
Landmarks and Regions: A Robust Approach to Data
Extraction

Suresh Parthasarathy

supartha@microsoft.com
Microsoft

London, UK

Lincy Pattanaik

lincy.pattanaik@microsoft.com
Microsoft Research

Bangalore, India

Anirudh Khatry

t-ankhatry@microsoft.com
Microsoft Research

Bangalore, India

Arun Iyer

ariy@microsoft.com
Microsoft Research

Bangalore, India

Arjun Radhakrishna

arradha@microsoft.com
Microsoft

Redmond, United States

Sriram K. Rajamani

sriram@microsoft.com
Microsoft Research

Bangalore, India

Mohammad Raza

moraza@microsoft.com
Microsoft

Redmond, United States

Abstract
We propose a new approach to extracting data items or field

values from semi-structured documents. Examples of such

problems include extracting passenger name, departure time

and departure airport from a travel itinerary, or extracting

price of an item from a purchase receipt. Traditional ap-

proaches to data extraction use machine learning or pro-

gram synthesis to process the whole document to extract

the desired fields. Such approaches are not robust to for-

mat changes in the document, and the extraction process

typically fails even if changes are made to parts of the doc-

ument that are unrelated to the desired fields of interest.

We propose a new approach to data extraction based on the

concepts of landmarks and regions. Humans routinely use

landmarks in manual processing of documents to zoom in

and focus their attention on small regions of interest in the

document. Inspired by this human intuition, we use the no-

tion of landmarks in program synthesis to automatically syn-

thesize extraction programs that first extract a small region

of interest, and then automatically extract the desired value

from the region in a subsequent step. We have implemented

our landmark based extraction approach in a tool LRSyn,
and show extensive evaluation on documents in HTML as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523705

well as scanned images of invoices and receipts. Our results

show that the our approach is robust to various types of

format changes that routinely happen in real-world settings.

CCS Concepts: • Information systems → Wrappers
(data mining); • Software and its engineering → Au-
tomatic programming.

Keywords: Data extraction, Program synthesis, Landmarks

and regions, Semi-structured data

ACM Reference Format:
Suresh Parthasarathy, Lincy Pattanaik, Anirudh Khatry, Arun Iyer,

Arjun Radhakrishna, Sriram K. Rajamani, and Mohammad Raza.

2022. Landmarks and Regions: A Robust Approach to Data Ex-

traction. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’22), June 13–17, 2022, San Diego, CA, USA. ACM, New York,

NY, USA, 17 pages. https://doi.org/10.1145/3519939.3523705

1 Introduction
Extracting data from semi-structured documents is an impor-

tant and pervasive problem, which arises in many real-world

situations. Our goal is to automatically synthesize extraction

programs that can extract relevant fields of interest from

formed semi-structured documents. We use the term formed

document to represent a broad category of documents, rang-

ing from invoices, receipts, business cards, booking emails,

etc.While loosely defined, formed document collections have

some key common characteristics:

• They are often machine-to-human, i.e., automatically

generated by software, but are meant for consumption

by humans. Usually, many documents are generated

with the same format, which makes them amenable to

programmatic data extraction.

• They are heterogeneous, i.e., each kind of document

can be in many ad-hoc formats. For example, while

https://doi.org/10.1145/3519939.3523705
https://doi.org/10.1145/3519939.3523705

PLDI ’22, June 13–17, 2022, San Diego, CA, USA S. Parthasarathy et al.

extracting information from flight reservation emails,

each airline follows a different format, and the same

airline may change formats over time.

• They are continuously evolvingwith new document for-

mats being added often. Hence, a system for extracting

documents is not a one-time task —the system needs

to be robust to evolution, and needs to be routinely

updated and maintained.

A robust extraction system should handle the heterogeneous

data formats at scale, with minimal human intervention and

be efficient at run-time.

Given this problem definition, our approach is inspired by

how humans analyze such complex and lengthy documents

when looking for specific information: we first narrow down

the region that is relevant for the task at hand, and focus only

on that small region to extract and understand the desired

information. This inspires a key idea that we use in our

approach, which is the notion of a landmark. In the literature,
landmarks have been used to identify locations in document

which are “nearby” the value we desire to extract [37, 56].

As an analogy, if we want to locate a restaurant in a map,

and we know that it is near the train station, we can first

locate the train station in the map, and then the restaurant

by identifying its location relative to the train station. In

this case, the train station is the landmark used to locate

the restaurant. In the case of documents, humans tend to

use keyword phrases that occur in all (or most) documents

near the locations of the desired field values as landmarks.

For example, the phrase "Depart:" is a potential landmark to

locate the value of departure time in the travel emails shown

in Figure 1(a) and (b), and the phrase "Owing" is a potential

landmark to locate the value of total invoice amount in the

invoice shown in the right side of Figure 1(c).

Landmarks are a form of data invariance present in all

documents of a format. The key idea in this paper is to use

landmarks to decompose the field extraction problem into

two different sub-problems:

1. Region extraction: This step takes the document as

input, and produces a small region of interest as output,

guided by the landmark, such that the region of interest

contains the landmark as well as the field values of

interest.

2. Value extraction: This step takes the small region of

interest produced by the first step as input, and extracts

the desired field values from the region.

Since real-world scenarios have heterogeneous formats, we

design our value extraction to be conditional on both the

landmark and the layout of the identified region of inter-

est. We formalize these notions and in a novel generic de-

sign of domain specific languages which we call landmark-
based DSLs, which are designed for data extraction using

the landmark-based approach. Such DSLs contain separate

language fragments for the region and value extraction steps

which can be instantiated arbitrarily for different domains,

and we describe such instantiations and corresponding syn-

thesis algorithms for the different concrete domains of HTML

and scanned image documents.

While the strategy of using landmarks and region lay-

outs nicely structures the extraction task into well-defined

sub-problems, the remaining question is how we can infer

the landmarks and region layouts themselves. Landmarks

capture redundancy across documents with similar formats,

and hence landmarks can be detected by analyzing common-

alities across documents with the same format. The formats

themselves can be identified using clustering techniques that

group similar documents together, and the same techniques

can be applied at the region level to infer different region

layouts. In this work we show how the two problems of

landmark detection and clustering can be solved by a gen-

eral algorithm that jointly infers clusters and landmarks in a

hierarchical fashion.

We have implemented this approach in a tool called LRSyn,
which is short for Landmark-based Robust Synthesis.
We present empirical results comparing the performance

of LRSyn with current approaches on datasets containing

documents from HTML and scanned image domains.

To summarize, we make the following contributions:

• We use the concept of landmarks and regions for
extracting attributes from heterogeneous data formats

and introduce the formal generic class of landmark-

based DSLs in which we can express robust extraction

programs that continue to work when formats change.

• We propose a joint clustering and landmark detec-

tion algorithm which automatically clusters and infers

landmarks on the given input data.

• We present concrete instantiations of landmark-based

DSLs and corresponding synthesis algorithms in the

particular domains of HTML and scanned document

images.

• Our implementation, LRSyn, is comparable to state-of-

the-art when test data is from the same time period as

training data, and significantly outperforms current

approaches when test data is from a different time pe-

riod than training data. In the HTML domain, LRSyn
is able to achieve near perfect F1 score of 1.0 in most

cases. In the images domain, LRSyn outperforms a

released product in scenarios where test data has dif-

ferent formats when compared to training data. This

gives evidence that LRSyn is robust to format changes

that occur over time in real-world scenarios.

2 Overview
Many existing data extraction techniques [23, 28, 36], both

from research literature and those used industrially, are

driven by global document structure. For example, consider

the confirmation email for a flight reservation in Figure 1(a),

Landmarks and Regions: A Robust Approach to Data Extraction PLDI ’22, June 13–17, 2022, San Diego, CA, USA

a. Flight booking email

b. Flight booking email

c. Accounts Invoice

Figure 1. Formed documents: Figure a. and b. are examples of flight reservation emails. Figure c. is an image of accounts

invoice. Orange ellipses indicate landmarks and blue rectangles indicate ROIs

CSS selector: :nth-child(11) > TABLE >
TBODY:nth-child(1):nth-last-child(1)
> :nth-last-child(6) > :nth-child(2)

Text program: Extract TIME sub-string

Figure 2. NDSyn extraction program for Departure time

and the task of extracting the flight departure time from it.

The NDSyn algorithm from the HDEF system [23] synthe-

sizes the extraction program shown in Figure 2 for this task.

This program starts with extracting the "TBODY" elements

in the HTML document; which are the only TBODY child in

a table. This results in the various blocks, "AIR", "HOTEL",

etc. Within each block, the program extracts the 6
𝑡ℎ

child

from the end and within that node, it extracts the 2
𝑛𝑑

child. If

an extra block gets added to the document between the two

"AIR" blocks, like the "HOTEL" block Figure 1(b), the pro-

gram extracts the "Check-in" time from the "HOTEL" block

as well in addition to the departure times. This program also

fails for cases where the "AIR" blocks have more elements.

In contrast, local structure based data extraction tech-

niques focus more on the structure of the document that is

close to the value to be extracted [37, 56]. Inspired by these

approaches, we propose landmark-based synthesis which

more closely relates to the way humans scan through docu-

ments, and functions in a local and compositional manner.

Let us walk through how a human might find the departure

time in document. First, the human begins by scanning the

document for keyword phrases—in this case, say, the word

AIR. Now, the human finds the first title AIR and then, scans

the section corresponding to the keyword. Recursively, they

may then search for the keyword Depart: and find the corre-

sponding text that contains the actual flight departure time.

Thus, humans typically navigate documents using keyword

phrases that occur in all documents in the neighborhood of

the field values desired.

Our landmark based synthesis algorithm LRSyn mirrors

the above workflow. We introduce the notions of landmarks,
regions of interest and blueprints to formalize this workflow.

