
Can Neural Clone Detection Generalize to Unseen
Functionalities?

Chenyao Liu∗
School of Software

Tsinghua University
liucy19@mails.tsinghua.edu.cn

Zeqi Lin§

Microsoft Research Asia
Zeqi.Lin@microsoft.com

Jian-Guang Lou
Microsoft Research Asia

jlou@microsoft.com

Lijie Wen§

School of Software
Tsinghua University

wenlj@tsinghua.edu.cn

Dongmei Zhang
Microsoft Research Asia

dongmeiz@microsoft.com

Abstract—Many recently proposed code clone detectors exploit
neural networks to capture latent semantics of source code, thus
achieving impressive results for detecting semantic clones. These
neural clone detectors rely on the availability of large amounts
of labeled training data. We identify a key oversight in the
current evaluation methodology for neural clone detection: cross-
functionality generalization (i.e., detecting semantic clones of
which the functionalities are unseen in training). Specifically, we
focus on this question: do neural clone detectors truly learn the
ability to detect semantic clones, or they just learn how to model
specific functionalities in training data while cannot generalize
to realistic unseen functionalities? This paper investigates how
the generalizability can be evaluated and improved.

Our contributions are 3-folds: (1) We propose an evalua-
tion methodology that can systematically measure the cross-
functionality generalizability of neural clone detection. Based on
this evaluation methodology, an empirical study is conducted and
the results indicate that current neural clone detectors cannot
generalize well as expected. (2) We conduct empirical analysis
to understand key factors that can impact the generalizability.
We investigate 3 factors: training data diversity, vocabulary,
and locality. Results show that the performance loss on unseen
functionalities can be reduced through addressing the out-of-
vocabulary problem and increasing training data diversity. (3) We
propose a human-in-the-loop mechanism that help adapt neural
clone detectors to new code repositories containing lots of unseen
functionalities. It improves annotation efficiency with the com-
bination of transfer learning and active learning. Experimental
results show that it reduces the amount of annotations by about
88%. Our code and data are publicly available1.

Index Terms—Code Clone Detection, Generalization, Neural
Network, Evaluation Methodology, Human-in-the-Loop

I. INTRODUCTION

Code clone detection is the task of finding similar code frag-
ment pairs (i.e., clones) within or between software systems.
It has become an important part in many software engineering
tasks, such as software refactoring ([1]–[4]), quality manage-
ment ([5]–[8]), defect prediction [9], plagiarism detection ([9],
[10]), and program comprehension ([9], [11]).

∗Work done during an internship at Microsoft Research
§Corresponding author
1https://github.com/thousfeet/Functionality-generalization

In recent years, many neural network-based methods are
proposed for detecting semantic clones, and they have
achieved impressive results ([12]–[19]). Semantic clones are
clones in which code fragments implement the same func-
tionality, but may have low syntactic similarity. For example,
a quick sort code and a heap sort code should be con-
sidered semantically equivalent. Traditional matching-based
code clone detectors (e.g., token matching-based methods, tree
matching-based methods, and graph matching-based methods
work well in detecting syntactic clones, while previous studies
([20], [21]) found that they had limited success with semantic
clones. To address this problem, a recent research trend is
to leverage deep neural networks to effectively capture com-
plex semantic information in code fragments. For example,
some studies (e.g., CDLH [12], ASTNN [15], and TBCCD
[16]) focus on learning from Abstract Syntax Trees (ASTs),
and some other studies ([13], [19]) focus on learning from
Control Flow Graphs (CFGs) or Program Dependency Graphs
(PDGs). These studies have achieved impressive results: in
widely-used code benchmarks for code clone detection (e.g.,
BigCloneBench [22], GCJ [13], and OJClone [23]), state-of-
the-art neural clone detectors achieve more than 90% precision
and recall.

Existing neural clone detectors are supervised, relying on a
large number of annotated true/false code fragment pairs for
training. This paper identifies a key oversight in the current
evaluation methodology for neural clone detection:

Cross-Functionality Generalizability: the ability to detect
semantic clones of which the functionalities have never been
previously observed in the training dataset.

For example, a good neural clone detector should be able
to find clones of sort algorithms, even if the training data
contain no code fragments of sorting. This generalizability is
a critical aspect to measure whether neural clone detection
can be applied in practice at scale, because: (1) there are
a potentially infinite number of functionalities in real-world
software systems (especially for domain-specific software
systems), making it almost impossible to construct a large-

scale training dataset that covers most functionalities; (2) it is
expensive and not scalable to annotate specific training dataset
for each domain.

The current evaluation methodology for neural clone detec-
tion does not systematically test the cross-functionality gener-
alizability. Due to annotation difficulties, the benchmarks with
many semantic clones usually have a limited number of func-
tionalities. For example, BigCloneBench, GCJ and OJClone
have 43/12/104 functionalities respectively. Training/test sets
are randomly sampled from all annotated code fragment pairs,
with the restriction that a code fragment should not appear in
both training set and test set. In this setting, whether a clone
detector can generalize to unseen code fragments or not is
well tested, but the cross-functionality generalizability is not.
A reasonable concern is: do neural clone detectors really learn
to model semantic equivalence of code fragment pairs, or they
just simply remember fixed patterns of fixed functionalities?

In this paper, we aim to answer three questions:

1) How does neural clone detection generalize to unseen
functionalities?

2) If the cross-functionality generalizability of neural clone
detection is limited, what are the key factors that impact
it?

3) In a new domain, how to learn an accurate neural clone
detector with minimal cost?

Our first contribution is a simple yet realistic evaluation
methodology for the generalizability of neural clone detec-
tion and an empirical study based on it. Currently, annotated
code fragment pairs are divided into training/test sets based
on code fragments. This setting tests whether the detector can
generalize to unseen code fragments, but not a complete test
of the generalizability for unseen functionalities. To address
this problem, we improve the evaluation methodology through
functionality-based re-partition of training/test sets. We then
use this methodology to test the generalizability of neural
clone detection on OJClone dataset (which contains 104 func-
tionalities). In particular, we divide these 104 functionalities
into 7 groups and run experiments on different training-test
settings. Our empirical observation is: neural clone detection
suffers from significant performance degradation (on average,
F1 score decreases from 0.96 to 0.44) in cross-functionality
settings.

This result motivates our second contribution: a series of
experiments are conducted to understand the factors that
impact the cross-functionality generalizability. Specifically,
we examine 3 potential improvement directions:

1) Training Data Diversity. We define training data di-
versity as the total number of functionalities in training
set. We hyphothesize that the cross-functionality gen-
eralizability can benefit from increasing training data
diversity. Our empirical results confirm this hypothesis
while significant marginal effects are observed.

2) Vocabulary. Neural networks in software engineering
tasks usually suffer from the out-of-vocabulary (OOV)
problem ([16], [24], [25]): tokens in test set may rarely

or even never occur in training set, thus these tokens
are not effectively modeled in neural networks. The
vocabulary of different functionalities is likely to be
very different. Therefore, we hypothesize that adress-
ing the OOV problem can alleviate the lack of cross-
functionality generalizability. Our empirical results con-
firm this hypothesis.

3) Locality. Common wisdom in machine learning com-
munity suggests that we should use attention mechanism
to better model local structures of data, especially for
their latent alignments ([26]–[29]). We apply this idea
to neural clone detection and study whether it can
help improve cross-functionality generalizability. Our
empirical results show that this mechanism brings little
improvement for generalizability.

