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Abstract

Online in�uence maximization has attracted
much attention as a way to maximize in�u-
ence spread through a social network while
learning the values of unknown network pa-
rameters. Most previous works focus on
single-item di�usion. In this paper, we in-
troduce a new Online Competitive In�uence
Maximization (OCIM) problem, where two
competing items (e.g., products, news sto-
ries) propagate in the same network and in-
�uence probabilities on edges are unknown.
We adopt a combinatorial multi-armed ban-
dit (CMAB) framework for OCIM, but unlike
the non-competitive setting, the important
monotonicity property (in�uence spread in-
creases when in�uence probabilities on edges
increase) no longer holds due to the com-
petitive nature of propagation, which brings
a signi�cant new challenge to the problem.
We provide a nontrivial proof showing that
the Triggering Probability Modulated (TPM)
condition for CMAB still holds in OCIM,
which is instrumental for our proposed algo-
rithms OCIM-TS and OCIM-OFU to achieve
sublinear Bayesian and frequentist regret, re-
spectively. We also design an OCIM-ETC al-
gorithm that requires less feedback and easier
o�ine computation, at the expense of a worse
frequentist regret bound. Experimental eval-
uations demonstrate the e�ectiveness of our
algorithms.
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1 Introduction

In�uence maximization, motivated by viral market-
ing applications, has been extensively studied since
Kempe et al. (2003) formally de�ned it as a stochas-
tic optimization problem: given a social network G
and a budget k, how should a set of k seed nodes
in G be chosen such that the expected number of �-
nal activated nodes under a given di�usion model is
maximized? They proposed the well-known Indepen-
dent Cascade (IC) and Linear Threshold (LT) di�usion
models, and gave a greedy algorithm that outputs a
(1−1/e−ε)-approximate solution for any ε > 0. How-
ever, they only considered a single item (e.g., product,
idea) propagating in the network. In reality, di�er-
ent items could propagate concurrently in the same
network, interfering with each other and leading to
competition during propagation. Several competitive
di�usion models (Carnes et al., 2007; Bharathi et al.,
2007; Budak et al., 2011; He et al., 2012; Ivanov et al.,
2017) have been proposed for this setting. We use a
Competitive Independent Cascade (CIC) model (Chen
et al., 2013), which extends the classical IC model to
multi-item in�uence di�usion. We consider the com-
petitive in�uence maximization problem between two
items from the �follower's perspective�: given the seed
nodes of the competitor's item, the follower's item
chooses a set of nodes so as to maximize the expected
number of nodes activated by the follower's item, re-
ferred to as the in�uence spread of the item.

We refer to the above problem as �o�ine� competitive
in�uence maximization, since the in�uence probabili-
ties on edges, i.e., the probabilities of an item's prop-
agation along edges, are known in advance. It can
be solved by a greedy algorithm due to submodular-
ity (Chen et al., 2013). However, in many real-world
applications, the in�uence probabilities on edges are
unknown. We study the competitive in�uence maxi-
mization in this setting, and call it the Online Com-
petitive In�uence Maximization (OCIM) problem. In
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Table 1: Summary of the proposed algorithms.

Algorithm No Prior? O�ine computation Feedback Regret

OCIM-TS × Standard Full propagation Bayes. O(
√
T lnT )

OCIM-OFU X Hard Full propagation Freq. O(
√
T lnT )

OCIM-ETC X Standard Direct out-edges Freq. O(T
2
3 (lnT )

1
3 )

OCIM, the in�uence probabilities on edges need to be
learned through repeated in�uence maximization tri-
als: in each round, given the seed nodes of the com-
petitor, we (i) choose k seed nodes; (ii) observe the
resulting di�usion that follows the CIC model to up-
date our knowledge of the edge probabilities; and (iii)
obtain a reward, which is the total number of nodes
activated by our item. Our goal is to choose the seed
nodes in each round based on previous observations so
as to maximize the cumulative reward.

Most previous studies on the online non-competitive
in�uence maximization problem use a combinatorial
multi-armed bandit (CMAB) framework (Chen et al.,
2016; Wen et al., 2017), an extension of the classical
multi-armed bandit problem that captures the trade-
o� between exploration and exploitation in sequential
decision making. In CMAB, a player chooses a com-
binatorial action to play in each round, observes a set
of arms triggered by this action and receives a reward.
The player aims to maximize her cumulative reward
over multiple rounds, navigating a tradeo� between ex-
ploring unknown actions/arms and exploiting the best
known action. CMAB algorithms must also deal with
an exponential number of possible combinatorial ac-
tions, which makes exploring all actions infeasible.

Our Contributions. To the best of our knowledge,
we are the �rst to study the online competitive in�u-
ence maximization problem. We introduce a general
contextual combinatorial multi-armed bandit frame-
work with probabilistically triggered arms (C2MAB-
T) for OCIM. Within this framework, OCIM presents
a new challenge: the key monotonicity property (in-
�uence spread increases when in�uence probabilities
on edges increase) no longer holds due to the competi-
tive nature of propagation, and thus upper con�dence
bound (UCB) based algorithms (Chen et al., 2016;
Wen et al., 2017) cannot be directly applied to OCIM.
Such non-monotonicity also complicates the analysis
of the important Triggering Probability Modulated
(TPM) condition for CMAB (Wang and Chen, 2017),
and we provide a non-trivial new proof to show it still
holds for OCIM. We are the �rst to identify the OCIM
problem as a natural CMAB problem without mono-
tonicity and tackle it from three directions, provid-
ing three solutions with di�erent tradeo�s, as shown

in Table 1: OCIM-TS uses standard o�ine oracles to
achieve good Bayesian regret, but requires prior knowl-
edge of edge probabilities; OCIM-OFU has a stronger
frequentist regret bound without prior knowledge, but
requires harder o�ine computation; and OCIM-ETC
uses standard o�ine oracles and fewer observations,
but leads to a worse frequentist regret bound. None
is a perfect solution for OCIM, but we believe their
tradeo�s shed light on the challenges involved in solv-
ing OCIM and even general CMAB problems without
monotonicity. Our regret analysis of OCIM-TS deli-
cately combines the key property of Thompson Sam-
pling (TS) with the TPM condition to tackle non-
monotonicity and allows any benchmark (exact, ap-
proximate, or even heuristic) oracle; our analysis of
OCIM-OFU and OCIM-ETC extends the analysis for
CMAB to a new contextual setting (C2MAB-T) where
the contexts are de�ned as the feasible sets of su-
per arms and are not bonded with base arms. We
also discuss the extension of our framework to settings
with more complex competitor actions. Experiments
on two real-world datasets demonstrate the e�ective-
ness of our proposed algorithms. Due to the space
constraint, we discuss important insights of our proofs
and move the complete proofs as well as the results for
the general C2MAB-T problem to the Appendix.

Related Work. Kempe et al. (2003) formally de�ned
the in�uence maximization problem in their seminal
work. Since then, the problem has been extensively
studied (Li et al., 2018). Borgs et al. (2014) presented
a breakthrough approximation algorithm that runs in
near-linear time, which was improved by a series of
algorithms (Tang et al., 2015; Nguyen et al., 2016;
Tang et al., 2018). A number of studies (Carnes et al.,
2007; Bharathi et al., 2007; Budak et al., 2011; He
et al., 2012; Lin and Lui, 2015; Ivanov et al., 2017)
addressed competitive in�uence maximization prob-
lems where multiple competing sources propagate in
the same network. Carnes et al. (2007) proposed the
distance-based and wave propagation models, and con-
sidered the in�uence maximization problem from the
follower's perspective. Bharathi et al. (2007) consid-
ered the CIC model and gave an algorithm for com-
puting the best response to an opponent's strategy.

When the in�uence probabilities of edges are un-
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known, the non-competitive online in�uence maxi-
mization problem has been extensively studied (Chen
et al., 2016; Wang and Chen, 2017; Wen et al., 2017;
Wu et al., 2019; Vaswani et al., 2017; Perrault et al.,
2020). Chen et al. (2016) studied the problem under
the IC model and proposed a general CMAB frame-
work. We introduce a new contextual extension of
CMAB, called C2MAB-T, di�erent from the contex-
tual CMAB studied by Chen et al. (2018) and Qin
et al. (2014): they consider the context features of all
base arms and assume the action space of super arms is
a subset of all base arms, while we consider the feasible
set of super arms as the context, which is more �exible
than a subset of all base arms. Wang and Chen (2017)
introduced a triggering probability modulated (TPM)
bounded smoothness condition to remove an undesired
factor in the regret bound of Chen et al. (2016). Per-
rault et al. (2020) introduced a budgeted online in�u-
ence maximization framework, where marketers opti-
mize their seed sets under a budget rather than a cardi-
nality constraint. Our OCIM-TS algorithm is similar
to the Combinatorial Thompson Sampling (CTS) al-
gorithm of Wang and Chen (2018). However, CTS
requires an exact oracle and has frequentist regret
bound, while OCIM-TS allows any benchmark ora-
cle and has Bayesian regret bound. Hüyük and Tekin
(2020) studied the Bayesian regret of CTS for CMAB,
but they also require an exact oracle and a mono-
tonicity assumption that does not hold for OCIM. Our
Bayesian regret analysis is also di�erent from that of
Russo and Van Roy (2016): they only study a simple
special CMAB problem, while we provide the regret
bound for general C2MAB-T instances, including the
OCIM problem.

2 OCIM Formulation

In this section we present the formulation of OCIM.
We �rst introduce the traditional competitive in�u-
ence maximization problem, and then discuss its on-
line extension where edge probabilities are unknown.

2.1 Competitive Independent Cascade Model

We consider a Competitive Independent Cascade
(CIC) model, which is an extension of the classical IC
model to multi-item in�uence di�usion. A network is
modeled as a directed graph G = (V,E) with n = |V |
nodes and m = |E| edges. Every edge (u, v) ∈ E is
associated with a probability p(u, v). There are two
items, A and B, trying to propagate in G from their
own seed sets SA and SB . The in�uence propagation
runs as follows: nodes in SA (resp. SB) are activated
by A (resp. B) at step 0; at each step s ≥ 1, a node
u activated by A (resp. B) in step s− 1 tries to acti-

vate each of its inactive out-neighbors v to be A (resp.
B) with an independent probability p(u, v) that is the
same for A and B (i.e., we consider a homogeneous
CIC model). The homogeneity assumption is reason-
able since typically A and B are two items of the same
category (thus competing), so they are likely to have
similar propagation characteristics.

If two in-neighbors of v activated by A and B respec-
tively both successfully activate v at step s, then a
tie-breaking rule is applied at v to determine the �-
nal adoption. In this paper, we consider two types
of tie-breaking rules: dominance (Budak et al., 2011)
and proportional (Chen et al., 2011) tie-breaking rules.
Dominance tie-breaking with A > B (resp. B > A)
means v will always adopt A (resp. B) in a competi-
tion. Proportional tie-breaking means that if there are
nA in-neighbors activated by A and nB in-neighbors
activated by B trying to activate v at the same step,
the probability that v adopts A (resp. B) is nA

nA+nB

(resp. nB

nA+nB
). The same tie-breaking rule also ap-

plies to the case when a node u is selected both as an
A-seed and a B-seed. The process stops when no nodes
activated at a step s have inactive out-neighbors.

We consider the follower's perspective in the optimiza-
tion task: let A be the follower and B be the competi-
tor. Then given SB , our goal is to choose at most k
seed nodes inG as SA to maximize the in�uence spread
of A, denoted as σA(SA, SB), which is the expected
number of nodes activated by A after the propagation
ends. According to Budak et al. (2011)'s result, the
above optimization task under the homogeneous CIC
model with the dominance tie-breaking rule has the
monotone and submodular properties, and thus can
be approximately solved by a greedy algorithm.

2.2 OCIM Model

In the online competitive in�uence maximization
(OCIM) problem, the edge probabilities p(u, v)'s are
unknown and need to be learned: in each round t,
given S(t)

B , we can choose up to k seed nodes as S(t)
A ,

observe the whole propagation of A and B that follows
the CIC model, and obtain the reward, which is the
number of nodes �nally activated by A in this round.
The propagation feedback observed is then used to up-
date the estimates on edge probabilities p(u, v)'s, so
that we can achieve better in�uence maximization re-
sults in subsequent rounds. Our goal is to accumulate
as much reward as possible through this repeated pro-
cess over multiple rounds.

We introduce a new contextual combinatorial multi-
armed bandit framework with probabilistically trig-
gered arms (C2MAB-T) for the OCIM problem, which
is a contextual extension of CMAB-T from Wang and
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Chen (2017). In OCIM, the set of edges E is the set of
(base) arms [m] = {1, ...,m}, and their outcomes fol-
low m independent Bernoulli distributions with expec-
tation µe = p(u, v) for all e = (u, v) ∈ E. We denote
the independent samples of arms in round t as X(t) =

(X
(t)
1 , . . . , X

(t)
m ) ∈ {0, 1}m, where X(t)

i = 1 means the

i-th edge is on (or live) and X(t)
i = 0 means the i-th

edge is o� (or blocked) in round t, and thus X(t) cor-
responds to the live-edge graph (Kempe et al., 2003)
in round t. We consider the seed set of the competitor,
S

(t)
B , as the context in round t since it is determined

by the competitor and can a�ect our choice of S(t)
A .

