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Abstract—Browsers often include security features to detect
phishing web pages. In the past, some browsers evaluated an
unknown URL for inclusion in a list of known phishing pages.
However, as the number of URLs and known phishing pages
continued to increase at a rapid pace, browsers started to
include one or more machine learning classifiers as part of their
security services that aim to better protect end users from harm.
While additional information could be used, browsers typically
evaluate every unknown URL using some classifier in order to
quickly detect these phishing pages. Early phishing detection used
standard machine learning classifiers, but recent research has
instead proposed the use of deep learning models for the phishing
URL detection task. Concurrently, text embedding research
using transformers has led to state-of-the-art results in many
natural language processing tasks. In this work, we perform a
comprehensive analysis of transformer models on the phishing
URL detection task. We consider standard masked language
modeling and additional domain-specific pre-training tasks, and
compare these models to fine-tuned BERT and RoBERTa models.
Combining the insights from these experiments, we propose
URLTran which uses transformers to significantly improve the
performance of phishing URL detection over a wide range of very
low false positive rates (FPRs) compared to other deep learning-
based methods. For example, URLTran yields a true positive rate
(TPR) of 86.80% compared to 71.20% for the next best baseline
at an FPR of 0.01%, resulting in a relative improvement of over
21.9%. Further, we consider some classical adversarial black-
box phishing attacks such as those based on homoglyphs and
compound word splits to improve the robustness of URLTran.
We consider additional fine-tuning with these adversarial samples
and demonstrate that URLTran can maintain low FPRs under
these scenarios.

Index Terms—Phishing Detection, Neural Networks, BERT,
Adversarial Robustness

I. INTRODUCTION

Phishing occurs when a malicious web page is created to
mimic the legitimate login page used to access a popular online
service for the purpose of harvesting the user’s credentials or
a web page whose purpose is to input credit card or other
payment information. Typical phishing targets include online
banking services, web-based email portals, and social media
web sites. Attackers use several different methods to direct
the victim to the phishing site in order to launch the attack.
In some cases, they may send the user a phishing email
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containing the URL (Uniform Resource Locator) of a phishing
page. Attackers may also use search engine optimization
techniques to rank phishing pages high in a search result query.
Modern email platforms use various machine learning models
to detect phishing web page attacks. In this work, we propose a
new deep learning model that analyzes URLs and is based on
transformers which have shown state-of-the-art performance
in many important natural language processing tasks.

To prevent users from inadvertently uploading personal
information to the attackers, web browsers provide additional
security services which identify and block or warn a user
against visiting a known phishing page. For example, Google’s
Chrome browser utilizes their Safe Browsing technology [1]
and Microsoft’s Edge browser includes Windows Defender
SmartScreen [2]. In a related attack which is also addressed
by these services, malicious URLs may point to a web page
hosted by a misconfigured or unpatched server with the goal of
exploiting browser vulnerabilities in order to infect the user’s
computer with malware (i.e., malicious software).

Successful phishing web page detection includes a number
of significant challenges. First, there is a huge class imbalance
associated with this problem. The number of phishing pages
on the internet is very small compared to the total number of
web pages available to users. Second, phishing campaigns are
often short-lived. In order to avoid detection, attackers may
move the login page from one site to another multiple times
per day. Third, phishing attacks continue to be a persistent
problem. The number of known phishing sites continues to
increase over time. Therefore, blocking phishing attacks only
using a continuously growing list of known phishing sites often
fails to protect users in practice.

Popular web browsers may render hundreds of millions or
even billions of web pages each day. In order to be effective,
any phishing or malicious web page detection must be fast.
For this reason, several researchers [3]–[5] have proposed
detecting both phishing and malcious web pages based solely
on analyzing the URL itself.

With the proliferation and ease of access to phishing kits
sold on the black market as well as phishing as a service of-
ferings, it has become easy for attackers with little expertise to
deploy phishing sites and initiate such attacks. Consequently,
phishing is currently on the rise and costing over $57 million



from more than 114,000 victims in the US last year according
to a recent FBI report [6]. The number of phishing attacks rose
in Q3 of 2019 to a high level not seen since late 2016 [7]. As
phishing is proving to be more and more fruitful, the attacks
have become increasingly sophisticated. At the same time, the
lifespan of phishing URLs has continued to drop dramatically
– from 10+ hours to minutes [8].