Finally, our third contribution is a human-in-the-loop
mechanism that efficiently bootstraps neural clone detec-
tors for unseen functionalities with only a small amount
of human efforts. The scenario is: we have a training dataset
A, but we want to learn a good neural clone detector that
can find semantic clones in a new, lower-resourced domain
B (containing many functionalities that have never been
previously observed in A). The key point of this human-in-
the-loop mechanism is the combination of transfer learning
and active learning: we learn a preliminary neural clone
detector on domain A, then use it to actively select informative
code fragment pairs in domain B for human annotation,
thus transferring the neural clone detector from domain A to
domain B. Experimental results show that this human-in-the-
loop mechanism reduces the amount of annotations by 88%,
thus alleviating the difficulty that neural clone detectors cannot
well extend to various real-world code repositories.

More broadly, these contributions may impact research
on neural source code representation (i.e., encoding code
fragments to continuous vectors, based on neural networks),
which has attracted much attention in recent years [30].
Neural source code representation has been widely used and
achieved impressive results not only in code clone detection,
but also in various software engineering tasks (e.g., code
completion ([24], [25], [31]–[35]), code search ([36]–[39]) ,
code summarization ([40]–[48]), code translation ([49], [50]),
and defect prediction ([51]–[53])). In this paper, we use code
clone detection as a case study to show the importance of
(1) studying the dependence of supervised neural methods on
training data; (2) probing whether these methods can gener-
alize beyond training data. We suggest that a generalization-
aware evaluation methodology should be used to better eval-
uate neural methods in software engineering community, and
more future efforts should be made to improve generalizability.

II. BACKGROUND

A. Semantic Clones and Neural Clone Detection
Existing research work divides code clones into four major

types ([54], [55]):
• Type-1: Identical code fragments, except for differences

in white-space, layout and comments.

• Type-2: Identical code fragments, except for differences
in identifier names and literal values, as well as Type-1
differences.

• Type-3: Syntactically similar code fragments that differ at
the statement level. The fragments have statements added,
modified and/or removed with respect to each other, in
addition to Type-1 and Type-2 clone differences.

• Type-4: Syntactically dissimilar code fragments that im-
plement the same functionality.

As there is no clear boundary between Type-3 clones and
Type-4 clones, we vaguely define semantic clones as the union
of Type-4 clones and Type-3 clones that cannot easily be
detected by pre-defined rules.

Figure 1 shows an examlple of semantic clone (Type-4).
Even through the functionality of these two code fragments
is very simple (calculates x raised to the power n), different
programmers may implement it in totally different ways.

In recent years, many neural network-based methods are
proposed for detecting such semantic clones, and they have
achieved impressive results (both precision and recall are
higher than 90%). Most of these neural clone detectors share
the same model paradigm:

match(c, c′) = F (Φ(c),Φ(c′)) (1)

where c and c′ are two code fragments, Φ is a learnable
neural network that encodes each code fragment as a vector,
and F is a function that measures the semantic similarity
between two vectors. The code fragment pair (c, c′) will be
regarded as a clone if and only if match(c, c′) is larger than
a threshold δ.

Researchers usually define F based on cosine similarity,
Euclidean distance, or linear classification. The key in these
neural clone detectors is the source code representation method
Φ. In CDLH [12], Φ is an AST-based LSTM network. In
ASTNN [15], Φ is an AST-based RNN network, in which
each large AST is split into a sequence of small statement
trees, thus alleviating the long-term dependency problem. In
TBCCD [16], Φ is an AST-based convolution network. In
DeepSim [13], Φ is based on a matrix-based representation
which encodes code control flow and data flow.

B. Rethinking Semantic Clone Benchmarks

To evaluate the effectiveness of neural clone detectors, some
benchmarks that contain a large number of semantic clones
have been proposed and widely used.

As it is challenging for annotators to find in-the-wild seman-
tic clones from large-scale code repositories, these benchmarks
were usually created based on specific functionalities. Big-
CloneBench [22] is a clone detection benchmark containing
7,868,560 ground truth clones (98.23% of them are semantic
clones), while all of them are clones of 43 specific func-
tionalities. To create this benchmark, the researchers began
by selecting 43 commonly needed functionalities in open-
source Java projects as target functionalities (e.g., Bubble Sort,
Web Download, and Decompress Zip). Code fragments (i.e.,

1 double power(double x, int n) {
2 double temp;
3 if(n==0) return 1.00;
4 temp=power(x, n/2);
5 if(n%2==0)
6 return temp*temp;
7 else {
8 if(n>0) return x*temp*temp;
9 else return (temp*temp)/x;

10 }
11 }
12

13 double exponent(double x, int n) {
14 if(n < 0 && n != INT_MIN) n--;
15 double ans = 1.0;
16 for(int i = 0; i < sizeof(int)*CHAR_BIT-1; i++) {
17 if((n & 1) ˆ (n < 0 && n != INT_MIN))
18 ans *= x;
19 x = x * x;
20 n = n >> 1;
21 }
22 if(n == INT_MIN) ans *= x;
23 return n < 0 ? 1.0/ans : ans;
24 }

Fig. 1: An example of semantic clone (Type-4).

functions) that might implement a target functionality were
identified using keywords and source code pattern heuristics,
then these identified code fragments were manually tagged as
true or false positive of the target functionality by judges. All
true positive code fragments of a functionality form a large
clone group. OJClone [23] is a dataset that contains 104 func-
tionalities. Specifically, each functionality is a programming
question on OpenJudge2, and there are 500 corresponding
solutions (submitted by students, written in C, passing all
test cases) for each functionality. Originally this dataset was
created for program classification, but researchers also widely
used it as a clone detection benchmark: two code fragments
(i.e., solutions) are regarded as a ground truth clone if and
only if they are solutions of the same functionality. GCJ
[13] is a benchmark similar to OJClone. It contains 1,669
solutions (written in Java) for 12 different functionalities (i.e.,
programming questions from Google Code Jam contests3).

We carefully rethink the impact of specific functionalities on
the evaluation of neural clone detection. Our main concern is
that: neural networks may just learn how to classify these spe-
cific functionalities, rather than how to detect semantic clones.
This concern origins from the fact that neural clone detectors
rely on a large number of true/false clones for training. The
standard evaluation methodology is to divide data into disjoint
training and test sets. However, the diversity of functionalities
is limited in these benchmarks, leading to the result that: for
each code fragment in test set, there are always many code
fragments in training set that have the same functionality as
it. Therefore, though neural clone detectors achieved good
performance in this experimental setup, a possible reason for
the good performance is that neural networks learn to represent
these specific functionalities well.

2http://openjudge.cn/
3https://codingcompetitions.withgoogle.com/codejam

This is not a true evaluation of neural clone detection, as
it is an essential need that clone detectors should find clones
of various functionalities, rather than just specific functional-
ities that have been previously observed in training set. The
current evaluation methodology cannot tell us about a neural
clone detector’s generalizability to handle code fragments of
unseen functionalities. Therefore, it is necessary to improve
the evaluation methodology and revisit existing neural clone
detectors based on it.

III. EVALUATING GENERALIZABILITY

A. An Improved Evaluation Methodology

To evaluate the cross-functionality generalizability of neural
clone detection, we propose an improved evaluation method-
ology. The intuition is simple yet effective: training/test sets
in current benchmarks should be re-partitioned, with the
restriction that no functionality is allowed to appear in both
of them.

