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Abstract

We study the online influence maximization (OIM) problem
in social networks, where the learner repeatedly chooses seed
nodes to generate cascades, observes the cascade feedback,
and gradually learns the best seeds that generate the largest
cascade in multiple rounds. In the demand of the real world,
we work with node-level feedback instead of the common
edge-level feedback in the literature. The edge-level feedback
reveals all edges that pass through information in a cascade,
whereas the node-level feedback only reveals the activated
nodes with timestamps. The node-level feedback is arguably
more realistic since in practice it is relatively easy to ob-
serve who is influenced but very difficult to observe from
which relationship (edge) the influence comes. Previously,
there is a nearly optimal Õ(

√
T )-regret algorithm for OIM

problem under the linear threshold (LT) diffusion model with
node-level feedback. It remains unknown whether the same
algorithm exists for the independent cascade (IC) diffusion
model. In this paper, we resolve this open problem by pre-
senting an Õ(

√
T )-regret algorithm for OIM problem under

the IC model with node-level feedback.

1 Introduction
Social networks have gained great attention in the past
decades as a model for describing relationships between hu-
mans. Typically, researchers show great interest in how in-
formation, ideas, news, influence, etc spread over social net-
works, starting from a small set of nodes called seeds. To
this end, a variety of diffusion models are proposed to for-
mulate the propagation in reality, and the most well-known
ones are the independent cascade (IC) model and the lin-
ear threshold (LT) model (Kempe, Kleinberg, and Tardos
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2003). A corresponding optimization problem, known as in-
fluence maximization (IM), asks how to maximize the influ-
ence spread, under a specific diffusion model, by selecting
a limited number of “good” seeds. The problem has found
enormous applications, including advertising, viral market-
ing, news transmission, etc.

In the canonical setting, the IM problem takes as input
a social network, which is formulated as an edge-weighted
directed graph. The problem is NP-hard but can be well-
approximated (Kempe, Kleinberg, and Tardos 2003). For
the past decade, more efficient and effective algorithms have
been designed (Borgs et al. 2014; Tang, Xiao, and Shi 2014;
Tang, Shi, and Xiao 2015), leading to an almost complete
resolution of the problem. However, the canonical IM is
sometimes difficult to apply in practice, as edge parame-
ters of the network are often unknown in many scenarios.
A possible way to circumvent such difficulty is to learn
the edge parameters from past observed diffusion cascades,
and then maximize the influence based on the learned pa-
rameters. The learning task is referred to as network in-
ference, and has been extensively studied in the litera-
ture (Gomez-Rodriguez, Leskovec, and Krause 2010; My-
ers and Leskovec 2010; Gomez-Rodriguez, Balduzzi, and
Schölkopf 2011; Du et al. 2012; Netrapalli and Sanghavi
2012; Abrahao et al. 2013; Daneshmand et al. 2014; Du et al.
2013, 2014; Narasimhan, Parkes, and Singer 2015; Pouget-
Abadie and Horel 2015; He et al. 2016; Chen et al. 2021).
However, this approach does not take into account the cost of
the learning process and fails to balance between exploration
and exploitation when future diffusion cascades come. This
motivates the study of online influence maximization (OIM)
problem considered in this paper.

In OIM, the learner faces an unknown social network and
runs T rounds in total. At each round, the learner chooses
a seed set to generate cascades, observes the cascade feed-
back, and receives the influence value as a reward. The goal
is to maximize the influence values received over T rounds,
or equivalently, to minimize the cumulative regret compared
with the optimal seed set that generates the largest influ-
ence. The most widely studied feedback in the literature



Feedback Diffusion model Regret Pair oracle Reference
Edge-level IC Õ(n3

√
T ) No Wang and Chen (2017)

Node-level LT Õ(n9/2
√
T ) Yes Li et al. (2020)

Node-level IC Õ(n7/2
√
T/γ) Yes Theorem 2

Table 1: Comparison of results on OIM problems

is the edge-level feedback (Chen, Wang, and Yuan 2013;
Chen et al. 2016; Wang and Chen 2017; Wen et al. 2017;
Wu et al. 2019), where the learner can observe whether an
edge passes through the information received by its start
point. The node-level feedback was only investigated very
recently in (Vaswani, Lakshmanan, and Schmidt 2016; Li
et al. 2020), where the learner can only observe which nodes
receive the information at each time step during a diffusion
process. In practice, the node-level feedback is more realis-
tic than the edge-level feedback, not only because it reveals
less information, but also because it is usually easy to ob-
serve who is influenced but very difficult to observe from
which edge the influence comes from. For example, in the
social network platform, it is easy to learn whether and when
a user buys some specific product or service but is difficult
to learn based on whose recommendations or comments the
user makes such a decision.

In light of this, it is interesting to study the OIM prob-
lem with node-level feedback. For the LT model, Li et al.
(2020) recently presents a nearly optimal Õ(poly(|G|)

√
T )-

regret algorithm, at the cost of invoking the so-called offline
pair oracles instead of standard oracles. For the IC model,
it remains unknown whether the same regret bound can be
achieved and this has been an interesting open question in
the field.

Our contribution. In this paper, we resolve the aforemen-
tioned open question and present the first Õ(poly(|G|)

√
T )-

regret algorithm for OIM problem under the IC model with
node-level feedback. Our algorithm also needs to invoke pair
oracles since node-level feedback reveals less information.
We compare our result with previous ones in Table 1.

In the technical part, our main contribution is a novel
adaptation of the maximum likelihood estimation (MLE) ap-
proach which can learn the network parameters and their
confidence ellipsoids based on the node-level feedback. We
believe this technique is of independent interest and may in-
spire other results in the field. Besides, we prove the GOM
bounded smoothness for the IC model, which is crucial
for learning influence functions. The same property is also
shown for the LT model in (Li et al. 2020).

Related work. The (offline) influence maximization prob-
lem has received great attentions in the past two decades.
We refer interested readers to the surveys of (Chen, Lak-
shmanan, and Castillo 2013; Li et al. 2018) for an overall
understanding.

The online influence maximization problem falls into the
field of multi-armed bandits (MAB), a prosperous research
area that dates back to 1933 (Thompson 1933). In the classi-
cal multi-armed stochastic bandits (Robbins 1952; Lai and

Robbins 1985), there is a set of n arms, each of which is
associated with a reward specified by some unknown dis-
tribution. At each round t, the learner chooses an arm and
receives a reward sampled from the corresponding distribu-
tion. The goal is to maximize the total expected rewards re-
ceived over T rounds. The model was later generalized to the
multi-armed stochastic linear bandits (Auer, Cesa-Bianchi,
and Fischer 2002), where each arm is associated with a char-
acteristic vector and its reward is given by the inner product
of the vector and an unknown parameter vector. This model
was extensively studied in the literature (Dani, Hayes, and
Kakade 2008; Li et al. 2010; Rusmevichientong and Tsitsik-
lis 2010; Abbasi-Yadkori, Pál, and Szepesvári 2011). Fur-
ther generalizations include combinatorial multi-armed ban-
dits (CMAB) and CMAB with probabilistically triggered
arms (CMAB-T) (Chen, Wang, and Yuan 2013; Chen et al.
2016; Wang and Chen 2017), where a subset of arms, called
the super-arm, can be chosen, and the reward is defined over
super-arms and may be non-linear. Besides, the arms beyond
the chosen super-arm may also be triggered and observed.
CMAB-T is a quite general bandits framework and indeed
contains OIM with edge-level feedback as a special case.
However, OIM with node-level feedback does not fit into
the CMAB-T framework.

OIM has been studied extensively in the literature. For
edge-level feedback, existing work (Chen, Wang, and Yuan
2013; Lei et al. 2015; Chen et al. 2016; Wang and Chen
2017; Wen et al. 2017; Wu et al. 2019) present both theoret-
ical and heuristic results. The node-level feedback was first
proposed in (Vaswani, Lakshmanan, and Schmidt 2016).
However, only heuristic algorithms were presented. Very re-
cently, an Õ(

√
T )-regret algorithm was presented for the

LT model with node-level feedback using pair-oracles in (Li
et al. 2020). However, it remains unknown whether the same
result holds for the IC model.

2 Preliminaries
2.1 Notations
Given a vector x ∈ Rd, its transpose is denoted by x⊤. The
Euclidean norm of x is denoted by ∥x∥. For a positive def-
inite matrix M ∈ Rd×d, the weighted Euclidean norm of x
is defined as ∥x∥M =

√
x⊤Mx. The minimum eigenvalue

of M is denoted by λmin(M), and its determinant and trace
are denoted by det[M ] and tr[M ], respectively. For a real-
valued function µ : R → R, its first and second derivatives
are denoted by µ̇ and µ̈, respectively.