Given the significant repercussions of visting a phishing or
malicious web page, the detection of these URLs has been
an active area of research [9]. In some cases, researchers
have proposed the use of classic natural language processing
methods to detect malicious URLs [3]. Other recent work has
begun to use deep learning models to detect these URLs.
URLNet [4] is a deep convolutional neural network (CNN)
and includes separate character and word-level models for
the malicious URL detection task. The Texception [5] model,
which is used to detect phishing URLs, extends some of the
ideas in URLNet by including small kernels which can be
deployed in a wide variety of configurations in terms of width,
depth or both.

Recently, semi-supervised machine learning methods have
been used to create text embeddings that offer state-of-the-art
results in many natural language processing tasks. The key
idea in these approaches is the inclusion of a transformer
model [10]. BERT [11], [12] utilizes transformers to offer
significant improvements in several natural language process-
ing (NLP) tasks. GPT [13], GPT-2 [14], and GPT-3 [15]
have also followed a similar approach. The semantics and
syntax of natural language are more complex than URLs,
which must follow a strict syntax specification [16]. However,
recent work using transformers has also demonstrated that
these models can be applied to tasks involving data with more
strict syntactic structures. These include tabular data [17],
python source code [18] and SQL queries [19]. The success
of these approaches further motivates us to apply transformers
on URLs.

In this paper, we compare two settings: 1) we pre-train and
fine-tune an existing transformer architecture using only URL
data, and 2) we fine-tune publicly available pre-trained trans-
former models. In the first approach, we apply the commonly
used Cloze-style masked language modeling objective [20] on
the BERT architecture. In the second approach, we fine-tune
BERT [11] and RoBERTa [21] on the URL classification task.
Each of these systems forms an example of a URLTran model
of which URLTran BERT is the best. Finally, we simulate
two common black-box phishing attacks by perturbing URLs
in our data using unicode-based homoglyph substitutions [22]
and inserting ‘-’ characters between sub-words in a compound
URL (e.g., ‘bankofamerica.com’ → ‘bank-of-america.com’),
along with a perturbation scenario under which the parame-
ters are reordered and the URL label remains unchanged to
improve the robustness of URLTran.

Results on a large corpus of phishing and benign URLs
show that transformers are able to significantly outperform re-
cent state-of-the-art phishing URL detection models (URLNet,
Texception) over a wide range of low false positive rates where

such a phishing URL detector must operate. At a false positive
rate of 0.01%, URLTran increases the true positive rate from
71.20% for the next best baseline (URLNet) to 86.80% (21.9%
relative increase). Thus, browser safety services, such Google’s
Safe Browsing and Microsoft’s SmartScreen, may potentially
benefit using the proposed URLTran system for the detection
of phishing web pages.

This paper offers the following contributions:
• We propose the use of transformers to improve the

detection of phishing URLs.
• We build URLTran, a large-scale system with production

data and labels and demonstrate that transformers do
offer a significant performance improvement compared
to previous recent deep learning solutions over a wide
range of very low false positive rates.

• We analyze the impact of various design choices in terms
of hyperparameters, pre-training tasks, and tokenizers to
contribute to an improved model.

• We analyze adversarially generated URLs from the sys-
tem to understand the limitations of URLTran.

II. PHISHING URL DATA

The datasets used for training, validation and testing were
collected from Microsoft’s Edge and Internet Explorer pro-
duction browsing telemetry during the summer of 2019. The
schema for all three datasets is similar and consists of the
browsing URL and a boolean determination of whether the
URL has been identified as phishing or benign. Due to the
highly unbalanced nature of the datasets (roughly 1 in 50
thousand URLs is a phishing URL), down-sampling of the
benign set was necessary for both the training and validation
sets. The resulting training dataset had the total size of
1,039,413 records with 77,870 phishing URLs and 961,543
benign URLs. Of the 259,854 URLs in the validation set,
19,468 corresponded to phishing sites and 240,386 to benign
sites. The test set used for evaluating the models consists of
1,784,155 records, of which 8,742 are phishing URLs and the
remaining 1,775,413 are benign. The labels included in this
study correspond to those used to train production classifiers.
Phishing URLs are manually confirmed by analysts including
those which have been reported as suspicious by end user
feedback. Other manually confirmed URLs are also labeled
as phishing when they are included and manually verified in
known phishing URL lists including Phishtank.