Here we give the formalism description. D is a dataset that
contains many code fragments: C = {c1, c2, ..., c|C|}. F is the
set of functionalities: F = {f1, f2, ..., f|F |}. Take OJClone
as an example: we have |F | = 104 and |C| = 104 × 500.
L : C → F is a function that indicates the functionality of
each code fragment. For each dataset, L is a known function
that is determined from the collection procedure of the dataset.

To obtain training/test sets for evaluating neural clone
detectors, we propose the following 3 steps:

1) Creating Functionality Groups. We divide functionali-
ties (F) into K disjoint groups as evenly as possible (K
is a hyper-parameter). We denote these groups as G1,
G2, ..., GK .

2) Creating Training-Test Grid. For each 1 ≤ i, j ≤ K, we
set an experiment Ei,j in which neural clone detectors
are trained on functionalities in Gi and tested on func-
tionalities in Gj . Therefore, we have K×K experiments
with different training-test functionality groups, and we
form them as a grid. We define that an experiment is
an unseen-functionality experiment, if Gi 6= Gj ; other-
wise we define this experiment as a seen-functionality
experiment.

3) Sampling Code Fragment Pairs. For each function-
ality group Gi(1 ≤ i ≤ K), we randomly sam-
ple 3 disjoint sets of code fragment pairs from
{(cx, cy, I(c, c′))|c, c′ ∈ C;L(c), L(c′) ∈ Gi; c 6= c′},
where I is an indicator function:

I(c, c′) =

{
0 L(c) 6= L(c′)

1 L(c) = L(c′)
(2)

We denote these 3 sets as P train
i , P dev

i , and P test
i ,

respectively. For each experiment Ei,j(1 ≤ i, j ≤ K),
neural clone detectors will be trained on P train

i , vali-
dated on P dev

j , and then tested on P test
j .

Neural clone detectors formulate semantic clone detection
as a binary-classification task and use precision/recall/F1-score
as evaluation metrics. Previous studies proved that existing

TABLE I: Performance of two neural clone detectors when
generalizing to unseen functionalities

Average F1 Score
G1 G2 G3 G4 G5 G6 G7 AVG

ASTNN
Seen 0.96 0.91 0.98 0.96 0.98 0.97 0.98 0.96
Unseen 0.39 0.33 0.49 0.43 0.50 0.37 0.45 0.42

TBCCD
Seen 0.98 0.92 0.97 0.97 0.98 0.95 0.98 0.96
Unseen 0.42 0.40 0.56 0.53 0.53 0.51 0.43 0.48

? AFR-rate(ASTNN) = 0.44, AFR-rate(TBCCD) = 0.50

Train\Test G1 G2 G3 G4 G5 G6 G7

G1 0.963 0.298 0.519 0.484 0.545 0.460 0.334

G2 0.320 0.912 0.425 0.370 0.411 0.275 0.491

G3 0.402 0.363 0.980 0.420 0.565 0.325 0.513

G4 0.405 0.355 0.536 0.963 0.609 0.397 0.500

G5 0.412 0.306 0.520 0.475 0.976 0.425 0.421

G6 0.479 0.251 0.385 0.414 0.469 0.974 0.440

G7 0.306 0.379 0.545 0.418 0.424 0.364 0.987

Fig. 2: F1 results of ASTNN trained on different functionality
groups (y-axis) and tested on different functionality groups (x-
axis). Each cell is colored according to F1 score: the deeper
a cell is colored, the better the neural clone detector performs
in the corresponding experiment setting (Ei,j).

neural clone detectors can achieve very high performance
on Ei,j if i = j. However, we cannot conclude that these
neural code detectors well learn how to find semantic clones,
or they just learn how to classify specific functionalities in
Gi. Therefore, we need to report P/R/F1 results for each
Ei,j(i 6= j). As this may involve many result numbers, we
further introduce Average F1 Remaining Rate (AFR rate),
a new metric to summarily evaluate the cross-functionality
generalizability of neural clone detection:

AFR rate =

∑i 6=j
i,j F1(Ei,j)

(K − 1) ·
∑

i F1(Ei,i)
(3)

The more AFR rate is higher than 0, the more it indicates
that the neural clone detector has cross-functionality general-
izability.

B. Experimental Setup

We conduct empirical experiments to evaluate the cross-
functionality generalizability of neural clone detection. We
choose two state-of-the-art neural clone detectors, ASTNN and
TBCCD, as our evaluation objects.

We build our benchmark based on OJClone dataset. This
dataset has 104 functionalities, which is much more than
BigCloneBench (43 functionalities) and GCJ (12 functionali-
ties). All these 104 OJClone functionalities are divided into
7 groups (G1, G2, G3, ... G7): G1 contains functionality

TABLE II: How does training data diversity impact generalizability

Average F1 Score AFR rate
G1 G2 G3 G4 G5 G6 G7 Average (w.r.t. baseline)

ASTNN
training data diversity = 15 0.32 0.30 0.52 0.48 0.55 0.46 0.43 0.44 0
training data diversity = 30 0.50 0.35 0.60 0.61 0.57 0.51 0.56 0.53 +0.09
training data diversity = 45 0.62 0.45 0.68 0.63 0.61 0.51 0.57 0.58 +0.15
training data diversity = 60 0.61 0.45 0.72 0.64 0.58 0.61 0.63 0.60 +0.17
training data diversity = 75 0.64 0.44 0.71 0.67 0.71 0.62 0.59 0.62 +0.19
training data diversity = 89 0.66 0.46 0.71 0.70 0.66 0.58 0.56 0.61 +0.18

TBCCD
training data diversity = 15 0.42 0.40 0.56 0.53 0.53 0.51 0.43 0.48 0
training data diversity = 30 0.51 0.47 0.61 0.63 0.64 0.53 0.58 0.57 +0.09
training data diversity = 45 0.61 0.49 0.63 0.63 0.64 0.60 0.63 0.60 +0.13
training data diversity = 60 0.64 0.53 0.67 0.58 0.59 0.54 0.65 0.60 +0.13
training data diversity = 75 0.62 0.49 0.65 0.65 0.63 0.66 0.65 0.62 +0.15
training data diversity = 89 0.63 0.52 0.68 0.69 0.66 0.65 0.61 0.63 +0.16

IDs 1-15, G2 contains functionality IDs 16-30, and so on.
G7 only contains 14 functionalities (IDs 91-104). For each
group Gi(1 ≤ i ≤ 7), we sample 30,000/10,000/10,000 code
fragment pairs as P train

i /P dev
i /P test

i .

C. Results and Observations

Table I shows the performance of two neural clone de-
tectors when generalizing to unseen functionalities. Columns
G1, G2, ..., G7 represents different functionality groups for
test. We use Seen to denote that training data are collected
from the same functionality group as the test set, and we
use Unseen to denote that the training set share no common
functionality with the test set. For example, for ASTNN, we
have

∑7
i=2 F1(Ei,1)/6 = 0.39. Figure 2 shows detailed F1

results of ASTNN trained on different functionality groups
(y-axis) and tested on different functionality groups (x-axis).

