al., 2021), this type of
implicitly learned knowledge is not sufficient to
answer many knowledge-based questions (Marino
et al., 2021). Another line of work for multimodal
transformers, such as CLIP (Radford et al., 2021)
or ALIGN (Jia et al., 2021), aligns visual and
language representations by contrastive learning.
These models achieve state-of-the-art performance
on image-text retrieval tasks. Different from
existing work that uses multimodal transformers as
implicit knowledge bases, we focus primarily on
how to associate images with external knowledge.
Importantly, our model only relies on multimodal
transformers learned by contrastive learning which
do not require any labeled images. This makes our
model more flexible in real-world scenarios.

Knowledge-based VQA. Some Knowledge-
based visual language tasks requires external
knowledge beyond the image to answer a ques-
tion. Early exploration, such as FVQA (Wang
et al., 2017a), creates a fact-based VQA dataset
by selecting a fact (e.g., <Cat, CapableOf, Climb-
ingTrees>) from a fixed knowledge base. A recent
Outside Knowledge VQA (OK-VQA) dataset is a
more challenging dataset, covering a wide range of
knowledge categories. In our work, we focus on
OK-VQA due to its large-scale knowledge-based
questions as well as its open-ended nature.

Recent approaches have shown a great potential
to incorporate external knowledge for knowledge-
based VQA. Several methods explore aggregat-
ing the external knowledge either in the form
of structured knowledge graphs (Garderes et al.,
2020; Narasimhan et al., 2018; Li et al., 2020b;
Wang et al., 2017a,b), unstructured knowledge
bases (Marino et al., 2021; Wu et al., 2022; Luo
et al., 2021), and neural-symbolic inference based
knowledge (Chen et al., 2020; West et al., 2021).
In these methods, object detectors (Ren et al., 2015)
and scene classifiers (He et al., 2016) are used to
associate images with external knowledge. Fur-
ther, external APIs, such as Google (Wu et al.,
2022; Luo et al., 2021), Microsoft (Chen et al.,
2021a; Yang et al., 2022) and OCR (Luo et al.,
2021; Wu et al., 2022) are used to enrich the asso-
ciated knowledge. Finally, pre-trained transformer-
based language models (Chen et al., 2021a; Yang
et al., 2022), or multimodal models (Wu et al.,
2022; Luo et al., 2021; Wu et al., 2022; Garderes
et al., 2020; Marino et al., 2021) are leveraged as



implicit knowledge bases for answer predictions.
Different from previous approaches, Our work

aims to develop a single, unified architecture,
by jointly reasoning over explicit and implicit
knowledge to augment generative language models.
While part of our approach is similar to PICa (Yang
et al., 2022) which considers GPT-3 as implicit
knowledge base, our model takes one step further
by showing that how explicit and implicit knowl-
edge can be integrated during knowledge reasoning.
Another similar work Vis-DPR (Luo et al., 2021)
collects a knowledge corpus from training set by
Google Search which is specific to a certain dataset.
Our proposed model is more generic by collecting
entities from Wikidata and not limited to the train-
ing set.

Open-Domain Question Answering (ODQA).
ODQA is the NLP task of answering general do-
main questions, in which the evidence is not given
as input to the system. Several approaches (Chen
et al., 2017; Karpukhin et al., 2020) propose to
predict the answers by first retrieving support doc-
ument from Wikipedia, before extracting answers
from the retrieved document. Recent works (Izac-
ard and Grave, 2020; Lewis et al., 2020b) combine
text retrieval models with language generative mod-
els which achieve state-of-the-art performance on
knowledge-intensive natural language processing
tasks. Similar to these works as part of our method,
we extend this framework to VQA domain and
show the effectiveness of aggregating explicit and
implicit knowledge for knowledge-based VQA.

3 Method

3.1 Overview

When humans reason about the world, they process
multiple modalities and combine external and inter-
nal knowledge related to these inputs. Inspired by
this idea, we introduce a new KAT approach. The
overview of the proposed KAT model is shown in
Figure 2. We define the knowledge from explicit
knowledge bases as the explicit knowledge, and
the knowledge stored in large-scale language mod-
els as the implicit knowledge (i.e., implicit com-
monsense knowledge). We describe the retrieval
method of our explicit knowledge (§3.2) and the
retrieval method of our implicit knowledge (§3.3).
Next, we introduce the details of our knowledge
reasoning module which jointly reasons over both
explicit and implicit knowledge (§3.4).