Benign URLs are those which correspond to web pages
which are known to not be involved with a phishing attack.
In this case, these sites have been verified by analysts using
manual analysis. In other cases, benign URLs can be con-
firmed by thorough (i.e., production grade) off-line automated
analysis which is not an option for real-time detection required
by the browser. None of the benign URLs have been included
in known phishing lists or have been reported as phishing
pages by users and later verified by analysts. Although these
last two criteria are not sufficient to add an unknown URL to
the benign list, it is important to note that all URLs labeled
as benign correspond to web pages that have been validated.



They are not simply a collection of unknown URLs, i.e., ones
which have not been previously detected as phishing sites.

III. METHODOLOGY

URLTran seeks to use recent advances in natural language
processing to improve the task of detecting phishing URLs by
employing a two-pronged approach towards adapting trans-
formers for the task of phishing URL detection. First, state-
of-the-art transformer models, BERT [11] and RoBERTa [21],
are fine-tuned, starting from publicly available vocabularies
and weights and across different hyperparameter settings
and resulting in URLTran BERT and URLTran RoBERTa,
respectively. Second, domain-specific vocabularies are built
using different tokenization approaches, and a domain specific
transformer (URLTran CustVoc) is first pre-trained and then
fine-tuned on the task.

The general architecture of all the explored models takes a
three stage approach for inference shown in Figure 1. It first
uses a subword tokenizer to extract tokens from a URL. Next,
a transformer model generates an embedding vector for the
unknown URL. Finally, a classifier predicts a score indicating
whether or not the unknown URL corresponds to a phishing
web page.

In the following sections, we first provide briefly summarize
the transformer model architecture, followed by the training
tasks used to train the model, next with a description of
the adversarial settings under which the best URLTran model
is evaluated and then trained with adversarial examples to
improve its robustness, and end with the threat model.

A. Architecture

We describe the tokenization schemes and overall architec-
ture for classification in this section, skipping a detailed de-
scription of transformer models for brevity. Interested readers
can review the transformer [10], BERT [11], or RoBERTa [21]
papers for details of the internal structure of transformer
layers.
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Fig. 1: URLTran phishing URL detection model.

URL (um) secure.bankofamerica.com/login/sign-in/signOnV2Screen.go
Tokens secure, ., bank, ##of, ##ame, ##rica, ., com, /, log, ##in,
(TOKm) /, sign, -, in, /, sign, ##on, ##v, ##2, ##screen, ., go

TABLE I: Example of the (comma-separated) wordpiece token
sequence extraction from a popular banking web page.

1) Tokenization: The raw input to the URLTran model is
the URL, which can be viewed as a text sequence. The first
step in the phishing URL detection task involves converting
this input URL into a numerical vector which can be further
processed by a classical machine learning or deep learning
model.

Previous approaches have split URLs into sparse, binary
features using important delimiters (e.g., ‘=’, ‘/’, ‘?’, ‘.’, ‘
’) [3] and word/character-level CNNs of varying spans [4],
[5]. Instead of these approaches, we experiment with multiple
subword tokenization schemes in URLTran. While using full-
length words reduces the input representation length (number
of tokens) allowing more input to be processed by a fixed-
length model, using a subword model can provide morpholog-
ical insights to improve inference. For example, a full-length
model would consider ‘bankofamerica’ and ‘bankofcanada’
as completely unrelated tokens, whereas a subword model
can recognize the shared subword ‘bank’ to correlate URLs
belonging to the two banks. Important character subsequences,
including prefixes and suffixes, can also provide relevant
information while being more robust to polymorphic attacks.
Subword models attempt to find a balance of using both
character subsequences and full words.

In particular, for URLTran BERT and URLTran RoBERTa,
we use the existing word piece [11], [23] and Byte Pair
Encoding (BPE) models [14], [21] , respectively. In addition to
these, custom character-level and byte-level BPE vocabularies
are created using the training URL data to have a domain
specific vocabulary for URLTran CustVoc with two different
vocabulary sizes, 1K and 10K.