Landmarks correspond to keyword phrases used in the hu-

man workflow, regions of interest (ROIs, for short) corre-
spond to the local and relevant document sections around

the landmarks, and we use blueprints to compare similarity

of regions. In the above example, the keywords AIR and De-
part act as landmarks and their corresponding sections act

as regions of interest.

LRSyn consists of two main components: (a) Identifying

document landmarks from the data, which also involves clus-

tering documents which have roughly similar local structure

in the neighborhood of the desired field values together

(b) Synthesizing extraction programs, which first zoom in

on the region of interest given a document using the land-

mark as the anchor, and then extract the desired field value

from the region of interest. We illustrate each of these steps

below using our machine-to-human (M2H) email dataset,

which consists of 3500 HTML flight reservation emails from

6 airlines.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA S. Parthasarathy et al.

2.1 Jointly Inferring Landmarks and Clusters

Initial Clustering. The first step in our technique is to

separate the data-set into clusters that correspond to different

formats of emails. For this, we use the notion of blueprints.
For the HTML domain, the blueprint of a document (or a

document fragment) contains the tag structure and values

that are common across documents. We compute an initial

clustering by considering of whole documents, and using

the closeness of blueprints as the distance metric between

documents. The initial clustering produces a large number of

very fine-grained clusters. On the M2H data-set, our initial

clustering produces 20 head clusters along with many small

tail clusters totaling 70 clusters altogether.

Identifying Landmark Candidates. For each cluster, we

identify a landmark, which is an n-gram that appears in all

documents in the cluster. For each such landmark candidate

(i.e., shared n-grams), we assign a score based on twometrics:

(a) the distance between the landmark candidate and the field

value to be extracted, and (b) the number of nodes in the doc-

ument region that encloses both the landmark candidate and

the field value. These two metrics capture the intuition that

landmarks should be close to the values being extracted. For

the email in Figure 1(a), the top-scoring landmark candidates

for extracting Departure Time are "Depart" and "Arrive".

Regions of Interest and Re-clustering. A contiguous re-

gion in the document that encloses the landmark candidate

and the field value is called a region of interest. We are inter-

ested in small regions of interest. In Figure 1 the landmark

candidates are shown in orange ellipses, and the correspond-

ing regions of interest are shown using blue rectangles. We

now re-define a distance metric between two documents as

the minimum distance (over all landmark candidates) be-

tween the blueprints of the corresponding regions of inter-

est. Using this revised distance metric, we iteratively merge

clusters if the average distance between documents in the

clusters is less than a threshold, till no further merging is

possible. As a result of such merging, formats with an ad-

vertisement section added, or existing sections rearranged

would all be included in the same cluster, as the blueprint of

the region of interest is invariant to such changes that occur

outside the region of interest. In the M2H data-set, iterative

merging based on closeness of regions of interest results in

less than 5 clusters at a field level.

2.2 Synthesizing Extraction Programs
With the new coarse-grained clusters, we synthesize 2 sub-

programs that together with the blueprint of the region of

interest forms the complete extraction program. The first

sub-program, called region extraction program, takes as input

the whole document 𝑑𝑖 and a landmark location ℓ as inputs,

and produces a region of interest 𝑅 as the output. In the

case of HTML documents, the synthesized region extraction

program starts with the landmark location and traverses the

Landmark: Depart
Region program: parentHops : 0, siblingHops : 1
Blueprint: /TD
Value program:

CSS selector: 𝑛𝑡ℎ − 𝑐ℎ𝑖𝑙𝑑 (2)
Text program: Extract TIME sub-string

Figure 3. LRSyn extraction program for Depart time

tree-structure of the HTML document and grows a region

starting at the location of the landmark, and ensures that

all locations of field values are included. As an example,for

the airline itinerary example shown in Figure 1(a), in order

to extract the value of the departure time, with "Depart:" as

the landmark, the synthesized region extraction program is

given by 0 parent hops, 1 sibling hop. The single sibling hop
here implies that across all the training data, the extraction

value lies 1 sibling away from the landmark within the same

parent node in the DOM. The parent hops and sibling hops
are computed based on all the annotated training documents

in the given cluster, and hence produce a large enough ROI

that includes the location of all the field values for extraction.

We also compute the blueprint for this region, and use this

blueprint during execution of the region extraction program

(see below). The second sub-program, called value extraction
program, takes the region produced by the region extraction

program as input, and produces the desired field value as

output. For HTML documents, we use the DSL and the cor-

responding synthesis algorithm from [46]. For the example

in Figure 1(a), the synthesized region and value extraction

programs, and the blueprint of the region of interest are

shown in Figure 3.

During execution of the synthesized extraction program,

we compute the blueprint of the ROI calculated by the region

extraction program and compare it with the blueprint of the

ROI generated during synthesis. If the distance between

these two blueprints is below a threshold value 𝑡 , the regions

from synthesis and inference times are "roughly similar", and

we use this extracted program. Otherwise, we look for other

extraction programs synthesized from other clusters, which

better match the current document.

3 Formed Document Extraction
In this section, we present the formed document problem

definition, formalize the notions of landmarks and regions,

and introduce the novel class of landmark-based DSLs.

3.1 Preliminaries and Problem Statement

Documents and Locations. We use the term document to
represent a single record of a dataset fromwhich we are inter-

ested in extracting data. We use the symbol doc to represent

documents. A document doc has a set of locations Locs(doc)
which can be used to index into the document and look up

Landmarks and Regions: A Robust Approach to Data Extraction PLDI ’22, June 13–17, 2022, San Diego, CA, USA

values. For a location ℓ ∈ Locs(doc), the function Data[ℓ]
returns the value of the data present in the location ℓ of doc.

Example 3.1. When dealing with HTML documents, the

location are XPaths that retrieve elements in the HTMLDOM

document tree structure. The data value of a location is the

concatenation of all the text elements in the DOM element.

Data-sets and Fields.Wemodel a heterogeneous datasetD
as a tuple (𝐷, {𝐶0, . . . ,𝐶𝑛}) where: (a)𝐷 is a finite set of input
documents (or just documents for short) and (b) {𝐶0, . . . ,𝐶𝑛}
is a partition of 𝐷 into clusters, i.e.,

⋃
𝐶𝑖 = 𝐷 and ∀𝑖 ≠

𝑗 . 𝐶𝑖 ∩ 𝐶 𝑗 = ∅. Each partition represents a similar set of
documents in terms of format. The extraction framework has

access to the inputs 𝐷 , but not the partitioning. Henceforth,

we write “dataset 𝐷” instead of “heterogeneous dataset D”

to denote that the exact partition of 𝐷 into clusters is not

provided to us as input.

For a given dataset 𝐷 , a field F of type T is a partial func-

tion F : 𝐷 ̸→ T that maps documents to values of type T. We

implicitly assume that a field is either defined for all docu-

ments in a cluster or is undefined for all documents in the

cluster, i.e., ∀𝐶𝑖 .∀doc, doc′ ∈ 𝐶𝑖 .F(doc) = ⊥ ⇔ F(doc′) = ⊥.
We say that F(doc) is the value of the field F in doc. The type
of a field can either be a primitive type such as integer or

string or a composite type such as a list of strings or set

of integers. Though we are interested in extracting multi-

ple fields from each document in a dataset, for simplicity of

presentation, our formal treatment considers extracting the

value of a single field.

Annotations. Given a field F of a data-set 𝐷 , an annota-
tion A(doc) of doc ∈ 𝐷 is a list of locations [ℓ1, . . . , ℓ𝑛]
and an aggregation function Agg such that F(doc) =

Agg(Data[ℓ1], . . . ,Data[ℓ𝑛]). Annotations are user provided
“labels” in ML parlance, and are used as training data. For our

experiments, we built a visual user interface where annota-

tors could click on individual HTML and image documents

to select annotation locations. In the background, the tool

converts these clicks into locations, i.e., XPaths in HTML

and x-y coordinates in PDF documents.

Example 3.2. For the departure time field in Figure 1(a),

the annotation contains the two locations with text elements

“Friday, Apr 3 8:18 PM” and “Thursday, Apr 9 2:02 PM”, and

the aggregation function collects these values into a list.

The formed document extraction problem. Fix a dataset
𝐷 and a field F. The input to the formed document ex-

traction problem is given by item a set of annotations on

a training set 𝐷tr ⊆ 𝐷 . The ideal expected output for

such a problem is an extraction function Extract such that

∀doc ∈ 𝐷.Extract(doc) = F(doc). However, it is hard to

produce ideal extractions, and we instead use the standard

metrics of precision, recall and F1 score to measure the quality

of an extraction function (see, for example, [54]). In practice,

we are usually interested in extracting multiple fields from

a document at once, and in fact, our implementation can

do so. However, for simplicity of discussion, we present our

techniques and conduct our experiments for one field at a

time.

3.2 Landmarks and Regions

Landmarks. A landmark is a value that we can use to iden-

tify a location in a document, such that the field value is

present in a “nearby” location (or in "nearby" locations if

the field value is aggregated from multiple data values). For-

mally, a landmark is given by a data value m. A given land-

mark m identifies a unique location ℓ in a document doc
such that Data[ℓ𝑖] ⊇ m, i.e., the landmark value is a sub-

string of the data at ℓ𝑖 . In order for a landmark to be useful

for our purposes, we require the existence of an inexpen-

sive "locator" function, which can locate the occurrences

of a landmark in a document. More precisely, we assume

a computationally inexpensive function Locate such that,

Locate(doc,m) = ℓ =⇒ Data[ℓ] = m.

Example 3.3. Consider the travel itinerary document in

Figure 1(a). In order to extract departure times from this

document, a possible landmark to use is the phrase “Depart:”.

Remark 3.4. For ease of presentation, the definition as-

sumes that landmarks occur in one location per document

(contrast against Depart in Figure 1(a)). We discuss handling

multiple, ambiguous, landmark locations in Section 6.