Problem Formulation. We apply our KAT on
OK-VQA task in this paper. Formally, given a
training dataset D = {(vi, qi, ai)}si=1, where vi
denotes the ith training image; s is the total num-
ber of the training images; qi and ai represent the
ith question and its corresponding answer, respec-
tively. We use a sequence-to-sequence model that
is composed of an encoder and a decoder, which
is a comparison method of T5 (Raffel et al., 2020)
or BART (Lewis et al., 2020a). Let θ be the pa-
rameters of the model p that needs to be trained.
Unlike previous approaches that treat this task as
a classification problem (Wu et al., 2022; Marino
et al., 2021), our model is to take vi and qi as inputs
and generate the answer ai in an auto-regressive
manner. It should be noted that our proposed model
tackles a more challenging problem. As the gen-
erated answer may contain an arbitrary number of
words from the entire vocabulary.

3.2 Explicit Knowledge Retrieval

3.2.1 Explicit Knowledge Extraction

Given an image vi and corresponding question qi,
it is important to ground image regions with fine-
grained descriptions, which is conducive to under-
standing both the image content and the question
with the referred items. Existing approaches (Rad-
ford et al., 2021; Jia et al., 2021) on OK-VQA apply
object detectors to generate image tags which are
used for explicit knowledge retrieval. Such image
tags can be generic and have a limited vocabulary
size, leading noise or irrelevant knowledge. Mo-
tivated by the recent progress of visual-semantic
matching approaches (Radford et al., 2021; Jia
et al., 2021), we leverage a contrastive-learning-
based model to associate image regions with exter-
nal knowledge bases.

Similar to the previous work (Marino et al., 2021;
Luo et al., 2021) which uses a subset of exter-
nal knowledge, we construct an explicit knowl-
edge base that covers the 8 categories of animals,
vehicles and other common objects from Wiki-
data (Vrandecic and Krotzsch, 2014). The details
can be found in Section 3.2.2. We denote the con-
structed knowledge base as K. Each knowledge
entry e from K is a concatenation of the entity and
its corresponding description.

The goal of our explicit knowledge retriever is
to index all knowledge entries in dr-dimensional
dense representations by a dense encoder Eent(·),
such that it can efficiently retrieve the top m knowl-



Figure 2: Our KAT model uses a contrastive-learning-based module to retrieve knowledge entries from an explicit
knowledge base, and uses GPT-3 to retrieve implicit knowledge with supporting evidence. The integration of
knowledge is processed by the respective encoder transformer, and jointly with reasoning module and the decoder
transformer as an end-to-end training with the answer generation.

edge entries relevant to each input image. Given
an image vi, we use a sliding window with a stride
to generate N image regions {v1i , ..., vNi }. Then
an image encoder Eimg(·) is applied to map each
patch to a dr-dimensional dense representation, and
retrieves k knowledge entries from K whose rep-
resentations are closest to the patch-level represen-
tation. To define the similarity score between the
image region vji and the entity e, we use the inner
product of their normalized representations:

sim(vji , e) = Eent(e)
TEimg(v

j
i ). (1)

In total, we retrieve the top N × k knowledge en-
tries relevant to image vi. We keep top-m knowl-
edge entries ranked by similarity scores as explicit
knowledge source xexp.

In principle, the image and knowledge entry en-
coders can be implemented by any multimodal
transformer. We use the CLIP model (ViT-B/16
variant) (Radford et al., 2021) in our work and take
the [CLS] as representations. We pre-extract rep-
resentations of the knowledge entries in the knowl-
edge base K using the entity encoder Eent and
index them using FAISS (Johnson et al., 2019).
The qualitative example for the extracting explicit
knowledge model is presented in Appendix A.

3.2.2 Knowledge Base Construction
We use the English Wikidata (Vrandecic and
Krotzsch, 2014) dump from Sep. 20, 2021 as
the explicit knowledge source base which contains
95, 870, 584 entities. Each data item is stored in

a structured format constituted of property-value
pairs. Properties are objects and have their own
Wikidata pages with labels, aliases, and descrip-
tions. We extract a subset that covers common
objects in real-world scenarios. We remove all
entities whose string labels or corresponding de-
scriptions are empty or non-English. This results
in a total of 423, 520 entity triplets in the end (e.g.,
<Q2813, Coca-Cola, carbonated brown colored
soft drink>) (See Table 1).

