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Abstract—Brain-Computer Interface (BCI) technology may 

provide individuals with motor impairments or even the general 
population a new way to interact with the world around them. 
However, current BCI systems using electroencephalography 
(EEG) can be unreliable and produce large variations in 
performance. Most studies seek to improve performance by 
focusing on signal processing and classification techniques. 
However, it may also be beneficial to investigate different control 
strategies. For this reason, the main objective of this pilot study 
was to investigate the use of visual imagery, a control paradigm 
that has not been much tested for EEG BCI applications. Visual 
imagery may provide a more intuitive control strategy with a 
greater number of available classes than other popular imagery-
based methods such as motor imagery. Using this paradigm, we 
have demonstrated above chance binary classification accuracy 
(59.9%, p < 0.05) during offline decoding of face and scene visual 
imagery. Furthermore, the participant in this study achieved 
significantly above chance performance during a three-class, 
closed-loop BCI interaction (47.2%, p = 0.05). The initial results of 
this pilot study demonstrate the feasibility of using visual imagery 
as an alternative EEG BCI control paradigm. 

Keywords—visual imagery, brain-computer interface, EEG 

I. INTRODUCTION 
A brain-computer interface (BCI) is a technology that 

facilitates communication between the brain and an external 
device without input from peripheral nerves or muscles[1]–[3]. 
The BCI instead translates measured brain activity to a control 
signal that reflects the user’s intended action [4]. Such a device 
could allow an individual with movement impairments[5] or 
even the general public [6], [7] a new way to interact with the 
world around them. Electroencephalography (EEG) has been the 
most popular modality for measuring brain activity in BCI 
applications due to its high temporal resolution, ease of use, low 
cost, and portability [4]. However, there are currently various 
limitations that prevent EEG BCIs from achieving everyday use 
[4]. To create a BCI suitable for daily use, a control paradigm 
must first be selected that is easy to use and provides accurate 
and reliable predictions for the user’s intent. 

A. External Stimulation Based Paradigms 
Measuring the neural response to external stimulation is a 

popular control method that has generally provided high 
accuracy in decoding user’s intent from EEG data [4]. The 
visual P300 is one of the most well studied control strategies 
that captures the P300 event-related potential (ERP) that occurs 
as a response to an infrequently presented visual stimulus [4], 
[8]. The P300 is identified as a positive peak that usually occurs 
between 250 and 500 ms after the onset of an event [9]. One 
application of this paradigm is the popular P300 speller which 
allows participants to type words or phrases by fixing their gaze 
on a keyboard whose letters light up at different intervals [10]. 
By timing the occurrence of the P300 ERP with the changing 
intensity of one of the letters, the BCI can determine which 
letter the user intends to type.  

A similar paradigm known as the steady state visual evoked 
potential (SSVEP) presents participants with an array of targets 
flickering at different frequencies [4]. To select an action, the 
user is required to maintain their gaze on one of the targets. The 
intended target can then be decoded by matching the frequency 
in the user’s EEG data from the visual cortex with the frequency 
of the flickering target [11], [12]. While the use of an external 
stimulation can provide an accurate and reliable control 
paradigm, it is not feasible for use in all applications. These 
techniques require the user to maintain focus on a target 
stimulation that may not be directly associated with the task at 
hand. Furthermore, they often cause greater fatigue for 
participants due to the high level of attention and visual focus 
required to use the system [4], and they are not well suited for 
participants with visual impairments or photosensitivity [13]. 

B. Motor Imagery Based Paradigms 
Imagery based paradigms provide an alternative strategy 

that does not require the use of external stimulation. By far the 
most common imagery technique for BCI applications is motor 
imagery [4]. The sensorimotor rhythms (SMR) paradigm is one 
motor imagery technique that is defined as the imagined 
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movements of large body parts such as the hands, feet, or 
tongue [4]. This imagined movement causes event-related 
desynchronization in the mu (8-12 Hz) and beta (18-26 Hz) 
bands of brain activity in the sensorimotor cortex[14]. One 
major limitation for SMR based paradigms is the lengthy 
training times required for participants to learn to modulate the 
specific frequency bands of brain activity [4]. Additionally, 
SMR requires mapping an action to the imagined movement of 
a body part in a way that is not always intuitive [15], it is limited 
by the variety of available classes [16], and it is subject to large 
inter- and intra-subject variability in participant performance 
[17].  