2.2 Social Network
A social network is a weighted directed graph G = (V,E)
with a node set V of n = |V | nodes and an edge set E



of m = |E| edges. Each edge e ∈ E is associated with
a weight or probability p(e) ∈ [0, 1]. The edge probability
vector is then denoted by p = (p(e))e∈E , which describes
the graph completely. For a node v ∈ V , let N(v) = N in(v)
be the set of in-neighbors of v and dv = |N(v)| be its in-
degree. The maximum in-degree of the graph is denoted by
D = maxv∈V dv . In this paper, we use Ev to denote the set
of incoming edges of v and pv = (p(e))e∈Ev

∈ [0, 1]dv to
denote the probability vector corresponding to these edges.
The e-th entry of pv is denoted by pv(e). Thus, p(e) and
pv(e) refers to the same edge probability and we will use
them interchangeably throughout the paper. For an edge e =
(u, v) ∈ Ev , we use euv to explicitly indicate e’s endpoints.
Let χ(euv) ∈ {0, 1}dv be the characteristic vector of euv
over Ev such that all entries of χ(euv) are 0 except that the
entry corresponding to euv is 1. The characteristic vector of a
subset E′ ⊆ Ev is then defined as χ(E′) :=

∑
e∈E′ χ(e) ∈

{0, 1}dv . For simplicity, we define xe := χ(e).

2.3 Offline Influence Maximization
The input of the offline problem is a social network, over
which the information spreads. A node v ∈ V is called ac-
tive if it receives the information and inactive otherwise. We
first describe the independent cascade (IC) diffusion model.

In the IC model, the diffusion proceeds in discrete time
steps τ = 0, 1, 2, · · · . At the beginning of the diffusion
(τ = 0), there is an initially active set S0 of nodes called
seeds. For τ ≥ 1, the active node set Sτ after time τ is
generated as follows. First, let Sτ = Sτ−1. Next, for each
v ∈ V \ Sτ−1, every node u ∈ N(v) ∩ (Sτ−1 \ Sτ−2)
will try to activate v independently with probability p(euv)
(let S−1 = ∅). Hence, v will be activated with probability
1−
∏

u∈N(v)∩(Sτ−1\Sτ−2)
(1−p(euv)) and be added into Sτ

once being activated. The diffusion terminates if Sτ = Sτ−1

for some τ and therefore it proceeds in at most n time steps.
Let (S0, S1, · · · , Sn−1) be the sequence of the active node
sets during the diffusion process, where Sτ denotes the ac-
tive node set after time τ .

Given a seed set S0, the influence spread of S0 is defined
as σ(S0) = E[|Sn−1|], i.e. the expected number of active
nodes by the end of the diffusion. Here, σ : 2V → R+

is called the influence spread function. In this paper, we
also use σ(S, p) to state the edge probability vector p ex-
plicitly. The influence maximization (IM) problem takes
as input the social network G and an integer K ∈ N+,
and requires to find the seed set Sopt that gives the max-
imum influence spread with at most K seeds, i.e. Sopt ∈
argmaxS⊆V,|S|≤K σ(S). It is well-known that the IM prob-
lem admits a (1−1/e−ϵ) approximation under the IC model
(Kempe, Kleinberg, and Tardos 2003), which is tight assum-
ing P ̸= NP (Feige 1998).

2.4 Online Influence Maximization
In the online influence maximization problem (OIM) con-
sidered in this paper, there is an underlying social network
G = (V,E), whose edge parameter vector p∗ is unknown
initially. At each round t of total T rounds, the learner
chooses a seed set St with cardinality at most K, observes

the cascade feedback, and updates her knowledge about the
parameter p∗ for later selections. The feedback considered
in this paper is node-level feedback, which means that the
learner observes a realization of the sequence of active nodes
(St,0, St,1, · · · , St,n−1) after selecting St,0 = St.

In order to solve OIM problem, oracles for offline IM
problem are often invoked. Such an oracle takes as input the
edge probability vector and outputs a good approximate so-
lution for IM problem. However, when node-level feedback
is used, both Li et al. (2020) and this paper can only guar-
antee that the true edge probability vector falls into a confi-
dence region. Thus, we need the so-called pair oracle which
takes as input the confidence region and can still find a good
solution.

Formally, denote by p∗ the true edge probability vec-
tor and by C ∈ Rm a confidence region satisfying p∗ ∈
C. Let ORACLE be a pair-oracle which solves the problem
maxS:|S|≤K,p∈C σ(S, p) and (S̃, p̃) = ORACLE(G,K, C) be
its output. Define Sopt ∈ argmaxS:|S|≤K σ(S, p∗) to be the
optimal seed set. For α, β ∈ [0, 1], we say ORACLE is an
(α, β)-pair-oracle if Pr[σ(S̃, p̃) ≥ α · σ(Sopt, p∗)] ≥ β,
where the probability is taking from the possible random-
ness of ORACLE. Note that ORACLE is hard to implement, but
this paper mainly focuses on the effectiveness of OIM algo-
rithms and the efficiency is not our concern.

Equipped with an (α, β)-pair-oracle, the objective of OIM
is to minimize the cumulative (αβ)-scaled regret over T
rounds:

R(T ) = E

[
T∑

t=1

Rt

]

= E

[
Tαβ · σ(Sopt, p∗)−

T∑
t=1

|St,n−1|

]
.

Due to the additivity of expectation, it is equal to

R(T ) = E

[
Tαβ · σ(Sopt, p∗)−

T∑
t=1

σ(St, p
∗)

]
.

3 OIM Algorithm under the IC Model
In this section, we present an algorithm for OIM under the
IC model with node-level feedback (Algorithm 1). Our algo-
rithm adopts the canonical upper confidence bound (UCB)
framework in the bandits problem. Under the UCB frame-
work, at each round t, we first compute an estimate p̂t−1 of
p∗ and a corresponding confidence region Ct−1 based on the
feedback before round t. Then, a seed set St is selected by
invoking an (α, β)-pair-oracle to obtain (St, p̃t−1), which
satisfies that p̃t−1 ∈ Ct−1 and |St| ≤ K.

For OIM with node-level feedback, the key difficulty of
applying the UCB framework lies in how to use the node-
level feedback collected in the previous rounds to update the
estimate of p∗. For each node v ∈ V , Algorithm 1 will es-
timate the probability vector p∗v ∈ [0, 1]dv of the incoming
edges of v separately. Note that all p∗v together form p∗.

We first explain how to extract information on p∗v from the
feedback (St,0, St,1, . . . , St,n−1) at round t. When t > T0,



Algorithm 1: IC-UCB
Input: Graph G = (V,E), seed set cardinality K ∈ N,
(α, β)-pair-oracle ORACLE, parameter γ ∈ (0, 1) in Assump-
tion 1.

1: Initialize M0,v ← 0 ∈ Rdv×dv for all v ∈ V , δ ←
1/(3n

√
T ), R ←

⌈
512D
γ4

(
D2 + ln(1/δ)

)⌉
, T0 ← nR

and ρ← 3
γ

√
ln(1/δ).

2: for all u ∈ V do
3: Choose {u} as the seed set for the next R rounds and

construct data pairs from observations (see the text in
this section for details).

4: end for
5: for t = T0 + 1, T0 + 2, · · · , T do
6: {θ̂t−1,v, C′t−1,v}v∈V =

Estimate((Sk,0, Sk,1, . . . , Sk,n−1)1≤k≤t−1) (see Al-
gorithm 2).

7: Let Ct−1,v = {pv ∈ [0, 1]dv | θv ∈ C′t−1,v} and
Ct−1 = {Ct−1,v}v∈V

8: Choose (St, p̃t) ∈ ORACLE(G,K, Ct−1) and observe
node-level feedback (St,0, St,1, · · · , St,n−1).

9: end for

the data is processed in a more economical way. Assume
that node v remains inactive after time τ and some of its
neighbors (St,τ \ St,τ−1) ∩N(v) ̸= ∅ was newly activated
in time τ . Then, these neighbors will try to activate node v
in time τ + 1. Let

E′ := {euv ∈ Ev | u ∈ (St,τ \ St,τ−1) ∩N(v)}
be the set of edges which point from these neighbors to node
v. By the diffusion rule of the IC model, the probability that
v is activated by them in time τ + 1 is

1−
∏
e∈E′

(1− p∗(e)).