The BPE models first break the mth URL, um, into a
sequence of text tokens, TOKm, where the individual to-
kens may represent entire words or subwords. Following the
notation in [11], the token sequence is formed as:

TOKm = Tokenizer(um) (1)

where TOKm is of length Tm positions and consists of
individual tokens Tokt at each position index t. For example,
the BERT wordpiece token sequence generated from the URL
of a popular banking login pageis shown in Table I. The
wordpiece model includes special text tokens specified by (##)
which build upon the previous token in the sequence. In the
example in Table I, ‘##of’ means that it occurs after a previous
token (‘bank’), and it is distinguished from the more common,
separate token ‘of’.

2) Classifier: We use the transformer embeddings for two
tasks: pre-training masked language models and fine-tuning for
classification of phishing URLs. Both of these tasks require
a final classification layer which can be applied to multiple



tokens for masked token prediction and a pooled representation
for classification. The transformer models that we train use
a single, dense classification layer, which is applied to a
special pooled token (‘[CLS]’) for classification. For pre-
training, a dense layer having vocab_size classes is used
for predicting the masked token for the masked language
modeling task. We use two-class classification for the fine-
tuning model where the two classes are 1 for a phishing URL
and 0 if the URL is benign. In both scenarios, the classification
layer is:

sm = Wxm + b. (2)

In (2), W and b are the weight matrix and bias vector,
respectively, for the final dense linear layer. sm is the score
which predicts if the URL um corresponds to a phishing
web page when performing classification and is the sequence
of masked token probability score vectors when performing
masked language modeling for input token xm.

B. Training

1) Masked Language Modeling (MLM): The MLM task
is commonly used to perform pre-training for transformers
where a random subset of tokens is replaced by a special
‘[MASK]’ token. The training objective for the task is the
cross-entropy loss corresponding to prediction of the correct
tokens at masked positions. The intuition for using this task for
URLs is that specific query parameters and paths are generally
associated with non-phishing URLs and therefore predicting
masked tokens would help to uncover these associations.
Similar intuitions derived from the cloze task [20] motivate
the usage of MLMs for pre-training natural language models.
Following the MLM hyperparameter settings for BERT, 15%
of the tokens were uniformly selected for masking, of which
80% are replaced, 10% were left unchanged, and 10% were
replaced by a random vocabulary token at each iteration.
Dynamic masking [21] was used, i.e., different tokens masked
from the same sequence across iterations. The training subset
of the full dataset was used for pre-training to prevent any
data leakage.

2) Fine-Tuning: The initial parameters for URLTran BERT
and URLTran RoBERTa are derived using a large natural
language corpus generated by their respective authors, were
used. For URLTran CustVoc, the final learned weignts from
the MLM pre-training step were used as initialization values.
Next, URLTran’s model parameters were further improved
using a second “fine-tuning” training process which utilizes
the error signal from the URL classification task and gradients
based on gradient descent using the Adam [24] optimizer with
the cross-entropy loss.

C. Adversarial Attacks and Data Augmentation

Phishing URL attacks can occur on short-lived domains and
URLs which have small differences from existing, legitimate
domains. We simulate two attack scenarios by constructing
examples of such adversaries based on modifying benign
URLs. Note that these generated domains do not actually exist

in the pre-existing training and testing data, but are based upon
frequently observed phishing attack patterns. We also utilize
a reordering-based augmentation, which is used to generate
benign perturbations for evaluating adversarial attacks.

1) Homoglyph Attack: We generate domains that appear
nearly identical to legitimate URLs by substituting characters
with other unicode characters that are similar in appearance.
This attack strategy is commonly referred to as a homoglyph
attack [25], [26], and we implement this strategy using the
python library homoglyphs1. In particular, given a URL, we
first extract the domain. For a randomly selected character in
the domain, we check for one unicode (utf-8) Latin or Cyrillic
character that is a homoglyph for it. We only perturb one
character to minimize the probability that such a URL would
we be identified as phishing by the user. We then replace the
character by its homoglyph to construct a new URL.

2) Compound Attack: An alternative way to construct new
phishing URLs is by splitting domains into sub-words (re-
stricted to English) and then concatenating the sub-words with
an intermediate hyphen. For example, ‘bankofamerica.com’
→ ‘bank-of-america.com’. To implement this, we leverage
the enchant dictionary2. Consider a URL with domain d
having |d| = n characters. Let D denote the enchant English
dictionary. Let C(d, i, j) denote the function that returns True
if d[i . . . j] can be split into one or more parts, each of which
is a word in the dictionary D . The compound word problem
can be formulated recursively as

C(d, i, j) =


True, d[i . . . j] ∈ D

True ∃k,C(d, i, k) and C(d, k + 1, j)

False otherwise
(3)

Using this recursive definition, we implement a dynamic
programming algorithm that can compute whether a domain
can be split and the corresponding splits. These splits are
then concatenated with hyphens between the discovered words.
Note that the base case check d[i . . . j] ∈ D is performed in
a case insensitive manner to ensure that the dictionary checks
do not miss proper nouns.