We de�ne S(t) =
{
S | S = (S

(t)
A , S

(t)
B ), |S(t)

A | ≤ k
}
as

the action space in round t and S(t) ∈ S(t) as the real
action. We de�ne the triggered arm set τt as the set of
edges reached by the propagation from either S(t)

A or

S
(t)
B . Thus, τt is the set of edges (u, v) where u can be

reached from S(t) by passing through only edges e ∈ E
with X(t)

e = 1. The outcomes of X(t)
i for all i ∈ τt are

observed as the feedback. We denote the obtained re-
ward in round t as R(S(t), X(t)), which is the number
of nodes �nally activated by A. The expected reward
rS(t)(µ) = E[R(S(t), X(t))] is a function of the action
S(t) and the vector µ = (µ1, . . . , µm). Note that our
framework can also handle dynamic tie-breaking rules
over di�erent rounds, by treating the tie-breaking rule
as a part of the context. For ease of explanation, we
assume a �xed tie-breaking rule in this paper.

The performance of a learning algorithm A is mea-
sured by its expected regret, which is the di�erence
in expected cumulative reward between always play-
ing the best action and playing actions selected by al-
gorithm A. Let opt(t)(µ) = sup

S
(t)
A

rS(t)(µ) denote

the expected reward of the optimal action in round t.
Since the o�ine in�uence maximization under the CIC
model is NP-hard (Budak et al., 2011), we assume that
there exists an o�ine (α, β)-approximation oracle O,
which takes S(t)

B and µ as inputs and outputs an action
SO,(t) such that Pr{rSO,(t)(µ) ≥ α · opt(t)(µ))} ≥ β,
where α is the approximation ratio and β is the success
probability. Instead of comparing with the exact opti-
mal reward, we use the following (α, β)-approximation
frequentist regret for T rounds:

RegAα,β(T ;µ) =
∑T
t=1 α·β ·opt(t)(µ)−

∑T
t=1 rSA,(t)(µ),

(1)
where SA,(t) := (S

A,(t)
A , S

(t)
B ) is the action chosen by

algorithm A in round t. Here S(t)
B is the context and

S
A,(t)
A is the seed set of item A chosen by algorithm A.

Another way to measure the performance of the algo-
rithm A is using Bayesian regret (Russo and Van Roy,
2014). Denote the prior distribution of µ as Q (we

will discuss how to derive Q for OCIM in Section 4).
When the prior Q is given, the corresponding Bayesian
regret is de�ned as:

BayesRegAα,β(T ) = Eµ∼QRegAα,β(T ;µ). (2)

We will design algorithms to solve the OCIM problem
and bound their achieved Bayesian and frequentist re-
grets in Section 4 and Section 5, respectively. We also
discuss the general C2MAB-T problem and its solu-
tions in the Appendix.

3 Properties of OCIM

In this section, we �rst show that the key monotonicity
property for CMAB does not hold in OCIM. We then
prove that the important Triggering Probability Mod-
ulated (TPM) condition still holds, which is essential
for the analysis of all proposed algorithms.

3.1 Non-monotonicity

The monotonicity condition given by Wang and Chen
(2017) could be stated as follows in the context of
OCIM: for any action S = (SA, SB), for any two
expectation vectors µ = (µ1, . . . , µm) and µ′ =
(µ′1, . . . , µ

′
m), we have rS(µ) ≤ rS(µ′) if µi ≤ µ′i for

all i ∈ [m]. Figure 1 shows a simple example of OCIM
that does not satisfy the monotonicity condition. The
left and right nodes are the seed nodes of A and B; the
numbers below edges are in�uence probabilities. It is
easy to calculate that rS(µ) = µ1(1−µ2)+2, for both
dominance and proportional tie-breaking rules. Thus,
if we increase µ2, rS(µ) will decrease, which is con-
trary to monotonicity. In general, for every edge (u, v),
depending on the positions of the A- and B-seeds, in-
creasing the in�uence probability of (u, v) may bene�t
the propagation of A or may bene�t the propagation
of B and thus impair the propagation of A. Thus, the
in�uence spread of A has intricate connections with
the in�uence probabilities on the edges.

Figure 1: Example of non-monotonicity in OCIM

The lack of monotonicity poses a signi�cant challenge
to the OCIM problem. We cannot directly use UCB-
type algorithms (Chen et al., 2016), as they will not
provide optimistic solutions to bound the regret.
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3.2 Triggering Probability Modulated
(TPM) Bounded Smoothness

The lack of monotonicity further complicates the anal-
ysis of the Triggering Probability Modulated (TPM)
condition (Wang and Chen, 2017), which is crucial in
establishing regret bounds for CMAB algorithms. We
use pSi (µ) to denote the probability that the action S
triggers arm i when the expectation vector is µ. The
TPM condition in OCIM is given below.

Condition 1. (1-Norm TPM bounded smoothness).
We say that an OCIM problem instance satis�es 1-
norm TPM bounded smoothness, if there exists C ∈
R+ (referred to as the bounded smoothness coe�cient)
such that, for any two expectation vectors µ and µ′,
and any action S = (SA, SB), we have |rS(µ) −
rS(µ′)| ≤ C

∑
i∈[m] p

S
i (µ)|µi − µ′i|.

Fortunately, with a more intricate analysis, we are able
to show the following TPM condition.

Theorem 3.1. Under both dominance and propor-
tional tie-breaking rules, OCIM instances satisfy the
1-norm TPM bounded smoothness condition with co-
e�cient C = C̃, where C̃ is the maximum number of
nodes that any one node can reach in graph G.

The proof of the above theorem is one of the key
technical contributions of the paper. In the non-
competitive setting, an edge coupling method could
give a relatively simple proof for the TPM condition.1

The idea of edge coupling is that for every edge e ∈ E,
we sample a real number Xe ∈ [0, 1] uniformly at ran-
dom, and determine e to be live under µ if Xe ≤ µe
and blocked if Xe > µe, and similarly for µ′. This
couples the live-edge graphs L and L′ under µ and µ′

respectively. In the non-competitive setting, due to
the monotonicity property, we only need to consider
the TPM condition when µ ≥ µ′ (coordinate-wise),
and this implies that L′ is a subgraph of L, which
signi�cantly simpli�es the analysis. However, in the
competitive setting, monotonicity does not hold, and
we have to show the TPM condition for every pair of
µ and µ′. Thus, L and L′ no longer have the sub-
graph relationship. In this case, we have to show that
for every coupling L and L′, for every v ∈ V that is
activated by A in L but not activated by A in L′, it
is because either (a) some edge e = (u,w) is live in
L but blocked in L′ while u is A-activated (or equiv-
alently e is A-triggered); or (b) some edge e is live in
L′ but blocked in L while e is B-triggered. The case
(b) is due to the possibility of B blocking A's propa-
gation, a unique scenario in OCIM. The above claim

1The original proof in (Wang and Chen, 2017) occupies
several pages, but Li et al. (2020) (in their Appendix E)
provide a much shorter proof based on edge coupling.

Algorithm 1 OCIM-TS with o�ine oracle O
1: Input: m, O, Prior Q =

∏
i∈[m]Beta(ai, bi).

2: for t = 1, 2, 3, . . . do

3: For each arm i ∈ [m], draw a sample µ(t)
i from

Beta(ai, bi); let µ(t) = (µ
(t)
1 , · · · , µ(t)

m ).

4: Obtain context S(t)
B .

5: S(t) ← O(S
(t)
B ,µ(t)).

6: Play action S(t), which triggers a set τ ⊆ [m] of
base arms with feedback X(t)

i 's, i ∈ τ .
7: for all i ∈ τ do
8: ai ← ai +X

(t)
i ; bi ← bi + 1−X(t)

i .
9: end for
10: end for

needs nontrivial inductive proofs for dominance and
proportional tie-breaking rules, and then its correct-
ness ensures the TPM condition.

4 Bayesian Regret Approach

In our OCIMmodel, since the samples of base arms fol-
low Bernoulli distributions with mean vector µ, we can
assume the prior distributions of µ, Q, are Beta distri-
butions, where µi ∼ Beta(ai, bi) for all arm i. Given
the prior distributions of all arms, we propose an On-
line Competitive In�uence Maximization-Thompson
Sampling (OCIM-TS) algorithm, which is described
in Algorithm 1. We initialize the prior distribution of
each arm i to Beta(ai, bi). Then we take the context
S

(t)
B and the sampled µ(t) from prior distributions as

inputs to the oracle O, and get an output action S(t).
After taking this action, we get feedback X(t)

i 's from
all triggered arms i ∈ τ , then use them to update the
prior distributions of all triggered base arms in τ . Let
S̃ = {i ∈ [m] | pSi (µ) > 0} be the set of arms that
can be triggered by S. We de�ne K = maxS∈S(t) |S̃|
as the largest number of arms that could be triggered
by a feasible action. We provide the Bayesian regret
bound of OCIM-TS.

Theorem 4.1. The OCIM-TS algorithm has the fol-
lowing Bayesian regret bound with C̃ as de�ned in The-
orem 3.1:

BayesRegα,β(T ) ≤ O(C̃
√
mKT lnT ). (3)

This regret bound essentially matches the distribution-
independent frequentist regret bound of OCIM-OFU
in the next section. The proof of the above theorem
is inspired by the posterior sampling regret decom-
position of Russo and Van Roy (2014). However, we
combine the key property of posterior sampling with
the TPM condition in Theorem 3.1 to tackle non-
monotonicity. OCIM-TS can also be applied to gen-
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eral C2MAB-T problems and allows any benchmark
o�ine oracles (e.g., approximate or heuristic oracles).
We provide the Bayesian regret bound of OCIM-TS on
general C2MAB-T problems in the Appendix.

5 Frequentist Regret Approach

Although OCIM-TS can solve the OCIM problem with
a standard o�ine oracle (e.g., TCIM in Lin and Lui
(2015)), it requires the prior distribution of the net-
work parameter µ, which might not be available in
practice. In this section, we �rst propose the OCIM-
OFU algorithm. It achieves good frequentist regret
without the prior knowledge, but requires a new ora-
cle to solve a harder o�ine problem. We then design
the OCIM-ETC algorithm, which requires less feed-
back and easier o�ine computation, but yields a worse
frequentist regret bound.

5.1 OCIM-OFU Algorithm

As discussed in Section 3.1, due to the lack of mono-
tonicity, we cannot directly use UCB-type algorithms.
However, it is still possible to design bandit algorithms
following the principle of Optimism in the Face of Un-
certainty (OFU). We �rst introduce a new o�ine prob-
lem that jointly optimizes for both the seed set S∗

and the optimal in�uence probability vector µ∗, where
each dimension of µ∗, µ∗i , is searched within a con�-
dence interval ci, for all i ∈ E.

maximize
S,µ

rS(µ)

subject to |SA| ≤ k, S = (SA, SB)

µi ∈ ci, i = 1, . . . ,m.

(4)

We then de�ne a new o�ine (α, β)-approximation ora-
cle Õ to solve this problem. Oracle Õ takes SB and ci's
as inputs and outputs µÕ and action SÕ = (SÕA , SB),

such that Pr{rSÕ (µÕ) ≥ α · rS∗(µ∗)} ≥ β, where
(S∗,µ∗) is the optimal solution for Eq.(4).

With the o�ine oracle Õ, we propose an algorithm
following the principle of Optimism in the Face of Un-
certainty (OFU), named OCIM-OFU. The algorithm
maintains the empirical mean µ̂i and con�dence ra-
dius ρi for each edge probability. It uses the lower
and upper con�dence bounds to determine the range of
µi: ci =

[
(µ̂i − ρi)0+, (µ̂i + ρi)

1−], where we use (x)0+

and (x)1− to denote max{x, 0} and min{x, 1} for any
real number x. It feeds S(t)

B and all current ci's into the

o�ine oracle Õ to obtain the action S(t) = (S
(t)
A , S

(t)
B )

to play at round t. The con�dence radius ρi is large
if arm i is not triggered often, which leads to a wider
search space ci to �nd the optimistic estimate of µi.
We provide its frequentist regret bound.

Algorithm 2 OCIM-OFU with o�ine oracle Õ

1: Input: m, Oracle Õ.
2: For each arm i ∈ [m], Ti ← 0. {maintain the total

number of times arm i is played so far.}
3: For each arm i ∈ [m], µ̂i ← 1. {maintain the

empirical mean of Xi.}
4: for t = 1, 2, 3, . . . do

5: For each arm i ∈ [m], ρi ←
√

3 ln t
2Ti

. {the con�-

dence radius, ρi = +∞ if Ti = 0.}
6: For each arm i ∈ [m], ci ←[

(µ̂i − ρi)0+, (µ̂i + ρi)
1−]. {the estimated

range of µi.}
7: Obtain context S(t)

B .

8: S(t) ← Õ(S
(t)
B , c1, c2, . . . , cm).