If node v did become active in time τ + 1, then we use data
pair (χ(E′), 1) to record this event. Otherwise, we use data
pair (χ(E′), 0) to record the event that v remained inactive
in time τ + 1. By inspecting each time step of the diffu-
sion till v became active or no new neighbors of v were
activated, we are able to construct Jt,v data pairs accord-
ingly, denoted by (Xt,j,v, Yt,j,v), 1 ≤ j ≤ Jt,v . Here,
Jt,v ≤ dv , since v has dv neighbors and a new data pair
is constructed only when some inactive neighbors of v be-
come active. Xt,j,v ∈ {0, 1}dv indicates the characteristic
vector of the edges corresponding to the j-th batch of neigh-
bors that were activated. Yt,j,v ∈ {0, 1} indicates if v was
activated by these neighbors. It is easy to see when j < Jt,v ,
Yt,j,v = 0, and only when j = Jt,v , it is possible for Yt,j,v

to be 1. This is because v will remain active once it is acti-
vated. Though some newly active neighbors of v will still try
to “activate” v thereafter, it is impossible to observe whether
the attempt succeeds.

For the initial regularization phase (line 2 to line 4) where
t ≤ T0, the process of extracting information is wasteful
in that only the first-step activation is taken into account. In

Algorithm 2: Estimate. Note that the code is written as a
computation from scratch in each round to accommodate
the initialization period of Algorithm 1, and it can be eas-
ily adapted to the incremental computation form.
Input: All observations (Sk,0, Sk,1, · · · , Sk,n−1)1≤k≤t un-
til round t.

1: for all v ∈ V do
2: Construct data pairs (Xk,j,v, Yk,j,v)1≤k≤t,1≤j≤Jk,v

from observations (Sk,0, Sk,1, · · · , Sk,n−1)1≤k≤t

(see the text in this section for details).
3: Lt,v(θv)←

∑t
k=1

∑Jk,v

j=1 [− exp(−X⊤
k,j,vθv)− (1−

Yk,j,v)X
⊤
k,j,vθv], see eq. (5).

4: θ̂t,v ← argmaxθv Lt,v(θv).
5: Mt,v ←

∑t
k=1

∑Jk,v

j=1 Xk,j,vX
⊤
k,j,v , see eq. (1).

6: C′t,v ← {θ ∈ [0, 1]dv | ∥θ − θ̂t,v∥Mt,v
≤ ρ}.

7: end for

this part, the algorithm chooses each node u ∈ V as the seed
set for R rounds, and then observes the activation of u’s all
out-neighbors so as to gather information about its outgoing
edges. More formally, let node u be chosen as the seed in
round t. In the case u ∈ N(v), Jt,v = 1 and we construct
data pair (χ(euv), 1) if v ∈ St,1, or data pair (χ(euv), 0) if
v /∈ St,1. In the case u /∈ N(v), no data pair is constructed.
By the regularization step, each edge will be observed ex-
actly R times. Intuitively, this step leads to a coarse estimate
of each individual probability p(e) for e ∈ E. Technically,
this step guarantees a lower bound of the minimum eigen-
value of the Gram matrix Mt,v defined in eq. (1), which en-
sures the correctness of condition (6) in Theorem 1 in the
analysis.

For each node v ∈ V , we can use all the feedback
data (Sk,0, Sk,1, . . . , Sk,n−1)1≤k≤t in the first t rounds to
construct data pairs {(Xk,j,v, Yk,j,v)}1≤k≤t,1≤j≤Jt,v . The
Gram matrix Mt,v of these data pairs is defined as

Mt,v :=

t∑
k=1

Jk,v∑
j=1

Xk,j,vX
⊤
k,j,v (1)

Now that we have explained how to extract information
on p∗v by constructing new data pairs from the node-level
feedback, we next introduce how to use these data pairs to
estimate p∗v . Inspired by the network inference problem (Ne-
trapalli and Sanghavi 2012; Narasimhan, Parkes, and Singer
2015; Pouget-Abadie and Horel 2015), we use the maximum
likelihood estimation (MLE) to estimate p∗v . Algorithm 2
provide a detailed estimation procedure, which has two im-
portant features described below.

Transformation of edge parameter p into parameter θ.
By the diffusion rule of the IC model, for each v ∈ V ,

given X ∈ {0, 1}dv , let Y ∈ {0, 1} indicates whether v is
activated in one time step. Then,

E[Y | X] = 1−Πe:X(e)=1(1− p(e)),

which a complex function of parameter p(e). We therefore
consider a transformation of edge probability vector p into a



new vector θ where

θ(e) = − ln(1− p(e)) for each e ∈ E. (2)

Then,

p(e) = 1− exp(−θ(e)) for each e ∈ E, (3)

and
E[Y | X] = µ(X⊤θv),

where the link function µ : R→ R is defined as

µ(x) := 1− exp(−x).

This indeed forms an instance of the generalized linear
bandit (GLB) problem studied in (Filippi et al. 2010; Li,
Lu, and Zhou 2017). They also use MLE to solve the GLB
problem. Hence, we will analyze the regret of Algorithm 1
via their methods.

Pseudo log-likelihood function Lt,v .
During the update of the estimate of p∗ (or θ∗), a standard

log-likelihood function is often used:

Lstd
t,v (θv) =

t∑
k=1

Jk,v∑
j=1

[Yk,j,v lnµ(X
⊤
k,j,vθv)

+ (1− Yk,j,v) ln(1− µ(X⊤
k,j,vθv))].

However, the analysis in (Filippi et al. 2010; Li, Lu, and
Zhou 2017) requires that the gradient of the log-likelihood
function has the form

t∑
k=1

Jk,v∑
j=1

[Yk,j,v − µ(X⊤
k,j,vθv)]Xk,j,v. (4)

Such requirement is met in Filippi et al. (2010); Li, Lu, and
Zhou (2017) by assuming the distribution of Y conditioned
on X falls into some sub-class of the exponential family of
distributions, which is however not satisfied in our case. In
this paper, we present an alternative way to overcome such
technical difficulty. That is, we “integrate” the gradient in
eq. (4) to obtain a pseudo log-likelihood function Lt,v:

Lt,v(θv)

=

t∑
k=1

Jk,v∑
j=1

[− exp(−X⊤
k,j,vθv)− (1− Yk,j,v)X

⊤
k,j,vθv].

(5)

This ensures that the gradient of Lt,v has the form of eq. (4)
and therefore the analysis of Filippi et al. (2010); Li, Lu,
and Zhou (2017) can be used. Such an approach is of great
independent interest and we leave it as an open problem to
find a more intuitive explanation for it.

4 Regret Analysis
We now give an analysis of the regret of Algorithm 1. First,
we need to show that for each v ∈ V , the estimate θ̂t,v is
close to the true parameter θ∗v . To ensure this, we require
Assumption 1 below.

Assumption 1. There exists a parameter γ ∈ (0, 1) such
that

∏
u∈N(v)(1− p∗(euv)) ≥ γ for all v ∈ V .

Similar or even stronger assumptions are adopted in
all previous approaches for network inference (Netrapalli
and Sanghavi 2012; Narasimhan, Parkes, and Singer 2015;
Pouget-Abadie and Horel 2015; Chen et al. 2021). Assump-
tion 1 means that node v ∈ V will remain inactive with
probability at least γ even if all of its in-neighbors are si-
multaneously activated. It reflects the stubbornness of the
agent (node). That is, the behavior of a node is partially de-
termined by its intrinsic motivation, not by its neighbors. So,
even when all its neighbors adopt a new behavior, there is a
nontrivial probability that the node will still not adopt the
new behavior.

Under Assumption 1, it is possible to show that θ̂t,v and
θ∗v are close to each other in all directions, from which we
can obtain a confidence region for θ∗v , as Theorem 1 states.
The proof of Theorem 1 is similar to that of Theorem 1 in
(Li, Lu, and Zhou 2017). For completeness, we include the
proof in Appendix A.

Theorem 1. Suppose that Assumption 1 holds. For each v ∈
V , θ̂t,v and Mt,v are computed according to Algorithm 2.
Given δ ∈ (0, 1), if

λmin(Mt,v) ≥
512dv
γ4

(
d2v + ln

1

δ

)
. (6)

Then, with probability at least 1 − 3δ, for any x ∈ Rdv , we
have

|x⊤(θ̂t,v − θ∗v)| ≤
3

γ

√
ln(1/δ) · ∥x∥M−1

t,v
.

Thus, by setting x = M⊤
t,v(θ̂t,v − θ∗v), we obtain

∥θ̂t,v − θ∗v∥Mt,v ≤
3

γ

√
ln(1/δ).

After we prove that θ̂t,v and θ∗v are indeed close to each
other, we need to show that the influence functions σ(S, p̂)
and σ(S, p∗) induced by the corresponding probability vec-
tors p̂t and p∗ are also close. To this end, we prove the group
observation modulated (GOM) bounded smoothness con-
dition for the IC model. The condition is inspired by the
GOM condition for the LT model (Li et al. 2020). We re-
mark that for edge-level feedback, there is a related trigger-
ing probability modulated (TPM) bounded smoothness con-
dition (Wang and Chen 2017; Wen et al. 2017). However,
the TPM condition does not suffice for node-level feedback.