Regions.A region R of a document doc is a set of contiguous
locations. A region can be thought of as a “sub-document”.

Given a set of locations 𝐿 of a document doc, the enclosing
region EncRgn(𝐿, doc) is the smallest region that contains

all locations in 𝐿. We are particularly interested in regions

that enclose a landmark and the corresponding field values

as our approach is based on narrowing down the document

to such regions. We call such regions as regions of interest or
ROIs for short.

Example 3.5. The bottom two blue rectangles in Figure 1(a)

highlight the relevant ROIs that contain both the landmark

“Depart:” and the associated field values.

Blueprints. Intuitively, a blueprint of a region is a “hash”

of all the parts that are “common” to all such regions in the

cluster. For example, the strings "Airline Record Locator",

"AIR", "Meal", "Depart:" in Figure 1(a) are common values,

since they will occur in all documents that follow this format.

Let the layout of a region R in a document doc be the subset
of all locations ℓ ∈ R such that Data[ℓ] is a common value.

The blueprint BP(R) of a region R is then defined as a hash

of values in the layout of R.
If two regions are similar, we want to define their

blueprints such that they are close to each other. Given two

blueprints b1 and b2, we use the notation 𝛿 (b1, b2) to denote

PLDI ’22, June 13–17, 2022, San Diego, CA, USA S. Parthasarathy et al.

the distance between b1 and b2. If R1 and R2 are similar in

structure, we want 𝛿 (BP(R1),BP(R2)) to be small value.

Example 3.6. Our notion of blueprint of an HTML region

is based on the XPaths to its DOM nodes, but ignoring node

order. For example, the blueprint of a region stores the path

starting from a div node, descending through table, tr, td,
and span nodes, but without storing where this path is in

relationship to other paths.

3.3 Landmark-Based DSLs
To formalize the notions of extraction using landmarks, we

introduce a special class of DSLs called landmark-based DSLs.

This is a generic design of languages that formally captures

our reasoning using landmarks and regions for extraction

tasks in a domain-agnostic fashion. Figure 4 shows the struc-

ture of a landmark-based DSL. In such DSLs, the input is

always assumed to be a document and a complete program

returns a field value extracted from the document. Such DSLs

consist of four notions: landmarks𝑚, blueprints 𝑏, region

extraction programs 𝑝𝑟𝑥 and value extraction programs 𝑝𝑣𝑥 .

The region and value extraction programs can be instantiated

arbitrarily for a particular domain by defining the language

fragments L𝑟𝑥 and L𝑣𝑥 , and we shall illustrate such instan-

tiations of these fragments for the web and image extraction

domains.

These four notions are brought together in the single top-

level Extract operator, the semantics of which is defined in

Algorithm 1. This operator takes a list 𝑄 of 4-tuples, where

each tuple consists of a landmark, a region program, a blue-

print for the region, and an extraction program. Each tuple

represents an extraction strategy for a particular region for-

mat. The region program uses a landmark to identify a region

of the document, and if this region matches the given blue-

print, then the extraction program can be applied on the

region to extract the field value. The top-level operator acts

as a switch statement that applies the first tuple that suc-

cessfully extracts a value from the document. Formally, for

each tuple, we first use the Locate function to identify the

location corresponding to the landmark m. This location

is then input into the region program RProg𝑖 to produce

the region of interest R. Now, we proceed with this cluster

only if the blueprint of the region is within a certain tunable

threshold of similarity. If the blueprint is close enough, we

return the output of the extraction program EProg𝑖 on the

region. Otherwise, we continue with the remaining tuples

in 𝑄 .

4 Landmark and Region Based Synthesis
In this section we present our generic technique LRSyn for

synthesizing extraction programs in landmark-based DSLs,

and we present instantiations of this technique for different

domains in Section 5.

@start T t := Extract(q,..., q) where 𝑞 = (m, p𝑟𝑥 , b, p𝑣𝑥)
R→T p𝑣𝑥 := . . . L𝑣𝑥 . . .

(doc, str)→R p𝑟𝑥 := . . . L𝑟𝑥 . . .

str m // landmark

obj b // blueprint

@input doc d // input document

Figure 4. Structure of a Landmark-based DSL L𝑙𝑑

Algorithm 1 Semantics of the Extract operator in a

landmark-based DSL. The blueprint threshold 𝑡 is a tunable

parameter of the semantics.

Require: Input document 𝑑 of type doc
Require: List 𝑄 = [𝑞1, ..., 𝑞𝑘], where each 𝑞𝑖 has the form

(𝑚, 𝑝𝑟𝑥 , 𝑏, 𝑝𝑣𝑥) for 1 ≤ 𝑖 ≤ 𝑘

1: for (𝑚, 𝑝𝑟𝑥 , 𝑏, 𝑝𝑣𝑥) ∈ 𝑄 do
2: ℓ ← Locate(𝑑,𝑚)
3: R← 𝑝𝑟𝑥 (𝑑, ℓ)
4: if R ≠ ⊥ ∧ 𝛿 (BP(R), 𝑏) ≤ 𝑡 then
5: return Agg(𝑝𝑣𝑥 (R))
6: return ⊥

4.1 LRSyn: The Solution Outline
Our solution data-extraction system is parametrized by a

number of components that need to be instantiated for each

domain.

• Region extraction program synthesizer. The region ex-

traction DSL L𝑟𝑥 is equipped with a synthesizer that

takes as input examples of the form (doc, ℓ) ↦→ R, and
produces programs from L𝑟𝑥 . Here, the example maps

a document doc and a location ℓ within doc to a region
R of the document. For instance, an example in the

HTML domain will have an input HTML document,

an input location (DOM node), and an output region

(set of contiguous DOM nodes).

• Value extraction program synthesizer. The value extrac-
tion DSL L𝑣𝑥 is equipped with a synthesizer that takes

as input examples of the form R ↦→ 𝑣 , and produces a

program from L𝑣𝑥 . Here, R is a region in a document

and 𝑣 is the field-value for that document. For instance,

an example might have an input region given by the

blue rectangle in Figure 1(a), and an output value “Fri-

day, Apr 3 8:18 PM”.

• Blueprinting and Locating functions. The blueprinting
function BP, locating function Locate, and the blue-

print distance function 𝛿 (as described in Section 3)

need to be specified per domain.

Algorithm 2 presents an outline of our landmark-based

robust synthesis algorithm. The high-level components are

illustrated in Figure 5. Given an annotated training set 𝐷tr,

the first task is to infer the clustering of 𝐷tr into 𝐶0, . . . ,𝐶𝑛 .

In Algorithm 2, this step is combined with the inference of

landmarks. The procedure InferLandmarksAndCluster

(line 1) produces a set of clusters 𝐶𝑖 each associated with a

landmark m𝑖 . Then, for each cluster 𝐶𝑖 , the algorithm calls

Landmarks and Regions: A Robust Approach to Data Extraction PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Training Subset

with Annotations A

Documents

Cluster & Landmark

(𝐶1,m1)

(𝐶2,m2)
. . .

. . .

For each doc𝑖 ∈ 𝐶1

Infer ROI R𝑖

Synthesize Region Program

Examples: (doc𝑖 ,m𝑖) ↦→ R𝑖

Synthesize Value Program

Examples: R𝑖 ↦→ A(doc𝑖)

Compute average

ROI blueprint

Region Program RProg
1

Value Program EProg
1

ROI Blueprint b1

Extraction Program for 𝐶1

Extaction Program for 𝐶2

...

Joint Cluster and Infer Landmarks Synthesize Extraction Programs

Figure 5. Outline of landmark-based robust synthesis LRSyn

Algorithm 2 Landmark-based robust synthesis LRSyn

Require: Training set 𝐷tr ⊆ 𝐷

Require: Annotation A(doc) for each document doc ∈ 𝐷tr
Require: Region extraction DSL L𝑟𝑥
Require: Value extraction DSL L𝑣𝑥

1: [(𝐶,m)] ← InferLandmarksAndCluster(𝐷tr,A)
2: for Cluster and landmark (𝐶𝑖 ,m𝑖) ∈ [(𝐶,m)]: do
3: (RProg𝑖 , b𝑖 , EProg𝑖) ←

SynthesizeExtractionProgram(𝐶𝑖 ,m𝑖 ,A,L𝑟𝑥 ,L𝑣𝑥)
4: return Extract({(m𝑖 ,RProg𝑖 , b𝑖 , EProg𝑖)})

the subroutine SynthesizeExtractionProgram to synthe-

size a region extraction program RProg𝑖 , a region blueprint

b𝑖 , and a value extraction program EProg𝑖 . The algorithm
combines these with the landmark to output an extraction

program in the Landmark-based DSL L𝑙𝑑 , which can be exe-

cuted using semantics shown in Algorithm 1.

4.2 Clustering Documents and Inferring Landmarks
The InferLandmarksAndCluster procedure (Algorithm 3)

outlines how we jointly perform clustering and landmark

detection, using the approach described in Section 2.1.

Initial clustering. Lines 2-3 perform the initial clustering to

obtain the initial fine-grained clusters. Here, the clustering

is by the blueprint of the whole document, and hence, two

documents will be in the same cluster only if they have more

or less exactly the same format with little or no variations.

Landmark and blueprint identification. The procedure

LandmarkCandidates identifies common values in the doc-

uments of 𝐶𝑖 as landmark candidates and orders them by a

scoring function (line 6). The scoring function is based on two
features: (a) the distance between the landmark candidate

and the annotated values in the document, and (b) the size

of the region that encloses the landmark candidates and an-

notated values. These features were determined after initial

experiments on a small fraction of our evaluation datasets.

The procedure LandmarkCandidates only return candidates

with a score over a certain threshold. Then, for each land-

mark candidate and document, we compute and store the

blueprint of the ROI in lines 8-9.