Imagined body kinematics (IBK) is another motor imagery 
paradigm that uses the imagined movement of a single body 
part in a multidimensional space [4]. For example, a user can 
imagine moving their dominant hand to move a cursor on a 
computer screen as if they were using a computer mouse. The 
kinematic information from this paradigm is extracted from the 
low frequency (less than 1 Hz) components of the recorded 
brain activity [18]. The use of IBK in BCI applications is 
limited, but this paradigm may provide a more intuitive control 
scheme than SMR. However, these motor imagery approaches 
are susceptible to a phenomenon known as BCI illiteracy in 
which 15-30% of participants are unable to achieve proper BCI 
control despite adequate training time [19]. The cause of BCI 
illiteracy is still unknown, but it could possibly be due to a 
participant’s inability to modulate the specific component of 
brain activity necessary to control the BCI. An alternative 
possibility is that participants have difficulty transitioning from 
the training sessions to the online control sessions due to the 
nonstationarities in the EEG signal. EEG BCIs are susceptible 
to large performance variations between sessions due to factors 
such as fatigue, frustration, motivation, or changes in electrode 
positions [17]. 

C. Visual Imagery Paradigm 
Many previous studies have focused on improving BCI 

performance through advanced signal processing or 
classification techniques [20]. However, an often-overlooked 
solution is to investigate new control strategies [21], [22]. Visual 
imagery, or the manipulation of visual information from 
memory [23], could be a useful BCI control paradigm that has 
yet been relatively untested [24]. The human brain is visual by 
nature: 90% of the information transmitted by the brain is visual 
[25], and it can process images 60,000 times faster than text [24], 
[26]. Visual imagery may also be a more intuitive control 
strategy than any of the paradigms listed above [16]. For 
example, if a person would like to use a BCI system to control a 
light in their house, the user could directly imagine the lamp they 
would like to turn on instead of gazing at a flickering target or 
remembering which imagined movement for a limb corresponds 
to that light. Furthermore, visual imagery could potentially 
provide a near infinite number of available classes whereas you 
might be limited to only four or five possible classes with motor 
imagery [16].  

Several studies have shown that various categories of 
images (e.g., faces, animals, or inanimate objects) can be 
reliably distinguished using EEG when participants are visually 

observing (VO) a presented image [24], [27], [28]. However, 
very few studies have attempted to measure visual imagery 
using EEG, and those that do have shown mixed success [16], 
[24], [29]. Bobrov et al. [29] provides the first investigation into 
the use of visual imagery as a BCI control paradigm. In this 
study, they were able to reliably distinguish between imagery 
of faces, imagery of houses, and resting state with an average 
of 56% classification accuracy (chance 33%) across seven 
participants. In Kosmyna et al. [24], researchers performed 
offline classification between two classes of flower vs. hammer 
during visual observation and imagery. They were unable to 
achieve above chance accuracy between the two classes during 
imagery (average classification accuracy 52%, chance 50%), 
but they were able to distinguish a difference between the trials 
when participants performed visual imagery vs. rest (77% 
average classification accuracy; chance 50%) and between 
visual observation and imagery (71% classification accuracy; 
chance 50%). Lee et al. [16] was able to demonstrate a high 
average classification accuracy of around 40% (chance 7.69%; 
22 participants) in an offline analysis of 13 visual imagery 
categories of common words used for patient communication. 
This included words with concrete properties (e.g., ambulance, 
clock, or toilet) or abstract properties (e.g., hello, stop, or yes). 

It remains unclear why certain categories of images, such as 
faces and scenes, were able to be distinguished while other 
categories, such as flowers and hammers, could not. 
Additionally, because the use of visual imagery is still in its early 
stages, the aforementioned studies used substantially different 
task protocols, spatial and spectral features, and classification 
techniques which made a direct comparison difficult. For this 
reason, we attempted to recreate the experiments of Bobrov et 
al. [29] and Kosmyna et al. [24] using similar methodologies for 
each pair of image categories (flower vs hammer and face vs 
scene). We also attempted to expand upon this work by using 
visual imagery of face and scene categories in a closed-loop BCI 
application.  

II. METHODS 

A. Participants and Data Collection 
Due to the state regulations for mitigating the spread of the 

COVID-19 virus in place at the time of this experiment, only 
one individual participated in this pilot study (male; right 
handed; 26 years of age; previous BCI experience; no reported 
disabilities; corrected-to-normal vision). EEG data was 
collected using a Brain Products actiCap Xpress Twist with a 
wireless LiveAmp amplifier (Brain Products GmbH, Gilching, 
Germany). This headset features 32 dry electrode channels in the 
standard 10-20 electrode placement system with a 500 Hz 
sample rate. 