We now state the GOM condition formally. Given a
seed set S ⊆ V and a node v ∈ V \ S, we say node
u ∈ V \ S is relevant to node v if there is a path P
from S to v such that u ∈ P . Let V [S, v] ⊆ V be the
set of nodes relevant to v given seed set S. Given diffu-
sion cascade (S0 = S, S1, · · · , Sn−1), construct data pairs
{(Xj,v, Yj,v)}1≤j≤Jv

according to the economical way de-
scribed previously (not the wasteful way for the regulariza-
tion phase). We have the following GOM condition for the
IC model, whose proof is presented in Appendix B.



Lemma 1 (GOM bounded smoothness for the IC model).
Fix any seed set S ⊆ V . For any two edge-probability vec-
tors p̃, p∗ ∈ [0, 1]|E|, let θ̃, θ∗ be the vectors defined as
eq. (2). Then,

|σ(S, p̃)− σ(S, p∗)|

≤
∑

v∈V \S

∑
u∈V [S,v]

E

 Ju∑
j=1

∣∣∣X⊤
j,u(θ̃u − θ∗u)

∣∣∣
 ,

where the expectation is taken over the randomness of the
diffusion cascade (S0, S1, · · · , Sn−1), which is generated
with respect to parameter p∗.

Equipped with the aforementioned tools, we now set
about presenting the analysis of Algorithm 1. Given a seed
set S ⊆ V and a node u ∈ V \ S, define

nS,u :=
∑

v∈V \S

1{u ∈ V [S, v]}

to be the number of nodes that u is relevant to. Further, de-
fine

ζ(G) := max
S:|S|≤K

√∑
u∈V

n2
S,u ≤ O(n3/2).

We present the regret of Algorithm 1 in Theorem 2.

Theorem 2. When we use an (α, β)-pair-oracle in Algo-
rithm 1, under Assumption 1, the αβ-scaled regret of Algo-
rithm 1 satisfies that

R(T ) = Õ

(
ζ(G)D

√
mT

γ

)
= Õ

(
n7/2
√
T

γ

)
.

Proof. Let Ht be the history of past rounds by the end of
round t. For t ≤ T0, E[Rt] ≤ n, since there are n nodes in
G. Now consider the case where t > T0. By the definition
of Rt,

E[Rt | Ht−1] = E[αβ · σ(Sopt, p∗)− σ(St, p
∗) | Ht−1],

where the expectation is taken over the randomness of St.
For any T0 < t ≤ T and v ∈ V , define event ξt−1,v as

ξt−1,v := {∥θ̂t−1,v − θ∗v∥Mt−1,v
≤ ρ},

and let ξt−1,v be its complement. By the choices of
δ,R, T0, ρ as in Algorithm 1, the fact that λmin(Mt−1,v) ≥
λmin(MT0,v) = R and Theorem 1, we have Pr[ξt−1,v] ≤
3δ. Further define event ξt−1 := ∧v∈V ξt−1,v and let ξt−1

be its complement. By union bound, Pr[ξt−1] ≤ 3δn. Note
that under event ξt−1, for all v ∈ V , θ∗v ∈ C′t−1,v . Hence,
p∗v ∈ Ct−1,v and p∗ ∈ Ct−1. Since (St, p̃t) is obtained by
invoking an (α, β)-pair-oracle ORACLE over Ct−1, we have

E[Rt] ≤ Pr[ξt−1] ·E[αβ · σ(Sopt, p∗)− σ(St, p
∗) | ξt−1]

+ Pr[ξt−1] · n
≤ E[σ(St, p̃t)− σ(St, p

∗) | ξt−1] + 3δn2.

Next, by the GOM bounded smoothness for the IC model
in Lemma 1, we obtain that

E[Rt]− 3δn2

≤ E

 ∑
v∈V \St

∑
u∈V [St,v]

Jt,u∑
j=1

∣∣∣∣X⊤
t,j,u(θ̃t,u − θ∗u)

∣∣∣∣ ∣∣∣∣ ξt−1

 .

By the Cauchy-Schwarz inequality, we have

|X⊤
t,j,u(θ̃t,u − θ∗u)| ≤ ∥Xt,j,u∥M−1

t−1,u
∥θ̃t,u − θ∗u∥Mt−1,u

.

Besides, under event ξt−1, θ̂t,u, θ∗u ∈ C′t−1,u for all u ∈ V .
Then, by the triangle inequality,

∥θ̃t,u − θ∗u∥Mt−1,u

≤ ∥θ̃t,u − θ̂t−1,u∥Mt−1,u
+ ∥θ̂t−1,u − θ∗u∥Mt−1,u

≤ 2ρ.

Combining the above inequalities, we obtain that

E[Rt]− 3δn2

≤ 2ρ ·E

 ∑
v∈V \St

∑
u∈V [St,v]

Jt,u∑
j=1

∥Xt,j,u∥M−1
t−1,u


= 2ρ ·E

 ∑
u∈V \St

Jt,u∑
j=1

∥Xt,j,u∥M−1
t−1,u

∑
v∈V \St

1u∈V [St,v]


= 2ρ ·E

 ∑
u∈V \St

nSt,u

Jt,u∑
j=1

∥Xt,j,u∥M−1
t−1,u

 .

Recall that the above derivation holds for t > T0, and for
t ≤ T0, E[Rt] ≤ n. We thus have

R(T ) ≤ 2ρ ·E

 T∑
t=T0+1

∑
v∈V \St

nSt,v

Jt,v∑
j=1

∥Xt,j,v∥M−1
t−1,v


+ 3δn2(T − T0) + nT0.

To further simplify the above inequality, we prove the fol-
lowing lemma, whose proof is presented in Appendix C.

Lemma 2. For any v ∈ V ,

T∑
t=T0+1

∑
v∈V \St

nSt,v

Jt,v∑
j=1

∥Xt,j,v∥M−1
t−1,v

≤ ζ(G)D
√
(m+ n)(T − T0) ln (R+ (T − T0)D).



By Lemma 2, we have
R(T )

≤ 2ρ ·E

 T∑
t=T0+1

∑
v∈V \St

nSt,v

Jt,v∑
j=1

∥Xt,j,v∥M−1
t−1,v


+ 3δn2(T − T0) + nT0

≤ 2ρζ(G)D
√
(m+ n)(T − T0) ln (R+ (T − T0)D)

+ 3δn2(T − T0) + nT0

≤ 6ζ(G)D

γ

√
(m+ n)T ln(TD) ln(3nT ) + n

√
T

+
512Dn2

γ4

(
D2 + ln(3nT )

)
+ 1

= Õ

(
ζ(G)D

√
mT

γ

)
.

The last inequality is obtained by plugging δ = 1/(3n
√
T ),

R =
⌈
512D
γ4

(
D2 + ln(1/δ)

)⌉
, T0 = nR and ρ =

3
γ

√
ln(1/δ) into the formula.

We remark that the worst-case regret for the IC model
with edge-level feedback is Õ(n3

√
T ) in (Wang and Chen

2017). Thus, our regret bound under node-level feedback
matches the previous ones under edge-level feedback in the
worst case, up to a n1/2/γ factor.

To get an intuition about γ’s value, assume that each edge
probability ≤ 1− c for some constant c ∈ (0, 1). Then, γ =
O(cD), where D is the maximum in-degree of the graph.
Thus, in the worst case, 1/γ is exponential in n. But when
D = O(log n), 1/γ is polynomial in n and so is the regret
bound. We think D = O(log n) is reasonable in practice,
since a person only has a limited attention and cannot pay
attention to too many people in the network.

5 Conclusion
In this paper, we investigate the OIM problem under
the IC model with node-level feedback. We presents an
Õ(
√
T )-regret OIM algorithm for the problem, which al-

most matches the optimal regret bound as well as the state-
of-the-art regret bound with edge-level feedback. Our novel
adaptation of MLE to fit the GLB model is of great inde-
pendent interest, which might be combined with the GLB
model to handle rewards generated from a broader classes
of distributions.