Algorithm 3 Joint clustering and landmark inference

Procedure InferLandmarksAndCluster(𝐷tr,A)
Require: Training dataset 𝐷tr along with annotations A.

Require: Blueprint function BP.
Require: Blueprint distance metric dataset 𝛿 .

1: ⊲ Initial clustering using whole document blueprints
2: Δfine (doc, doc′) ← 𝛿 (BP(doc),BP(doc′)),∀doc, doc′ ∈ 𝐷tr
3: [𝐶] ← Cluster(𝐷tr,Δfine)
4: ⊲ Compute landmark and blueprint candidates
5: for 𝐶𝑖 ∈ [𝐶] do
6: M𝑖 ← LandmarkCandidates(𝐶𝑖 ,A)
7: for doc ∈ 𝐷tr do
8: Rdoc,m ← EncRgn(A(doc) ∪ Locate(m, doc))

,∀m ∈ M𝑖

9: roi[doc] ← {(m,BP(Rdoc,m)) | m ∈ M𝑖 }
10: ⊲ Merge clusters
11: Define Δc (doc1, doc2) ←

min({𝛿 (b1, b2) | (m1,2, b1,2) ∈ roi[doc1,2] ∧m1 = m2}
12: while No change in [𝐶] do
13: Let Δ(𝐶1,𝐶2) = Avg({Δc (doc1, doc2) | doc𝑖 ∈ 𝐶𝑖 })
14: if ∃𝐶1,𝐶2 ∈ [𝐶] such that Δ(𝐶1,𝐶2) ≤ threshold then
15: [𝐶] ← ([𝐶] \ {𝐶1,𝐶2}) ∪ {𝐶1 ∪𝐶2}
16: return [𝐶, TopLandmarkCandidate(𝐶)]

Coarse-grained clustering. Now, for each document, we have

a number of landmark candidates along with their associated

ROIs. With the ROIs, we can now define a coarse-grained

distance over documents that is based only on the blueprints

of the local structure of ROIs (line 11). With this coarse-

grained distance, we now repeatedly merge clusters based

on their average document distance (line 12-15). Since the

coarse-grained distances are based on the blueprints of ROI,

we now have clusters that are solely based on the local struc-

ture, which was our intention in the first place.

Finalizing landmarks. Finally, the procedure returns each

coarse-grained cluster along with its top landmark candidate.

4.3 Synthesizing Extraction Programs
The SynthesizeExtractionProgram procedure (Algo-

rithm 4) outlines how we process a cluster with a given

landmark, and calculate a region extraction program, blue-

print, and a value extraction program. The algorithm takes as

PLDI ’22, June 13–17, 2022, San Diego, CA, USA S. Parthasarathy et al.

Algorithm 4 Synthesize Extraction Program

Proc. SynthesizeExtractionProgram(𝐶,m,A,L𝑟𝑥 ,L𝑣𝑥)
Require: Cluster 𝐶 with annotations A
Require: Landmark value m
Require: Region and value extraction DSLs: L𝑟𝑥 and L𝑣𝑥

1: for all doc𝑖 ∈ 𝐶 define:
2: ℓ𝑖 ← Locate(m, doc𝑖)
3: (Locs𝑖 ,Agg𝑖) ← A(doc𝑖)
4: R𝑖 ← EncRgn({ℓ𝑖 } ∪ Locs𝑖 , doc𝑖)
5: ⊲ Synthesize region program
6: RegionSpec← {(doc𝑖 , ℓ𝑖) ↦→ R𝑖 | doc𝑖 ∈ 𝐶}
7: RProg← Synthesize(RegionSpec,L𝑟𝑥)
8: ⊲ Compute region blueprint
9: b← Average({BP(RegionSpec(doc))) | doc ∈ 𝐶})
10: ⊲ Synthesize extraction program
11: ValueSpec← {R𝑖 ↦→ Agg𝑖 (Locs𝑖) | doc𝑖 ∈ 𝐶}
12: EProg← Synthesize(ValueSpec,L𝑣𝑥)
13: return (RProg, b, EProg)

input: (a) a cluster 𝐶 and corresponding landmark m (b) the

annotations A for the documents in 𝐶 , and (c) the DSLs for

region programs and extraction programs.

In the first step, the algorithm computes the ROI R𝑖 for
each document doc𝑖 from the landmark and the annotations

(lines 1-4). Then, we synthesize the region program RProg
using a set of examples of the form (ℓ𝑖 , doc𝑖) ↦→ R𝑖 (lines 6
and 7). We also compute the average or typical blueprint b
for all the ROIs in the cluster (line 9). The region extraction

program RProg and filtering based on blueprint b (used in

the execution semantics in Algorithm 1) together act as a

robust system for detecting the ROIs. Next, we synthesize a

value extraction program EProg using examples where the

inputs are the ROIs in the document, and the outputs are the

expected field values (line 11 and 12). The region and value

extraction programs work not only on the documents in 𝐶 ,

but typically also on unseen documents and formats where

the global structure changes, without changes in the ROI.

The algorithm finally returns (RProg, b, EProg), which is

combined with the landmark value m to produce a complete

extraction program in the landmark DSL L𝑙𝑑 in Algorithm 2.

5 Instantiating LRSyn
We instantiate LRSyn for the domains of HTML documents

and form images like the ones shown in Figure 1, describing

in detail the region and value extraction DSLs

5.1 HTML Documents

Landmarks and Landmark Candidates. We use 𝑛-grams as
landmarks (𝑛 ≤ 5), and the Locate function lists all the doc-

ument DOM nodes and finds those containing the landmark

𝑛-gram. The LandmarkCandidates procedure for identifying
the top landmark candidates lists all 𝑛-grams in the docu-

ment, filters out those containing stop words, retains those

𝑛-grams common to all documents in the cluster, and then

scores them according to the criteria from Section 4. In par-

ticular, the score for a landmark candidate m is given by a

weighted sum of: (a) the number of nodes in the path from

the DOM nodes corresponding tom and field value 𝑣 , (b) the

number of nodes in the smallest region enclosing both m
and 𝑣 , and (c) the Euclidean distance betweenm and 𝑣 in the

rendered document.

Blueprints. We define the blueprint of a region to be the

set of XPaths to the common value DOM nodes in the

region, ignoring the DOM node order. For example, the

XPath body[1]/table[4]/tr[3]/td[2] is simplified to

body/table/tr/td before adding it to the blueprint set.

Region Extraction DSL. A program in the region extraction

DSL L𝑟𝑥 is a pair of integers (parentHops, siblingHops) of
parent hops and sibling hops. Given a landmark location ℓ ,

the semantics of the (parentHops, siblingHops) is as follows:
(a) from ℓ go up the DOM tree parentHops steps to get node
𝑛1, (b) from 𝑛1 go siblingHops right to obtain node 𝑛2, and

(c) the result is the set of all descendants of all sibling nodes

between 𝑛1 and 𝑛2 (inclusive). For synthesizing program in

L𝑟𝑔 given the landmark location ℓ and the annotated location

Locs, we first take the lowest common ancestor (LCA) 𝑛 of

ℓ and all nodes in Locs. The parentHops is given by the

difference in depths of 𝑛 and ℓ minus 1, and siblingHops is
given by the difference in index of the left-most and right-

most child of 𝑛 that have one of ℓ or Locs as a descendant.
Value Extraction DSL. For the value extraction DSL L𝑣𝑥 , we

build upon the synthesis techniques from [44] and [21], as

in [23]. We do not discuss the DSL and synthesis techniques

in detail, but refer the reader to [23]. From a bird’s eye view,

a program in L𝑣𝑥 consists of two parts: a web extraction

program which extracts the particular DOM node which

contains the field value, and a text extraction program which

extracts the field value from the text present in the extracted

DOM node. Given an example R ↦→ 𝑣 , the synthesis pro-

cedure first finds the DOM node 𝑛 which contains the text

𝑣 . Then, we use R ↦→ 𝑛 as the example to synthesize the

web extraction program using techniques from [44], and

text(𝑛) ↦→ 𝑣 as the example to synthesize the text extraction

program using techniques from [21].

Example 5.1. Consider the task of extracting departure

time from the email in Figure 1 (a). The synthesized region ex-

traction, value extraction programs and blueprint are shown

in Figure 3.

5.2 Form Images
This domain concerns images that are obtained by scanning

or photographing of physical paper documents. These im-

ages are first processed by an Optical Character Recognition

(OCR) technique to obtain a list of text boxes along with their

coordinates. The form images domain is significantly more

complex than the HTML domain as: (a) The OCR output is

generally very noisy, sometimes splitting up field values into

Landmarks and Regions: A Robust Approach to Data Extraction PLDI ’22, June 13–17, 2022, San Diego, CA, USA

RProg := Disjunct(path, path, ...)
path := input | Expand(path, motion)
motion := Absolute(dir, k)

| Relative(dir, pattern, inclusive)
dir := Top | Left | Right | Bottom

Figure 6. The Form Images Region extraction DSL L𝑟𝑥

a varying number of different text boxes. (b) These docu-

ments do not come equipped with a hierarchical structure

that defines natural regions.

Landmarks and Landmark Candidates. As in the HTML

case, we use 𝑛-grams as landmarks. The Locate and

LandmarkCandidates functions work similarly to the HTML

case with OCR output text boxes replacing DOM nodes.

The scoring function for LandmarkCandidates computes

the score for a landmark candidate m as a weighted sum of:

(a) the Euclidean distance between m and field value 𝑣 , and

(b) the area of the smallest rectangle that encloses both m
and 𝑣 .