Our observations are as follows:
• Good ability for modeling seen functionalities. For

each experiment in which all test functionalities have
been previously observed in training set (i.e., 7 exper-
iments on the diagonal from top left to bottom right in
Figure 2), ASTNN achieves very high performance. All
the 7 experiments have F1 score higher than 0.9, and the
average F1 score is 0.96. These results are consistent with
the results reported in the original ASTNN paper. How-
ever, as discussed in Section II-B, we argue that results
on such experiment settings can only indicate that the
neural clone detector’s ability to represent code fragments
of seen functionalities, but not the true ability to detect
semantic clones that may involve unseen functionalities.

• Cannot well generalize to unseen functionalities. From
experiments outside the aforementioned diagonal (i.e.,
Ei,j for each 1 ≤ i, j ≤ 7 and i 6= j), we can observe
that ASTNN cannot generalize to unseen functionalities
as expected. F1 scores of these experiments range from
0.251 (E6,2) to 0.609 (E4,5). The average F1 score is
0.423. These results indicate that: the essence of the
learned models is likely to be program classification,
rather than clone detection. Therefore, it is difficult to use
ASTNN in real-world code clone detection scenarios.

In TBCCD, our observations are the same as those in
ASTNN.

Finding: To evaluate neural clone detectors, we need to
minimize the functionality overlap between training
set and test set, thus truly indicating the generalizability
for detecting real-world semantic clones.

The ideal way to minimize functionality overlap is to collect
semantic clones in the wild, rather than specifying several
target functionalities in advance (just as BigCloneBench,
OJClone and GCJ do). However, this would be too costly
for human annotation. Therefore, to evaluate neural clone
detectors more efficiently, we make a trade-off: we still need
to specify several target functionalities in advance, but the
total number of target functionalities should be as many
as possible (e.g., ≥ 100), and the training/test set should
be split based on functionalities. Previous researches using
random training/test splits suffer from serious “functionality
leak” problem, resulting in models achieving almost perfect
evaluation results exhibit poor real-world performance. Our
proposed evaluation methodology addresses this problem, thus
can better indicating the real performance of neural clone
detectors (though it is still not as solid as evaluating in the
wild).

IV. KEY FACTORS OF GENERALIZABILITY

In this section, we explore to understand key factors that
impact the cross-functionality generalizability of neural clone
detection. Specifically, we mainly investigate 3 potential di-
rections: (1) training data diversity, (2) vocabulary, and (3)
locality.

A. Training Data Diversity

To investigate key factors of cross-functionality generaliz-
ability, one hypothesis is that:

H1. The cross-functionality generalizability of neural clone
detection can be improved through increasing training data
diversity.

Here we define training data diversity as the total number
of functionalities in training set.

This hypothesis is proposed based on the fact that each of
our experiments in Section III-B uses only one functionality
group for training, i.e., training data diversity is 14 (G7) or 15
(G1−G6). A possible reason for the lack of cross-functionality
generalizability is that: neural clone detectors are likely to
degenerate to program classifiers for specific functionalities
when they are trained on a dataset with small functionality
diversity; this problem may be alleviated or addressed through
increasing training data diversity.

It is essential to study this hypothesis: if cross-functionality
generalizability can be significantly improved through in-
creasing training data diversity, an important direction for
future work is to improve the data collection methodology for
better functionality diversity; otherwise, it indicates that we
cannot equip existing neural clone detectors with true cross-
functionality generalizability through collecting much more
training data, thus future work should focus on improving
these neural model architectures.

We conduct a series of experiments to study this hypothesis.
These experiments are set up based on the following steps:

1) Select a functionality group for test. Here we use G1 as
an example.

2) Use G2 for training, that is, train a neural clone detector
(ASTNN/TBCCD) on P 2

train and test it on P 1
test. In this

experiment, the training data diversity is 15.
3) Use G2∪G3 for training. Training data are sampled from

pairs of which code fragments are of functionalities in
G2∪G3, i.e., the training data diversity is 30. We use the
same sampling amount as P 2

train (i.e., 30,000). We also
keep the same positive rate in training data (i.e., 1/15) to
prevent suffer from the class imbalance problem caused
by the growth of training data diversity.

4) Use G2∪G3∪G4 for training. The training data diversity
is 45.

5) Use G2 ∪G3 ∪G4 ∪G5 for training. The training data
diversity is 60.
...

6) Draw results of the above 6 experiments as a line chart of
the influence of training data diversity on clone detection
performance (F1 score).

We use G1, G2, ..., G7 for test respectively, thus we draw 7
lines in the line chart. Figure 3 shows the results of ASTNN.
Our observations are as follows:

• Increasing training data diversity can significantly im-
prove the cross-functionality generalizability of neural
clone detection. For example, consider ASTNN G1: the
F1 score is 0.320 when the training data diversity is 15;
the F1 score will increase to 0.661 when the training data
diversity is 89. An increase of 0.341 is observed. For
G1, G2, ..., G7, the increase ranges from 0.115 to 0.341,
and the average increase is 0.183.

• There are significant marginal effects to improve neural
clone detection through increasing training data diversity.
For example, consider ASTNN G1: the F1 score increases
from 0.320 to 0.617 when the training data diversity

15 30 45 60 75 89
Training data diversity

0.0

0.2

0.4

0.6

0.8

1.0

F1

G1
G2
G3
G4
G5
G6
G7

Fig. 3: Influence of training data diversity on performance
of neural clone detection (ASTNN). We can observe that:
increasing training data diversity can significantly improve the
performance of neural clone detection, but there are significant
marginal effects.

increases from 15 to 45, while the increase is only 0.044
(from 0.617 to 0.661) when the training data diversity
increases from 45 to 89. For G1, G2, ..., G7, the average
F1 increase for training data diversity 15→ 45 is 0.146,
accounting for 79.8% of the increase for 15 → 89.
We regard these results as significant marginal effects,
which indicates that it is not likely to be sustainable that
improving neural clone detection through continuously
increasing training data diversity.

Table II lists detailed results of both ASTNN and TBCCD.
In TBCCD, our observations are the same as those in ASTNN.

Finding: To train neural clone detectors, training set
with diverse functionalities can alleviate the problem
of lacking cross-functionality generalizability. However,
due to the marginal effect, this is not a silver bullet to
completely address this problem.

B. Vocabulary

Common wisdom suggests that vocabulary is a key factor
that may impact the effectiveness of neural networks, espe-
cially for source code modeling ([16], [24], [25]). Neural clone
detectors need to represent tokens as numerical representations
so that the lexical information can be fed into the neural net-
works. These tokens include reserved words in programming
languages (e.g., “if ”, “int”, and “break”), built-in functions and
data structures (e.g., “abs”, “+”, and “vector”), programmer-
defined identifiers (e.g., “x”, “y”, and “max distance”), etc. In
general methods, a static vocabulary is extracted from training
set (mainly based on token frequency), then all tokens which
are not in this vocabulary will be converted to a specific
token: “<unknown>”. This works well in natural language
processing, but may be problematic for source code. This is
mainly because that programmers are free to create various

TABLE III: How does vocabulary impact generalizability

Average F1 Score AFR rate
G1 G2 G3 G4 G5 G6 G7 Average (w.r.t. baseline)

ASTNN
test data average UNK rate = 13.7% 0.39 0.33 0.49 0.43 0.50 0.37 0.45 0.42 0
test data average UNK rate = 11.5% 0.41 0.34 0.51 0.47 0.51 0.37 0.44 0.44 +0.02
test data average UNK rate = 10.5% 0.42 0.36 0.58 0.52 0.52 0.38 0.45 0.46 +0.04
test data average UNK rate = 9.4% 0.46 0.39 0.64 0.58 0.55 0.42 0.50 0.51 +0.09

TBCCD
with PACE 0.42 0.40 0.56 0.53 0.53 0.51 0.43 0.48 0
w/o PACE 0.26 0.25 0.36 0.31 0.36 0.34 0.31 0.31 -0.18

tokens (especially variable names and function names), thus
aggravating the out-of-vocabulary (OOV) problem. That is,
in test set, a large amount of tokens will be converted to
<unknown>, thus the lexical information they carry will be
lost. Therefore, an intuitive hypothesis is that:

H2. the cross-functionality generalizability of neural clone
detection can be improved through addressing the OOV prob-
lem caused by vocabulary.