There still remain several open problems in the node-level
feedback setting. An immediate one is to either remove As-
sumption 1 for the edge probability vector or at least the
assumption parameter from the regret bound. Besides, one
can also study if there exists optimal-regret OIM algorithms
with node-level feedback that use standard offline oracles.
Finally, it is interesting to develop a general bandit frame-
work which includes OIM with node-level feedback as a
special case, just like CMAB-T containing OIM with edge-
level feedback.
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mizing the spread of influence through a social network. In
Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD
2003, 137–146. ACM.
Lai, T. L.; and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules. Advances in applied mathematics,
6(1): 4–22.
Lei, S.; Maniu, S.; Mo, L.; Cheng, R.; and Senellart, P.
2015. Online Influence Maximization. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2015, 645–654.
ACM.
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010.
A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, 661–670.
ACM.
Li, L.; Lu, Y.; and Zhou, D. 2017. Provably Optimal Algo-
rithms for Generalized Linear Contextual Bandits. In Pro-
ceedings of the 34th International Conference on Machine
Learning, ICML 2017, 2071–2080. PMLR.
Li, S.; Kong, F.; Tang, K.; Li, Q.; and Chen, W. 2020. On-
line Influence Maximization under Linear Threshold Model.
In Advances in Neural Information Processing Systems 33
(NeurIPS 2020).

Li, Y.; Fan, J.; Wang, Y.; and Tan, K.-L. 2018. Influence
maximization on social graphs: A survey. IEEE Transac-
tions on Knowledge and Data Engineering, 30(10): 1852–
1872.
Myers, S. A.; and Leskovec, J. 2010. On the Convexity of
Latent Social Network Inference. In Advances in Neural In-
formation Processing Systems 23 (NIPS 2010), 1741–1749.
Curran Associates, Inc.
Narasimhan, H.; Parkes, D. C.; and Singer, Y. 2015. Learn-
ability of Influence in Networks. In Advances in Neural In-
formation Processing Systems 28 (NIPS 2015), 3186–3194.
Netrapalli, P.; and Sanghavi, S. 2012. Learning the graph
of epidemic cascades. In ACM SIGMETRICS/PERFOR-
MANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS 2012,
211–222. ACM.
Pollard, D. 1990. Empirical Processes: Theory and Applica-
tions. NSF-CBMS Regional Conference Series in Probabil-
ity and Statistics, 2: i–86.
Pouget-Abadie, J.; and Horel, T. 2015. Inferring Graphs
from Cascades: A Sparse Recovery Framework. In Pro-
ceedings of the 32nd International Conference on Machine
Learning, ICML 2015, 977–986. JMLR.
Robbins, H. 1952. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Soci-
ety, 58(5): 527–535.
Rusmevichientong, P.; and Tsitsiklis, J. N. 2010. Linearly
Parameterized Bandits. Math. Oper. Res., 35(2): 395–411.
Tang, Y.; Shi, Y.; and Xiao, X. 2015. Influence Maximiza-
tion in Near-Linear Time: A Martingale Approach. In In-
ternational Conference on Management of Data, SIGMOD
2014, 1539–1554. ACM.
Tang, Y.; Xiao, X.; and Shi, Y. 2014. Influence maxi-
mization: near-optimal time complexity meets practical ef-
ficiency. In International Conference on Management of
Data, SIGMOD 2014, 75–86. ACM.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3/4): 285–294.
Vaswani, S.; Lakshmanan, L. V. S.; and Schmidt, M. 2016.
Influence Maximization with Bandits. arXiv:1503.00024.
Wang, Q.; and Chen, W. 2017. Improving Regret Bounds
for Combinatorial Semi-Bandits with Probabilistically Trig-
gered Arms and Its Applications. In Advances in Neural In-
formation Processing Systems 30 (NIPS 2017), 1161–1171.
Wen, Z.; Kveton, B.; Valko, M.; and Vaswani, S. 2017.
Online Influence Maximization under Independent Cascade
Model with Semi-Bandit Feedback. In Advances in Neu-
ral Information Processing Systems 30 (NIPS 2017), 3022–
3032.
Wu, Q.; Li, Z.; Wang, H.; Chen, W.; and Wang, H. 2019.
Factorization Bandits for Online Influence Maximization.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD
2019, 636–646. ACM.



Appendix
A Proof of Theorem 1

OIM with node-level feedback under the IC model is closely related to the generalized linear bandits (GLB) problem, intro-
duced by (Filippi et al. 2010) and further investigated in (Li, Lu, and Zhou 2017). To see this, we introduce the GLB model.
Assume there are T rounds in total. At round t, an action Xt ∈ Rd with Xt ̸= 0 is chosen. Assume there is an unknown
parameter θ∗ ∈ Rd and a link function µ : R→ R. The reward Yt ∈ R given Xt satisfies that

E[Yt | Xt] = µ(X⊤
t θ∗).

The goal is to minimize the cumulative regret over T rounds.
Specific to our problem, Xt ∈ {0, 1}d and Yt ∈ {0, 1}. The link function µ : R → R is defined as µ(x) = 1 − exp(−x).

Besides, θ∗ ∈ Θ := {θ ∈ Rd | θ(e) ≥ 0,∀e ∈ [d],
∑

e∈[d] θ(e) ≤ ln(1/γ)}, which is induced by Assumption 1. However, our
problem is more difficult in that multiple data pairs (Xt,j,v, Yt,j,v) may be generated for each v ∈ V at each round t, and the
reward is specified by a more involved influence function.

The following lemma gives some properties about µ, which are easy to verify and useful for our analysis.

Lemma 3. For any θ ∈ Θ and X ∈ {0, 1}d with X ̸= 0, it satisfies that

µ̇(X⊤θ) ≤ 1, µ̇(X⊤θ) ≥ γ, and |µ̈(X⊤θ)| ≤ 1.

The analysis in (Li, Lu, and Zhou 2017) cannot be applied here directly for (Xk, Yk), since it requires that the gradient of the
log-likelihood function has the form

∑t
k=1[Yk−µ(X⊤

k θ)]Xk. We thus define a pseudo log-likelihood function by “integrating”
the gradient to apply the analysis. As in the main text, we gain an estimate θ̂t of θ∗ at round t+ 1 by maximizing the following
pseudo log-likelihood function:

θ̂t = argmaxLt(θ), (7)

where

Lt(θ) =

t∑
k=1

[− exp(−X⊤
k θ)− (1− Yk)X

⊤
k θ].

The following theorem characterizes the confidence intervals of θ∗ induced by θ̂t, which is the same as Theorem 1. We will
prove it instead of Theorem 1.

Theorem 3. Assume that θ∗ ∈ Θ. Define Mt =
∑t

k=1 XkX
⊤
k and let θ̂t be defined as in Eq. (7). Given δ ∈ (0, 1), assume that

λmin(Mt) ≥
512d

γ4

(
d2 + ln

1

δ

)
.

Then, with probability at least 1− 3δ, for any x ∈ Rd, it satisfies that

|x⊤(θ̂t − θ∗)| ≤ 3

γ

√
ln(1/δ) · ∥x∥M−1

t
.

Proof. The proof consists of two steps. In the first step, it is proved that θ̂t falls into the η-neighborhood Bη of θ∗ w.r.t. ℓ2-norm
for some η. Since µ̇(X⊤θ∗) ≥ γ, for any θ ∈ Bη , µ̇(X⊤θ) also has a lower bound denoted by κη . The values of η and κη will
be determined later. In the second step, it is proved that θ̂ and θ∗ are close in any direction x ∈ Rd.

First note that θ̂t satisfies that∇Lt(θ̂t) = 0, where the gradient∇Lt(θ) is

∇Lt(θ) =

t∑
k=1

[exp(−X⊤
k θ)− (1− Yk)]Xk =

t∑
k=1

[Yk − µ(X⊤
k θ)]Xk.

Define G(θ) :=
∑t

k=1(µ(X
⊤
k θ)− µ(X⊤

k θ∗))Xk. Then, we have

G(θ∗) = 0 and G(θ̂t) =

t∑
k=1

ϵkXk,

where ϵk is defined as ϵk := Yk − µ(X⊤
k θ∗). Note that E[ϵk | Xk] = 0 and ϵk = Yk − µ(X⊤

k θ∗) ∈ [−1, 1] since Yk ∈ {0, 1}
and µ(X⊤

k θ∗) = Pr[Yk = 1 | Xk] ∈ [0, 1]. Therefore, ϵk is 1-sub-Gaussian, i.e. E[exp(λϵk) | Xk] ≤ exp(λ2/2),∀λ ∈ R.
Further, define Z := G(θ̂t) =

∑t
k=1 ϵkXk for convenience.



Step 1: Consistency of θ̂t. We first prove the consistency of θ̂t. For any θ1, θ2 ∈ Rd
+ := {θ ∈ Rd | θ(e) ≥ 0,∀e ∈ [d]}, by

the mean value theorem, there is some θ̄ = sθ1 + (1− s)θ2 with 0 < s < 1 such that

G(θ1)−G(θ2) =

[
t∑

k=1

µ̇(X⊤
k θ̄)XkX

⊤
k

]
(θ1 − θ2) := F (θ̄)(θ1 − θ2).