B. Experimental Protocol 
In this experiment, the participant was instructed to perform 

visual observation and imagery of flower, hammer, face, and 
scene images. The flower and hammer images used in this 
experiment were the same images from Kosmyna et al. [24]. The 
face and scene images were selected by the user from a dataset 
of recognizable face and scene pictures. The face images 
included famous actors and actresses, politicians, and athletes.  
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The scene images included famous landmarks or recognizable 
locales such as a beach or mountain. The full experiment 
included one offline session using flower and hammer stimuli, 
three offline sessions using face and scene stimuli, and one 
online BCI interaction session. 

The experimental task followed a similar procedure as the 
work of Kosymna et al. [24] and is presented in Fig. 1. Each trial 
of the offline sessions starts with the presentation of a green 
fixation cross in the center of the screen over a black background 
for 1 sec followed by a blank screen for 2 sec. Next, one of the 
images from the two categories appeared for a period of 4 sec. 
During this time, the participant was instructed to carefully 
observe the presented image. The image then disappeared for 4 
sec and the participant was instructed to imagine the picture that 
was previously displayed. The word REST was then displayed 
for 4 sec followed by a blank screen for 2 sec before the next 
trial began (Fig. 1A). Each offline session was divided into four 
runs of 20 trials where each image from the two target categories 
was presented ten times in a random order. After each run, the 
participant was allowed to take a brief pause before beginning 
the next run. 

In the real-time BCI testing session, we attempted to perform 
online classification of face and scene visual imagery. The first 
two runs were identical to the offline sessions to provide us with 
additional training data to initialize the visual imagery classifier 
(Fig. 1A). After the second run, the visual imagery classifier was 
trained using this data along with the data from the previous 
three training sessions using the face and scene categories. In the 
last two runs, each trial began with the fixation cross for 1 sec 
followed by a blank screen for 2 sec. Next, the participant was 
presented with a visual cue for 4 sec of the target imagery 
category to perform during that trial. The categories for this 
session included the selected face or scene images or the word 
REST. After the cue, the participant performed visual imagery 
of the target category or rested for a period of 4 sec. Feedback 
for the predicted category based on their neural data was then 
presented for 4 sec in the form of the words FACE, SCENE, or 
REST. Finally, a blank screen was presented for 2 sec before the 
start of the next trial (Fig. 1B). The last two real-time BCI runs 

each included six face trials, six scene trials, and six rest trials 
presented in a random order. 

C. EEG Preprocessing and Classification 
We tested offline classification during both the visual 

observation and imagery periods. For the visual observation 
classifier of flower and hammer, we included the data from the 
O1, O2, and Oz electrodes surrounding the visual cortex re-
referenced to the average of the TP9 and TP10 electrodes over 
the mastoids. For classification of face and scene, we used the 
data from electrodes O1, O2, Oz, P3, P4, Pz, P7, and P8. We 
applied a bandpass filter from 1-40 Hz and a notch filter at 60 
Hz to remove powerline noise. The first 0.5s of data from each 
observation trial was removed to eliminate any transition effects. 
The remaining 3.5s of data was epoched into three windows of 
1.75s with a 50% overlap. The full power spectrum in the 1-40 
Hz range was used as features to train a linear Support Vector 
Machine (SVM) classifier. The classification results were then 
cross-validated using a leave-one-run-out approach.  

For the visual imagery classifier, we included data from all 
32 electrodes except TP9 and TP10 that were used to re-
reference. Previous literature suggests that information 
contained in the high gamma band of neural activity may be 
relevant for visual imagery [16]. For this reason, we applied a 
bandpass filter from 1-125 Hz with a notch at 60 Hz and 120 Hz 
to remove powerline noise and its harmonic. The data from each 
imagery trial was epoched in the same way as the observation 
classifier. The full power spectrum in the 1-100 Hz range was 
used as features to train a linear SVM with a leave-one-run-out 
cross-validation.  

During the real-time BCI testing session, the visual imagery 
data from the first two initialization runs was preprocessed in the 
same way as the visual imagery classifier above. This data, along 
with the three previous training sessions, was used to train the 
linear SVM for real-time use. In the two closed-loop BCI runs, 
each visual imagery trial was preprocessed and classified in the 
same way as before; however, only the epoch from the middle 
of the trial (0.875-2.625s) was used for classification and 
feedback. 