In TBCCD, Position-Aware Character Embedding (PACE),
a simple yet effective method for alleviating the OOV problem
in source code, is proposed. Therefore, TBCCD does not
suffers from the OOV problem. The key point of PACE
is to not treat each token as an individual building block,
but a position-weighted combination of characters one-hot
embeddings. That means for a token that has k characters
denoted as c1, c2, ..., ck, its embeddings can be obtained with
equation

∑k
i=1

k−i+1
k × emb [ci] , where emb[ci] is the one-

hot embedding of ci. To summarize, PACE learns character
embeddings, then generates the embedding of each word by
assembling embeddings of every characters in this word.
Therefore, PACE addresses the OOV problem, at the cost of
lower capability of word-level semantics. The TBCCD paper
reported that: though the effectiveness of PACE is marginal
in random training/test splits, it can bring significant gain in
cross-functionality splits.

We conduct an ablation experiment in which PACE is
replaced by a regular token embedding layer (i.e., TBCCD
w/o PACE in Table III) and the result shows that the cross-
functionality generalizability is significantly reduced without
PACE. This indicates that the OOV problem brought by
vocabulary is likely to be a key factor of generalizability.
ASTNN uses a regular token embedding layer (the vocabulary
is defined as top 3,000 frequent tokens in training set, and
token embeddings are pre-trained using word2vec), thus it
may suffer from the OOV problem. When we apply PACE
to ASTNN, we observe no improvement. This indicates that
PACE is not a universal solution to the OOV problem in all
model architectures.

We speculate that the reason is: ASTNN requires a larger
capability of word-level semantics than TBCCD. TBCCD is
a tree-based CNN model, which mainly captures program
semantics from AST structures (words are also important,
yet secondary). Therefore, for TBCCD, addressing the OOV
problem at the cost of lower capability of word-level semantics

will do more good than harm. Unlike TBCCD, ASTNN is
an RNN-based model, in which each code fragment are pre-
processed as a sequence, rather than a tree. Therefore, word-
level semantics plays a more important role in ASTNN than
in TBCCD. Though PACE can address the OOV problem, this
benefit is offset by its lower capability of word-level semantics.

We investigate the impact of vocabulary in ASTNN through
breaking down test sets according to the percentage of
<unknown> tokens. Specifically, we create test sets that
contain less <unknown> tokens than P test

i (1 ≤ i ≤ 7). Our
assumption is: if ASTNN performs better in test sets with less
<unknown> tokens, it means that ASTNN can benefit from
reducing <unknown> tokens, thereby indicating that the OOV
problem is a key factor that can impact cross-functionality
generalizability.

For each experiment Ei,j , we re-sample the test set P test
j

as follows. For each functionality f ∈ Gj , we sort all code
fragments of f by the percentage of <unknown> tokens in
ascending order. We keep the top 80%/60%/40% of these code
fragments. Then, test sets are created from these code frag-
ments. In P test

i (1 ≤ i ≤ 7), the average UNK rate is 13.7%;
In test sets created from 80%/60%/40% code fragments, the
average UNK rate is 11.5%/10.5%/9.4%. Therefore, we denote
these test settings as “ASTNN, tested data average UNK rate
= 13.7%/11.5%/10.5%/9.4%” in Table III. We observe that
ASTNN has better performance in test cases which less suffer
from the OOV problem: on average, the F1 score of “ASTNN,
tested data average UNK rate = 9.4%” is 0.51, which is much
better than the baseline (0.42). This indicates that the problem
of lacking cross-functionality generalizability is likely to be
partly alleviated by addressing the OOV problem.

Finding: The out-of-vocabulary problem is an im-
portant factor that limits the cross-functionality gener-
alizability of neural clone detection. Character-level or
subword-level token embeddings (e.g., PACE) can help
alleviate this problem, but are not universal enough for
various neural clone detectors.

C. Locality
We consider a consensus in machine learning community:

local structure inference between two objects is essential for
determining the overall inference between these two objects
([26]–[29]). For example, in natural language processing, if we

TABLE IV: How does locality impact generalizability

Average F1 Score
G1 G2 G3 G4 G5 G6 G7 AVG

ASTNN 0.39 0.33 0.49 0.43 0.50 0.37 0.45 0.42
with locality 0.39 0.36 0.47 0.41 0.43 0.33 0.50 0.41

want to learn a neural network model to determine whether
two natural language sentences are semantically equivalent,
this model needs to employ some forms of alignment to
associate the relevant local structures (e.g., words, phrases,
and clauses) between two sentences.

In code clone detection task, the objects are code fragments,
and the local structures can be statements, code blocks, sub-
ASTs, etc. Figure 4 shows an example of local structure
alignment between code fragments. Intuitively, suppose that
code fragment A is semantically equivalent to code fragment
B, it is likely that some local structures in A can be aligned
with some local structures in B. Local structure alignment is
more in line with human perception of code clone detection,
thus preventing neural clone detectors degenerate to program
classifiers.

Based on this intuition, we hypothesize that:
H3. incorporating locality into model architecture can help

improve the cross-functionality generalizability of neural clone
detection.

Some recent research works of neural clone detection have
incorporate locality into their model architectures ([18], [19]),
but it is not easy to adapt their codes to OJClone. Therefore, to
investigate this hypothesis, we use ASTNN as the base model
architecture and add a locality component on top of it based
on common practices in machine learning community.

We briefly summarize the workflow of ASTNN as follows:
1) A code fragment will be parsed into an AST, then the

AST will be split into a sequence of statement trees (ST-
trees, which are trees consisting of statement nodes as
roots and corresponding AST nodes of the statements).

2) For each code fragment, all ST-trees in it are encoded
into individual vectors, denoted as e1, ..., et. Then,
ASTNN uses a Bidirectional Gated Recurrent Unit (Bi-
GRU) network to obtain their contextual vectors, de-
noted as h1, ...,ht.

3) Code fragment representation is computed by max pool-
ing of h1, ...,ht, then whether a pair of code fragments
is a clone is determined by Euclidean distance between
their representations.

We incorporate locality into ASTNN through introducing
attention-based alignment between contextual vectors of ST-
trees (h). Notice that: we do not propose a novel locality
component for improving neural clone detection; instead, the
goal of this part is to leverage a state-of-the-art locality
component [27] (of which the effectiveness has been well
proved in machine learning community) to study whether
locality is a key factor for cross-functionality generalizability.

Suppose that we have two code fragments c = {h1, ...,ht}
and c′ = {h′

1, ...,h
′
t′}, we add a soft alignment layer to

Fig. 4: An example of local structure alignment between
code fragments. Intuitively, suppose that code fragment A is
semantically equivalent to code fragment B, it is likely that
some local structures (e.g., statements or blocks) in A can be
aligned with some local structures in B.