3) Parameter Reordering: We extend text-aumentation ap-
proaches [27] for URL augmentation. As the query parameters
of a URL are interpreted as a key-value dictionary, this aug-
mentation incorporates permutation invariance. An example
of a URL and permutation is provided in Figure 2. We
use this approach to generate benign examples. Reordering
the parameters still results in a valid URL, i.e., parameter
reordering does not represent a phishing attack, and therefore
we do not modify the URL’s label.

4) Adversarial Attack Data: The approach we use for
generating data for an adversarial attack includes generating
separate augmented training, validation and test datasets based
on their original dataset [28]. For each URL processed in
these datasets, we generate a random number. If it is less
than 0.5, we augment the URL, or otherwise, we include it

1https://pypi.org/project/homoglyphs/
2https://pypi.org/project/pyenchant/



secure.bankofamerica.com/activate.go?type=credit&channel=desktop

secure.bankofamerica.com/activate.go?channel=desktop&type=credit

Fig. 2: An example of parameter reordering

in its original form. For URLs which are to be augmented,
we modify it using either a homoglyph attack, a compound
attack, or parameter reordering with equal probability. If a
URL has been augmented, we also include the original URL
in the augmented dataset.

D. Threat Model

The threat model for URLTran allows for the attacker to create
any phishing URL including those which employ domain
squatting techniques. In its current form, URLTran is pro-
tected against homoglyph and compound word attacks through
dataset augmentation. However, any domain squatting attacks
can also be simulated and included in the augmented adversar-
ial training, validation, and test sets. In addition, a larger num-
ber of adversarial training examples can be directed at more
popular domains such as https://www.bankofamerica.com that
may be a target of attackers.

We assume that inference can be executed by the counter-
measure system prior to the user visiting the unknown page.
This can be done by the email system at scale by evaluating
multiple URLs in parallel. In our evaluation, we found that
URLTran requires 0.36096 milliseconds per URL on average
which is a reasonable amount of latency.

IV. NUMERICAL EVALUATION

In this section, we evaluate and compare URLTran to
several recently proposed baselines. We also report the model’s
training and inference times. Finally, we analyze the robustness
of the model to generated phishing URLs.
Setup. We set the hyperparameters for previously published
models according to the relevant published values. For eval-
uating URLTran CustVoc, we vary the number of layers
between {3, 6, 12}, number of tokens per input URL se-
quence between {128, 256}, and {byte, char}-level BPE tok-
enizer with {1K, 10K}-sized vocabularies. We randomly pick
15 hyperparameter combinations among these settings and
present the results for these. The Adam optimizer [29] is
used in both pre-training and fine-tuning, with the triangular
scheduler [30] used for fine-tuning. All training and inference
experiments were conducted using PyTorch [31] version 1.2
with NVIDIA Cuda 10.0 and Python 3.6. The experiments
were performed by extending the Hugging Face and Fairseq
PyTorch implementations found on GitHub [32], [33]. As
the large class imbalance makes accuracy a poor metric of
model performance, we evaluated all the models using the true
positive rate (TPR) at low false positive rate (FPR) thresholds.
We used the receiver operating characteristics (ROC) curve to
compute this metric.