Since µ̇(x) = exp(−x), for θ̄ ∈ Rd
+, µ̇(X⊤θ̄) > 0. Together with λmin(Mt) > 0, we have λmin(F (θ̄)) > 0. Therefore, for

any θ1 ̸= θ2,
(θ1 − θ2)

⊤(G(θ1)−G(θ2)) = (θ1 − θ2)
⊤F (θ̄)(θ1 − θ2) > 0.

Consequently, G(θ) is an injection from Rd to Rd and therefore G−1 is well-defined. We thus have θ̂ = G−1(Z).
Let Bη := {θ | ∥θ − θ∗∥ ≤ η} be the η-neighborhood of θ∗ and ∂Bη := {θ | ∥θ − θ∗∥ = η}. Define κη :=

infθ∈Bη,X ̸=0 µ̇(X
⊤θ) > 0. The following lemma shows that if G(θ) and G(θ∗) are close, then θ and θ∗ are also close. Its

proof is presented in Appendix A.1.

Lemma 4. {θ | ∥G(θ)∥M−1
t
≤ κηη

√
λmin(Mt)} ⊆ Bη .

Next, in the following lemma, we give an upper bound of ∥Z∥M−1
t

= ∥G(θ̂t)∥M−1
t

, which shows that G(θ̂t) and G(θ∗) are
indeed close. Its proof is presented in Appendix A.2.

Lemma 5. For any δ > 0, define the following event:

EG := {∥Z∥M−1
t
≤ 4
√
d+ ln(1/δ)}.

Then, EG holds with probability at least 1− δ.

By the above lemmas, when EG holds, for any η, η ≥ 4
κη

√
d+ln(1/δ)
λmin(Mt)

implies that ∥θ̂t − θ∗∥ ≤ η.

It remains to determine appropriate η and κη for the second step. Note that since ∥θ̂t − θ∗∥1 ≤
√
d · ∥θ̂t − θ∗∥ ≤

√
dη, we

have
∑

e∈[d] θ̂(e) ≤ ln(1/γ) +
√
dη. Therefore, we choose η = ln(1 + ϵ)/

√
d for some ϵ to be determined later. In this case,

κη = γ/(1 + ϵ) := γ.
To summarize, when λmin(Mt) ≥ 16(d+ln(1/δ))

κ2
ηη

2 = 16d(d+ln(1/δ))
γ2 ln2(1+ϵ)

, ∥θ̂t− θ∗∥ ≤ ln(1+ ϵ)/
√
d with probability at least 1− δ.

Step 2: Normality of θ̂. In the following, we assume that θ̂t falls in the η-neighborhood Bη of θ∗, where η = ln(1 + ϵ)/
√
d,

κη = γ = γ/(1 + ϵ) and ϵ is set to be the largest value such that 322(1 + ϵ)6 ≤ 512(3 −
√
2(1 + ϵ))2. Define ∆ := θ̂t − θ∗.

The previous argument shows that there exists a s ∈ [0, 1] such that

Z = G(θ̂t)−G(θ∗) = (H + E)∆,

where θ̄ = sθ∗ + (1− s)θ̂t ∈ Bη , H := F (θ∗) =
∑t

k=1 µ̇(X
⊤
k θ∗)XkX

⊤
k and E := F (θ̄)− F (θ∗). For any x ∈ Rd,

x⊤(θ̂t − θ∗) = x⊤(H + E)−1Z = x⊤H−1Z − x⊤H−1E(H + E)−1Z.

Note that (H + E)−1 exists since H + E = F (θ̄) ≻ γMt ≻ 0. We now bound the two terms, respectively.
For the first term, define

D := (X1, X2, · · · , Xt)
⊤ ∈ Rn×d.

Note that D⊤D =
∑t

k=1 XkX
⊤
k = Mt. Since ϵk is 1-sub-Gaussian, by the Hoeffding inequality,

Pr[|x⊤H−1Z| ≥ a] = Pr

[∣∣∣∣∣
t∑

k=1

x⊤H−1Xkϵk

∣∣∣∣∣ ≥ a

]
≤ exp

(
− a2

2∥x⊤H−1D⊤∥2

)
.

Since H ⪰ γMt, we have

∥x⊤H−1D⊤∥2 = x⊤H−1D⊤DH−1x ≤ 1

γ2 ∥x∥
2
M−1

t
.

Thus we have

Pr[|x⊤H−1Z| ≥ a] ≤ exp

(
− a2γ2

2∥x∥2
M−1

t

)
.



By choosing an appropriate a, we obtain that with probability at least 1− 2δ,

|x⊤H−1Z| ≤
√
2 ln(1/δ)

γ
∥x∥M−1

t
.

For the second term,

|x⊤H−1E(H + E)−1Z| ≤ ∥x∥H−1∥H−1/2E(H + E)−1Z∥
≤ ∥x∥H−1∥H−1/2E(H + E)−1H1/2∥∥Z∥H−1

≤ 1

γ
∥x∥M−1

t
∥H−1/2E(H + E)−1H1/2∥∥Z∥M−1

t
.

The first inequality is due to Cauchy-Schwarz inequality. The second inequality holds since ∥AB∥ ≤ ∥A∥∥B∥. The last
inequality holds since H ⪰ γMt. Next, since (H + E)−1 = H−1 −H−1E(H + E)−1, we have

∥H−1/2E(H + E)−1H1/2∥ = ∥H−1/2E(H−1 −H−1E(H + E)−1)H1/2∥
= ∥H−1/2EH−1/2 −H−1/2EH−1E(H + E)−1H1/2∥
≤ ∥H−1/2EH−1/2∥+ ∥H−1/2EH−1/2∥∥H−1/2E(H + E)−1H1/2∥

To complete our proof, we need the following technical lemma, whose proof is presented in Appendix A.3.

Lemma 6.

∥H−1/2EH−1/2∥ ≤ 4

γ2

√
d(d+ ln 1/δ)

λmin(Mt)
.

Specifically, when λmin(Mt) ≥ 64d(d+ ln(1/δ))/γ4,

∥H−1/2EH−1/2∥ ≤ 1/2.

Therefore, we have

∥H−1/2E(H + E)−1H1/2∥ ≤ ∥H−1/2EH−1/2∥
1− ∥H−1/2EH−1/2∥

≤ 2∥H−1/2EH−1/2∥ ≤ 8

γ2

√
d(d+ ln 1/δ)

λmin(Mt)
.

Therefore, together with Lemma 5, we have

|x⊤H−1E(H + E)−1Z| ≤ 32
√
d(d+ ln 1/δ)

γ3
√

λmin(Mt)
∥x∥M−1

t
.

Combining the above inequalities, we have

|x⊤(θ̂t − θ∗)| ≤

(√
2 ln(1/δ)

γ
+

32
√
d(d+ ln 1/δ)

γ3
√
λmin(Mt)

)
∥x∥M−1

t
≤

3
√

ln(1/δ)

(1 + ϵ)γ
∥x∥M−1

t
=

3
√
ln(1/δ)

γ
∥x∥M−1

t
.

By the choice of ϵ, the last inequality holds when

λmin(Mt) ≥
512d(d+ ln(1/δ))2

γ4 ln(1/δ)
.

The proof is completed.

A.1 Proof of Lemma 4
This lemma is a direct application of Lemma A of (Chen, Hu, and Ying 1999). For completeness, we restate it in the lemma
below.
Lemma 7 ((Chen, Hu, and Ying 1999)). Let H be a smooth injection from Rd to Rd with H(x0) = y0. Define Bδ(x0) := {x ∈
Rd | ∥x− x0∥ ≤ δ} and ∂Bδ(x0) := {x ∈ Rd | ∥x− x0∥ = δ}. Then infx∈∂Bδ(x0) ∥H(x)− y0∥ ≥ r implies

1. Br(y0) := {y ∈ Rd | ∥y − y0∥ ≤ r} ⊆ H(Bδ(x0)).
2. H−1(Br(y0)) ⊆ Bδ(x0).

For any θ ∈ ∂Bη , there is some θ̄ = sθ + (1− s)θ∗ ∈ Bη with 0 < s < 1 such that G(θ)−G(θ∗) = F (θ̄)(θ − θ∗), where
F (θ̄) =

∑t
k=1 µ̇(X

⊤
k θ̄)XkX

⊤
k ⪰ κηMt, and

∥G(θ)∥2
M−1

t
= ∥G(θ)−G(θ∗)∥2

M−1
t

= (θ − θ∗)⊤F (θ̄)M−1
t F (θ̄)(θ − θ∗) ≥ κ2

ηλmin(Mt)∥θ − θ∗∥2 = κ2
ηη

2λmin(Mt).

By Lemma A of (Chen, Hu, and Ying 1999), the proof is completed.



A.2 Proof of Lemma 5
Let ⟨·, ·⟩ denote the inner product. Note that

∥Z∥M−1
t

= ∥M−1/2
t Z∥ = sup

∥y∥≤1

⟨y,M−1/2
t Z⟩.