ASTNN:

h̃i =

t′∑
j=1

exp(hi · h′
j)∑t′

k=1 exp(hi · h′
k)

h′
j ,∀i ∈ [1, ..., t] (4)

Intuitively, in Equation 4, the content in {h′j}t
′

j=1 that is
relevant to hi will be selected and represented as h̃i. The
same is performed for each ST-tree in c′.

Then, we use a Bi-GRU network to convert local alignment
information (h̃) to local alignment-aware contextual represen-
tations (ĥ):

mi = [hi; h̃i;hi − h̃i;hi ⊗ h̃i] (5)

ĥ1, ..., ĥt = Bi-GRU(m1, ...,mt) (6)

Representation of code fragment c will be computed by max
pooling of ĥ1, ..., ĥt, and the remaining steps remain exactly
the same as ASTNN.

Table IV shows the experimental results. We disappointedly
find that the cross-functionality generalizability of neural clone
detection cannot benefit from incorporating with the locality
component. We speculate that the reasons may be three-
folds: (1) Code fragments that are semantically equivalent may
have totally different syntactic structures (as Figure 1 shows),
making neural networks difficult to leverage local structure
alignment information. (2) The OOV problem discussed in
Section III also lead to lots of noisy alignments. (3) The
locality component we use is more suitable for sequence data
(i.e., natural language sentences) rather than tree data (i.e.,
ASTs of code fragments), thus tree-based locality component
may be a potential direction for improvement.

Finding: In neural clone detection, local structure align-
ment has NOT yet been well leveraged to improve cross-
functionality generalization.

AnnotatorNeural Clone Detector

actively provide
informative code fragment pairs

human annotation
for model transferringSource Domain Dataset

(Labeled)

preliminary training

Target Domain Dataset
(Unlabeled)

candidate pool

Fig. 5: Human-in-the-loop mechanism for domain adaptation
of neural clone detection.

V. HUMAN-IN-THE-LOOP FOR DOMAIN ADAPTATION

A. Task: Domain Adaptation

From Section III and IV we can conclude that: neural clone
detectors cannot well generalize to unseen functionalities as
expected. Though we find that this problem can be alleviated
through addressing the OOV problem caused by vocabulary
and increasing training data diversity, there is still a large
performance gap (AFR rate is about 46%/50% for ASTNN/T-
BCCD). Therefore, it is not a good idea to train existing neural
clone detectors on a common dataset and directly use them to
find semantic clones in various code repositories that contain
lots of functionalities that have never been previously observed
in the training set. Instead, for each individual code repository,
if we want to find semantic clones effectively (with high
precision and recall), we have to annotate a specific training
set for this code repository. This is expensive, thus limiting the
scalability of neural clone detection in real-world scenarios.

We formulate this as a domain adaptation problem, that is,
how to adapt a model (i.e., neural clone detector) learned from
one domain (i.e., the training set) to a new domain (i.e., a
new code repository containing lots of unseen functionalities).
Here we define that two domains are different if they contain
different functionalities.

B. Solution: Human-in-the-Loop

We propose a human-in-the-loop mechanism (see Figure 5)
to address this domain adaptation problem. The key point
is “a little annotation does a lot of good”, based on the
combination of transfer learning and active learning. Given
a neural clone detector learned from a high-resource domain,
our goal is to adapt it to a unlabeled target domain. To achieve
this, our human-in-the-loop mechanism automatically explores
the target domain and actively select most informative (rather
than random) code fragment pairs that can help transfer the
neural clone detector learned from source domain to the target
domain. Human annotate these actively selected code fragment
pairs (whether this pair is a clone or not), then these annotated
data are leveraged as new training samples to update the
neural clone detector. This mechanism helps domain adap-
tation of neural clone detection through improving annotation

Algorithm 1: Human-in-the-Loop Mechanism
Input: Dsrc (annotated dataset of source domain),

Ctrg (code fragments of target domain),
Oracle (human annotators), M (active query
batch size), V (informative degree
measurement function)

Output: model (a neural clone detector for target
domain)

1 model← TrainModel(Dsrc)
2 pool← candidate code fragment pairs from Ctrg

3 Dtrg ← ∅
4 while budget not exhausted do
5 queries← top M pairs in pool by V (model, pair)
6 Dtrg ← Dtrg ∪Oracle(queries)
7 model← TrainModel(Dsrc ∪Dtrg)
8 end

efficiency: human just need to annotate a small collection of
samples (which is much smaller than regular annotation) to
achieve an accurate neural clone detector for the low-resource
target domain.

Algorithm 1 is an overall procedure of this human-in-the-
loop mechanism. It exploits both transfer learning and active
learning to improve annotation efficiency. In the following we
explain this algorithm from these two aspects.

1) Transfer Learning: The goal of transfer learning is to
leverage knowledge learned from source domain and apply it
to target domain. In Algorithm 1, we train an neural clone
detector on source domain as our preliminary model (Line
1). Once the oracle (i.e., human annotators) provides some
annotated code fragment pairs in target domain, these data will
be used to update the model (Line 7). Therefore, the neural
clone detector will be transferred from source domain to target
domain iteratively. There are two optional strategies for model
update: one is to iteratively fine-tune the model with newly
annotated data, and the other is to learn from scratch (i.e.,
re-train the model on Dsrc ∪ Dtrg) in each iteration. In the
fine-tuning strategy, there are some hyper-parameters such as
learning rate and the number of fine-tuning epochs, and it is
not easy to find the best setting of these hyper-parameters for
each scenario (in different scenarios, the best hypher-parameter
settings are usually different). Our preliminary experiments
show that results of these two model update strategies are
comparable, thus we finally choose the learning-from-scratch
strategy (Line 7) as it is much simpler than fine-tuning.

2) Active Learning: After training a preliminary model
from source domain, we start the active learning process based
on this model’s outputs.

The first step of active learning is to create a pool consisting
of many candidate (unlabeled) code fragment pairs from target
domain (Line 2). There are 3 optional strategies for creating
this pool: it can be all possible code fragment pairs in the target
domain, if the total number of code fragments in this domain
is not large; or we can just use a part of it through simple

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of added samples

0.500

0.600

0.700

0.800

0.900

0.963
1.000

F1

M=100
M=500
M=1000
random

(a) Performance when the source domain is G1 and the target domain
is G3

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of added samples

0.500

0.600

0.700

0.800

0.900

0.963
1.000

F1

M=100
M=500
M=1000
random

(b) Performance when the target domain is G3, and the source domain
is G1 ∪G2 ∪G4 ∪G5 ∪G6 ∪G7

Fig. 6: Human-in-the-loop mechanism performance. The hor-
izontal dashed line is the performance of the model trained
on 30,000 annotated samples from target domain. Reaching
the horizontal dashed line means that our human-in-the-loop
mechanism successfully transfer the neural clone detector
(ASTNN) to the target domain.

random-sampling; in real-world scenarios, considering that
clones are sparse in randomly sampled code fragment pairs, we
can also use some heuristics to filter out code fragment pairs
that are unlikely to be clones before sampling (e.g., whether
two code fragments have the same input/output data types).