Subclass Number
Role (Q214339) 162,027
Point of interest (Q960648) 85,900
Tool (Q39546) 78,621
Vehicle (Q42889) 44,274
Animal (Q729) 18,581
Clothing (Q11460) 17,711
Company (Q891723) 12,173
Sport (Q349) 4,233
Total 423,520

Table 1: We collect a subset of Wikidata that covers com-
mon objects in real-life scenarios as our explicit knowl-
edge base. Above are statistics of these subclasses.

3.3 Implicit Knowledge Retrieval
While our explicit knowledge retriever focuses
on semantic matching between image regions and
knowledge entries, it lacks implicit commonsense
knowledge (e.g., Lemons are sour) which is usu-
ally stored in large-scale language models (Brown
et al., 2020). In this section, we retrieve implicit



knowledge with supporting evidence by prompting
from a large-scale pre-trained language model.

We design our implicit knowledge retriever with
inspirations from the previous work (Yang et al.,
2022). We leverage GPT-3 as an implicit language
knowledge base and treat VQA as an open-ended
text generation task. For each image-question pair,
we first convert the image vi into a textual de-
scription C via a state-of-the-art image caption-
ing model (Li et al., 2020c), and then construct
a carefully designed text prompt consisting of a
general instruction sentence, the textual descrip-
tion C, the question, and a set of context-question-
answer triplets taken from the training dataset that
are semantically most similar to the current image-
question pair (see Figure 7 in Appendix B for a
concrete example). We then input this text prompt
to the GPT-3 model in its frozen version and ob-
tain the output from GPT-3 as the tentative answer
candidate to the current image-question pair.

To gain deeper insights from the implicit knowl-
edge coming out of GPT-3 and its rationale, we
design another prompt to query GPT-3 for support-
ing evidence behind the tentative answer candidate
that it generates. More specifically, for each image-
question pair (vi, qi), and for a tentative answer a
generated by GPT-3, we construct the prompt in
the form of: “(question qi)? (answer a). This is
because” to query GPT-3 for supporting evidence
(see Figure 6 in Appendix B for a concrete exam-
ple). We finally compile both the tentative answers
and the corresponding supporting evidence from
GPT-3 as implicit knowledge source ximp.

3.4 KAT Model

As showed in the Figure 2, the explicit knowl-
edge entries are from an image, which are con-
cerned with semantic matching of the image re-
gions. These knowledge entries could be noisy or
irrelevant to its corresponding question. Moreover,
some of the supporting evidence prompted from
GPT-3 is generic or not related to image content.
Simple concatenation of different knowledge may
introduce noise during model training. We design
a knowledge reasoning module with inspirations
from the previous work (Karpukhin et al., 2020).
Our knowledge reasoning module encodes each
question and knowledge pair separately, and jointly
reason over both explicit and implicit knowledge
when generating an answer.

Encoder. We concatenate question qi with each
knowledge as a question-knowledge pair. Firstly,
we add sentinel tokens question:, entity:
and description: before the question, the
retrieved entity, and its description separately.
Similarly, we add sentinel tokens question:,
candidate: and evidence: before the ques-
tion, the tentative answer, and its evidence. Sec-
ondly, we use an embedding layer followed by a
sequence of encoder layers to encode the question-
knowledge pairs separately. We average the token
embeddings of each question-knowledge pair from
the last encoder layer, which results in an embed-
ding matrix of explicit knowledge Xexp ∈ Rm×d

and implicit knowledge Ximp ∈ Rp×d, where d,
m and p are the embedding dimension, the num-
ber of explicit knowledge xexp, and the number of
implicit knowledge ximp, respectively.

Reasoning Module. To jointly reason over im-
plicit and explicit knowledge, we concatenate the
embeddings of explicit and implicit knowledge
form a global representation X ∈ R(m+p)×d. The
cross-attention module takes the global represen-
tation X of the encoder as the input. Let H ∈ Rd

be the output of the previous self-attention layer of
the decoder. By definition (Vaswani et al., 2017),
the scaled dot-product attention can be expressed
as:

Qv = softmax(
QKT

√
d

)V, (2)

where queries Q, keys K, and values V are com-
puted by applying linear transformations: Q =
WQH,K = WKX,V = WV X . The attended
representation Qv is a weighted sum of the values,
and implies that our model performs a joint rea-
soning over explicit and implicit knowledge when
generating answers.