Let B̂ be a 1/2-net of the unit ball Bd = {y ∈ Rd | ∥y∥ ≤ 1}. Then |B̂| ≤ 6d (Pollard 1990), and for any x ∈ Bd, there is a
x̂ ∈ B̂ such that ∥x̂− x∥ ≤ 1/2. Thus,

⟨x,M−1/2
t Z⟩ = ⟨x̂,M−1/2

t Z⟩+ ⟨x− x̂,M
−1/2
t Z⟩

= ⟨x̂,M−1/2
t Z⟩+ ∥x− x̂∥⟨ x− x̂

∥x− x̂∥
,M

−1/2
t Z⟩

≤ ⟨x̂,M−1/2
t Z⟩+ 1

2
sup

∥y∥≤1

⟨y,M−1/2
t Z⟩.

By taking supremum on both sides, we obtain that

sup
∥y∥≤1

⟨y,M−1/2
t Z⟩ ≤ 2max

x̂∈B̂
⟨x̂,M−1/2

t Z⟩.

Finally, define D := (X1, X2, · · · , Xt)
⊤ ∈ Rt×d. Then, D⊤D = Mt. We have

Pr[∥Z∥M−1
t

> a] ≤ Pr[max
x̂∈B̂
⟨x̂,M−1/2

t Z⟩ > a/2]

≤
∑
x̂∈B̂

Pr[⟨x̂,M−1/2
t Z⟩ > a/2]

≤
∑
x̂∈B̂

exp

(
− a2

8∥x̂⊤M
−1/2
t D⊤∥2

)
≤ exp

(
−a2/8 + d ln 6

)
≤ δ.

The second to last inequality holds due to Hoeffding inequality. The last inequality holds by choosing a = 4
√
d+ ln(1/δ).

A.3 Proof of Lemma 6
By the mean value theorem,

E =

t∑
k=1

(µ̇(X⊤
k θ̄)− µ̇(X⊤

k θ∗))XkX
⊤
k =

t∑
k=1

µ̈(rk)X
⊤
k ∆XkX

⊤
k .

for some rk ∈ R. Since |µ̈| ≤ 1, for any x ∈ Rd \ {0}, we have

x⊤H−1/2EH−1/2x =

t∑
k=1

µ̈(rk)X
⊤
k ∆∥x⊤H−1/2Xk∥2

≤
√
d∥∆∥

(
x⊤H−1/2

(
t∑

k=1

XkX
⊤
k

)
H−1/2x

)

≤
√
d

γ
∥∆∥∥x∥2.

The first inequality is due to Cauchy-Schwarz inequality. The second inequality holds since ∥Xk∥ ≤
√
d. The last inequality

holds since H ≻ γMt. Therefore, by the definition of spectral norm of a matrix,

∥H−1/2EH−1/2∥ ≤
√
d

γ
∥∆∥ ≤ 4

γ2

√
d(d+ ln 1/δ)

λmin(Mt)
.

When λmin(Mt) ≥ 64d(d+ ln(1/δ))/γ4, we have

∥H−1/2EH−1/2∥ ≤ 1/2.



B Proof of Lemma 1
In this section, we present the proof of Lemma 1, the GOM bounded smoothness for the IC model. The proof is similar to that
for the LT model in (Li et al. 2020).

Fix any seed set S ⊆ V throughout the proof. For edge probability vector p∗, let σ(S, p∗, v) be the probability that v is
activated under p∗. Let G′ be a random sub-graph of the original graph G such that each edge e ∈ E of G appears in G′

independently with probability p∗(e). By the diffusion rule of the IC model, σ(S, p∗, v) also means the probability that there
is a path from S to v in G′. For two distinct edge probability vectors p∗ and p̃, we couple them in the following way. Define
a random vector r ∼ U [0, 1]m which satisfies that r(e) ∼ U [0, 1] for each edge e ∈ E, where U [0, 1] denotes the uniform
distribution over interval [0, 1]. Given edge probability vector p∗, for e ∈ E, e appears in G′ if and only if r(e) ≤ p∗(e). It is
easy to see that the probability that e appears in G′ is p∗(e). For p̃, the random experiment can be executed using the same r. In
this way, p∗ and p̃ are coupled.

For node v ∈ V , define event

E0,v := 1{v is activated under p̃} ≠ 1{v is activated under p∗}.
According to our notations,

|σ(S, p̃)− σ(S, p∗)| =

∣∣∣∣∣∣
∑

v∈V \S

σ(S, p̃, v)− σ(S, p∗, v)

∣∣∣∣∣∣ ≤
∑

v∈V \S

|σ(S, p̃, v)− σ(S, p∗, v)| =
∑

v∈V \S

Pr
r∼U [0,1]m

[E0,v].

Recall that V [S, v] is defined to be the set of nodes relevant to v given seed set S, namely for each u ∈ V [S, v], there is a path
P from S to v such that u ∈ P . Thus, the occurrence of E0,v means there is a node u ∈ V [S, v] such that its activation state is
different under p̃ and p∗. More strictly, let Φ(p∗, r) := (S0 = S, S1, . . . , Sn−1) be the sequence of active nodes under p∗ and
r. Let Φτ (p

∗, r) = Sτ be the set of active nodes immediately after time τ . For node u ∈ V [S, v], define E1(u) to describe that
u is the first node that possesses distinct activation states under p̃ and p∗, namely

E1(u) := {r | ∃ τ,∀ τ ′ < τ,Φτ ′(p∗, r) = Φτ ′(p̃, r), u ∈ (Φτ (p
∗, r) \ Φτ (p̃, r)) ∪ (Φτ (p̃, r) \ Φτ (p

∗, r))}.
Then, by the above argument,

E0,v ⊆
⋃

u∈V [S,v]

E1(u).

Therefore, by union bound,
|σ(S, p̃)− σ(S, p∗)| ≤

∑
v∈V \S

∑
u∈V [S,v]

Pr
r∼U [0,1]m

[E1(u)]. (8)

To further determine the probability that E1(u) occurs, for each 0 ≤ τ ≤ n− 1, we define the following event:

E2,0(u, τ) := {r | ∀ τ ′ < τ,Φτ ′(p∗, r) = Φτ ′(p̃, r), u /∈ Φτ−1(p
∗, r)}.

E2,1(u, τ) := {r | ∀ τ ′ < τ,Φτ ′(p∗, r) = Φτ ′(p̃, r), u ∈ (Φτ (p
∗, r) \ Φτ (p̃, r)) ∪ (Φτ (p̃, r) \ Φτ (p

∗, r))}.
E3,1(u, τ) := {r | u ∈ (Φτ (p

∗, r) \ Φτ (p̃, r)) ∪ (Φτ (p̃, r) \ Φτ (p
∗, r))}.

Note that event E2,1(u, τ) means that event E1(u) occurs in time τ . Hence,

Pr
r∼U [0,1]m

[E1(u)] =
n−1∑
τ=0

Pr
r∼U [0,1]m

[E2,1(u, τ)].

Next, we estimate the value of Prr∼U [0,1]m [E2,1(u, τ)]. For u ∈ V , let ru ∈ [0, 1]du denote the sub-vector which consists of
r’s entries over the incoming edges of u. Let r−u ∈ [0, 1]m−du denote the vector consisting of the remaining entries. By fixing
r−u, we define sub-event E2,1(u, τ, r−u) ⊆ E2,1(u, τ) to be the restriction of event E2,1(u, τ) when r−u is fixed. Similarly, we
can define E2,0(u, τ, r−u) ⊆ E2,0(u, τ) and E3,1(u, τ, r−u) ⊆ E3,1(u, τ). Note that

E2,1(u, τ) = E2,0(u, τ) ∩ E3,1(u, τ).
E2,1(u, τ, r−u) = E2,0(u, τ) ∩ E3,1(u, τ, r−u).

Therefore,

Pr
r∼U [0,1]m

[E2,1(u, τ)] = Pr
r∼U [0,1]m

[E2,0(u, τ)] · Pr
r∼U [0,1]m

[E3,1(u, τ) | E2,0(u, τ)] ≤ Pr
r∼U [0,1]m

[E3,1(u, τ) | E2,0(u, τ)],

and
Pr

ru∼U [0,1]du
[E2,1(u, τ, r−u)] = Pr

ru∼U [0,1]du
[E2,0(u, τ, r−u)] · Pr

ru∼U [0,1]du
[E3,1(u, τ, r−u) | E2,0(u, τ, r−u)]

≤ Pr
ru∼U [0,1]du

[E3,1(u, τ, r−u) | E2,0(u, τ, r−u)].
(9)



By the definition of event E2,0(u, τ, r−u), by the end of time τ − 1, the sets of active nodes are the same under p∗ and p̃,
and u is inactive at the time. Besides, since r−u is fixed, the set of active nodes by the end of time τ − 1 is also fixed. We use
Φτ ′(E2,0(u, τ, r−u)) to denote the set of active nodes by the end of time τ ′ under event E2,0(u, τ, r−u). Consider the probability
that event E3,1(u, τ, r−u) occurs conditioned on event E2,0(u, τ, r−u). Define Q(u, τ, r−u) to be the neighbors of u which were
just activated in time τ − 1, namely

Q(u, τ, r−u) := (Φτ−1(E2,0(u, τ, r−u)) \ Φτ−2(E2,0(u, τ, r−u))) ∩N(u).