Blueprints. Rather than considering all common boxes for

blueprinting as in the HTML case, we instead use only the

boxes containing the top 50% most frequent 𝑛-grams. The

blueprint of a region is defined to be the BoxSummary of

each such box taken in document order. The BoxSummary
of box consists of 2 parts: (a) The frequent 𝑛-gram that is

present in the box, and (b) For each of the directions top,

left, right, and bottom, the content type in the text box that

immediately neighbors box in the direction. The content

type of a box is either: (1) ⊥ if the box does not exist, (2) the

frequent 𝑛-gram in the text of the box if one exists, and (3) ⊤
if the box exists, but does not contain a frequent 𝑛-gram.

Example 5.2. Consider the text box enclosing Engine num-
ber in the Accounts Invoice image in Figure 1(c). The 𝑛-gram

Engine number is frequent and hence, is included in the blue-

print. The BoxSummary of the box is given by: ⟨ngram ↦→
Engine number, Top ↦→ ⊥, Left ↦→ Chassis number, Right ↦→
Reg Date,Bot ↦→ ⊤⟩ Here, Engine number and Reg Date are
also a frequent 𝑛-grams, while the value of the Engine num-

ber 4713872198212 is not.

Region Extraction DSL. Figure 6 depicts a novel region extrac-

tion DSL L𝑟𝑥 for this domain. L𝑟𝑥 has the following com-

ponents: The top operator is a disjunction of path programs:
operationally, these programs are executed in sequence and

the first non-null result is returned. Due to the OCR noise

and variations in form images, often a single non-disjunctive

path program is not sufficient. Each path program starts at

the input landmark and repeatedly extends the path in steps

till the path’s bounding box covers all the annotated values.

Each extension step is specified by a direction and a motion.

The motion may be absolute (e.g., move right by 4 boxes) or

relative (e.g., move down till you hit a text box that matches

the regex [0-9]{5}). The additional inclusive parameter

indicates whether the box that matches the pattern should

be included or excluded in the path.

Example 5.3. In Figure 1(c), let us consider the landmark

Chassis number and the annotated value WDX 28298 2L SHX
3 . The field value here is a variable-length string and the

OCR splits the value into 1 − 4 separate boxes. Consider the
two region programs given below:

• Ext(Ext(input,Abs(down, 1)),Rel(Right, [0 − 9]{13}, false))
• Ext(Ext(input,Abs(down, 1)),Rel(Right,DATE, false))
Both programs first move one step down from the landmark

Chassis number. However, the first moves to the right till it

hits a 13 digit engine number, while the other till it hits a date.

In case the engine number is present in a given form, the

first program produces a path which ends with the annotated

value, while the second one does so if the engine number

is absent. When combined disjunctively in the right order,

they together cover both cases.

The synthesis algorithm for L𝑟𝑥 is split into two parts:

generating path programs and selecting path programs to

construct a disjunction. Fix a set of input documents with

annotations. We first synthesize path programs for small

subsets (size ≤ 3) of input documents. For synthesizing path

programs, we use enumerative synthesis [6, 53] to gener-

ate numerous candidate programs and then filter them by

whether they cover the annotated values when starting from

the landmark.We enumerate paths of up to 4motions, bound-

ing k to positive integers < 5. For pattern, we enumerate

a finite set of regular expression patterns generated using a

string profiling technique [11, 40] over all the common and

field text values present in the cluster. For example, when

given a cluster of documents of similar to Figure 1c), one of

the patterns returned is [0 − 9]{13} as the cluster contains
many engine numbers of that form.

After the enumeration step, we have a collection

{𝑃1, . . . , 𝑃𝑛} of path programs that are each synthesized from

a small subset of input examples. Now, we use the NDSyn
algorithm from [23] to select a subset of these programs to

construct the disjunctive program. Now, for each program

𝑃𝑖 , we define the set Ex𝑖 to be the subset of Examples that 𝑃𝑖
is correct on. The NDSyn algorithm selects a subset of P of

programs such that

⋃
𝑃𝑖 ∈P Ex𝑖 = Examples, optimizing for

F1 score and program size [23].

Example 5.4. Consider the two path programs from

Example 5.3, along with the additional program

Ext(Ext(input,Abs(Down, 1)),Abs(Right, 2)). Given a

collection of such path programs, NDSyn builds the

disjunctive program using the two from Example 5.3 as

they cover a large fraction of the documents in the cluster.

The additional program above will be ignored as it is only

correct when the chassis number field value is split into 2

boxes by the OCR.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA S. Parthasarathy et al.

Value Extraction DSL. For the value extraction DSL, we use

FlashFill [21]. The input to the value extraction program is

the concatenation of all the text values in the boxes returned

by the path program.

6 Discussion
6.1 Hierarchical Landmarks
Consider again the email in Figure 1b) and a variant where

the term Pick-up has been replaced by Depart. Now, using
the landmark Depart for extraction will unintentionally also

extract the car trip departure time. In Section 2, the human

used a hierarchy of landmarks (i.e., AIR followed by Depart)
to obtain the correct results. Algorithm 2 can similarly be

extended to hierarchical extractions.

Say we first synthesized a program Prog
0
using Algo-

rithm 2 that uses the landmark Depart. We run Prog
0
on

the training document and realize that a spurious landmark

location (car departure) is identified. In this case, we use

the correct landmark locations (i.e., the first and last occur-

rence of Depart) as a new annotation. Running Algorithm 2

with this annotation will produce a program Prog
1
that uses

AIR as a landmark and extracts precisely the relevant occur-

rences of Depart. At inference time, we run Prog
1
to identify

only the correct occurrences of Depart and then run Prog
0

starting with only those occurrences of Depart. In our im-

plementation in Section 7, we have implemented the full

hierarchical extraction algorithm for the HTML domain.

6.2 Robustness of LRSyn
By design, LRSyn is robust to format variations that change

(a) document structure outside the ROIs, (b) position of ROIs,

and (c) the number of ROIs. However, there are 2 clear limi-

tations to the robustness of LRSyn: If a format changes by

adding a new part (e.g., car departure time) that contains

the landmark the LRSyn generated program uses, the pro-

gram may generate a spurious output. This is only a problem

if the new part added also has similar blueprint to the ex-

isting ROIs. For example, the program will not be mislead

by an new banner advertisement saying Depart today for
your dream destination! The second case is when the format

inside the ROI changes. In this case, the underlying assump-

tion about invariant local structure is violated and LRSyn is

unlikely to cope with this variation. One possible solution

that we discuss in Section 9 is to use a trained ML model to

automatically re-synthesize as in [23].

7 Evaluation
We evaluate LRSyn in two scenarios, each with different doc-

ument types: (1) HTML documents from travel reservation

emails and (2) Form image documents from invoices, receipts,

and travel reservation emails. In each case, we perform ex-

periments in 2 settings: contemporary and longitudinal. In the
contemporary setting, the training data and test data consist

of documents authored and collected during the same time

period. On the other hand, for the longitudinal setting, the

test data was collected several months after the training data,

allowing for new formats to organically enter the dataset.

For both domains, we are attempting to answer the following

research question:

How does LRSyn compare with previous approaches in
the contemporary and longitudinal settings?

Before describing the results, we first discuss the 3 thresh-

old parameters that control various aspects of learning and

inference in LRSyn. We pick both the cluster merging thresh-

old in Algorithm 3 and the blueprint distance threshold

in Algorithm 1 to be 0, i.e., an exact match. Note that the
blueprint functions already lose information–hence, an ex-

act match does not mean the ROIs need to have exactly

the same format. For the score threshold for the procedure

LandmarkCandidates, we pick a threshold that gives us

around 10 landmark candidates in each case.

We discuss the results on the HTML and form image doc-

uments in Sections 7.1 and 7.2, and discuss some secondary

results on the nature of programs learned by LRSyn in Sec-

tion 7.3. In Section 7.4, we discuss how robust the experi-

mental results are to various choices in the experimental

setup.

7.1 HTML Extraction
Our HTML document dataset, called the machine-to-human
(M2H) email dataset, consists of anonymized flight reserva-

tion emails. It consists of 3503 emails from 6 different flight

providers and is divided into training and test sets of size

362 and 3141, respectively. For each provider, we synthesize

and test programs using Algorithm 2, as instantiated in Sec-

tion 5.1. We compare against 2 state-of-the-art techniques,

namely NDSyn [23] and ForgivingXPaths [39].

Overall results. Table 1 shows the average precision,

recall and F1 scores across various extraction tasks for

ForgivingXPaths, NDSyn and LRSyn for both contemporary

and longitudinal setting. As seen in the table, LRSyn has

near perfect precision and recall, with NDSyn performing

quite well with numbers > 0.9. Further, as expected, the

gap between LRSyn and NDSyn is higher in the longitu-

dinal dataset indicating that LRSyn can cope with format

variations better than NDSyn.
UnlikeNDSyn or LRSynwhich use a combination of struc-

ture and text programs for extraction, ForgivingXPaths only
outputs XPaths which correspond to the entire node, rather

than the sub-text contained within that node. Consequently,

it has high recall and poor precision when the field value is

a substring of the entire DOM node text. We therefore omit

it from the more detailed results below.

Detailed comparison. Table 2 shows a more detailed drill-

down of the F1 scores for NDSyn and LRSyn, in the two

Landmarks and Regions: A Robust Approach to Data Extraction PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Table 1. Overall scores of LRSyn and NDSyn on the M2H

Contemporary and Longitudinal datasets

Contemporary

Metric ForgivingXPaths NDSyn LRSyn
Avg. Precision 0.17 0.96 1.00

Avg. Recall 0.99 0.91 1.00

Avg. F1 0.22 0.93 1.00

Longitudinal

Metric ForgivingXPaths NDSyn LRSyn
Avg. Precision 0.15 0.99 1.00

Avg. Recall 0.98 0.89 1.00

Avg. F1 0.20 0.92 1.00

settings. In summary, in all cases, the hit to the F1-scores

come from lower precision numbers rather than lower recall

numbers.