Decoder. We feed the embeddings of explicit and
implicit knowledge to a sequence of decoder layers
for answer generation. We train our model with a
cross-entropy loss:

LCE = −
n∑

t=1

log pθ(yt|y<t, x
exp;ximp), (3)

where yt is predicted autoregressively.



Method Knowledge Resources Acc (%)
N

o
kn

ow
le

dg
e Q only (Marino et al., 2019) - 14.93

Vanilla T5 - 18.56
MLP (Marino et al., 2019) - 20.67
BAN (Marino et al., 2019) - 25.1
MUTAN (Marino et al., 2019) - 26.41

W
ith

kn
ow

le
dg

e BAN+AN (Marino et al., 2019) Wikipedia 25.61
BAN+KG-AUG (Li et al., 2020b) Wikipedia+ConceptNet 26.71
MUTAN+AN (Marino et al., 2019) Wikipedia 27.84
ConceptBERT (Garderes et al., 2020) ConceptNet 33.66
KRISP (Marino et al., 2021) Wikipedia+ConceptNet 38.35
Vis-DPR (Luo et al., 2021) Google Search 39.2
MAVEx (Wu et al., 2022) Wikipedia+ConceptNet+Google Images 39.4

G
PT

-3 PICa-Base (Yang et al., 2022) Frozen GPT-3 (175B) 43.3
PICa-Full (Yang et al., 2022) Frozen GPT-3 (175B) 48.0

KAT-explicit (w/ reasoning) Wikidata 44.25
KAT-implicit (w/ reasoning) Frozen GPT-3 (175B) 49.72
KAT (w/o reasoning) Wikidata+Frozen GPT-3 (175B) 51.97
KAT (single) Wikidata+Frozen GPT-3 (175B) 53.09
KAT (ensemble) Wikidata+Frozen GPT-3 (175B) 54.41

Table 2: Results of OK-VQA comparing to standard baselines show that our KAT (large size) model achieves
state-of-the-art performance on OK-VQA full testing set. It is important (see table sections) to compare methods
based on their access to increasingly large implicit sources of knowledge and utilization of explicit knowledge
sources. Our five KAT models variants make the relative importance of these decisions explicit. We train our model
with 3 random seeds and the result is denoted as ensemble.

4 Experiment

4.1 Dataset

OK-VQA (Marino et al., 2019) is currently the
largest knowledge-based VQA dataset, The ques-
tions are crowdsourced from Amazon Mechani-
cal Turkers and require outside knowledge beyond
the images in order to be answered correctly. The
dataset contains 14, 031 images and 14, 055 ques-
tions covering a variety of knowledge categories.
We follow the standard evaluation metric recom-
mended by the VQA challenge (Antol et al., 2015).

4.2 Implementation Details

For the knowledge reasoning module, we initialize
our model with the pre-trained T5 model (Raffel
et al., 2020). We compare two model sizes, base
and large, each containing 220M and 770M pa-
rameters respectively. We fine-tune the models on
OK-VQA dataset, using AdamW (Loshchilov and
Hutter, 2019). We use a learning rate of 3e − 5
to warm up for 2K iterations and train for 10K
iterations. Limited by the computational resources,

we set the number of retrieved entities to 40. The
model is trained with a batch size of 32, using
16 V100 GPUs with 32Gb of memory each. Un-
less otherwise specified, all results reported in this
paper as KAT use this model which we found to
perform best. We evaluate our predictions with
ground-truth after normalization. The normaliza-
tion step consists of lowercasing, and removing arti-
cles, punctuation and duplicated whitespace (Chen
et al., 2017; Lee et al., 2019). To be consistent with
previous work (Marino et al., 2021), we train our
model with 3 different random seeds and use the
average results for the leaderboard submission.