Let Z = Z(u, τ, r−u) ∈ {0, 1}du be the characteristic vector of Q(u, τ, r−u). By the diffusion rule of the IC model,

Pr
ru∼U [0,1]du

[u ∈ Φτ (p
∗, r) | E2,0(u, τ, r−u)] = 1−

∏
u′∈Q

(1− p∗(eu′u)) = µ(Z⊤θ∗u),

where the definition of θ∗u can be found in eq. (2) and µ : R→ R is the link function which has the form µ(x) = 1− exp(−x).
Therefore,

Pr
ru∼U [0,1]du

[E3,1(u, τ, r−u) | E2,0(u, τ, r−u)] ≤ |µ(Z⊤θ∗u)− µ(Z⊤θ̃u)| ≤ |Z⊤(θ∗u − θ̃u)|.

The last inequality holds since µ is 1-Lipschitz. Combining with eq. (9), we obtain that

Pr
ru∼U [0,1]du

[E2,1(u, τ, r−u)] ≤ |Z(u, τ, r−u)
⊤(θ∗u − θ̃u)|. (10)

Event E2,0(u, τ, r−u) depends on both p∗ and p̃, which is hard to analyze. For this reason, we define event

E4,0(u, τ, r−u) := {θ = (r−u, ru) | u /∈ Φτ−1(p
∗, r)}.

Clearly, E2,0(u, τ, r−u) ⊆ E4,0(u, τ, r−u). Besides, when E2,0(u, τ, r−u) ̸= ∅, since r−u is fixed in events E2,0(u, τ, r−u) and
E4,0(u, τ, r−u) and u is inactive by the end of time τ − 1, the active nodes by the end of time τ − 1 are the same under the
two events. Define P (u, τ, r−u) be the set of u’s neighbors which are just activated in time τ − 1 under event E4,0(u, τ, r−u),
namely

P (u, τ, r−u) := (Φτ−1(E4,0(u, τ, r−u)) \ Φτ−2(E4,0(u, τ, r−u))) ∩N(u).

Then, Q(u, τ, r−u) = P (u, τ, r−u). Let X(u, τ, r−u) ∈ {0, 1}du be the characteristic vector of P (u, τ, r−u). By the above
argument and eq. (10),

Pr
ru∼U [0,1]du

[E2,1(u, τ, r−u)] ≤ |X(u, τ, r−u)
⊤(θ∗u − θ̃u)|.

When E2,0(u, τ, r−u) = ∅, the left-hand side of the above inequality is 0. Thus, the inequality still holds. To sum up,

Pr
r∈U [0,1]m

[E1(u)] =
∫
r−u∼[0,1]m−du

n−1∑
τ=0

Pr
ru∼U [0,1]du

[E2,1(u, τ, r−u)] dr−u

≤
∫
r−u∈[0,1]m−du

n−1∑
τ=0

|X(u, τ, r−u)
⊤(θ∗u − θ̃u)|dr−u

= Er−u∈U [0,1]m−du

[
n−1∑
τ=0

|X(u, τ, r−u)
⊤(θ∗u − θ̃u)|

]
.

By plugging the above inequality into eq. (8), we obtain that

|σ(S, p̃)− σ(S, p∗)| ≤
∑

v∈V \S

∑
u∈V [S,v]

Er−u∈U [0,1]m−du

[
n−1∑
τ=0

|X(u, τ, r−u)
⊤(θ∗u − θ̃u)|

]

≤
∑

v∈V \S

∑
u∈V [S,v]

E

 Ju∑
j=1

∣∣∣X⊤
j,u(θ̃u − θ∗u)

∣∣∣
 .

The last inequality holds since by definition, Xj,u ∈ {0, 1}du indicates the characteristic vector of the edges corresponding to
the j-th batch of neighbors that were activated.



C Proof of Lemma 2
Fix v ∈ V . For simplicity, let zt,j = ∥Xt,j,v∥M−1

t−1,v
Recall the definition of Mt,v (see eq. (1)), we have

Mt,v = Mt−1,v +

Jt,v∑
j=1

Xt,j,vX
⊤
t,j,v.

Basic algebra gives us that

det[Mt,v] ≥ det
[
Mt−1,v +Xt,j,vX

⊤
t,j,v

]
= det

[
M

1/2
t−1,v

(
I +M

−1/2
t−1,vXt,j,vX

⊤
t,j,vM

−1/2
t−1,v

)
M

1/2
t−1,v

]
= det[Mt−1,v] det

[
I +M

−1/2
t−1,vXt,j,vX

⊤
t,j,vM

−1/2
t−1,v

]
= det[Mt−1,v]

(
1 +X⊤

t,j,vM
−1
t−1,vXt,j,v

)
= det[Mt−1,v](1 + z2t,j).

Thus, it can be deduced that

det[Mt,v]
Jt,v ≥ det[Mt−1,v]

Jt,v

Jt,v∏
j=1

(1 + z2t,j).

Next, by det[Mt,v] ≥ det[Mt−1,v] and Jt,v ≤ dv , we have

det[Mt,v]
dv ≥ det[Mt−1,v]

dv

Jt,v∏
j=1

(1 + z2t,j).

Therefore, we have

det[MT,v]
dv ≥ det[MT0,v]

dv

T∏
t=T0+1

Jt,v∏
j=1

(1 + z2t,j) = Rd2
v

T∏
t=T0+1

Jt,v∏
j=1

(1 + z2t,j).

On the other hand,

tr[MT,v] = tr

MT0,v +

T∑
t=T0+1

Jt,v∑
j=1

Xt,j,vX
⊤
t,j,v

 = tr[MT0,v] +

T∑
t=T0+1

Jt,v∑
j=1

∥Xt,j,v∥2 ≤ Rdv + (T − T0)d
2
v.

By the trace-determinant inequality, we have

(R+ (T − T0)dv)
dv ≥

(
1

dv
tr[MT,v]

)dv

≥ det[MT,v] ≥ Rd2
v

T∏
t=T0+1

Jt,v∏
j=1

(1 + z2t,j).

By taking logarithm on both sides, we obtain that

dv ln(R+ (T − T0)dv) ≥
T∑

t=T0+1

Jt,v∑
j=1

ln(1 + z2t,j) + d2v lnR ≥
T∑

t=T0+1

Jt,v∑
j=1

z2t,j
dv + 1

+ dv lnR
dv .

The last inequality holds since ln(1 + x) ≥ x
dv+1 for x ∈ [0, dv], and

z2t,j = ∥Xt,j,v∥2M−1
t−1,v

≤ ∥Xt,j,v∥2 ≤ dv.

By rearranging the above inequality, we have

T∑
t=T0+1

Jt,v∑
j=1

∥Xt,j,v∥2M−1
t−1,v

=

T∑
t=T0+1

Jt,v∑
j=1

z2t,j ≤ dv(dv + 1) · ln
(
R+ (T − T0)dv

Rdv

)
.



Finally, by the Cauchy-Schwarz inequality,

T∑
t=T0+1

∑
v∈V \St

nSt,v

Jt,v∑
j=1

∥Xt,j,v∥M−1
t−1,v

≤

√√√√√
 T∑

t=T0+1

∑
v∈V \St

Jt,v∑
j=1

n2
St,v

 T∑
t=T0+1

∑
v∈V \St

Jt,v∑
j=1

∥Xt,j,v∥2M−1
t−1,v


≤

√√√√( T∑
t=T0+1

∑
v∈V

dvn2
St,v

)(∑
v∈V

dv(dv + 1) · ln
(
R+ (T − T0)dv

Rdv

))
≤ ζ(G)D

√
(m+ n)(T − T0) ln (R+ (T − T0)D).

The last inequality holds since by the definition, √∑
v∈V

n2
St,v
≤ ζ(G).


	Introduction
	Preliminaries
	Notations
	Social Network
	Offline Influence Maximization
	Online Influence Maximization

	OIM Algorithm under the IC Model
	Regret Analysis
	Conclusion
	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Proof of Lemma 1
	Proof of Lemma 2