LRSyn is very robust to variations in the longitudinal

setting, achieving > 95% F1 score in all 53 out of 53

fields, with a perfect F1 score of 1.00 in 49 cases. In

comparison, NDSyn achieves > 95% and perfect scores

in 40 and 33 cases respectively.

In many applications, having a score of 1.00 is crucial, i.e.,

even a system with 0.99 precision cannot be deployed in

practice. For example, even a tiny imprecision in a system

that automatically adds calendar entries based on flight reser-

vation emails is disastrous for millions of users. Comparing

the numbers precisely, LRSyn outperforms NDSyn in 19 and

20 out of the 53 fields in the contemporary and longitudi-

nal setting, respectively. In the remaining fields, the two

approaches have comparable F1 scores.

We examined the domains aeromexico and

mytrips.amexgbt where both LRSyn and NDSyn achieved

perfect scores. In the aeromexico domain, each field has a

unique dedicated ID attribute in the HTML domain which

act as implicit landmarks, and both NDSyn and LRSyn are

able to latch on to this unique ID. For example, the arrival

time and departure city DOM nodes have id arrival-city
and departure-city, and NDSyn produces a program that

searches for this ID across the whole document, emulating

the landmark location step of a LRSyn program.

In themytrips.amexgbt domain, theNDSyn programwhile

perfectly accurate on all the variations in our dataset, is very

fragile. In the final CSS selector step of the web extraction

component, it looks for the 10
𝑡ℎ

child of a DOM element

corresponding to a flight details section. Incidentally, all new

sections (car reservations, hotel reservations, etc) added in

the new variations have at most 5 children, and hence, they

are automatically ignored by the NDSyn program. Any new

variation that would add a long enough section will break

this program. In contrast, the LRSyn program narrows down

on the right region with a landmark and is resistant to such

variations.

7.2 Form Image Extraction
We consider two datasets of form images. For both datasets,

we use a training data size of 10 for each field, and compare

against Azure Form Recognizer (AFR) [36], a cloud-based

form data extraction service.

• Finance dataset: This consists of 850 images of receipts,

purchase orders, credit notes, sales invoice and similar

such documents. Here, the training and test data are

from the same time period and we only evaluate the

contemporary setting.

• M2H-Images dataset: We convert M2H emails from

4 domains to images and extract the same fields as

before. This represents common scenarios in practice

where HTML documents such as booking mails or

receipts may be printed and then scanned again, say

when expense reports are filed. The OCR service we

use produced extremely poor results on 2 of the 6

domains from the HTML experiments, and hence, we

used only 4 domains in this dataset (The same OCR

service is used by our baseline as well, see below).

Overall Results. Table 5 shows the average precision, recall,
F1 and accuracy scores for AFR and NDSyn for both the

Finance and M2H-image datasets. As we can see from the

table, both LRSyn and AFR perform very well on the Finance

dataset, with LRSyn performing marginally better. In this

dataset, the image formats do not vary much, resulting in

these high-quality results.

LRSyn outperforms AFR, a state-of-the-art industrial
neural form extraction system with just 10 training

images per field, having a precision of 0.97 vs 0.90 on

the M2H-Images dataset.

Detailed comparison. Table 3 shows the results ofAFR and

LRSyn on the Finance dataset with respect to 34 extraction

tasks. LRSyn performs better than AFR in 12 out of the 34

cases and is on par on the rest, with significant gains in some

domains like "AccountsInvoice".

Though the neural model in AFR is trained with thou-

sands of invoices and receipts, and further fine-tuned with

our training data, we observe that it is sensitive to the re-

gion coordinates in a given document. If these regions are

translated, or if the document scan is tilted, AFR produces er-

roneous results. On the other hand, LRSyn is partially robust

to such changes as we use a text landmark. AFR is marginally

better than LRSyn in some extraction tasks. These are cases

where there is no clear bounding pattern for the field values.

On the other hand, AFR’s semantic understanding of the

data is not affected by boundary text patterns.

Table 4 shows the results of AFR and LRSyn on the M2H

dataset with respect to 45 extraction tasks. This dataset ex-

hibits more variations at the visual level as compared to

the Finance dataset, and hence, LRSyn performs better than

NDSyn in 35 out of the 45 tasks and is on par on most of the

remaining extraction tasks. There is 1 specific case where

LRSyn fails altogether, producing no programs. These are

cases where there is no local textual landmark geometrically

PLDI ’22, June 13–17, 2022, San Diego, CA, USA S. Parthasarathy et al.

Table 2. F1 scores of NDSyn and LRSyn for M2H HTML dataset. The Pvdr field is not relevant for iflyalaskaair

Contemporary Longitudinal

Fields Domain NDSyn LRSyn NDSyn LRSyn
AIata

ifly

0.81 1.00 0.64 1.00
ATime 0.76 1.00 0.62 1.00
DIata 0.73 1.00 0.55 1.00
DDate 1.00 1.00 1.00 1.00

DTime alaska 0.73 1.00 0.55 1.00
FNum air 1.00 1.00 1.00 1.00

Name 1.00 1.00 0.99 0.99

Pvdr – – – –

RId 1.00 1.00 1.00 1.00

AIata

airasia

0.67 1.00 0.67 1.00
ATime NaN 1.00 NaN 1.00
DIata 0.67 1.00 0.67 1.00
DDate 0.67 1.00 0.67 1.00
DTime NaN 1.00 NaN 1.00
FNum 1.00 1.00 0.96 0.96

Name 1.00 1.00 1.00 1.00

Pvdr 1.00 1.00 0.96 0.96

RId 1.00 1.00 1.00 1.00

Contemporary Longitudinal

Domain NDSyn LRSyn NDSyn LRSyn

getthere

0.75 1.00 0.74 1.00
0.94 1.00 0.91 1.00
0.94 1.00 0.95 1.00
0.98 1.00 0.95 1.00
0.76 1.00 0.78 1.00
0.98 1.00 0.98 1.00
1.00 1.00 0.89 1.00
0.98 1.00 0.97 1.00
0.93 1.00 0.94 1.00

delta

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

0.94 1.00 0.95 1.00
1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

0.85 0.97 0.91 0.97
1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

Contemporary Longitudinal

Domain NDSyn LRSyn NDSyn LRSyn

aero

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

mexico 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

mytrips

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

amex 1.00 1.00 1.00 1.00

gbt 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00

Table 3. F1 scores for Finance dataset
Domain Fields AFR LRSyn

AccountsInvoice

Amount 0.99 1.00
Chassis 0.82 0.99
CustAddr 0.98 0.96
Date 0.93 0.98
Dnum 0.96 0.97
Engine 0.82 1.00
InvoiceAddress 0.90 0.95
Model 0.75 1.00

CashInvoice

Amount 1.00 1.00

Chassis 0.99 0.99

CustAddr 0.99 0.97
Date 0.99 0.99

Dnum 0.96 0.96

Engine 0.93 0.95
InvoiceAddress 0.99 0.99

Model 0.99 1.00

CreditNote

Amount 1.00 1.00

CreditNoteAddress 0.99 1.00
CreditNoteNo 0.94 0.93
CustRefNo 1.00 1.00

Date 1.00 1.00

RefNo 1.00 1.00

SalesInvoice

Amount 1.00 1.00

CustomerReferenceNo 1.00 1.00

Date 1.00 1.00

InvoiceAddress 0.94 0.99
RefNo 0.99 0.99

SalesInvoiceNo 0.99 0.99

SelfBilledCreditNote

Amount 1.00 1.00

CustomerAddress 1.00 0.99
CustomerReferenceNo 0.99 0.99

Date 1.00 1.00

DocumentNumber 1.00 1.00

VatRegNo 1.00 1.00

near the field value. However, the region around the field

value may still be similar across documents. We discuss the

possibility of using visual landmarks as opposed to textual

ones in Section 9.

Summary of results. In the HTML domain, the prior work

NDSyn is a high-performing system with F1 scores in the

range of 0.9. LRSyn is able to push the F1 scores to a perfect

1.0 in most cases. In longitudinal scenarios, LRSyn improves

NDSyn in 20 out of 53 fields, with significant lift in F1 scores

in many cases. In the images domain, even with very lit-

tle training data, LRSyn matches AFR, which is a released

product on contemporary settings, and outperforms AFR in

Table 4. F1 Score for M2H-Images Dataset

Fields Domain AFR LRSyn
AIata

aeromexico

0.62 0.65
ATime 0.69 0.99
DIata 0.36 0.66
DDate 0.71 0.89
DTime 0.65 0.97
FNum 0.66 0.83
Name 0.96 0.98
Pvdr 0.69 0.78
RId 1.00 1.00

Domain AFR LRSyn

getthere

0.94 1.00
0.87 1.00
0.93 1.00
0.96 0.99
0.88 1.00
0.94 1.00
0.99 0.99

0.75 1.00
0.89 0.95

Fields Domain AFR LRSyn
AIata

ifly.

0.99 1.00
ATime 0.95 1.00
DIata 0.98 1.00
DDate 0.98 -
DTime alaskaair 0.95 0.98
FNum 0.97 1.00
Name 0.98 0.98

Pvdr 0.93 0.99
RId 1.00 0.86

Domain AFR LRSyn

mytrips

0.85 0.98
0.97 1.00
0.96 0.99
0.93 1.00

amexgbt 0.99 1.00
0.98 1.00
0.98 1.00
0.91 0.99
0.61 0.96

Table 5. Average precision, recall, F1 numbers on Fi-

nance and M2H-Images dataset (Ignoring DDate field in

ifly.alaskaair)

Metric AFR LRSyn
Avg. Pre. 0.98 0.99

Avg. Rec. 0.96 0.99

Avg. F1 0.97 0.99

Finance dataset

Metric AFR LRSyn
Avg. Prec. 0.90 0.97

Avg. Rec. 0.93 0.97

Avg. F1 0.91 0.97

M2H-Images dataset

longitudinal settings. In addition, LRSyn produces simpler

interpretable programs that match human intuition for ex-

traction, and are much easier to maintain. Hence, we see a

lot of promise in this approach.