4.3 Comparison with Existing Approaches

We compare our model against existing approaches
on the OK-VQA dataset and the results are summa-
rized in Table 2. Our model outperforms state-of-
the-art methods by significant margins. We com-
pare our model with existing approaches from two
aspects. (1) If we only consider using explicit
knowledge, our model achieves 44.25% which is
4.85% and 5.9% higher than MAVEx and KRISP,



respectively. Our model uses contrastive-learning-
based model to extract knowledge, leaving head-
room by incorporating supervised pre-trained mod-
els, such as pre-trained object detectors. It should
be noted that our proposed model is working on a
more challenging problem. As the generated an-
swer could contain an arbitrary number of words
from the entire vocabulary. Our model is slightly
better than PICa-Base which is a plain version of
PICa-Full without example engineering. It implies
that our single, unified architecture can effectively
associate images with the explicit knowledge base.
(2) If we take the implicit knowledge from GPT-
3 as the additional input, our model outperforms
PICa-Full by 6.41% which indicates it is important
to integrate knowledge of different types when gen-
erating answers. The detailed comparison can be
found in Table 3.

5 Ablation Study

To unpack the performance gain and understand
the impact of different components, we ablate and
compare different model architectures, types of
knowledge and the number of explicit knowledge.

Model architecture Knowledge Accuracy (%)
Base Large Explicit Implicit
√

18.56√ √
40.93√ √
44.25√ √
47.60√ √
49.72√ √ √
50.58√ √ √
54.41

Table 3: Ablation study on model architectures and
types of knowledge. Our experiments show that larger
model has more capacity for implicit knowledge reason-
ing and jointly reasoning over both knowledge sources
has a consistent improvement with baselines.

Specifically, as shown in Table 3, our KAT-large
shows a consistent improvement over using KAT-
base. This larger model has more capacity for
implicit knowledge reasoning. The integration of
explicit and implicit knowledge achieves a perfor-
mance gain of ∼4%, supporting the intuition that
these two types of knowledge provide complemen-
tary pieces of knowledge.

5.1 Effectiveness of Knowledge Reasoning

To verify the effectiveness of our knowledge reason-
ing module, we use a KAT without the knowledge
reasoning module which is denoted as KAT (w/o
reasoning). This model concatenates explicit and

Method Accuracy (%)

KAT (w/o reasoning) 51.97
KAT 54.41

Table 4: Comparison with KAT (w/o reasoning) which
uses the concatenated knowledge as inputs without the
knowledge reasoning module.

implicit knowledge as a sentence and adopts a max-
imum length of 256 tokens. We train this variant
with the same parameter settings. As shown in Ta-
ble 4, simply concatenating knowledge sources is
2.43% lower than our proposed model. It indicates
that KAT (w/o reasoning) may introduce noise to
relevant knowledge during encoding. Our model
adaptively attend different knowledge sources for
answer generation that can reduce the influence of
irrelevant knowledge.

5.2 Extracting Explicit Knowledge

Figure 3: Our model achieves consistent improvement
when aggregating more knowledge entries from an ex-
plicit knowledge base. However, as CLIP-ViT/16 and
RN50 are very different explicit knowledge retrieval
backbones we see the choice of backbone and number
of sources to include are intimately related. Here we
use KAT-base for demonstration.

From Figure 3 we can see, the performance of
our model is directly affected by the size of re-
trieved explicit knowledge. When only consider-
ing the implicit knowledge (i.e., the number of
retrieved entities is 0), our model achieves 47.6%
which is slightly worse than PICa-Full baseline. It
indicates that solely increasing model complexity
cannot improve the performance. This also demon-
strates the importance of explicit knowledge. Our
model shows a consistent improvement by incor-
porating more explicit knowledge. While a more



Question:
What is painted on the bench?

Category:
Brands, Companies and Products

Answer:
Exp: strand KAT (w/o KRM): red
Imp: red KAT: Coca cola

Explicit Knowledge:

Tactile paving: system of
textured ground surface
indicators to assist
pedestrians who are blind
or visually impaired.
Coca Cola: carbonated
brown-colored soft drink.
Bench: piece of furniture on
which several people may
sit at the same time.
Street furniture: collective
term for objects and pieces
of equipment installed
outdoors for various
purposes.

Implicit Knowledge:

Red: the bench is painted
red.

Question:
What kind of board is this?

Category:
Sports and recreation

Answer:
Exp: wakeboard KAT (w/o KRM): surfboard
Imp: surfboard KAT: surfboard

Explicit Knowledge:

Wakeboard boat: boat
designed to create a wake
for wakeboarding.
Wakeboarder: someone
practicing wakeboarding.
Kitesurfer: practitioner of
kitesurfing.
Skiboarding: freestyle skiing
using short skis and no
poles.
Boardsport: sports that are
practiced with some sort of
board as the primary
equipment.