9: Play action S(t), which triggers a set τ ⊆ [m] of
base arms with feedback X(t)

i 's, i ∈ τ .
10: For every i ∈ τ update Ti and µ̂i: Ti = Ti +

1, µ̂i = µ̂i + (X
(t)
i − µ̂i)/Ti.

11: end for

Theorem 5.1. The OCIM-OFU algorithm has the
following distribution-independent bound (see the Ap-
pendix for the distribution-dependent bound) with C̃
de�ned in Theorem 3.1 ,

Regα,β(T ;µ) ≤ O(C̃
√
mKT lnT )

The above regret bound has the typical form of√
T lnT , indicating that it is tight on the important

time horizon T . In fact, it has the same order as
in Wang and Chen (2017)'s for the CMAB problem
under monotonicity, despite the fact that the OCIM
problem does not enjoy monotonicity, and matches the
lower bound of CMAB with general reward functions
in (Merlis and Mannor, 2020). This result is due to
our non-trivial TPM condition analysis (Theorem 3.1)
that shows the same condition as in Wang and Chen
(2017)'s setting with monotonicity.

Computational E�ciency. We now discuss the
computational complexity of implementing the OCIM-
OFU algorithm. We show the complexity of the new
o�ine optimization problem in Eq. (4).

Theorem 5.2. The o�ine problem in Eq.(4) is #P-
hard.

As mentioned before, the original o�ine problem, i.e.,
maximizing rS(µ) over S when �xing µ, can be solved
by several algorithms (Lin and Lui, 2015) based on
submodularity of rS(µ) over S. A straightforward at-
tempt on the new o�ine problem in Eq.(4) is to show
the submodularity of g(S) = maxµ rS(µ) over S, and
then to use a greedy algorithm on g to select S. Un-
fortunately, we �nd that g(S) is not submodular (see
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the Appendix for a counterexample). Implementing
the oracle Õ is then a challenge. However, it is pos-
sible to design e�cient approximate oracles for bipar-
tite graphs, which model the competitive probabilistic
maximum coverage problem with applications in on-
line advertising (Chen et al., 2016). The main idea is
that we can pre-determine that either the lower or the
upper bound of ci is optimal and should be chosen as
µ∗i depending on the tie-breaking rule, then use exist-
ing e�cient in�uence maximization algorithms to get
approximate solutions. The competitive propagation
in the general graph is much more complicated, but
we have a key observation that the optimal solution
for the optimization problem in Eq.(4) must occur at
the boundaries of the intervals ci. Based on that, we
discuss solutions for some speci�c graphs such as trees.
See the Appendix for more details.

5.2 OCIM-ETC Algorithm

In this section, we propose an OCIM Explore-Then-
Commit (OCIM-ETC) algorithm. It has two advan-
tages: �rst, it does not need the new o�ine oracle
discussed in Sec. 5.1; and second, it requires fewer ob-
servations than our other algorithms: instead of the
observations of all triggered edges, i.e., τ , it only needs
the observations of all direct out-edges of seed nodes.

Like other ETC algorithms (Garivier et al., 2016),
OCIM-ETC divides the T rounds into two phases: an
exploration phase and an exploitation phase. In the
exploration phase, it chooses each node as the seed
node of A for N times. The exploration phase thus
takes dnN/ke rounds. In the exploitation phase, it
takes S(t)

B and the empirical means µ̂i as inputs to the
oracle O mentioned in Sec. 2, then plays the output
action SO,(t). We give its frequentist regret bound.

Theorem 5.3. The OCIM-ETC algorithm has the
following distribution-independent regret bound (see
the Appendix for the distribution-dependent bound)
with C̃ de�ned in Theorem 3.1, when N =
(C̃mk)

2
3n−

4
3T

2
3 (lnT )

1
3 ,

Regα,β(T ;µ) ≤ O((C̃mn)
2
3 k−

1
3T

2
3 (lnT )

1
3 ). (5)

Although this regret bound is worse than that of the
OCIM-OFU algorithm in Theorem 5.1, OCIM-ETC
requires easier o�ine computation and less feedback
since it only needs to observe the results of direct out-
edges of seed nodes, which shows the tradeo� between
regret bound and feedback/computation in OCIM.

6 Extension to Probabilistic Seed

Distribution for the Competitor

Lin and Lui (2015) extend the o�ine CIM problem to

a probabilistic setting where the competitor's seed dis-
tribution is known (i.e., the probability of each node
being selected as a seed by the competitor). In this
section, we extend our algorithms to handle two new
settings where the competitor has a probabilistic seed
distribution. Note that we need to slightly modify the
TPM condition for these settings. We denote the ex-
pected reward of follower A as r(SA, DB ,µ), where SA
is the seed set of A, DB is the seed distribution of B.
We use pi(SA, DB ,µ) to denote the probability that
either SA or SB will trigger arm i when the seed set of
A is SA, the seed set of B, SB , is sampled from DB ,
and the expectation vector is µ. The modi�ed TPM
condition is given below.

Condition 2. (Modi�ed TPM bounded smoothness).
We say that an OCIM problem instance satis�es
modi�ed TPM bounded smoothness, if there exists
C ∈ R+ such that, for any two expectation vectors
µ and µ′, and any seed set SA and seed distribu-
tion DB, we have |r(SA, DB ,µ) − r(SA, DB ,µ

′)| ≤
C
∑
i∈[m] pi(SA, DB ,µ)|µi − µ′i|.

With the similar analysis of Theorem 3.1, we can show
the following TPM condition when the competitor has
probabilistic seed distribution.

Theorem 6.1. Under both dominance and propor-
tional tie-breaking rules, OCIM instances satisfy the
modi�ed TPM bounded smoothness condition with co-
e�cient C = 2C̃, where C̃ is the maximum number of
nodes that any one node can reach in graph G.

Known dynamic seed distribution. In round
t, the competitor's seed set S(t)

B follows a distribu-

tion D
(t)
B , i.e., S(t)

B ∼ D
(t)
B . However, the follower

only knows D(t)
B but not S(t)

B before choosing S
(t)
A .

Since our proposed framework has a nice separation
between online learning and o�ine computation, in
this setting, only the o�ine computation part will
be a�ected. Speci�cally, we can replace the oracle
O(S

(t)
B ,µ(t)) in OCIM-TS and OCIM-ETC with a new

oracle Onew(D
(t)
B ,µ(t)). For OCIM-OFU, similar to

oracle Õ, we need a new oracle Õnew that takes D(t)
B

and the con�dence intervals {ci} as inputs and out-
puts S(t)

A . We can use the TCIM algorithm of (Lin
and Lui, 2015) to design Onew and Õnew. Our pro-
posed algorithms will have the same regret bounds as
in Theorems 4.1 and 5.1.

Unknown �xed seed distribution. In this setting,
the seed distribution of the competitor, DB , is un-
known to the follower but �xed for all rounds. To
solve this problem, we introduce a virtual B seed node
uB , which connects to each existing node u with an
unknown edge probability p(uB , u) equal to the prob-
ability of u being selected as a B seed. This reduces the
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case of probabilistic seed selection to the standard CIC
model with a known seed node uB . The unknown edge
probabilities p(uB , u)'s can be learned together with
the edge probabilities in the original graph. Therefore,
we do not need to know the competitor's seed selec-
tion in advance and can learn it over time through the
online learning process. Our algorithms will have the
same regret guarantees as in Theorems 4.1 and 5.1.

7 Experiments

Datasets and settings. To validate our theoretical
�ndings, we conduct experiments on two real-world
datasets widely used in the in�uence maximization lit-
erature, with detailed statistics summarized in Table 2.
First, we use the Yahoo! Search Marketing Advertiser
Bidding Data2 (denoted as Yahoo-Ad), which con-
tains a bipartite graph between 1, 000 keywords and
10, 475 advertisers. Every entry in the original Yahoo-
Ad dataset is a 4-tuple, which represents a �keyword-
id� bid by �advertiser-id� at �time-stamp� with �price�.
We extract advertiser-ids and keyword-ids as nodes,
and add an edge if the advertiser bids the keyword at
least once. Each edge shows the "who is interested in
what" relationship. This dataset will contain 11, 475
nodes and 52, 567 edges. The motivation of this exper-
iment is to select a set of keywords that is maximally
associated to advertisers, which is useful for the pub-
lisher to promote keywords to advertisers. We then
consider the DM network (Tang et al., 2009) with 679
nodes representing researchers and 3, 374 edges repre-
senting collaborations between them. We simulate a
researcher asking others (i.e., SA) to spread her ideas
while her competitor (i.e., SB) promotes a compet-
ing proposal. We set the parameters of our experi-
ments as the following. For the edge weights, Yahoo-
Ad uses the weighted cascade method (Kempe et al.,
2003), i.e. p(s, t) = 1/deg−(s), where deg−(s) is the
in-degree of node s, and weights for DM are obtained
by the learned edge parameters from (Tang et al.,
2009). For Bayesian regrets, we set a prior distribu-
tion of µe ∼ Beta(5we, 5(1−we)), where we is the true
edge weight as speci�ed above.

We model non-strategic and strategic competitors by
selecting the seed set SB uniformly at random (de-
noted as RD) or by running the non-competitive in-
�uence maximization algorithm (denoted as IM). In
our experiments, we set |SA| = |SB | = 5 for Yahoo-
Ad and |SA| = |SB | = 10 for the DM dataset, and
B > A. Since the optimal solution given the true edge
probabilities cannot be derived in polynomial time, for
Yahoo-Ad, we use the greedy solution as the optimal
baseline, which is a (1− 1/e, 1)-approximate solution.

2https://webscope.sandbox.yahoo.com

Table 2: Dataset Statistics

Network n m Average Degree

DM 679 3, 374 4.96
Yahoo-Ad 11, 475 52, 567 4.58

Table 3: Average Running Time (second/round)

Dataset OCIM-OFU OCIM-TS OCIM-ETC ε-greedy EMP

Yahoo-Ad 1.221 1.641 0.729 1.244 1.226
DM 1.142 1.195 0.621 1.173 1.125

For the DM dataset, we use the IMM solution as the
optimal baseline, which is a (1 − 1/e − ε, 1 − n−l)-
approximate solution. For frequentist regrets, we re-
peat each experiment 50 times and show the average
regret with 95% con�dence interval. For Bayesian re-
grets, we draw 5 problem instances according to the
prior distributions, conduct 10 experiments in each in-
stance and report the average Bayesian regret over the
50 experiments. Due to the space constraint, results
of other settings are provided in the Appendix.

Algorithms for comparison. For OCIM-TS, since
the true prior distribution is unknown for the frequen-
tist setting, we use the uninformative prior Beta(1, 1)
for each µe. For OCIM-OFU, we shrink its con�-
dence interval by αρ, i.e., ρi ← αρ

√
3 ln t/2Ti, to speed

up the learning. The role of αρ represents a tradeo�
between theoretical guarantees and real-world perfor-
mance. αρ ≥ 1 provides theoretical regret bounds for
the worst-case (i.e., our algorithms have sublinear re-
gret for any problem instance) and most of the bandit
literature gives regret analysis under this condition.
However, in practice, we often do not face the worst
problem instance. Taking a more aggressive αρ helps
speed up the learning empirically (Liu et al., 2021),
though the algorithms may incur linear regrets for bad
problem instances (which are likely rare in practice),
preventing us from achieving worst-case theoretical re-
gret bounds. We compare OCIM-OFU/OCIM-TS to
the ε-Greedy algorithm with parameter ε = 0 (denoted
as the EMP algorithm) and ε = 0.01, which inputs the
empirical mean into the o�ine oracle with 1− ε prob-
ability and otherwise selects SA uniformly at random.
The results of OCIM-ETC are moved to the Appendix
as it requires more rounds to learn than others.

Running time. We show the average running times
for di�erent algorithms in Table 3. For the Yahoo-Ad
dataset, OCIM-ETC is the fastest one as it only needs
to call the oracle for one time before the exploitation
phase. The running time of OCIM-TS is slower than
that of OCIM-OFU because it requires an extra sam-
pling procedure to generate Thompson samples. For
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(a) Yahoo-Ad, RD (b) Yahoo-Ad, IM

(c) DM, RD (d) DM, IM

Figure 2: Frequentist regrets of algorithms for bipar-
tite graph Yahoo-Ad and general graph DM.

the DM dataset, all algorithms consume less time since
the graph is smaller, but the relative order for di�erent
algorithms are preserved.

Experimental result for frequentist regrets Fig-
ures 2a and 2b show the results for Yahoo-Ad. First,
the regret of OCIM-OFU grows sub-linearly with re-
spect to round T for all αρ, consistent with Theo-
rem 5.1's regret bound. Second, we can observe that
OCIM-OFU is superior to EMP and ε-Greedy when
αρ = 0.05. When αρ = 0.2, OCIM-OFU may have
larger regret due to too much exploration. The OCIM-
TS algorithm has larger slope in regrets compared to
other algorithms. We speculate that such large slope
comes from the uninformative prior, which requires
more rounds to compensate for the mismatch of the
uninformative and the true priors.