After that, we actively select M code fragment pairs from
the pool (Line 5). Human annotators label whether each of
these M pairs is a clone or not (Line 6), then these newly
annotated data are used for transfer learning (Line 7). This
procedure iterates until the budget for data annotation (usually
very limited) is exhausted.

The key in active learning is the informative degree mea-
surement function V . The actively selected pairs should be
highly informative, thus they can help the model be trans-
ferred to target domain efficiently. In this paper, we compute

V (model, pair) based on model uncertainty [56]:

V (model, pair) = |1− max
l∈{+,−}

P (l|model, pair)| (7)

P (+|model, pair) is the model’s estimated probability that
this pair is a clone, and we have P (−|model, pair) =
1 − P (+|model, pair). Intuitively, V (model, pair) can be
regarded as the uncertainty of the model given the pair. The
higher the uncertainty is, the more it means that this pair is
likely to help improve the model. Therefore, in each active
learning iteration, we select candidate code fragment pairs with
top M uncertainty for human annotation.

Besides these uncertainty-based methods, many methods
have been proposed in the literature to better find informative
samples for active learning. For example, some methods are
based on representative [57], and some others are based on
diversity [58]. In this paper, we think our uncertainty-based
method is simple and effective enough, thus we leave the
exploration of other sample selecting methods to future work.

C. Simulation Experiments

We conduct simulation experiments to evaluate the effec-
tiveness of our human-in-the-loop mechanism.

1) Setup: We use ASTNN as the model architecture. Eval-
uation benchmark is created based on OJClone. As discussed
in Section III-A, we have divided all the 104 functionalities
in OJClone into 7 groups and denote them as G1, G2, ..., G7.
For each group Gi(1 ≤ i ≤ 7), we have created trainning/de-
velopment/test sets (P train

i /P dev
i /P test

i) for it. We select
one functionality group Gsrc as source domain and another
functionality group Gtrg as target domain for simulation
experiment. Following Algorithm 1, the ASTNN model will be
initially trained on P train

src , then iteratively updated by samples
actively selected from P train

trg (each iteration has M samples),
and finally validated/tested on P dev

trg /P
test
trg . To investigate the

impact of the hyper-parameter M (i.e., active query batch
size), we evaluate the human-in-the-loop mechanism with
different M values: 100/500/1,000.

2) Results and Analysis: Figure 6 shows the performance
of our human-in-the-loop mechanism in one simulation ex-
periment. In Figure 6a, we randomly select G1 as the source
domain and G3 as the target domain. The “random” curve
means that the samples for annotation (i.e., queries in Al-
gorithm 1) are randomly sampled from pool, rather than
actively selected by model. It is used as an ablation study
for proving the effectiveness of active learning. The horizontal
dashed line is the performance of the model trained on 30,000
annotated samples from target domain. If a curve reaches this
horizontal line when the x-axis value is X , it indicates that our
human-in-the-loop mechanism successfully transfer the neural
clone detector from source domain to target domain with X
annotated samples for target domain.

From Figure 6a, we can observe that:
1) Our human-in-the-loop mechanism can significantly re-

duce data annotation efforts. When M = 100/500, it

requires about 3600 annotations to transfer the ASTNN
model to the target domain. Comparing to P train

trg (which
has 30,000 annotated samples in total), we reduce the
amount of annotations by about 88%.

2) Selecting informative candidate samples actively is im-
portant in this human-in-the-loop mechanism. When
samples for annotation are randomly sampled (the ran-
dom curve) rather than actively selected (curves M =
100/500/1000), the performance significantly drops.

We also conduct another simulation experiment to examine
how this human-in-the-loop mechanism performs on training
data with higher diversity. In this experiment, the target
domain is G3, and the source domain is G1 ∪ G2 ∪ G4 ∪
G5 ∪G6 ∪G7 (training data diversity = 89). Figure 6b shows
the results. In Figure 6b, we have the same observations as in
Figure 6a.

Finding: To adapt neural clone detection to real-world
low-resourced domains, our human-in-the loop mecha-
nism can effectively reduce annotation efforts.

Note that this experiment is simulated, which means that we
already have these annotations, but only use some of them to
simulate the human annotation process. This approach allevi-
ates the problem of lacking cross-functionality generalizability,
but it is not a cure for the problem: it can just reduce the
annotation cost, but still require users to label data in the target
domains.

VI. THREATS TO VALIDITY

We have identified the following main threats to validity:
• Programming languages. Our experiments are conducted

based on OJClone dataset, in which code fragments
are written in C. There are some other clone detec-
tion datasets (e.g., BigCloneBench and GCJ), which are
mainly in Java language. The reasons why we only
conduct experiments on OJClone is to prevent issues that
may caused by the lack of functionality diversity (e.g.,
GCJ dataset only has 12 functionalities) and data im-
balance (e.g., in BigCloneBench, the functionality “Copy
File” accounts for 54.3% of clone pairs, and the top 10
functionalities accounts for 91.7%). In principle, neural
clone detectors are designed based on generalized pro-
gram structures (e.g., AST and PDG), rather than specific
programming languages. Therefore, we can speculate that
our findings in this paper can generalize to other program-
ming languages. In the future, we will work to improve
clone detection benchmarks in terms of functionality
diversity and programming language diversity.

• Model evaluated. In this paper, we choose two state-of-
the-art neural clone detectors, ASTNN and TBCCD, as
our evaluation objects. ASTNN is the representative of
RNN-based models, and TBCCD is the representative
of CNN-based models. Therefore, we think findings
in this paper can generalize to other RNN/CNN-based

models, which accounts for a large part of previous work.
However, we still need to further explore whether recent
methods based on GNNs (Graph Neural Networks) or
PLMs (pretrained language models) have better cross-
functionality generalizability or not. Though currently we
do not know whether our findings got from RNN/CNN-
based models can apply to GNN/PLM-based models, we
suggest that newly proposed neural clone detectors should
be evaluated based on a cross-functionality methodology
to alleviate threats to validity.

VII. CONCLUSION

In this work, we identify a key oversight in the current
evaluation methodology for neural clone detection: cross-
functionality generalizability (i.e., the ability to detect se-
mantic clones of which the functionalities have never been
previously observed in the training dataset). Our contributions
are 3-folds: (1) By proposing an evaluation methodology for
cross-functionality generalizability, we conduct experiments
on two state-of-the-art neural clone detectors, and find that
they cannot well generalize to unseen functionalities as ex-
pected. (2) To understand key factors that impact the cross-
functionality generalizability, we conduct empirical analysis
on 3 factors (training data diversity, vocabulary, and locality),
and find that the performance loss on unseen functionalities
can be reduced through increasing training data diversity
and addressing the out-of-vocabulary problem. (3) To adapt
neural clone detectors to new code repositories containing
lots of unseen functionalities, we propose a human-in-the-loop
mechanism that helps reduce the amount of annotations by
about 88%.

Our analysis has clear implications for future work: (1)
New neural code clone detectors should be evaluated on
functionality-based data splits to ensure that they can general-
ize to real-world scenarios. (2) Based on findings in this paper,
future research directions for improving cross-functionality
generalizability include: addressing the OOV problem; ex-
ploring better model architectures that have the capability to
benefit from more diverse training data; exploring unsuper-
vised or semi-supervised methods that can exploit large-scale
unlabeled code fragments to improve neural clone detection.
(3) Human-in-the-loop is an efficient way to adapt neural clone
detection to low-resource real-world code repositories, and a
potential research direction is to explore better algorithms for
selecting informative code fragment pairs. (4) More broadly,
these implications are not limited to neural clone detection,
but also various neural source code representation methods.