Implicit Knowledge:

Surfboard: This sport is
surfboard.

Figure 4: Two examples from OK-VQA dataset that our model generates correct answers by jointly reasoning over
both implicit and explicit knowledge. (exp: predictions by using explicit knowledge only and imp: predictions by
using implicit knowledge only). More examples and analysis can be found in Appendix C.

extensive knowledge set may include more distract-
ing knowledge, retrieved knowledge entries can
share either visually or semantically similar knowl-
edge as the relevant ones. Thus this can massively
reduce the search space and/or reduce spurious am-
biguity.

We compare different explicit knowledge re-
trieval module. Though ViT/16 has a large classifi-
cation improvement over ResNet-50 (e.g., 6.9% on
ImageNet) (Radford et al., 2021), there is a less gap
between these two backbones. As the number of re-
trieved entities increases, our knowledge reasoning
module can further migrate this gap by adaptively
attending to different explicit knowledge.

5.3 Category Results on OK-VQA

Here we present quantitative analyses to illustrate
how explicit and implicit knowledge influence the
final predictions. Based on the types of knowledge
required, questions in OK-VQA are categorized
into 11 categories and the accuracy results of each
category are reported in Table 5. We re-train our
model under the same settings with only either
explicit or implicit knowledge, denoted as “exp”
and “imp” respectively.

For most categories, the model using only ex-
plicit knowledge performs worse than that using
only implicit knowledge. As implicit knowledge
comes from the results of state-of-the-art object
detection, image captioning models and support-
ing evidence by prompting GPT-3. While explicit
knowledge is retrieved based on semantic match-
ing between images and entities from knowledge
bases, it contains richer but more distracting knowl-
edge. Note that using explicit knowledge performs
better for category “Brands, Companies, and Prod-

ucts" and “Weather and Climate". It indicates that
accurately recognizing objects with fine-grained
descriptions in the images is important for these
categories to answer corresponding questions.

Question Type Exp Imp Ours ∆

Plants and Animals 42.2 51.5 54.7 +3.2
Science and Technology 44.4 43.3 52.8 +8.3
Sports and Recreation 49.7 53.8 60.4 +6.7
Geo, History, Lang, and Culture 45.6 45.4 55.8 +10.2
Brands, Companies, and Products 41.7 38.2 48.5 +6.8
Vehicles and Transportation 41.5 42.9 51.3 +8.4
Cooking and Food 47.9 47.7 52.7 +4.8
Weather and Climate 51.7 46.3 54.8 +3.1
People and Everyday 43.1 44.4 51.5 +7.1
Objects, Material and Clothing 42.9 45.4 49.3 +3.9
Other 41.5 50.2 51.2 +1.0

Table 5: Accuracy (%) of question types in OK-VQA
full testing set. Our models outperforms exp and imp
models by a large margin on all categories. (exp:
explicit-only model and imp: implicit-only model)

5.4 Qualitative Analysis
Analyzed in previous sections, jointly reasoning
over both knowledge sources during answer gener-
ation improves the explicit-only and implicit-only
models by large margins. Figure 4 shows two ex-
amples comparing answers generated by different
models along with retrieved knowledge. The left
example shows that while explicit knowledge re-
trieved from the knowledge base contains the nec-
essary knowledge entries for reasoning, it fails to
generate the answer which requires the relation be-
tween bench and Coca Cola logos. On the other
side, implicit knowledge retrieved from GPT-3 can
only infer the bench is painted red, failing to rec-
ognize its logo. By jointly considering both knowl-
edge sources, our model can associate the color of



Coca Cola logo with the painted color of the bench
which derives the correct answer. The right ex-
ample shows that though explicit knowledge does
not contain the right knowledge entries, it provides
visually similar descriptions of this sport which fur-
ther constrains the search space of our model and
verifies the correctness of the implicit knowledge.

6 Conclusion

This paper takes a step towards understanding the
complementary role of implicit knowledge gained
from continuing to scale models and explicit knowl-
edge from structured knowledge bases. Impor-
tantly, it appears that there is headroom in both
directions (i.g. improving retrieval and reasoning).
Our conceptually simple yet effective approach for
knowledge-based VQA makes these relationships
explicit while still achieving a significant improve-
ment against state-of-the-art results. Additional
challenges remain, for example how best to align
image regions with meaningful external semantics
deserves and how to efficiently and accurately inte-
grate multiple knowledge bases.
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Appendix

A Figure of Explicit Knowledge

In this section, we show one example Figure 5 to
extract explicit knowledge from an image, which
use the CLIP model to conduct the explicit knowl-
edge retrieval with the image and a wiki knowledge
base.