The results on the DM dataset are shown in Figs. 2c
and 2d. Generally, they are consistent with those on
the Yahoo-Ad dataset: OCIM-OFU also grows sub-
linearly w.r.t round T . When αρ = 0.05, OCIM-OFU
has smaller regret than all baselines. Moreover, the
di�erence between OCIM-OFU and the baselines for
the non-strategic competitor (RD) is more signi�cant
than that of the strategic competitor's (IM), because
the non-strategic competitor is less �dominant� and
OCIM-OFU can carefully trade o� exploration and ex-
ploitation to maximize A's in�uence. OCIM-TS learns
faster and achieves better performance in this dataset
compared to that in the Yahoo-Ad dataset.

Experimental result for Bayesian regrets We
show Bayesian regrets of all algorithms in Figure 3. All
algorithms except for OCIM-TS have similar curves.
OCIM-TS, however, achieves at least two orders of

(a) Yahoo-Ad, RD (b) Yahoo-Ad, IM

(c) DM, RD (d) DM, IM

Figure 3: Bayesian regrets of algorithms for bipartite
graph Yahoo-Ad and general graph DM.

magnitudes lower regret (BayesReg(T ) ≈ 100) com-
pared with other algorithms. The reason is that
OCIM-TS leverages its prior knowledge to quickly con-
verge to the optimal solution, but other algorithms
cannot use this knowledge e�ectively.

8 Conclusion and Future Work

In this paper, we formulate the OCIM problem and
introduce a general C2MAB-T framework for it. We
prove that one important condition required by prior
CMAB algorithms, the TPM condition, still holds,
while the other one, monotonicity, is not satis�ed.
We propose three algorithms that balance between
prior knowledge, o�ine computation, feedback and
regret bound: OCIM-TS relies on prior knowledge
and achieves logarithmic Bayesian regret; OCIM-OFU
needs to solve a harder o�ine problem and achieves
logarithmic frequentist regret; and OCIM-ETC re-
quires less feedback at the expense of a worse frequen-
tist regret bound. We extend our framework to set-
tings with more complex competitor actions.

This paper initiates the �rst study on OCIM, and
it opens up a number of future directions. One is
to design e�cient o�ine approximation algorithms in
the competitive setting when edge probabilities take
a range of values. Another interesting direction is to
study other partial feedback models, e.g. we only ob-
serve feedback from edges triggered by A but not B.
A further direction is to look into distributed online
learning, when competitors A and B both learn from
the propagation and deploy their seeds accordingly.
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Appendix

A Proof of Theorem 3.1

Proof. Let rvS(µ) be the probability that node v is activated by A. From the proof of Lemma 2 in (Wang and
Chen, 2017), we know that if for every node v and every µ and µ′ vectors we have

|rvS(µ)− rvS(µ′)| ≤
∑
e∈E

pSe (µ) |µe − µ′e| , (6)

then Theorem 3.1 is true. Notice that

rvS(µ) = EL∼µ [1{v is activated by A under L}] (7)

rvS(µ′) = EL′∼µ′ [1{v is activated by A under L′}] (8)

where L and L′ are two live-edge graphs sampled under µ and µ′, respectively. As mentioned in Sec. 3.2, we
use an edge coupling method to compute the di�erence between rvS(µ) and rvS(µ′). Speci�cally, for each edge e,
suppose we independently draw a uniform random variable Xe over [0, 1], let

L(e) = L′(e) = 1, if Xe ≤ min(µe, µ
′
e)

L(e) = 1, L′(e) = 0, if µ′e < Xe < µe

L(e) = 0, L′(e) = 1, if µe < Xe < µ′e

L(e) = L′(e) = 0, if Xe ≥ max(µe, µ
′
e)

where L(e) represents the live/blocked state of edge e in live-edge graph L. Notice that L and L′ does not have
the subgraph relationship. Let X := (X1, . . . , Xe), the di�erence can be written as:

rvS(µ)− rvS(µ′) = EX [f(S,L, v)− f(S,L′, v)], (9)

where f(S,L, v) := 1{v is activated by A under L}. Since f(S,L, v) − f(S,L′, v) could be 0, 1 or -1, we will
discuss these cases separately.

1) f(S,L, v)− f(S,L′, v) = 0.
This will not contribute to the expectation.

2) f(S,L, v)− f(S,L′, v) = 1.
This will occur only if there exists a path such that: under L, v can be activated by A via this path, while under
L′, v cannot be activated by A via this path. We denote this event as E1. We will show that E1 occurs only if
at least one of EA1 and EB1 occurs.

EA1 : There exists a path u→ v1 → · · · → vd = v such that:
1. u is activated by A under both L and L′

2. edge (u, v1) is live under L but not L′

EB1 : There exists a path u′ → v′1 → · · · → v′d′ = v such that:
1. u′ is activated by B under both L and L′

2. edge (u′, v′1) is live under L′ but not L

Lemma A.1. E1 occurs only if at least one of EA1 and EB1 occurs.

Proof. Let us �rst discuss the relationship between E1, EA1 and EB1 . For E1, if v can be activated by A under L
but not L′, it is because either: (a) some edge e = (u,w) is live in L but blocked in L′ while u is A-activated
(or equivalently e is A-triggered); or (b) some edge e is live in L′ but blocked in L while e is B-triggered. The
former could be relaxed to EA1 , and the latter could be relaxed to EB1 . Notice that EA1 and EB1 are not mutually
exclusive and we are interested in the upper bound of P{E1}.
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Figure 4: Path P0, P1, P2 and P3

Assuming E1 is true, consider the shortest path P0 := {u0 → u1 → · · · → ul0 = v} from one seed node of A, u0,
to node v, such that under L node v is activated by A but under L′ it is not. When E1 is true, there must exist
a node that is not activated by A in P0 under L′. We denote the �rst node from u0 to v (i.e., closest to u0) in
P0 that is not activated by A under L′ as ui.

Next, let us consider the live/blocked state of edge (ui−1, ui). We already know edge (ui−1, ui) is live under L.
If edge (ui−1, ui) is blocked under L′, since ui−1 is activated by A under both L and L′, it directly becomes EA1 .
Otherwise, if edge (ui−1, ui) is live under L′, the reason that node ui is not activated by A could only be that it
is activated by B. In this case, there must exist a path P1 := {u′0 → u′1 → · · · → u′l1 = ui} from one seed node
of B, u′0, to node ui, such that ui is activated by B under L′ but not L. This can only occur when there exists a
node that is not activated by B in P1 under L. We denote the �rst node from u′0 to u′l1 (i.e., closest to u

′
0) in P1

that is not activated by B under L as u′j . Notice that when the tie-breaking rule is A > B, we have l1 < i ≤ l0
as B should arrive at ui earlier than A; when the tie-breaking rule is B > A, we have l1 ≤ i ≤ l0 as B should
arrive at ui no later than A. We will discuss the case of the proportional tie-breaking rule separately after the
discussion of the dominance tie-breaking rules.

Then, let us consider the live/blocked state of edge (u′j−1, u
′
j). We already know edge (u′j−1, u

′
j) is live under

L′. If edge (u′j−1, u
′
j) is blocked under L, since u′j−1 is activated by B under both L and L′, it directly becomes

EB1 . Otherwise, if edge (u′j−1, u
′
j) is live under L, the reason that node u′j is not activated by B could only be

that it is activated by A. It also means neither EA1 nor EB1 occurs so far. In this case, there must exist a path
P2 := {u′′0 → u′′1 → · · · → u′′l2 = u′j} from one seed node of A, u′′0 , to node u′j , such that u′j is activated by A
under L but not L′. This can only occur when there exists a node that is not activated by A in P2 under L′. We
denote the �rst node from u′′0 to u′′l2 (i.e., closest to u′′0) in P2 that is not activated by A under L′ as u′′k . Notice
that when A > B, we have l2 ≤ j ≤ l1 < l0 as A should arrive at u′j no later than B; when B > A, we have
l2 < j ≤ l1 ≤ l0 as A should arrive at u′j earlier than B.

Now let us consider the live/blocked state of edge (u′′k−1, u
′′
k). We already know edge (u′′k−1, u

′′
k) is live under L.
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If edge (u′′k−1, u
′′
k) is blocked under L′, since u′′k−1 is activated by A under both L and L′, it directly becomes EA1 .

Otherwise, if edge (u′′k−1, u
′′
k) is live under L′, the reason that node u′′k is not activated by A could only be that it

is activated by B. In this case, there must exist a path P3 := {u′′′0 → u′′′1 → · · · → u′′′l3 = u′′k} from one seed node
of B, u′′′0 , to node u

′′
k , such that u′′k is activated by B under L′ but not L. This can only occur when there exists

a node that is not activated by B in P3 under L. We denote the �rst node from u′′′0 to u′′′l3 (i.e., closest to u′′′0 )
in P3 that is not activated by B under L as u′′′s . Notice that when A > B, we have l3 < k ≤ l2 ≤ l1 as B should
arrive at u′′k earlier than A; when B > A, we have l3 ≤ k ≤ l2 < l1 as B should arrive at u′′k no later than A.

Again, let us consider the live/blocked state of edge (u′′′s−1, u
′′′
s ). We already know edge (u′′′s−1, u

′′′
s ) is live under

L′. If edge (u′′′s−1, u
′′′
s ) is blocked under L, since u′′′s−1 is activated by B under both L and L′, it directly becomes

EB1 . Otherwise, if edge (u′′′s−1, u
′′′
s ) is live under L, similar to the discussion above, we need to consider a new

path P4 with length l4 and l4 < l2.

For the case of the proportional tie-breaking rule, in addition to the edge coupling, we also need to couple the
permutation order (Chen et al., 2011) for each node in L and L′. More speci�c, for each node j, we randomly
permute all of its in-neighbors, then when we need to break a tie on j, we �nd its activated neighbor i that is
ordered �rst in the permutation order, and assign the state of i as j's state. Assuming the same permutation
order in L and L′, let us consider path P0 and P1 again. If l0 = l1, then ui must be v. If EA1 does not occur in P0,
then the only neighbor of v in P1 must be ordered before the only neighbor of v in P0 in the permutation order
on v. However, if EB1 does not occur in P1, with such permutation order, it is impossible that v is activated by
A under L but not L′. As a result, if neither EA1 nor EB1 occurs in path P0 and P1, we have l2 ≤ l1 < l0 in the
case of the proportional tie-breaking rule.

To sum up, if neither EA1 nor EB1 occurs in path P0 and P1, we need to check whether they could occur in a new
path P2 shorter than P0, and P3 shorter than P1. As a result, we only need to check whether EA1 or EB1 occurs
in the path with only one edge. In that case, EA1 or EB1 occurs for sure. Thus, by induction, we conclude that at
least one of EA1 and EB1 occurs when considering any path with more than one edge, so E1 will occur only if at
least one of EA1 and EB1 occurs.

Now, let us consider the two events in EA1 for a speci�c edge e = (u, v1). We �nd that the �rst event {u is
activated by A under both L and L′}, is independent of the second event {edge e is live under L but not L′},
since the live/blocked state of edge e does not a�ect the activation of its tail node u. Also, for edge e = (u, v1),
the probability of these two events can be written as

P{u is activated by A under L and L′} = P{e is triggered by A under L and L′}, (10)

P{e is live under L but not L′} =

{
µe − µ′e if µe > µ′e
0 otherwise.

(11)

As a result, we have:

P{EA1 } ≤
∑

e:µe>µ′e

P{e is triggered by A under L and L′}(µe − µ′e) (12)

Since EA1 and EB1 are symmetric, we also have:

P{EB1 } ≤
∑

e:µ′e>µe

P{e is triggered by B under L and L′}(µ′e − µe) (13)

Combining with Lemma. A.1, we have
P{E1} ≤ P{EA1 }+ P{EB1 } (14)

3) f(S,w1, v)− f(S,w2, v) = −1.
Similar to the previous case, this will occur only if there exists a path such that: under L′, v can be activated
by A via this path, while under L, v cannot be activated by A via this path. We denote this event as E−1. We
show that E−1 occurs only if at least one of EA−1 and EB−1 occurs.