Baselines. To evaluate the performance of our models, we
compared them to two baseline URL detection models: URL-
Net and Texception. URLNet [4] is a CNN-based model
which was recently proposed for the task of detecting URLs
associated with malicious web sites. In our baseline, we have
completely trained and tested the URLNet model for the detec-
tion of phishing URLs. Texception [5] is another deep learning
URL detection model which has been proposed for the task
of identifying phishing URLs. As noted by Tajaddodianfar
et al [5], Texception offered better performance than logistic
regression, thus, we omit this comparison.
URLTran CustVoc. Transformers typically require large am-
ounts of pre-training data (e.g., BERT [11] used a corpus
of ≈ 3.3 B tokens). However, this data is derived from text
articles, which are structured differently from URLs. We also
trained the URLTran CustVoc model based soley on the URL
data found in our datasets to compare the results of fine-
tuning using standard BERT and RoBERTa pretrained models
to models pretrained from the URL data. The difference in
dataset size and data domain make it important to understand
the impact of different hyperparameters used when training
transformers from scratch. We compare runs across different
hyperparameters on the basis of area under ROC (AUROC)
and TPR@0.01% FPR. Figure 3 demonstrates that the training
is not very sensitive to sequence length. Smaller byte-level
vocabularies tend to be better overall, but at low FPR, the
difference is not significant. Finally, we found that the three
layer model generalized the best. We hypothesize that the bet-
ter performance of the model with fewer layers is because of
limited pre-training data and epochs. In the next few sections,
we validate this hypothesis by evaluating models that have
longer pre-training (URLTran BERT, URLTran RoBERTa)
and tuned on a larger, adversarial dataset.
Model Performance. We next analyze the performance of the
best parameters of all the proposed transformer variants. To
understand how these models compare at very low FPRs where
detection thresholds must be set to operate in a production
environment, we first plot the ROC curves on a linear x-axis
zoomed into a 2% maximum FPR in Figure 4. We also re-
plot these ROC curves on a log x-axis in the semilog plot in
Figure 5. These results indicate that all variants of URLTran
offer a significantly better true positive rate over a wide range
of extremely low FPRs. In particular, URLTran matches or
exceeds the TPR of URLNet for the FPR range of 0.001%
- 0.75%. The result is significant as phishing URL detection
models must operate at very low FPRs (e.g., 0.01%) in order
to minimize the number of times the security service predicts
that a benign URL is a phishing site (i.e., a false positive). In
practice, the browser manufacturer selects the desired FPR and
tries to develop new models which can increase the TPR for
the selected FPR value. Note that TPR@FPR is the standard
metric commonly used both in production settings and in
prior art such as Texception and URLNet. In addition to the
ROC curve analysis, we also summarize a number of key
performance metrics in Table II. In the table, ‘F1’ is the F1
score, and ‘AUC’ is the area under the model’s ROC curve.



Model Accuracy (%) Precision (%) Recall (%) TPR@FPR=0.01% F1 AUC
Texception 99.6594 99.7562 99.6594 52.1505 0.9969 0.9977
URLNet 99.4512 99.7157 99.4512 71.1965 0.9954 0.9988

URLTran CustVoc 99.5983 99.7615 99.5983 81.8577 0.9965 0.9992
URLTran RoBERTa 99.6384 99.7688 99.6384 82.0636 0.9968 0.9992

URLTran BERT 99.6721 99.7845 99.6721 86.7994 0.9971 0.9993

TABLE II: Comparison of different performance metrics for URLTran and the two baseline models
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Fig. 3: Variance in URLTran CustVoc performance

The proposed URLTran model outperforms both Texception
and URLNet for all of these metrics. In particular, we note that
at an FPR of 0.01%, URLTran BERT has a TPR of 86.80%
compared to 71.20% for URLNet and 52.15% for Texception.
Training and Inference Times. The time required for training
the best URLTran BERT model was 4:57:11 and inference
was 0:10:44 for an average of ≈ 0.361 ms per sample.
Adversarial Evaluation. To understand URLTran’s robustness
to adversarial attacks, we first compared the low FPR regions
of the ROC curve of the unprotected model tested with the
original test set to the test set which includes adversarial
samples (AdvAttack) generated through the methods described
in Section III-C (Figure 6). There is a significant drop in per-
formance of URLTran BERT when attacked with adversarial
URLs. Next, we consider the scenario where attack strategies
are incorporated into the training data (AdvTraining). On the
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addition of adversarial attack patterns to the training, the model
is able to the adapt to novel attacks, and even outperform the
unprotected version of URLTran. These results demonstrate
that URLTran can adapt to novel attacks. Further, as new attack
strategies are recognized (e.g., homoglyph), a robust version
of URLTran can be trained to recognize similar patterns in
unseen test data.