Figure 5: Overview of the explicit knowledge extraction.
We use a sliding window to crop image regions and
retrieve knowledge entries from an explicit knowledge
base by CLIP.

B Examples of Prompts of Implicit
Knowledge

In this Section B of the Appendix, we show two
concrete examples (Figure 6 and Figure 7) for the
prompts that constructed to query GPT-3 for im-
plicit knowledge in our experiments:

Figure 6: An example of the evidence of rationale that
we obtain from GPT-3 by using a combination of ques-
tion and answer candidate to query it.

C Analysis on More Examples

In this section, we showcase more predictions from
variants of our model. As shown in Figure 8, we
analyze the predictions based on different type of
knowledge from several aspects:

Effectiveness of explicit knowledge retriever.
Our explicit knowledge retriever can retrieve fine-
grained knowledge entries from the explicit knowl-
edge base, such as golden retriever (a fine-grained
breed of dogs), cucumber sandwich (a specific type
of sandwich) and Macbook Pro (a specific model

Figure 7: An example of the prompts that we use to
query GPT-3 in our knowledge-aumented GPT-3 query
system.

of Apple products). These fine-grained entities are
hardly obtained from existing object detection mod-
els, which can constraint the search space of our
model and are beneficial to our answer generation
process.

Effectiveness of implicit knowledge retriever.
Our implicit knowledge retriever can retrieve sup-
porting evidence from GPT-3, such as Thomas: the
train is named after the man who designed it. and
Refrigerator: the refrigerator is used to keep food
cold. These kinds of knowledge are highly related
to commonsense knowledge which needs further
inference based on entities and provide comple-
mentary explanation to explicit knowledge.

Answer generation & classification. As most
previous work on OK-VQA task, such as KRISP or
MAVEx method, implement OK-VQA as a classi-
fication task. The prediction vocabulary is dataset-
specific and assumes the training and test set are
sharing a similar vocabulary. The limitation of
these methods is the generalization ability. Our pro-
posed KAT model treats OK-VQA as an open-end
generation task. From these examples we found,
our model can generate answers like Iphone or Her-
cules that are visually and semantically reasonable.
Our proposed novel KAT model using the explicit



Question:
Can you guess the material used to make the

bag shown in this picture?

Category:
Objects, Material and Clothing

Answer:
Exp: canvas KAT (w/o KRM): leather
Imp: leather KAT: canvas

Explicit Knowledge:
(entity:description)

Acer Aspire one: line of
notebooks by Acer Inc.
Drawing instrument: tool used
for drawing or drafting.
Writing implement: tool used
for writing
Book bag: a bag, usually a
backpack, used by students to
carry their textbooks.

Implicit Knowledge:
(candidate:evidence)

leather: the bag is made of
leather.

Question:
What breed are the dogs?

Category:
Other

Answer:
Exp: golden retriever KAT (w/o KRM): husky
Imp: husky KAT: golden retriever

Explicit Knowledge:
(entity:description)

Snow pillow: measuring
device for snowpack.
Search and rescue dog : dog
trained to locate or retrieve
a missing or trapped person.
Golden retriever: dog breed.
Mushing: Sport or dog
powered transport method.

Implicit Knowledge:
(candidate:evidence)

Husky: The husky is a very
intelligent dog. They are
independent and will do
what they want to do.

Question:
What type of sandwich is being served?

Category:
Cooking and Food

Answer:
Exp: cucumber KAT (w/o KRM): sub
Imp: sub KAT: cucumber

Explicit Knowledge:
(entity:description)

Salad: dish consisting of a
mixture of small pieces of
food, usually vegetables or
fruit.
Cucumber sandwich: the
traditional cucumber
sandwich is composed of
thin slices of cucumber
placed between two thin
slices of crustless, lightly
butterd white bread.
Vegetable chip: cooked chip
prepared using vegetables.

Implicit Knowledge:
(candidate:evidence)

Sub: the sub is a type of
sandwich.

Question:
What sort of phone would you associate with

this computer?