EA−1: There exists a path u→ v1 → · · · → vd = v such that:
1. u is activated by A under both L and L′

2. edge (u, v1) is live under L′ but not L
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EB−1: There exists a path u
′ → v′1 → · · · → v′d′ = v such that:

1. u′ is activated by B under both L and L′

2. edge (u′, v′1) is live under L but not L′

Since they are symmetric with EA1 and EB1 , following the same analysis, we can get

P{EA−1} ≤
∑

e:µ′e>µe

P{e is triggered by A under L and L′}(µ′e − µe) (15)

P{EB−1} ≤
∑

e:µe>µ′e

P{e is triggered by B under L and L′}(µe − µ′e) (16)

P{E−1} ≤ P{EA−1}+ P{EB−1} (17)

Combining all cases together, we have:

|rvS(µ)− rvS(µ′)| = |EX [f(S,L, v)− f(S,L′, v)]|
≤ |1 · P{E1}+ (−1) · P{E−1}|
≤
∣∣1 · (P{EA1 }+ P{EB1 }

)
+ (−1) ·

(
P{EA−1}+ P{EB−1}

)∣∣
≤
∑
e∈E

P{e is triggered by A or B under L and L′} |µe − µ′e| . (18)

The last inequality above is due to:

|P{EA1 } − P{EB−1}| ≤
∑

e:µe>µ′e

P{e is triggered by A or B under L and L′}|µe − µ′e|

|P{EB1 } − P{EA−1}| ≤
∑

e:µ′e>µe

P{e is triggered by A or B under L and L′}|µe − µ′e|

Notice that Eq.(18) could be relaxed to:

|rvS(µ)− rvS(µ′)| ≤
∑
e∈E

P{e is triggered by A or B under L} |µe − µ′e|

≤
∑
e∈E

pSe (µ) |µe − µ′e| . (19)

B Proof of Theorem 4.1

Proof. We de�ne G(t) as the feedback of OCIM in round t, which includes the outcomes of X(t)
i for all i ∈ τt. We

denote by Ft−1 the history (S(1), G(1), · · · , S(t−1), G(t−1)) of observations available to the player when choosing
an action S(t). For the Bayesian analysis, we assume the mean vector µ follows a prior distribution Q. In
round t, given Ft−1, we de�ne the posterior distribution of µ as Q(t) (i.e., µ(t) ∼ Q(t) where µ(t) is given in
Alg. 1). As mentioned in Section 4, OCIM-TS allows any benchmark o�ine oracles, including approximation
oracles. We consider a general benchmark oracle O(SB ,µ). As oracle O might be a randomized policy (e.g.,
an (α, β)-approximation oracle with success probability β), we use a random variable ω ∼ Ω to represent all its
randomness. In order to discuss the performance of OCIM-TS with oracle O, we rewrite the Bayesian regret in
Eq.(2) as

BayesReg(T ) = Eω∼Ω,µ∼Q

[
T∑
t=1

(
rO(S

(t)
B ,µ)

(µ)− rO(S
(t)
B ,µt))

(µ)
)]

. (20)

Notice that O(S
(t)
B ,µ) is the action taken by the player if the true µ is known, while O(S

(t)
B ,µt) is the real

action chosen by OCIM-TS. The original regret de�nition in Eq.(2) is a special case of Eq.(20) for an (α, β)-
approximation oracle, and will focus on this general form in this proof.
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The key step to derive the Bayesian regret bound of OCIM-TS is to show that the conditional distributions of
µ and µt given Ft−1 are the same:

P(µ = · | Ft−1) = P(µt = · | Ft−1), (21)

which is true since we use Thompson sampling to update the posterior distribution of µ. With this �nding, we
consider the Bayesian regret in Eq.(2):

BayesReg(T )

=Eω∼Ω

[
T∑
t=1

Eµ∼Q,µt∼Qt

[
rO(S

(t)
B ,µ)

(µ)− rO(S
(t)
B ,µt)

(µ)
]]

(22)

=Eω∼Ω

[
T∑
t=1

EFt−1

[
Eµ∼Q,µt∼Qt

[
rO(S

(t)
B ,µ)

(µ)− rO(S
(t)
B ,µt)

(µ)
]
| Ft−1

]]
(23)

=Eω∼Ω

[
T∑
t=1

EFt−1

[
Eµ∼Q,µt∼Qt

[
rO(S

(t)
B ,µt)

(µt)− rO(S
(t)
B ,µt)

(µ)
]
| Ft−1

]]
(24)

=E

[
T∑
t=1

[
rO(S

(t)
B ,µt)

(µt)− rO(S
(t)
B ,µt)

(µ)
]]
, (25)

where Eq.(24) comes from applying Eq.(21) to Eq.(23). Let St = O(S
(t)
B ,µt) and Ct = {µ′ : |µ′i− µ̂i,t| ≤ ρi,t,∀i},

where ρi,t =
√

3 ln t/2Ti,t−1 and Ti,t−1 is the total number of times arm i is played until round t. We de�ne

∆St
= rSt

(µt)− rSt
(µ) and M =

√
576C̃2mK lnT/T . By Eq.(25), we have

BayesReg(T )

=E[

T∑
t=1

∆St
] (26)

≤E

[
T∑
t=1

∆StI{∆St ≥M,µt ∈ Ct,µ ∈ Ct,N t
t }

]
︸ ︷︷ ︸

(a)

+E[

T∑
t=1

∆StI{µt /∈ Ct}] + E[

T∑
t=1

∆StI{µ /∈ Ct}]︸ ︷︷ ︸
(b)

+ E[

T∑
t=1

∆StI{∆St ≤M}]︸ ︷︷ ︸
(c)

+E[

T∑
t=1

∆StI{¬N t
t }]︸ ︷︷ ︸

(d)

(27)

We can bound these three terms separately. For term (a), when µt ∈ Ct,µ ∈ Ct, we could bound |µi,t − µi| ≤
|µi,t − µ̂i,t|+ |µi − µ̂i,t| ≤ 2ρi,t,∀i. When ∆St

≥ M and N t
t (De�nition 7 in (Wang and Chen, 2017)) holds, by

the proof of Lemma 5 in (Wang and Chen, 2017), we have ∆St ≤
∑
i∈S̃t

κji,T (Mi, Ni,ji,t−1) where S̃t is the set
of arms triggered by St and κji,T (Mi, Ni,ji,t−1) is de�ned in (Wang and Chen, 2017). We have
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(a) = E

[
T∑
t=1

∆StI{∆St ≥M,µt ∈ Ct,µ ∈ Ct,N t
t }

]

≤ E

 T∑
t=1

∑
i∈S̃t

κji,T (Mi, Ni,ji,t−1)


≤ E

∑
i∈[m]

+∞∑
j=1

Ni,j,T−1∑
s=0

κj,T (M, s)



≤ 4C̃m+
∑
i∈[m]

576C̃2K lnT

M

For term (b), we can observe that E[I{µ ∈ Ct}|Ft−1] = E[I{µt ∈ Ct}|Ft−1], since Ct is determined given Ft−1,
and given Ft−1, µ and µt follow the same distribution. Since maxSt

∆St
≤ n, we have

(b) = E[

T∑
t=1

∆St
I{µt /∈ Ct}] + E[

T∑
t=1

∆St
I{µ /∈ Ct}]

≤ n

(
E[

T∑
t=1

I{µt /∈ Ct}] + E[

T∑
t=1

I{µ /∈ Ct}]

)

= n

(
E

[
T∑
t=1

E [I{µt /∈ Ct}|Ft−1]

])
+ n

(
E

[
T∑
t=1

E [I{µ /∈ Ct}|Ft−1]

])

= 2n

(
E

[
T∑
t=1

E [I{µ /∈ Ct}|Ft−1]

])

= 2n

(
E

[
T∑
t=1

I{µ /∈ Ct}

])

= 2n

(
T∑
t=1

P (µ /∈ Ct)

)

≤ 2π2mn

3

For term (c), we can bound it by

(c) = E[

T∑
t=1

∆StI{∆St ≤M}] ≤ TM

For term (d), similar to Eq.(20) in (Wang and Chen, 2017), we have

(d) = E[

T∑
t=1

∆StI{¬N t
t }] ≤

π2

6
·
∑
i∈[m]

jimax · n

Combine them together, we have

BayesReg(T ) ≤4C̃m+
∑
i∈[m]

576C̃2K lnT

M
+

2π2mn

3
+ TM +

π2

6
·
∑
i∈[m]

jmax(M) · n
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where jmax(M) =
⌈
log2

2C̃K
M

⌉
0
. Take M =

√
576C̃2mK lnT/T , we �nally get �nally get the Bayesian regret

bound of TS-OCIM:

BayesReg(T ) ≤ 12C̃
√
mKT lnT + 2C̃m+

(⌈
log2

T

18 lnT

⌉
0

+ 4

)
· π

2

6
· n ·m.

C Proof of Theorem 5.1

Proof. We �rst introduce the following de�nitions to assist our analysis. Recall that S(t) is the action space in
round t. We de�ne the reward gap ∆

(t)
S = max(0, α · opt(t)(µ) − rS(µ)) for all actions S ∈ S(t). For each base

arm i, we de�ne ∆i,T
max = maxt∈[T ] sup

S∈S(t):pSi (µ)>0,∆
(t)
S >0

∆
(t)
S and ∆i,T

min = mint∈[T ] inf
S∈S(t):pSi (µ)>0,∆

(t)
S >0

∆
(t)
S .

If there is no action S such that pSi (µ) > 0 and ∆
(t)
S > 0, we de�ne ∆i,T

max = 0 and ∆i,T
min = +∞. We de�ne

∆
(T )
max = maxi∈[m] ∆i,T

max and ∆
(T )
min = mini∈[m] ∆i,T

min. Let S̃ = {i ∈ [m] | pSi (µ) > 0} be the set of arms that can
be triggered by S. We de�ne K = maxS∈S(t) |S̃| as the largest number of arms could be triggered by a feasible

action. We use dxe0 to denote max{dxe, 0}. If ∆
(T )
min > 0, we provide the distribution-dependent bound of the

OCIM-OFU algorithm.

Regα,β(T ;µ) ≤
∑
i∈[m]

576C̃2K lnT

∆i,T
min

+ 4C̃m+
∑
i∈[m]

(⌈
log2

2C̃K

∆i,T
min

⌉
0

+ 2

)
· π

2

6 ·∆
(T )
max.

To prove the distribution-dependent and the distribution-independent regret bounds, we generally follow the
proof of Theorem 1 in Wang and Chen (2017). However, since we extend the original CMAB problem to a
new contextual setting where the action space S(t) is the context, and monotonicity does not hold in the OCIM
setting, we need to modify their analysis to tackle these changes. We introduce a positive real number Mi for
each arm i and de�ne MS(t) = maxi∈S̃(t) Mi. De�ne

κj,T (M, s) =


4 · 2−jC̃, if s = 0,

2C̃
√

72·2−j lnT
s , if 1 ≤ s ≤ `j,T (M),

0, if s ≥ `j,T (M) + 1,

where

`j,T (M) =

⌊
288 · 2−jC̃2K2 lnT

M2

⌋
.

Let N s
t be the event that at the beginning of round t, for every arm i ∈ [m], |µ̂i,t − µi| ≤ 2ρi,t. Let Ht be

the event that at round t oracle Õ outputs a solution, S(t) = {S(t)
A , S

(t)
B } and µ(t) = (µ

(t)
1 , . . . , µ

(t)
m ), such that

rS(t)(µ(t)) < α · rS∗(µ∗), i.e., oracle Õ fails to output an α-approximate solution. Let N t
t be the event that the

triggering is nice at the beginning of round t (De�nition 7 in (Wang and Chen, 2017)). The following lemma
explains how κ contributes to the regret.

Lemma C.1. For any vector {Mi}i∈[m] of positive real numbers and 1 ≤ t ≤ T , if {∆(t)

S(t) ≥ MS(t)},¬Ht,N s

t

and N t

t hold, we have

∆
(t)

S(t) ≤
∑
i∈S̃(t)

κji,T (Mi, Ni,ji,t−1),

where ji is the index of the TP group with S(t) ∈ Si,ji (see De�nition 5 in (Wang and Chen, 2017)).

Proof. By N s
t and 0 ≤ µi ≤ 1 for all i ∈ [m], we have

∀i ∈ [m], µi ∈ ci,t =
[
(µ̂i,t − ρi,t)0+, (µ̂i,t + ρi,t)

1−] . (28)
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It means that we have the correct estimated range of µi for all i ∈ [m] at round t. Combining with ¬Ht for the
o�ine oracle Õ, we have

rS(t)(µ(t)) ≥ α · rS∗(µ∗) ≥ α · opt(t)(µ) = rS(t)(µ) + ∆
(t)

S(t) . (29)

By the TPM condition in Theorem. 3.1, we have

∆
(t)

S(t) ≤ rS(t)(µ(t))− rS(t)(µ) ≤ C̃
∑
i∈[m]

pS
(t)

i (µ)|µ(t)
i − µi|. (30)

We want to bound ∆
(t)

S(t) by bounding pS
(t)

i (µ)|µ(t)
i −µi|. We �rst perform a transformation. Since ∆

(t)

S(t) ≥MS(t) ,

we have C̃
∑
i∈[m] p

S(t)

i (µ)|µ(t)
i − µi| ≥ ∆

(t)

S(t) ≥MS(t) . Then we have

∆
(t)

S(t) ≤ C̃
∑
i∈[m]

pS
(t)

i (µ)|µ(t)
i − µi|

≤ −MS(t) + 2C̃
∑
i∈[m]

pS
(t)

i (µ)|µ(t)
i − µi|

≤ 2C̃
∑
i∈[m]

[
pS

(t)

i (µ)|µ(t)
i − µi| −

Mi

2C̃K

]
. (31)

In fact, if N s
t holds and µ(t)

i ∈ ci,t for all i ∈ [m],

∀i ∈ [m], |µ(t)
i − µi| ≤ 2ρi,t = 2

√
3 ln t

2Ti,t−1
. (32)

So far, all requirements on bounding ∆St in Lemma 5 from (Wang and Chen, 2017) are also satis�ed by ∆
(t)

S(t) of
OCIM-OFU algorithm in the OCIM setting without monotonicity. We can then follow the same steps to bound
pS

(t)

i (µ)|µ(t)
i − µi| in the two cases they considered (combining their Eq.(11)-(13)) and get

∆
(t)

S(t) ≤ 2C̃
∑
i∈[m]

[
pS

(t)

i (µ)|µ(t)
i − µi| −

Mi

2C̃K

]
≤
∑
i∈S̃(t)

κji,T (Mi, Ni,ji,t−1).