ACKNOWLEDGMENTS

The work was supported by the National Key Research and
Development Program of China (No. 2019YFB1704003), the
National Nature Science Foundation of China (No. 71690231
and No. 62021002), Tsinghua BNRist and Beijing Key Labo-
ratory of Industrial Bigdata System and Application.

REFERENCES

[1] P. Weissgerber and S. Diehl, “Identifying refactorings from source-code
changes,” in 21st IEEE/ACM international conference on automated
software engineering (ASE’06). IEEE, 2006, pp. 231–240.

[2] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei,
M. Nagura, and H. Iida, “Shinobi: A tool for automatic code clone
detection in the ide,” in 2009 16th Working Conference on Reverse
Engineering. IEEE, 2009, pp. 313–314.

[3] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “Xiao: tuning
code clones at hands of engineers in practice,” in Proceedings of the 28th
Annual Computer Security Applications Conference, 2012, pp. 369–378.

[4] N. A. Milea, L. Jiang, and S.-C. Khoo, “Vector abstraction and con-
cretization for scalable detection of refactorings,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 86–97.

[5] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in 2009 IEEE 31st International Conference on Software
Engineering. IEEE, 2009, pp. 485–495.

[6] E. Juergens, F. Deissenboeck, and B. Hummel, “Clonedetective-a work-
bench for clone detection research,” in 2009 IEEE 31st International
Conference on Software Engineering. IEEE, 2009, pp. 603–606.

[7] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz,
S. Wagner, C. Domann, and J. Streit, “Can clone detection support
quality assessments of requirements specifications?” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 2, 2010, pp. 79–88.

[8] J. Doe, “Recommended practice for software requirements specifications
(ieee),” IEEE, New York, 2011.

[9] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470–495, 2009.

[10] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in 2010 IEEE
International Conference on Software Maintenance. IEEE, 2010, pp.
1–9.

[11] M. Rieger, “Effective clone detection without language barriers,” Ph.D.
dissertation, Verlag nicht ermittelbar, 2005.

[12] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code.” in IJCAI, 2017, pp. 3034–3040.

[13] G. Zhao and J. Huang, “Deepsim: deep learning code functional similar-
ity,” in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2018, pp. 141–151.

[14] H. Wei and M. Li, “Positive and unlabeled learning for detecting
software functional clones with adversarial training.” in IJCAI, 2018,
pp. 2840–2846.

[15] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[16] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection
of semantic code clones via tree-based convolution,” in 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC).
IEEE, 2019, pp. 70–80.

[17] Y.-Y. Zhang and M. Li, “Find me if you can: Deep software clone detec-
tion by exploiting the contest between the plagiarist and the detector,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 5813–5820.

[18] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,”
in Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, ser. Proceedings of Machine Learning Research, K. Chaudhuri
and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 3835–3845.
[Online]. Available: http://proceedings.mlr.press/v97/li19d.html

[19] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2020, pp. 261–271.

[20] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 131–140.

[21] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering, 2016,
pp. 1157–1168.

[22] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 476–480.

[23] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
ser. AAAI’16. AAAI Press, 2016, p. 1287–1293.

[24] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 763–773.

[25] R. M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes,
“Big Code != Big Vocabulary: Open-Vocabulary Models for Source
code,” in Proceedings of the 42nd International Conference on
Software Engineering, ser. ICSE ’20. ACM, 2020. [Online]. Available:
https://doi.org/10.1145/3377811.3380342

[26] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A
decomposable attention model for natural language inference,” in
Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Austin, Texas: Association for
Computational Linguistics, Nov. 2016, pp. 2249–2255. [Online].
Available: https://www.aclweb.org/anthology/D16-1244

[27] Q. Chen, X. Zhu, Z. Ling, S. Wei, H. Jiang, and D. Inkpen, “Enhanced
lstm for natural language inference,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (ACL 2017).
Vancouver: ACL, July 2017.

[28] C. Ciliberto, F. Bach, and A. Rudi, “Localized structured prediction,” in
Advances in Neural Information Processing Systems, 2019, pp. 7301–
7311.

[29] T. Sylvain, L. Petrini, and D. Hjelm, “Locality and compositionality in
zero-shot learning,” in International Conference on Learning Represen-
tations, 2019.

[30] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[31] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, 2014, pp.
419–428.

[32] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 2015, pp.
334–345.

[33] V. Raychev, P. Bielik, M. Vechev, and A. Krause, “Learning programs
from noisy data,” ACM SIGPLAN Notices, vol. 51, no. 1, pp. 761–774,
2016.

[34] A. Bhoopchand, T. Rocktäschel, E. Barr, and S. Riedel, “Learning
python code suggestion with a sparse pointer network,” 2016. [Online].
Available: http://arxiv.org/abs/1611.08307

[35] J. Li, Y. Wang, M. R. Lyu, and I. King, “Code completion with neural
attention and pointer networks,” in Proceedings of the 27th International
Joint Conference on Artificial Intelligence, 2018, pp. 4159–25.

[36] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of
the 2018 40th International Conference on Software Engineering (ICSE
2018). ACM, 2018.

[37] Q. Chen and M. Zhou, “A neural framework for retrieval and summariza-
tion of source code,” in 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2018, pp. 826–831.

[38] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[39] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964–974.

[40] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in International
conference on machine learning, 2016, pp. 2091–2100.

[41] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[42] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,
“Improving automatic source code summarization via deep reinforce-
ment learning,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 397–407.

[43] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-
based representation for predicting program properties,” ACM SIGPLAN
Notices, vol. 53, no. 4, pp. 404–419, 2018.

[44] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in International
Conference on Learning Representations, 2018.

[45] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, no. 3, pp. 2179–2217, 2020.

[46] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[47] A. LeClair, S. Jiang, and C. McMillan, “A neural model for gener-
ating natural language summaries of program subroutines,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 795–806.

[48] Y. Wang, L. Du, E. Shi, Y. Hu, S. Han, and D. Zhang, “Cocogum:
Contextual code summarization with multi-relational gnn on umls,”
Microsoft, Tech. Rep. MSR-TR-2020-16, May 2020. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/cocogum-
contextual-code-summarization-with-multi-relational-gnn-on-umls/

[49] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program
translation,” in Advances in neural information processing systems,
2018, pp. 2547–2557.

[50] M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample, “Un-
supervised translation of programming languages,” arXiv preprint
arXiv:2006.03511, 2020.

[51] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 2016, pp. 297–308.

[52] M. Pradel and K. Sen, “Deepbugs: A learning approach to name-based
bug detection,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, pp. 1–25, 2018.

[53] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” in International Conference on Learning
Representations, 2018.

[54] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
software engineering, vol. 33, no. 9, pp. 577–591, 2007.

[55] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp. 64–
68, 2007.

[56] A. Culotta and A. McCallum, “Reducing labeling effort for structured
prediction tasks,” in AAAI, vol. 5, 2005, pp. 746–751.

[57] S. Dasgupta and D. Hsu, “Hierarchical sampling for active learning,” in
Proceedings of the 25th international conference on Machine learning,
2008, pp. 208–215.

[58] A. Kirsch, J. van Amersfoort, and Y. Gal, “Batchbald: Efficient and
diverse batch acquisition for deep bayesian active learning,” 2019.