7.3 Nature of Synthesized Programs
Additionally, we performed secondary analysis to under-

stand the features of the LRSyn programs.

Program size. In the HTML domain, we compared size of

the LRSyn and NDSyn programs. Since the programs are

naturally of different shapes, we only compare the web ex-

traction part of the programs. The final text extraction pro-

gram is generally the same across both algorithms. Note that

Landmarks and Regions: A Robust Approach to Data Extraction PLDI ’22, June 13–17, 2022, San Diego, CA, USA

these numbers need to be taken in the context that LRSyn
programs additionally have a landmark and blueprint.

For the M2H dataset, the web extraction part of LRSyn
programs have 2.95 CSS selector components as com-

pared to 8.51 for NDSyn.

Quality of Inferred Landmarks.We infer landmarks au-

tomatically using the techniques and scoring functions from

Sections 4 and 5. To check the quality of landmark inference,

we also asked data annotators to tag landmarks manually.

In 57 out of 63 clusters across all fields, the inferred land-

marks are the same as manually provided landmarks. In

5 of the remaining 6 cases, the human annotator agreed

that the inferred landmark was of equal quality.

In the remaining 1 case, the algorithm chose the human

annotated landmark as well, but in addition chose a disam-

biguating hierarchical landmark of low quality. In particular,

it disambiguated the term Name occurred in reference to

both the name of the passenger and the name in the billing

address. Here, the algorithm chose to disambiguate using

the term Meal, i.e., passengers have a meal preference while

the billed person does not.

7.4 Robustness of Experimental Results

Training set choice. In our experiments, the training set

is small compared to the full dataset leading to a possibil-

ity of over-fitting, with different training sets potentially

producing significantly differing results. However, our tech-

niques are robust even with small training sets: (a) Landmark

identification can leverage the full dataset of both labeled

and unlabeled documents. (b) LRSyn does not need to see

all format variations that differ only outside the ROIs, and

a small set covering only the variations within the ROIs is

sufficient. To confirm this, we reran all our experiments on

the M2H-HTML dataset with 4 different randomly chosen

training datasets. In all runs, the F1 scores of the generated

programs for each field and domain varied by no more than

0.01 from the results presented in Table 2, confirming our

hypothesis that the results are robust to training set choice.

Landmark identification threshold. For the landmark

candidate score threshold, we picked threshold values that

resulted in ~10 candidates for each case. To study the robust-

ness of the results to this choice, we reran all experiments

with a threshold value that returned 2𝑋 as many candidates.

The obtained results were exactly identical to the results

presented in the previous sections. This is expected as “bad”

landmark candidates are eliminated in subsequent steps, i.e.,

there is usually no program that extracts the required field

value starting from the landmark. Hence, as long as the

threshold is high enough to allow for some good landmark

candidates, it does not matter how many bad landmark can-

didates are included.

8 Related Work

Program synthesis. Data extraction has been an active

area of investigation in the program synthesis community.

FlashExtract [28] synthesizes programs from examples for

extraction from large text or web documents, using an al-

gebra of pre-defined operators such as map, reduce and fil-

ter. FlashExtract works well when inputs are homogeneous.

For heterogeneous inputs, several works have explored dis-
junctive synthesis approaches [7, 8, 45, 47, 48]. Forgiving
XPaths [39] in particular focuses on synthesizing progres-

sively relaxed XPaths to increase recall for web extraction.

Hybrid synthesis [46] proposes a combination of deductive

[41] and predictive [44] synthesis techniques to create pro-

grams that follow aligned structures inferred on webpages,

but this is primarily focused on tabular data extraction. Ray-

chev et al. [43] also learn programs from noisy data, but

generate a single program from a noisy dataset rather than

using clustering to learn different programs applicable to dif-

ferent region formats. In contrast to the above techniques, we

propose the idea of landmarks and regions as a compositional

approach that addresses the high noise and heterogeneity,

and support evolution in the formats over time.

Wrapper induction. The goal of wrapper induction is to

generate a set of extraction rules from an annotated HTML

document. Wrapper induction is an active area of research

with techniques based on supervised learning [50, 59, 61–63],

program synthesis [44–46], unsupervised data mining [9, 15,

24, 57], and programming by demonstration [4]. While some

of these works deal with HTML documents as a series of

tokens [22, 25], others can leverage the DOM tree structure of

HTML [38, 49]. The main distinguishing feature of our work

is that LRSyn is a generic framework that can be instantiated

across varied data formats as opposed to being restricted to

HTML documents. Wrapper induction literature has also

examined the possibility of repairing extraction rules when

new data of different formats arrives [14, 27, 30, 42]. LRSyn,
due to its robustness, alleviates the need to update extraction

rules very frequently. However, extraction rules will still

occasionally break when format changes significantly, i.e.,

when the landmarks change or there are format changes

within the ROI. In these cases, incremental learning through

repair is an interesting direction to explore in the future.

The closest wrapper induction work to ours is Muslea et

al [37], where the authors use landmarks in a spirit similar to

LRSyn. In [37], the wrapper induction rules go directly from

the landmark to the field value using a path of parent-child

relations where each step in the path specifies the type of

DOM node. In contrast, our technique has an intermediate

step—we go from the landmark to the ROI and from the ROI

to the field value. This affords us greater flexibility in the

class of synthesis techniques that can be used for extracting

the field value from the ROI rather than just following a fixed

sequence of parent-child hops. Another point of interest is

PLDI ’22, June 13–17, 2022, San Diego, CA, USA S. Parthasarathy et al.

that we use both parent hops and sibling hops in going from

the landmark to the region—this simplifies the extraction

task by allowing a larger class of landmark candidates.

Web testing and automation. The web testing and au-

tomation domain and HTML data extraction share a number

of techniques related to robustly identifying a DOM element

(field value in data extraction and element under test for

web automation) In web testing, we want to robustly specify

actions in the testing script—for example, rather than speci-

fying “click the button at XPath body[2]/table[4]/tr[1]/td[2]”

we want to specify “locate the text label Complete purchase
and click the button near it”. The former is not robust to

changes in the global page format while the latter is. Several

tools, both research and commercial, provide web devel-

opers a high level language or framework to write robust

automation scripts [1–3, 31–33]. Some of these tools even

allow the developer to use annotation or labeling to specify

DOM elements from which scripts are automatically gener-

ated [2, 31, 33]. Most web automation techniques deal with

a single annotated document for training instead of a full

collection like in the data extraction setting—hence, they

do not deal with the heterogeneity problem. The closest re-

lated work in this domain is Yandrapally et al [56] where

landmarks are inferred as an unambiguous ancestor of the

target DOM node. However, a node that is unambiguous

for one document is not necessarily so across multiple het-

erogeneous documents. In fact, the 2 level clustering and

landmark inference is crucial to the LRSyn framework, while

these steps are irrelevant in the web automation scenario.

Another difference between LRSyn and [56] is that we use

a full-fledged DSL and synthesizer for extracting the field

value from the region which facilitates more extractions

on regions, as opposed to the “near” operator. Another re-

lated work is [10], where the authors use a node similarity

based addressing technique to identify nodes corresponding

to “labelled” DOM nodes. Here, the authors do not use any

document structure at all and instead, locate the target as

the node that is most similar to the labelled node accord-

ing a weighted measure of the attributes common to both

nodes. This manner of node identification while robust to a

certain extent, fails when the identification is over a set of

heterogeneous documents from different sources.

Machine learning. ML-based data extraction techniques

have been explored in both the web and document im-

age extraction domains, ranging from neural networks

[13, 17, 20, 34, 55], probabilistic models [16, 60] and markov

logic networks [51]. In general, ML approaches train opaque

models that are neither readable nor editable by the user. One

exception is the area of wrapper induction [26] which learns

sets of XPath expressions to handle noise [16, 18, 29, 35].

Due to the global nature of XPaths, when applied to large

heterogeneous datasets, such approaches can lead to a large

number of expressions in order to cover irrelevant variations

in document formats. In contrast, our technique is local and

modular, and results in smaller programs in both size and

number. Our technique also applies to general DSLs in differ-

ent domains rather than just XPaths for web extraction. Ideas

around exploiting compositionality and data invariance have

also been explored in previous works: [5, 12] use commonly

reoccurring phrasal patterns for web extraction given a seed

set; in the vision community, modular approaches such as

convolutional neural networks have been used for document

image extraction [17, 34, 52, 55, 58], and notably algorithms

based on R-CNN [19] use selective search to focus attention

on a small number of regions from the image (region pro-
posals). Our core ideas are similarly based around localised

regions, but we detect them by identifying landmarks that

present a common kind of invariance in formed documents.

Hybrid approaches. Recent approaches have combined

program synthesis and ML techniques for data extraction.

The closest related work in this area is [23], where an ML

model is used to get an initial labeling of potential attribute

values, and the noisy labels produced by this model are used

to create interpretable programs using synthesis techniques.

While this approach shows improved robustness, it still gen-

erates global programs that can fail with irrelevant changes

to the document format, and we show in this work how our

compositional synthesis approach performs better empiri-

cally in practice. There has been very limited work in the

area of synthesis for document image extraction, but notable

works in specialized areas include [52], where concepts from

inductive logic programming are combined with neural ap-

proaches, and [58], which combines symbolic reasoning with

CNNs, though interpretable programs are not generated.

9 Conclusion
Inspired by how humans search for data in formed docu-

ments, we designed a new approach to data extraction using

the concepts of landmarks and regions. Our implementa-

tion of this approach, LRSyn, is robust to format changes,

and achieves close to perfect F1 scores with HTML docu-

ments, and significantly high F1 scores in image documents

when compared to existing approaches. LRSyn shines espe-

cially when test data has different formats than training data,

which is a common pain-point in real-world applications.