With Lemma C.1, we can follow the proof of Lemma 6 in (Wang and Chen, 2017) to bound the regret when
{∆(t)

S(t) ≥MS(t)},¬Ht,N s
t and N t

t hold.

Reg({∆(t)

S(t) ≥MS(t)} ∧ ¬Ht ∧N s
t ∧N t

t ) ≤
∑
i∈[m]

576C̃2K lnT

Mi
+ 4C̃m. (33)

Finally, we take Mi = ∆i,T
min. If ∆

(t)

S(t) < MS(t) , then ∆
(t)

S(t) = 0, since we have either S̃(t) = ∅ or ∆
(t)

S(t) < MS(t) ≤
Mi for some i ∈ S̃(t). Thus, no regret is accumulated when ∆

(t)

S(t) < MS(t) . Following Eq.(17)-(21) in (Wang and
Chen, 2017), we can derive the distribution-dependent regret bound

Regα,β(T ;µ) ≤
∑
i∈[m]

576C̃2K lnT

∆i,T
min

+ 4C̃m+
∑
i∈[m]

(⌈
log2

2C̃K

∆i,T
min

⌉
0

+ 2

)
· π

2

6 ·∆
(T )
max. (34)

To derive the distribution-independent bound, we takeMi = M =
√

(576C̃2mK lnT )/T , follow Eq.(23) in (Wang
and Chen, 2017) and get

Regα,β(T ;µ) ≤ 12C̃
√
mKT lnT + 2C̃m+

(⌈
log2

T
18 lnT

⌉
0

+ 2
)
· π

2

6 · n ·m. (35)
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D Computational E�ciency of OCIM-OFU

D.1 Proof of Theorem 5.2

Proof. In order to prove Theorem 5.2, we �rst introduce a new optimization problem denoted as P1: given S,
the new problem aims to �nd the optimal µi for one edge i to maximize rS(µ), while �xing the values of all
others. The following lemma shows it is #P-hard.

Lemma D.1. Given S and �xing µe for all e 6= i, �nding the optimal µi ∈ ci for one edge i that maximizes
rS(µ) is #P-hard.

Proof. We prove the hardness of this optimization problem via a reduction from the in�uence computation
problem. We �rst consider a general graph G0 with n nodes and m edges, where all in�uence probabilities on
edges are set to 1/2. Given SA, computing the in�uence spread of A in such a graph is #P-hard. Notice that
there is no seed set of B in G0. Now let us take one node v in G0 and denote its activation probability by A as
hA(G0, SA, v). Actually, computing hA(G0, SA, v) is also #P-hard and we want to show that it can be reduced
to our optimization problem in polynomial time.

Figure 5: Construction of G1 based on G0

We �rst construct a new graph G1 based on G0. For G1, we keep G0 and SA unchanged, then add several nodes
and edges as shown in Fig. 5. We add node 1 to the seed set of B and node 5 to the seed set of A, so the
joint action S = {SA ∪ {5}, SB = {1}}. In this new graph G1, we consider the optimization problem of �nding
the optimal µ1 (in�uence probability on edge (3, 4)) within its range c1 that maximizes rS(µ). Notice that the
in�uence probability γ on edge (1, 3) is a constant and µ1 would only a�ect the activation probability of node 4.
We denote the activation probability by A of node 4 as hA(G1, S, 4). In order to maximize rS(µ), we only need
to maximize hA(G1, S, 4). It can be written as:

hA(G1, S, 4) =
1

2

[
(1− γ) · hA(G1, S, v)− γ

]
· µ1 +

1

2
. (36)

It is easy to see hA(G1, S, 4) has a linear relationship with µ1, so the optimal µ1 could only be either the lower
or upper bound of its range c1. Assuming we can solve the optimization problem of �nding the optimal µ1,
then we can determine the sign of µ1's coe�cient in Eq.(36): if the optimal µ1 is the upper bound value in c1,
we have (1 − γ) · hA(G1, S, v) − γ ≥ 0; otherwise, (1 − γ) · hA(G1, S, v) − γ < 0. It means we can answer the
question that whether hA(G1, S, v) is larger (or smaller) than γ

1−γ . Notice that hA(G0, SA, v) = hA(G1, S, v), so
we can manually change the value of γ to check whether hA(G0, SA, v) is larger (or smaller) than x = γ

1−γ for
any x ∈ [0, 1], Recall that all edge probabilities in G0 are set to 1/2, so the highest precision of hA(G0, SA, v)
should be 2−m. Hence, we can use a binary search algorithm to �nd the exact value of hA(G0, SA, v) in at most
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m times. It means computing the activation probability of v in G0 can be reduced to the optimization problem
of �nding the optimal µ1 in G1, which completes the proof.

We then show that P1 is a special case of Eq.(4). The main idea is to relax the constraints |SA| ≤ k, S = {SA, SB}
in Eq.(4) and show that it can �nd the optimal µ for any given S. Consider a graph G with n nodes and a given
seed set S = {SA, SB}. We construct a new graph G′ by manually add additional n + 1 nodes pointing from
each seed node in SA. If we can solve the optimization problem Eq.(4) in the new graph G′, since SA must be
the optimal seed set of A and the added nodes will not a�ect the prorogation in G, we will also �nd the optimal
µi's in the original graph G for the given S. Then, it is easy to see P1 is a special case of Eq.(4) since P1 only
�nd the optimal µi for one edge i. With Lemma D.1, we know Eq.(4) is also #P-hard.

D.2 Non-submodularity of g(S)

In Section 5.1, we introduce g(S) = maxµ rS(µ), which is an upper bound function of rS(µ) for each S. If g(S)
is submodular over S, we can use a greedy algorithm on g(S) to �nd an approximate solution. However, the
following example in Fig. 6 shows that g(S) is not submodular.

Figure 6: Example showing that g(S) is not submodular

In Fig. 6, the numbers attached to edges are in�uence probabilities. Only the in�uence probability of edge (4, 8)
is a variable and we denote it as µ1. We assume µ1 ∈ [0, 1] and SB = {5}. Let us consider some choices of
SA. When SA is chosen as {0}, {0, 1} or {0, 2}, the optimal µ1 that maximizes rS(µ) is 1; when SA is chosen as
{0, 1, 2}, the optimal µ1 that maximizes rS(µ) is 0. Based on this observation, we can calculate g(S) (assuming
SB = {5}):

g(SA = {0}) = 2 +
17

24
,

g(SA = {0, 1}) = 5 +
17

24
× 4

5
,

g(SA = {0, 2}) = 5 +
17

24
× 4

5
,

g(SA = {0, 1, 2}) = 8 +
17

24
× 1

2
+

3

4
.

Thus we have
g(SA = {0, 1}) + g(SA = {0, 2}) < g(SA = {0}) + g(SA = {0, 1, 2}), (37)

which is contrary to submodularity.
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D.3 Bipartite Graph

We consider a weighted bipartite graph G = (L,R,E) where each edge (u, v) is associated with a probability
p(u, v). Given the competitor's seed set SB ⊆ L, we need to choose k nodes from L as SA that maximizes the
expected number of nodes activated by A in R, where a node v ∈ R can be activated by a node u ∈ L with an
independent probability of p(u, v). As mentioned before, if A and B are attempting to activate a node in L at the
same time, the result will depend on the tie-breaking rule. If all edge probabilities are �xed, i.e., µ is �xed, rS(µ)
is still submodular over SA, so we can use a greedy algorithm as a (1 − 1/e, 1)-approximation oracle Ogreedy.
Based on it, let us discuss the new o�ine optimization problem in Eq.(4) under our two tie-breaking rules: (1)
A > B: since B will never in�uence nodes in R earlier than A in bipartite graphs, and A will always win the
competition, from A's perspective, we can ignore SB to choose SA. In this case, all edge probabilities should take
the maximum values: for all i ∈ E, µi equals to the upper bound of ci, and we then use the oracle Ogreedy to �nd
SA. (2) B > A: since A will never in�uence nodes in R earlier than B in bipartite graphs, and B will always win
the competition, all out-edges of SB , denoted as ESB

, should take the minimum probabilities to maximize the
in�uence spread of A. All the other edges in E\ESB

should take the maximum probabilities. Formally, for all
i ∈ ESB

, µi equals to the lower bound of ci; for all i ∈ E\ESB
, µi equals to the upper bound of ci. We then use

the oracle Ogreedy to �nd SA. To sum up, in bipartite graphs, rS(µ) is optimized by pre-determining µ based
on the tie-breaking rule, and then using the greedy algorithm to get a (1− 1/e, 1)-approximation solution. Since
the time complexity of in�uence computation in the bipartite graph is O(m), the time complexity of the o�ine
algorithm is equal to that of the greedy algorithm, O(kmn).

D.4 General Graph

GraphWe The competitive propagation in the general graph is much more complicated, so it is hard to pre-
determine all edge probabilities as in the bipartite graph case. However, we have a key observation:

Lemma D.2. When �xing the seed set S = {SA, SB}, reward rS(µ) has a linear relationship with each µi (when
other µj's with j 6= i are �xed). This implies that the optimal solution for the optimization problem in Eq.(4)
must occur at the boundaries of the intervals ci's.

Proof. We can expand rS(µ) based on the live-edge graph model (Chen et al., 2013a):

rS(µ) =
∑
L

|ΓA(L, S)| · Pr(L) =
∑
L

|ΓA(L, S)|
∏

e∈E(L)

µe
∏

e/∈E(L)

(1− µe), (38)

where L is one possible live-edge graph (each edge e ∈ E is in L with probability µe and not in L with probability
1 − µe, and this is independent from other edges), ΓA(L, S) is the set of nodes activated by A from seed sets
S = {SA, SB} under live-edge graph L and E(L) is the set of edges that appear in live-edge graph L. Eq.(38)
shows that rS(µ) is linear with each µi, so the optimal µi must take either the minimum or the maximum value
in its range ci.

Lemma D.2 implies that for any edge e not reachable from B seeds, it is safe to always take its upper bound
value since it can only helps the propagation of A. This further suggests that if we only have a small number
(e.g. logm) of edges reachable from B, then we can a�ord enumerating all the boundary value combinations of
these edges. For each such boundary setting µ, we can use the IMM algorithm (Tang et al., 2014) to design
a (1 − 1/e − ε, 1 − n−l)-approximation oracle OIMM with time complexity TIMM = O((k + l)(m + n) log n/ε2).
We discuss such graphs that satisfy the above condition in directed trees. Speci�cally, we consider the in-
arborescence, where all edges point towards the root. For any node u in the in-arborescence, there only exists
one path from u to the root; if u is selected as the seed node of B, it could only propagate via this path. Hence,
if the depth of the in-arborescence is in the order of O(logm), the number of edges reachable from SB would be
O(|SB | · logm). In this case, we can use the IMM algorithm for O(m|SB |) combinations to obtain an approximate
solution with time complexity O(m|SB | · TIMM). Examples of such in-arborescences with depth O(logm) could
be the complete or full binary trees.

For general graphs, designing e�cient approximation algorithms for the o�ine problem in Eq. (4) remains a
challenging open problem, due to the joint optimization over S and µ and the complicated function form of
rS(µ). Nevertheless, heuristic algorithms are still possible. In the experiment section, we employee the following
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heuristic with the B > A tie-breaking rule: for all outgoing edges from B seeds, we set their in�uence probabilities
to their lower bound values, while for the rest, we set them to their upper bound values. This setting guarantees
that the �rst-level edges from the seeds are always set correctly, no matter how we select A seeds. They do not
guarantee the correctness of second or higher level edge settings in the cascade, but the impact of those edges to
in�uence spread decays signi�cantly, so the above choice is reasonable as a heuristic.

E Proof of Theorem 5.3

Algorithm 3 OCIM-ETC with o�ine oracle O
Proof. 1: Input: m, N , T , Oracle O.
2: For each arm i, Ti ← 0. {maintain the total number of times arm i is played so far.}
3: For each arm i, µ̂i ← 0. {maintain the empirical mean of Xi.}
4: Exploration phase:
5: for t = 1, 2, 3, . . . , dnN/ke do
6: Take k nodes that have not been chosen for N times as SA.
7: Observe the feedback X(t)

i for each direct out-edge of SA, i ∈ τdirect.
8: For each arm i ∈ τdirect update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X

(t)
i − µ̂i)/Ti.

9: end for
10: Exploitation phase:
11: for t = dnN/ke+ 1, . . . , T do

12: Obtain context S(t)
B .

13: S(t) ← O(S
(t)
B , µ̂1, µ̂2, . . . , µ̂m).

14: Play action S(t).
15: end for

The OCIM-ETC algorithm is described in Alg. 3. We utilize the following well-known tail bound in our proof.