V. RELATED WORK

The URLTran system is most closely related to phishing and
malicious URL detection models which have been previously
proposed in the literature. In this section, we describe related
work for deep learning-based text embeddings in general. We
then review related work in phishing and malicious web page
detection using its URL which builds upon models proposed
in the NLP domain, in particular, URLNet and Texception,
which helped to inspire this work.
Text Embeddings. Deep learning models for text embeddings
have been an active area of research. One form of models
called a character-level CNN learns a text embedding from
individual characters, and these embeddings are then processed
using a sequential CNN and one or more dense layers de-
pending on the task. Recent examples of character-level CNNs
include [34], [35]. In particular, Conneau et al. [34] investi-
gated very deep architectures for the purpose of classifying
natural language text. Typically, these models are trained in
an end-to-end fashion instead of from manually engineered
features. Transformers for text embedding were introduced
by Vaswani et al. [10] in the context of neural machine
translation. A number of models used transformers for other
natural language processing tasks including BERT [11], [12],
GPT [13], GPT-2 [14], and GPT-3 [15]. RoBERTa [36] used
careful optimization of the BERT parameters and training
methodology to offer further improvements.
Adversarial Attacks on Text. Adversarial example genera-

tion has been a focus of some recent work on understand-
ing the robustness of various text classification tasks. The
examples generated using these approaches aim to impose
certain semantic constraints without modifying the label of the
underlying text. White-box attacks (e.g., Hotflip [37]) require
access to the internals of the classification model used, such
as the gradient on specific examples. The attack framework
proposed in our work is more in line with black-box attack
frameworks such as DeepWordBug [26] and TextAttack [38]
where the construction of adversarial data is motivated by
a threat model but independent of the classifier used. We
specialize this attack scheme to apply in the URL context.
URL-Based Phishing and Malicious Web Page Detection.
We next review some recent systems for phishing and ma-
licious web page detection using its URL in chronological
order. Early phishing page detection based on URLs followed
conventional deep learning approaches. A summary of these
methods is included in [9]. Blum et al. [3] proposed using
confidence weighted, online learning using a set of lexical
features which are extracted from the URL. To extract these
features, the URL is first split using the following delimiters:

‘?’, ‘=’, ‘/’, ‘.’, and ‘ ’. Next, individual features are determined
based on the path, domain, and protocol.

Le et al. [4] proposed the URLNet model whose task is
to detect URLs which are references to malicious web pages
found on the Internet. URLNet processes a URL using a
character-level Convolutional Neural Network (CNN) and a
word-level CNN. For the character-level CNN, the URL is
first tokenized by each of the characters.

Inspired by the Xception deep object recognition model
for images, Texception [5] also uses separate character-level
and word-level CNNs like URLNet. However, Texception’s
CNN kernels form different size text windows in both the
character and word levels. Multiple Texception blocks and
Adaptive Max Pooling layers can be combined in different
model configurations in terms of both depth and width. In
addition, Texception utilizes contextual word embeddings in
the form of either FastText or Word2Vec to convert the URL
into the input embedding vector. Another CNN-based phishing
detection model was proposed by Yerima and Alzaylaee [25].
Using the page’s content, the authors create a 31-dimensional
feature vector for each web page in their dataset and train a
CNN based on this feature vector. URLTran differs from this
work because it only processes the URL instead of extracting
the page content which will be much slower for inference.
Other work has proposed using LSTMs (i.e., recurrent se-
quential models) for phishing and malicious URL detection
including [39], [40]. Processing LSTMs is expensive in terms
of computation and memory for long URLs which makes them
impractical for large-scale production. Huang et al. [41], also
investigated capsule networks for detecting phishing URLs.

VI. CONCLUSION

We have proposed a new transformer-based system called
URLTran whose goal is to predict the label of an unknown
URL as either one which references a phishing or a benign
web page. Transformers have demonstrated state-of-the-art
performance in many natural language processing tasks, and
this paper seeks to understand if these methods can also
work well in the cybersecurity domain. In this work, we
demonstrate that transformers which are fine-tuned using the
standard BERT tasks also work remarkably well for the task
of predicting phishing URLs. Instead of extracting lexical
features or using CNN kernels that span multiple characters
and words, which are both common in previously proposed
URL detection models, our system uses the BPE tokenizers
for this task. Next, transformers convert the token sequence
to an embedding vector which can then be used as input to a
standard, dense linear layer. Results indicate that URLTran is
able to significantly outperform recent baselines, particularly
over a wide range of very low false positive rates. We also
demonstrate that transformers can be made robust to novel
attacks under specific threat models when we adversarially
augment the training data used for training them.
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