D. Evaluation of Performance 
The Participant’s ability to control the BCI application is 

evaluated based on the number of trials where the classification 
of brain activity matches the cued image category for that trial 
beyond the level of chance. For the initial offline training 
sessions, a binary classification of face vs. scene would yield an 
absolute chance level of 50%. However, the small sample size 
present in brain signal classification can lead to higher chances 
of false positives. For this reason, Combrisson and Jerbi [30] 
have suggested to address this issue by adjusting the chance 
level as a function of sample size, number of classes, and the 
desired confidence interval using a binomial cumulative 
distribution. In this case, each session of the offline training 
includes a total sample size of 80 observations with 2 classes 
providing a corrected chance level of 58.8% at p = 0.05 and 62.5 
at p = 0.01. This means that a classifier must obtained at least 
58.8% accuracy to be considered significant at p = 0.05. The two 
closed-loop BCI interaction runs consist of a total sample size 
of 36 observations with 3 classes providing a corrected chance 
level of 47.2%. 

 
Fig. 1. Experimental task protocol. A. Stimulus presentation and timings 
during offline training sessions and first 2 runs of the BCI interaction session. 
B. Stimulus presentation and timings during the final 2 runs of the closed-
loop BCI interaction session.  



III. RESULTS 

A. Recreation of Previous Experiments 
Our first objective was to recreate the experiments of 

Bobrov et al. [29] and Kosmyna et al. [24] using similar 
methodologies for each pair of image categories (flower vs 
hammer and face vs scene). For the session using the flower 
and hammer stimuli, we found a mean classification accuracy 
of 63.3% (corrected chance 62.5 at p = 0.01) during the visual 
observation period. When using the face and scene stimuli, we 
found a mean classification accuracy of 58.7% (corrected 
chance 58.8% at p = 0.05). These results were similar to those 
found in Kosmyna et al. [24] who achieved 61% classification 
accuracy during visual observation.  

For the visual imagery classifier, we found a mean 
classification accuracy of 47.9% for the flower and hammer 
stimuli and 64.2% (corrected chance 62.5 at p = 0.01) for the 
face and scene stimuli (Fig. 2). To better understand why it was 
possible to distinguish between the flower and hammer stimuli 
during visual observation but not imagery, we repeated this 
experiment using multiple new flower and hammer images. 
These new images were of the same size and shape, but with 
slightly different colors or orientations. Interestingly, the 
classification accuracy during the visual observation period for 
this new task fell to below chance level (46.3%). The 
classification accuracy during the visual imagery period 
remained around chance at 54.6%. Further discussion of these 
results can be found in section IV. 

 

B. Classification of Visual Imagery Across Multiple Sessions 
For our next experiment, we repeated the session using the 

face and scene images two additional times to better understand 
performance variability across sessions. Using the data from the 
first session during the visual imagery period, we obtained a 
binary classification accuracy of 64.2% (corrected chance 
62.5% at p = 0.01). However, we found that this classification 
accuracy was relatively variably across sessions (Fig. 3A). The 
classification accuracy for the second and third sessions were 
61.7 and 53.8, respectively. This led to a mean classification of 
59.9% over the three sessions which was significant at the 
corrected chance level of 58.8% at p = 0.05. We also tested a  

between-session classifier in which the classifier was trained on 
two sessions and tested on a left-out session. This resulted in a 
mean classification accuracy of 59.7%  which was significant at 
the corrected chance level. 

 We also tested binary classification of visual imagery vs. 
resting state. To accomplish this, the visual imagery trials for 
faces and scenes were combined under a single label. Our 
classifier achieved 58.3% classification accuracy during the first 
session, 66.0% during the second session, and 70.4% during the 
third session. This yielded a mean classification accuracy of 
64.9% over the three sessions which was significant at the 
corrected chance level of 62.5% at p = 0.01. A between-session 
classifier trained on this data yielded 65.2% classification 
accuracy which was also significant at the corrected chance level 
of 62.5% at p = 0.01 (Fig. 3B). 