Lemma E.1. (Hoe�ding's Inequality) Let X1, . . . , Xn be independent and identically distributed random variables
with common support [0, 1] and mean µ. Let Y = X1 + . . . ,+Xn. Then for all δ ≥ 0,

P {|Y − nµ| ≥ δ} ≤ 2e−2δ2/n.

Let µ̂ = (µ̂1, . . . , µ̂m) be the empirical mean of µ. Recall that oracle O takes S(t)
B and µ̂ as inputs and outputs a

solution S(t). Let us de�ne event F =
{
rS(t)(µ̂) < α · opt(t)(µ̂)

}
, which represents that oracle O fails to output

an α-approximate solution, and we know P(F) < 1− β.

With the same de�nitions in Appendix C, we can decompose the regret as:

Regα,β(T ;µ) ≤ dnN/ke ·∆(T )
max +

T∑
t=T−dnN/ke+1

[
αβ · opt(t)(µ)− E

[
rS(t)(µ̂)

]]

≤ dnN/ke ·∆(T )
max +

T∑
t=T−dnN/ke+1

[
αβ · opt(t)(µ)− β · E

[
rS(t)(µ̂) | ¬F

]]

≤ dnN/ke ·∆(T )
max +

T∑
t=T−dnN/ke+1

[
α · opt(t)(µ)− E

[
rS(t)(µ̂) | ¬F

]]
. (39)

Next, let us rewrite the TPM condition in Theorem 3.1. For any S, µ and µ′, we have

|rS(µ)− rS(µ′)| ≤ C
∑
i∈[m]

pSi (µ)|µi − µ′i|

≤ C
∑
i∈[m]

|µi − µ′i|

≤ Cm · max
i∈[m]

|µi − µ′i|, (40)
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where C is the maximum number of nodes that any one node can reach in graph G. Let S∗,tµ denote the optimal
action for µ in round t. Under ¬F , we have

rS(t)(µ̂) ≥ α · rS∗,tµ̂ (µ̂)

≥ α · rS∗,tµ (µ̂)

≥ α · rS∗,tµ (µ)− α · Cm · max
i∈[m]

|µi − µ̂i|

≥ rS(t)(µ) + ∆
(t)

S(t) − α · Cm · max
i∈[m]

|µi − µ̂i|, (41)

where the third inequality is due to Eq.(40). Combining Eq.(40) and Eq.(41) together, we have

∆
(t)

S(t) ≤ rS(t)(µ̂)− rS(t)(µ) + α · Cm · max
i∈[m]

|µi − µ̂i|

≤ (1 + α) · Cm · max
i∈[m]

|µi − µ̂i|. (42)

Let us de�ne δ0 :=
∆

(T )
min

2Cm . If maxi∈[m] |µi − µ̂i| < δ0, then we know S(t) is at least an α-approximate solution,

such that ∆
(t)

S(t) = 0. Then the regret in Eq.(39) can be written as

Regα,β(T ;µ) ≤ dnN/ke ·∆(T )
max +

(
T − dnN/ke

)
· 2m exp(−2Nδ2

0) ·∆(T )
max

≤
(
dnN/ke+ T · 2m exp(−2Nδ2

0)
)
·∆(T )

max. (43)

The �rst inequality is obtained by applying the Hoe�ding's Inequality (Lemma E.1) and union bound to the
event maxi∈[m] |µi − µ̂i| ≥ δ0. Now we need to choose an optimal N that minimizes Eq.(43). By taking

N = max
{

1, 1
2δ20

ln
4kmTδ20

C

}
= max

{
1, 2C2m2

(∆
(T )
min)2

ln(
kT (∆

(T )
min)2

C3m )

}
, when ∆

(T )
min > 0, we can get the distribution-

dependent bound

Regα,β(T ;µ) ≤ 2C2m2n∆
(T )
max

k(∆
(T )
min)2

(
max

{
ln

(
kT (∆

(T )
min)2

C2mn

)
, 0

}
+ 1

)
+
n

k
∆(T )

max, (44)

Next, let us prove the distribution-independent bound. Let N denote the event that |µ̂i − µi| ≤
√

2 lnT
N for all

i ∈ [m]. By the Hoe�ding's Inequality and union bound, we have

P{¬N} ≤ m · 2

T 4
≤ 2

T 3
. (45)

When N holds, with Eq.(42), we have

∆
(t)

S(t) ≤ 2Cm ·
√

2 lnT

N
, (46)

and the regret in Eq.(39) can be written as

Regα,β(T ;µ) ≤ dnN/ke · n+

T∑
t=T−dnN/ke+1

∆
(t)

S(t)

≤ dnN/ke · n+O

(
T · Cm ·

√
lnT

N

)
. (47)

We can choose N so as to (approximately) minimize the regret. For N = (Cmk)
2
3n−

4
3T

2
3 (lnT )

1
3 , we obtain:

Regα,β(T ;µ) ≤ O((Cmn)
2
3 k−

1
3T

2
3 (lnT )

1
3 ). (48)
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To complete the proof, we need to consider both N and ¬N . As shown in Eq.(45), the probability that ¬N
occurs is very small, and we have:

Regα,β(T ;µ) = E [Regα,β(T ;µ) | N ] · P{N}+ E [Regα,β(T ;µ) | ¬N ] · P{¬N}
≤ E [Regα,β(T ;µ) | N ] + T · n ·O(T−3)

≤ O((Cmn)
2
3 k−

1
3T

2
3 (lnT )

1
3 ). (49)

F Proof of Theorem 6.1

Proof. As mentioned in Section 6, we need to introduce a virtual B seed node uB , which connects to each existing
node u with an unknown edge probability p(uB , u) equal to the probability of u being selected as a B seed. By
adding these virtual nodes and edges, we get a new graph G′ with 2n nodes and m+ n edges. Since SB is �xed
under G′, we can follow the same steps in the proof of Theorem 3.1 to show the TPM condition holds under
G′. Note that the maximum number of nodes that any one node can reach in G′ is twice as that in the original
graph G, so the new bounded smoothness coe�cient C = 2C̃.

G Additional Experiments

G.1 Experiments for A > B Tie-breaking Rule

When we consider A > B in bipartite graphs, we can trivially ignore SB to choose SA since the in�uence spread
ends in one di�usion round, and OCIM becomes the online in�uence maximization problem without competition.
We show such results in Figure 7. Note that the distribution of B no longer a�ects the performance of A when
A > B and we only use one �gure for the IM and RD distribution. For general graphs, we use the same DM
dataset and parameter settings described in Sec. 7, and the only di�erence is that A now dominates B. We show
the results in Figure 8. Overall, the results and the analysis for A > B are consistent with B > A.

G.2 Experiments for OCIM-ETC

We show the frequentist/Bayesian regret results for the OCIM-ETC algorithm in Figure 9, Figure 10 and
Figure 11. In Figure 9, we set exploration phase to be 250 rounds and the experiments show that we su�er
linear regrets in both the exploration and the exploitation phase, meaning that the unknown parameters are
under-explored. Thus we reset exploration to be 1500 and Figure 11 shows that OCIM-ETC now has constant
regret in the exploitation phase. For DM dataset, since the node number and the edge number are less than
Yahoo-Ad, we can see constant regrets after 1000 rounds of exploration in Figure 10. Compared with OCIM-
OFU/OCIM-TS, OCIM-ETC requires more rounds to learn the unknown in�uence probabilities and has larger
regrets than OCIM-OFU/OCIM-TS, but with su�cient exploration (which is much less than the theoretical
requirements N = (C̃m)

2
3 (nk)−

1
3T

2
3 (lnT )

1
3 in Theorem 5.3) OCIM-ETC can yield constant regrets during the

exploitation phase in our experiments.

(a) Yahoo-Ad, Frequentist (b) Yahoo-Ad, Bayesian

Figure 7: Frequentist/Bayesian regrets of di�erent algorithms for the Yahoo-Ad graph when A > B.
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(a) DM, RD, Frequentist (b) DM, IM, Frequentist (c) DM, RD, Bayesian (d) DM, IM, Bayesian

Figure 8: Frequentist/Bayesian regrets of di�erent algorithms for the general graph DM when A > B.

(a) RD, Frequentist (b) IM, Frequentist (c) RD, Bayesian (d) IM, Bayesian

Figure 9: Frequentist/Bayesian regrets of OCIM-ETC for the Yahoo-Ad graph.

G.3 Experiments for Probabilistic Seed Distribution

For the settings where the competitor has unknown �xed seed distribution, we �rst run the non-competitive
in�uence maximization algorithm for SB . and get the best 5 seeds on Yahoo-Ad and the best 10 seeds on
DM, respectively, We then consider the seed distribution of SB as choosing each node from the best seeds with
probability 0.5, i.e., the probability that choosing all best 5 seeds on Yahoo-Ad is 0.55 and the probability that
choosing all best 10 seeds on DM is 0.510. This seed distribution of SB is unknown to our algorithms. In
our experiments, we set |SA| = 5 for Yahoo-Ad and |SA| = 10 for DM, and assume B > A. Figure 12 shows
that OCIM-OFU is still superior to EMP and ε-Greedy for this setting with more complex competitor actions.
We omit the results of OCIM-TS here as it requires the prior knowledge of the competitor's seed distribution.
However, as long as the given prior does not di�er much from the true prior, OCIM-TS will also achieve good
regret results.
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(a) RD, Frequentist (b) IM, Frequentist (c) RD, Bayesian (d) IM, Bayesian

Figure 10: Frequentist/Bayesian regrets of OCIM-ETC for the DM graph.

(a) RD, Frequentist (b) IM, Frequentist (c) RD, Bayesian (d) IM, Bayesian

Figure 11: Frequentist/Bayesian regrets of OCIM-ETC for the Yahoo-Ad graph with 1500 rounds of exploration.

(a) Yahoo-Ad (b) DM

Figure 12: Frequentist regrets for Yahoo-Ad and DM with unknown �xed competitor's seed distribution.
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H Contextual combinatorial multi-armed bandit framework C2MAB-T

H.1 General Framework

We propose a general framework of contextual combinatorial multi-armed bandit with probabilistically triggered
arms (C2MAB-T), which is a contextual extension of CMAB-T in (Wang and Chen, 2017).

C2MAB-T is a learning game between a learning player and an environment. The environment consists of m
random variables X1, · · · , Xm called base arms following a joint distribution D over [0, 1]m. Distribution D is
chosen by the environment from a class of distributions D before the game starts. The player knows D but
not the actual distribution D in advance. Di�erent from that in CMAB-T, the environment in C2MAB-T also
provides contexts for the learning agent, which will be discussed in detail later.

The learning process runs in discrete rounds. In round t, the environment �rst provides a context, S(t) ⊆ S, to
the player, where S is the full action space and S(t) is a subset of it, representing the current action space in
round t. The player then chooses an action S(t) ∈ S(t) based on the feedback history from previous rounds. The
environment also draws an independent sample X(t) = (X

(t)
1 , · · · , X(t)

m ) from the joint distribution D. When
action S(t) is played on the environment outcome X(t), a random subset of arms τt ∈ [m] are triggered, and the
outcomes of X(t)

i for all i ∈ τt are observed as the feedback to the player. τt may have additional randomness
beyond the randomness of X(t). Let Dtrig(S,X) denote a distribution of the triggered subset of [m] for a given
action S and an environment outcome X. We assume τt is drawn independently from Dtrig(S(t), X(t)). The
player obtains a reward R(S(t), X(t), τt) fully determined by S(t), X(t) and τt. A learning algorithm aims at
selecting actions S(t)'s over time based on the past feedback to accumulate as much reward as possible.

For each arm i, let µi = EX∼D[Xi]. Let µ = (µ1, · · · , µm) denote the expectation vector of arms. We assume that
the expected reward E[R(S,X, τ)], where the expectation is taken over X ∼ D and τ ∼ Dtrig(S,X), is a function
of action S and the expectation vector µ of the arms. Thus, we denote rS(µ) := E[R(S,X, τ)]. We assume the
outcomes of arms do not depend on whether they are triggered, i.e., EX∼D,τ∼Dtrig(S,X)[Xi | i ∈ τ ] = EX∼D[Xi].

The performance of a learning algorithm A is measured by its expected regret, which is the di�erence in expected
cumulative reward between always playing the best action and playing actions selected by algorithm A. Let
opt(t)(µ) = supS(t)∈S(t)(µ) denote the expected reward of the optimal action in round t. We assume that
there exists an o�ine oracle O, which takes context S(t) and µ as inputs and outputs an action SO,(t) such that
Pr{rSO,(t)(µ) ≥ α·opt(t)(µ))} ≥ β, where α is the approximation ratio and β is the success probability. Instead of
comparing with the exact optimal reward, we take the αβ fraction of it and use the following (α, β)-approximation
frequentist regret for T rounds:

RegAα,β(T ;µ) =
∑T
t=1 α · β · opt(t)(µ)−

∑T
t=1 rSA,(t)(µ), (50)

where SA,(t) is the action chosen by algorithm A in round t.