Category:
Brands, Companies and Products

Answer:
Exp: Iphone KAT (w/o KRM): cell
Imp: smartphone KAT: Iphone

Explicit Knowledge:
(entity:description)

Floor lamp: lamp standing on
the floor, often with a hight
reaching up to the vertical
middle of the room.
Macbook Pro: laptop made by
Apple.
MacOS: operating system for
Apple computers, launched in
2001 as Mac OS X.
Smart mattress: Mattress
monitoring sleep patterns.

Implicit Knowledge:
(candidate:evidence)

Smartphone: the computer is
not a smartphone.

Question:
What is the name of the famous train pictured?

Category:
Vehicles and Transportation

Answer:
Exp: Smoot KAT (w/o KRM): Thomas
Imp: Thomas KAT: Thomas

Explicit Knowledge:
(entity:description)

Fog machine: device that
emits a dense vapor that
appears similar to fog.
Draisine: small powered rail
vehicle used by track
maintenance workers.
Oast house: buildings
designed for kilning (drying)
hops as part of the brewing
process.
Clouding agent: type of
emulsifier used to make
beverage such as fruit juice
to look more cloudy.

Implicit Knowledge:
(candidate:evidence)

Thomas: the train is named
after the man who designed
it.

Question:
What is this dog running after?

Category:
Plants and Animals

Answer:
Exp: person KAT (w/o KRM): ball
Imp: ball KAT: ball

Explicit Knowledge:
(entity:description)

Sighthound: dog breed.
American Staffordshire
Terrier: dog breed.
Greyhound racing: canine
racing sport involving the
Greyhound dog breed.
Whipper racing: dog sport.

Implicit Knowledge:
(candidate:evidence)

Ball: the dog is chasing after
the ball.

Question:
How often should someone use this?

Category:
Objects, Material and Clothing

Answer:
Exp: twice day KAT (w/o KRM): daily
Imp: daily KAT: daily

Explicit Knowledge:
(entity:description)

Bathroom linen: household
linen used specifically for
the bathroom.
Toothbrush: oral hygiene
instrument used to clean
the clean the teeth, gums,
and tongue.
Toothbrush holder:
container or rack for
toothbrushes.
Laubwerk: delicate foliage
ornament with interlacing
straps.

Implicit Knowledge:
(candidate:evidence)

Daily: the product is made
with natural ingredients.
This is why it is safe to use
daily.

Question:
What hobby might this depict?

Category:
Objects, Material and Clothing

Answer:
Exp: paper craft KAT (w/o KRM): painting
Imp: scrapbook KAT: scrapbook

Explicit Knowledge:
(entity:description)

Embroidery workshop:
workshop where
embroidery is created.
Scissors: hand-operated
cutting instrument.
Paper knife: an implement
used for cutting open
sealed envelopes.
Leather cutter: craftman.

Implicit Knowledge:
(candidate:evidence)

Scrapbooking: the bobby is
a form of art.

Question:
What type of plane is this?

Category:
Vehicles and Transportation

Answer:
Exp: Hercules KAT (w/o KRM): jet
Imp: jet KAT: jet

Explicit Knowledge:
(entity:description)

Avro Shackleton: maritime
patrol aircraft family by
Avro.
MC-130 Hercules: airlifter
series by Lockheed.
P-3B Orion: anti-submarine
maritime patrol aircraft.
C-130B Hercules: airlifter
series by Lockheed.

Implicit Knowledge:
(candidate:evidence)

Jet: the plane is flying at a
high speed.

Question:
What is this machine used for?

Category:
Brands, Companies and Products

Answer:
Exp: refrigerate food KAT (w/o KRM): freeze
Imp: freezer KAT: keep food cold

Explicit Knowledge:
(entity:description)

Shelf-stable food: food of a
type that can be safely stored
at room temperature in a
sealed container.
Free box: box or location used
to allow for people to rid
themselves of excess items.
Icebox: non-mechanical
household applicance for
cooling foodstuffs.
Refrigenration: process of
moving heat from one
location to another in
controlled conditions.

Implicit Knowledge:
(candidate:evidence)

Refrigerator: the refrigerator
is used to keep food cold.

Figure 8: More examples from OK-VQA dataset that our model generates answers by jointly reasoning over both
implicit and explicit knowledge.



and implicit knowledge is designed to enhance se-
mantic alignment and generate representations with
stronger knowledge-awareness.