 

C. Real-Time Classification of Visual Imagery 
Our final experiment was to evaluate performance during 

real-time BCI interaction. The classifier was trained on the data 
from the three offline sessions using face and scene images plus 
the data from the first two runs of the interaction session. The 
objective was to discriminate between visual imagery of a face, 
visual imagery of a scene, or resting state. We were able to 
achieve a significantly above chance classification accuracy of 
47.2% (corrected chance 47.2% at p = 0.05) during the two real-
time BCI runs (Fig. 4).  

Fig. 2. Classification accuracies for visual imagery of flower vs hammer 
(47%) and face vs scene (64%) experiments. Dashed line indicates 
absolute chance level (50%).  

 
Fig. 3. Offline classification of visual imagery. A. Binary classification 
accuracy of face vs. scene imagery for session 1 (64.2%, blue), session 2 
(61.7%, orange), session 3 (53.8%, green), and between-session accuracy 
(59.7%, red). B. Binary classification accuracy of visual imagery vs. rest for 
session 1 (58.3%, blue), session 2 (66.0%, orange), session 2 (70.4%, green), 
and between-session accuracy (65.2%, red). Dashed lines indicate absolute 
chance level (50%); * indicates significance for corrected chance level of 
58.8% at p = 0.05; ** indicates significance for corrected chance level of 
62.5% at p = 0.01. Error bars indicate 95% confidence interval.  



 
Fig. 4. Confusion matrix of classifier predictions during the closed-loop BCI 
interaction runs. Overall classification accuracy was 47.2% (corrected 
chance 47.2% at p = 0.05). 

 

IV. DISCUSSION 
The results from our offline analyses during the visual 

observation and visual imagery periods were similar to accuracy 
found in previous works [24], [29]. We found significantly 
above chance classification accuracy during the offline and 
closed-loop BCI interaction runs for visual imagery using the 
corrected chance values calculated in accordance with 
Cobrisson and Jerbi [30]. Interestingly, we also found that our 
visual imagery classifier remained effective when trained solely 
on data recorded during different sessions. This allowed us to 
have a larger pool of data with which to train the classifier for 
real-time BCI use.  

It is interesting why visual imagery of certain categories of 
images could be reliably distinguished (faces and scenes) while 
others could not (flowers and hammers). This may be due to a 
higher representational similarity between the brain activity of 
flowers and hammers which makes classification difficult [31]. 
Previous research using functional magnetic resonance imaging 
[32], single cell recordings [33], magnetoencephalography [34], 
and EEG [35] have investigated the representational similarity 
of brain activity during visual observation human faces, human 
bodies, animal faces, animal bodies, natural objects, and 
manmade objects. These studies have shown that certain 
categories (e.g., human and animal faces) are highly 
distinguishable, while other categories (e.g., natural and 
manmade objects) show higher similarity in their 
representational structure. This may explain why we had 
difficulty in classifying between visual imagery of the flower 
(natural object) and hammer (manmade object) images.  

As for why we were able to classify between these two 
categories during visual observation, it might be due to the 
nature of the stimulus presentation. The flower stimulus used by 
Kosmyna et al. [24] was a large, bright image whereas the 
hammer was a darker, smaller image displayed against a black 
background. This may have allowed the classifier to identify 
between the different intensities of the images, rather than their 
conceptual representations. This idea is reinforced by our 
experiment using multiple new flower and hammer images of 
different colors. This test removed the influence of color and 
orientation from the stimuli, and we were unable to reliably 
classify between the categories.  

V. CONCLUSION 
This study served as an initial pilot test to investigate the 

efficacy of using visual imagery as a BCI control paradigm and 
was conducted under the state regulations for mitigating the 
spread of the COVID-19 virus. For this reason, the results of this 
study are limited by the inclusion of only a single subject. 
Additionally, this study was limited by the quality and amount 
of data that could be captured using a dry-electrode EEG cap. 
Dry electrode caps are more susceptible to noise and movement 
artifacts, and can become uncomfortable after prolonged use 
[36]. Further work with a larger subject pool, wet-electrode EEG 
cap, and longer training times is necessary to fully verify the 
feasibility of using visual imagery as a BCI control strategy. 
Additional work is also needed to investigate the 
representational similarity between visual imagery of various 
object categories measured by EEG. Nevertheless, the results of 
this pilot study indicate that visual imagery can be used as an 
effective control paradigm for BCI. Our results yielded 
significantly above chance classification accuracy in 
distinguishing between visual imagery of a face and a scene 
image in an offline analysis. The participant in this study was 
also able to achieve significantly above chance performance in 
a real-time visual imagery BCI application with three classes.  
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