Another way to measure the performance of the algorithm A is using Bayesian regret. Denote the prior distri-
bution of µ as Q. When the prior Q is given, the corresponding Bayesian regret is de�ned as:

BayesRegAα,β(T ) = Eµ∼QRegAα,β(T ;µ). (51)

Note that the contextual combinatorial bandit problem is also studied in (Chen et al., 2018; Qin et al., 2014).
They consider the context features of all bases arms, which can a�ect their expected outcomes in each round,
and assume the action space of super arms is a subset of [m]. However, we do not bond the context with base
arms and consider the feasible set of super arms, S(t), as the context, which is more �exible than a subset of
[m]. Besides, we are the �rst to consider probabilistically triggered arms in the contextual combinatorial bandit
problem.

H.2 Monotonicity and Triggering Probability Modulated Condition

In order to guarantee the theoretical regret bounds, we consider two conditions given in (Wang and Chen, 2017).
The �rst one is monotonicity, which is stated below.

Condition 3. (Monotonicity). We say that a C2MAB-T problem instance satis�es monotonicity, if for any
action S, for any two expectation vectors µ = (µ1, . . . , µm) and µ′ = (µ′1, . . . , µ

′
m), we have rS(µ) ≤ rS(µ′) if

µi ≤ µ′i for all i ∈ [m].
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Algorithm 4 Contextual CUCB with o�ine oracle O, C2-UCB

1: Input: m, Oracle O.
2: For each arm i ∈ [m], Ti ← 0. {maintain the total number of times arm i is played so far.}
3: For each arm i ∈ [m], µ̂i ← 1. {maintain the empirical mean of Xi.}
4: for t = 1, 2, 3, . . . do

5: For each arm i ∈ [m], ρi ←
√

3 ln t
2Ti

. {the con�dence radius, ρi = +∞ if Ti = 0.}

6: For each arm i ∈ [m], µ̄i = min{µ̂i + ρi, 1}. {the upper con�dence bound.}
7: Obtain context S(t).
8: S(t) ← O(S(t), µ̄1, µ̄2, . . . , µ̄m).
9: Play action S(t), which triggers a set τ ⊆ [m] of base arms with feedback X(t)

i 's, i ∈ τ .
10: For every i ∈ τ update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X

(t)
i − µ̂i)/Ti.

11: end for

The second condition is Triggering Probability Modulated (TPM) Bounded Smoothness. We use pSi (µ) to
denote the probability that the action S triggers arm i when the expectation vector is µ. The TPM condition
in C2MAB-T is given below.

Condition 4. (1-Norm TPM bounded smoothness). We say that a C2MAB-T problem instance satis�es 1-norm
TPM bounded smoothness, if there exists C ∈ R+ (referred as the bounded smoothness coe�cient) such that, for
any two expectation vectors µ and µ′, and any action S, we have |rS(µ)− rS(µ′)| ≤ C

∑
i∈[m] p

S
i (µ)|µi − µ′i|.

H.3 Regret Bounds with Monotonicity

For the general C2MAB-T problem that satis�es both monotonicity (Condition 3) and TPM bounded smooth-
ness (Condition 4), we introduce a contextual version of the CUCB algorithm (Wang and Chen, 2017),
which is described in Algorithm 4. Recall that S(t) is the action space in round t. We de�ne the re-
ward gap ∆

(t)
S = max(0, α · opt(t)(µ) − rS(µ)) for all actions S ∈ S(t). For each arm i, we de�ne ∆i,T

min =

mint∈[T ] inf
S∈S(t):pSi (µ)>0,∆

(t)
S >0

∆
(t)
S and ∆i,T

max = maxt∈[T ] sup
S∈S(t):pSi (µ)>0,∆

(t)
S >0

∆
(t)
S . If there is no action S

such that pSi (µ) > 0 and ∆
(t)
S > 0, we de�ne ∆i,T

min = +∞ and ∆i,T
max = 0. We de�ne ∆

(T )
min = mini∈[m] ∆i,T

min and

∆
(T )
max = maxi∈[m] ∆i,T

max. Let S̃ = {i ∈ [m] | pSi (µ) > 0} be the set of arms that can be triggered by S. We de�ne

K = maxS∈S(t) |S̃| as the largest number of arms could be triggered by a feasible action. We use dxe0 to denote
max{dxe, 0}. Contextual CUCB (C2-UCB) has the following regret bounds.

Theorem H.1. For the Contextual CUCB algorithm C2-UCB (Algorithm 4) on an C2MAB-T problem satisfying

1-norm TPM bounded smoothness (Condition 4) with bounded smoothness constant C, (1) if ∆
(T )
min > 0, we have

a distribution-dependent bound

Regα,β(T ;µ) ≤
∑
i∈[m]

576C2K lnT

∆i,T
min

+ 4Cm+
∑
i∈[m]

(⌈
log2

2CK

∆i,T
min

⌉
0

+ 2

)
· π

2

6 ·∆
(T )
max, (52)

and (2) we have a distribution-independent bound

Regα,β(T ;µ) ≤ 12C
√
mKT lnT + 2Cm+

(⌈
log2

T
18 lnT

⌉
0

+ 2
)
·m · π

2

6 ·∆
(T )
max.

Proof. We �rst show that Lemma 5 in (Wang and Chen, 2017) still holds for Contextual CUCB algorithm in the
C2MAB-T problem. Let N s

t be the event that at the beginning of round t, for every arm i ∈ [m], |µ̂i,t−µi| ≤ ρi,t.
Let Ht be the event that at round t oracle O fails to output an α-approximate solution. In Lemma 5 from (Wang
and Chen, 2017), it assumes that N s

t and ¬Ht hold, then we have

rS(t)(µ̄t) ≥ α · opt(t)(µ̄t) ≥ α · opt(t)(µ) = rS(t)(µ) + ∆
(t)

S(t) . (53)

By the TPM condition, we have

∆
(t)

S(t) ≤ rS(t)(µ̄t)− rS(t)(µ) ≤ C
∑
i∈[m]

pS
(t)

i (µ)|µ̄i,t − µi|, (54)
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Algorithm 5 C2-TS with o�ine oracle O
1: Input: m, Prior Q, Oracle O.
2: Initialize Posterior Q1 = Q
3: for t = 1, 2, 3, . . . do
4: Draw a sample µ(t) from Qt.
5: Obtain context S(t)

6: S(t) ← O(S(t),µ(t)).
7: Play action S(t), which triggers a set τ ⊆ [m] of base arms with feedback X(t)

i 's, i ∈ τ .
8: Update posterior Qt+1 using X(t)

i for all i ∈ τ .
9: end for

Algorithm 6 C2-OFU with o�ine oracle Õ

1: Input: m, Oracle Õ.
2: For each arm i ∈ [m], Ti ← 0. {maintain the total number of times arm i is played so far.}
3: For each arm i ∈ [m], µ̂i ← 1. {maintain the empirical mean of Xi.}
4: for t = 1, 2, 3, . . . do

5: For each arm i ∈ [m], ρi ←
√

3 ln t
2Ti

. {the con�dence radius, ρi = +∞ if Ti = 0.}

6: For each arm i ∈ [m], ci ←
[
(µ̂i − ρi)0+, (µ̂i + ρi)

1−]. {the estimated range of µi.}

7: Obtain context S(t).
8: S(t) ← Õ(S(t), c1, c2, . . . , cm).
9: Play action S(t), which triggers a set τ ⊆ [m] of base arms with feedback X(t)

i 's, i ∈ τ .
10: For every i ∈ τ update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X

(t)
i − µ̂i)/Ti.

11: end for

which is in the same form of Eq.(10) in (Wang and Chen, 2017). Hence, we can follow the remaining proof of its
Lemma 5. With Lemma 5, we can follow the proof of Lemma 6 in (Wang and Chen, 2017) to bound the regret
when ∆

(t)

S(t) ≥ MS(t) , where MS(t) = maxi∈S̃(t) Mi and Mi is a positive real number for each arm i. Finally, we

take Mi = ∆i,T
min. If ∆

(t)

S(t) < MS(t) , then ∆
(t)

S(t) = 0, since we have either S̃(t) = ∅ or ∆
(t)

S(t) < MS(t) ≤Mi for some

i ∈ S̃(t). Thus, no regret is accumulated when ∆
(t)

S(t) < MS(t) . Following Eq.(17)-(22) in (Wang and Chen, 2017),
we can derive the distribution-dependent and distribution-independent regret bounds shown in the theorem.

H.4 Regret Bounds without Monotonicity

As discussed in Section 3, OCIM is an example of C2MAB-T that satis�es the TPM condition but not monotonic-
ity. For the general C2MAB-T problem without monotonicity, we proposed two algorithms, C2-TS, C2-OFU,
that can still achieve logarithmic Bayesian and frequentist regrets respectively. We also present C2-ETC that
has a tradeo� between feedback requirement and regret bound.

C2-TS is described in Algorithm 5. Di�erent from OCIM-TS, we input a general prior Q (which depends on D
and might not be Beta distributions anymore) and update the posterior distribution Qt accordingly. With the
same de�nitions in H.3 and δ(T )

max = maxµ∆
(T )
max, it has the following Bayesian regret bound.

Theorem H.2. For the C2-TS (Algorithm 5) on an C2MAB-T problem satisfying 1-norm TPM bounded smooth-
ness (Condition 4) with bounded smoothness constant C, we have the Bayesian regret bound

BayesRegα,β(T ) ≤ 12C
√
mKT lnT + 2Cm+

(⌈
log2

T
18 lnT

⌉
0

+ 4
)
·m · π

2

6 · δ
(T )
max, (55)

.

C2-OFU is described in Algorithm 6. Similar to OCIM-OFU, it requires an o�ine oracle Õ that takes the context
S(t) and ci's (ranges of µi's) as inputs and outputs an approximate solution S(t). With such an oracle, C2-OFU
has the following frequentist regret bounds.

Theorem H.3. For the C2-OFU (Algorithm 6) on an C2MAB-T problem satisfying 1-norm TPM bounded



Jinhang Zuo, Xutong Liu, Carlee Joe-Wong, John C.S. Lui, Wei Chen

Algorithm 7 C2-ETC with o�ine oracle O
1: Input: m, k, N , T , Oracle O.
2: For each arm i, Ti ← 0. {maintain the total number of times arm i is played so far.}
3: For each arm i, µ̂i ← 0. {maintain the empirical mean of Xi.}
4: Exploration phase:
5: for t = 1, 2, 3, . . . , dmN/ke do
6: Obtain context S(t).
7: Play action S(t) ∈ S(t), which contains k base arms that have not been chosen for N times.
8: Observe the feedback X(t)

i for each base arm in S(t), i ∈ τdirect.
9: For each arm i ∈ τdirect update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X

(t)
i − µ̂i)/Ti.

10: end for
11: Exploitation phase:
12: for t = dmN/ke+ 1, . . . , T do

13: Obtain context S(t).
14: S(t) ← O(S(t), µ̂1, µ̂2, . . . , µ̂m).
15: Play action S(t).
16: end for

smoothness (Condition 4) with bounded smoothness constant C, (1) if ∆
(T )
min > 0, we have a distribution-dependent

bound

Regα,β(T ;µ) ≤
∑
i∈[m]

576C2K lnT

∆i,T
min

+ 4Cm+
∑
i∈[m]

(⌈
log2

2CK

∆i,T
min

⌉
0

+ 2

)
· π

2

6 ·∆
(T )
max, (56)

and (2) we have a distribution-independent bound

Regα,β(T ;µ) ≤ 12C
√
mKT lnT + 2Cm+

(⌈
log2

T
18 lnT

⌉
0

+ 2
)
·m · π

2

6 ·∆
(T )
max.

Besides C2-TS and C2-OFU, we also provide a general explore-then-commit algorithm C2-ETC, as described in
Algorithm 7. In the general setting, τdirect is de�ned as the set of base arms that is deterministically triggered
by the action in question. C2-ETC is simple and only requires feedback from directly triggered arms, but it has
a worse regret bound and requires the following condition besides Condition 4.

Condition 5. For some k ≥ 1, given any context S(t) and any set S′ ⊆ [m] with |S′| = k, there exists S ∈ S(t)

such that pSi (µ) = 1 for every i ∈ |S′|.

With such a condition, C2-ETC has the following frequentist regret bounds.

Theorem H.4. For the C2-ETC (Algorithm 7) on an C2MAB-T problem satisfying Condition 5 and 1-norm

TPM bounded smoothness (Condition 4) with bounded smoothness constant C, (1) if ∆
(T )
min > 0, when N =

max

{
1, 2C2m2

(∆
(T )
min)2

ln(
kT (∆

(T )
min)2

C3m )

}
, we have a distribution-dependent bound

Regα,β(T ;µ) ≤ m
k ∆

(T )
max +

2C2m3∆(T )
max

k(∆
(T )
min)2

(
max

{
ln

(
kT (∆

(T )
min)2

C2m2

)
, 0

}
+ 1

)
(57)

and (2) when N = (Ck)
2
3m−

2
3T

2
3 (lnT )

1
3 , we have a distribution-independent bound

Regα,β(T ;µ) ≤ O(C
2
3m

4
3 k−

1
3T

2
3 (lnT )

1
3 ). (58)

The proofs of Theorem H.2, H.3 and H.4 generally follow the same steps in Appendix B, C and E.