While LRSyn is robust to format changes that occur out-

side the region of interest, we believe that we can further im-

prove its robustness for format changes inside the regions of

interest by combining it with ML approaches as in [23]. This

is a very promising direction to explore due to the possibility

of using smaller ML models trained directly on the regions of

interest rather the the whole document. Additionally, in our

image datasets, we encountered documents where there are

no specific landmark phrases present, though the regions of

interest have similar visual structure. Using R-CNN models

to come up with visual rather than textual landmarks could

improve the performance of extraction in such cases.

Landmarks and Regions: A Robust Approach to Data Extraction PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] [n.d.]. Beautiful soup: We called him tortoise because he taught us.

https://www.crummy.com/software/BeautifulSoup/.
[2] [n.d.]. imacros. https://wiki.imacros.net/Main_Page.
[3] [n.d.]. Selenium-web browser automation. https://www.selenium.

dev/.
[4] BradAdelberg. 1998. NoDoSE—a tool for semi-automatically extracting

structured and semistructured data from text documents. In Proceed-
ings of the 1998 ACM SIGMOD international conference on Management
of data. 283–294.

[5] Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting rela-

tions from large plain-text collections. In Proceedings of the fifth ACM
conference on Digital libraries. 85–94.

[6] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg,

Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Mar-

tin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia,

Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek

Udupa. 2015. Syntax-Guided Synthesis. In Dependable Software Sys-
tems Engineering, Maximilian Irlbeck, Doron A. Peled, and Alexander

Pretschner (Eds.). NATO Science for Peace and Security Series, D:

Information and Communication Security, Vol. 40. IOS Press, 1–25.

https://doi.org/10.3233/978-1-61499-495-4-1
[7] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. 2015. Synthe-

sis Through Unification.. In CAV (2) (Lecture Notes in Computer Sci-
ence, Vol. 9207), Daniel Kroening and Corina S. Pasareanu (Eds.).

Springer, 163–179. http://dblp.uni-trier.de/db/conf/cav/cav2015.html#
AlurCR15

[8] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling

Enumerative Program Synthesis via Divide and Conquer.. In TACAS
(1) (Lecture Notes in Computer Science, Vol. 10205), Axel Legay and

Tiziana Margaria (Eds.). 319–336. http://dblp.uni-trier.de/db/conf/
tacas/tacas2017-1.html#AlurRU17

[9] Arvind Arasu and Hector Garcia-Molina. 2003. Extracting Structured

Data fromWeb Pages. In Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, San Diego, California, USA,
June 9-12, 2003, Alon Y. Halevy, Zachary G. Ives, and AnHai Doan

(Eds.). ACM, 337–348. https://doi.org/10.1145/872757.872799
[10] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani.

2016. Ringer: web automation by demonstration. In Proceedings of
the 2016 ACM SIGPLAN international conference on object-oriented
programming, systems, languages, and applications. 748–764.

[11] Ranjita Bhagwan, Sonu Mehta, Arjun Radhakrishna, and Sahil Garg.

2021. Learning Patterns in Configuration. In ASE.
[12] Sergey Brin. 1998. Extracting patterns and relations from the world

wide web. In International workshop on the world wide web and
databases. Springer, 172–183.

[13] Mengli Cheng, Minghui Qiu, Xing Shi, Jun Huang, and Wei Lin.

2020. One-shot Text Field labeling using Attention and Belief Prop-

agation for Structure Information Extraction.. In ACM Multimedia,
Chang Wen Chen, Rita Cucchiara, Xian-Sheng Hua, Guo-Jun Qi, Elisa

Ricci, Zhengyou Zhang, and Roger Zimmermann (Eds.). ACM, 340–348.

http://dblp.uni-trier.de/db/conf/mm/mm2020.html#ChengQSH020
[14] Boris Chidlovskii, Bruno Roustant, and Marc Brette. 2006. Documen-

tum eci self-repairing wrappers: Performance analysis. In Proceedings
of the 2006 ACM SIGMOD international conference on Management of
data. 708–717.

[15] Valter Crescenzi, GiansalvatoreMecca, and PaoloMerialdo. 2001. Road-

Runner: Towards Automatic Data Extraction from Large Web Sites.

In VLDB 2001, Proceedings of 27th International Conference on Very
Large Data Bases, September 11-14, 2001, Roma, Italy, Peter M. G. Apers,

Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamoha-

narao, and Richard T. Snodgrass (Eds.). Morgan Kaufmann, 109–118.

http://www.vldb.org/conf/2001/P109.pdf
[16] Nilesh N. Dalvi, Ravi Kumar, and Mohamed A. Soliman. 2011. Auto-

matic Wrappers for Large Scale Web Extraction. Proc. VLDB Endow. 4,

4 (2011), 219–230. http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.
html#DalviKS11

[17] Han Fu, Yunyu Bai, Zhuo Li, Jun Shen, and Jianling Sun. 2020. A

Machine Learning Framework for Data Ingestion in Document Images.

CoRR abs/2003.00838 (2020). http://dblp.uni-trier.de/db/journals/corr/
corr2003.html#abs-2003-00838

[18] Tim Furche, Jinsong Guo, Sebastian Maneth, and Christian Schallhart.

2016. Robust and noise resistant wrapper induction. In Proceedings of
the 2016 International Conference on Management of Data. 773–784.

[19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014.

Rich feature hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 580–587.

[20] Filip Gralinski, Tomasz Stanislawek, Anna Wróblewska, Dawid Lip-

inski, Agnieszka Kaliska, Paulina Rosalska, Bartosz Topolski, and

Przemyslaw Biecek. 2020. Kleister: A novel task for Information Ex-

traction involving Long Documents with Complex Layout. CoRR
abs/2003.02356 (2020). http://dblp.uni-trier.de/db/journals/corr/
corr2003.html#abs-2003-02356

[21] Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. ACM Sigplan Notices 46, 1 (2011), 317–
330.

[22] Chun-Nan Hsu and Ming-Tzung Dung. 1998. Generating finite-state

transducers for semi-structured data extraction from the web. Infor-
mation systems 23, 8 (1998), 521–538.

[23] Arun Shankar Iyer, Manohar Jonnalagedda, Suresh Parthasarathy,

Arjun Radhakrishna, and Sriram K. Rajamani. 2019. Synthesis and

machine learning for heterogeneous extraction.. In PLDI, Kathryn S.

McKinley and Kathleen Fisher (Eds.). ACM, 301–315. http://dblp.uni-
trier.de/db/conf/pldi/pldi2019.html#IyerJPRR19

[24] Iraklis Kordomatis, Christoph Herzog, Ruslan R. Fayzrakhmanov, Bern-

hard Krüpl-Sypien, Wolfgang Holzinger, and Robert Baumgartner.

2013. Web object identification for web automation and meta-search.

In 3rd International Conference on Web Intelligence, Mining and Se-
mantics, WIMS ’13, Madrid, Spain, June 12-14, 2013, David Camacho,

Rajendra Akerkar, and María Dolores Rodríguez-Moreno (Eds.). ACM,

13. https://doi.org/10.1145/2479787.2479798
[25] Nicholas Kushmerick. 1997. Wrapper induction for information extrac-

tion. University of Washington.

[26] N. Kushmerick. 2000. Wrapper induction: efficiency and expressive-

ness. Artificial Intelligence 118 (2000), 15–68.
[27] Nicholas Kushmerick et al. 1999. Regression testing for wrapper

maintenance. In Aaai/iaai. Citeseer, 74–79.
[28] Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data

extraction by examples.. In PLDI, Michael F. P. O’Boyle and Keshav

Pingali (Eds.). ACM, 542–553. http://dblp.uni-trier.de/db/conf/pldi/
pldi2014.html#LeG14

[29] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2016.

Robula+: an algorithm for generating robust XPath locators for web

testing. J. Softw. Evol. Process. 28, 3 (2016), 177–204. https://doi.org/10.
1002/smr.1771

[30] Kristina Lerman, Steven NMinton, and Craig A Knoblock. 2003. Wrap-

per maintenance: A machine learning approach. Journal of Artificial
Intelligence Research 18 (2003), 149–181.

[31] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa A. Lau. 2008.

CoScripter: automating & sharing how-to knowledge in the enterprise.

In Proceedings of the 2008 Conference on Human Factors in Computing
Systems, CHI 2008, 2008, Florence, Italy, April 5-10, 2008, Mary Czer-

winski, Arnold M. Lund, and Desney S. Tan (Eds.). ACM, 1719–1728.

https://doi.org/10.1145/1357054.1357323
[32] Ian Li, Jeffrey Nichols, Tessa A. Lau, Clemens Drews, and Allen Cypher.

2010. Here’s what i did: sharing and reusing web activity with Ac-

tionShot. In Proceedings of the 28th International Conference on Human
Factors in Computing Systems, CHI 2010, Atlanta, Georgia, USA, April

https://www.crummy.com/software/BeautifulSoup/
https://wiki.imacros.net/Main_Page
https://www.selenium.dev/
https://www.selenium.dev/
https://doi.org/10.3233/978-1-61499-495-4-1
http://dblp.uni-trier.de/db/conf/cav/cav2015.html#AlurCR15
http://dblp.uni-trier.de/db/conf/cav/cav2015.html#AlurCR15
http://dblp.uni-trier.de/db/conf/tacas/tacas2017-1.html#AlurRU17
http://dblp.uni-trier.de/db/conf/tacas/tacas2017-1.html#AlurRU17
https://doi.org/10.1145/872757.872799
http://dblp.uni-trier.de/db/conf/mm/mm2020.html#ChengQSH020
http://www.vldb.org/conf/2001/P109.pdf
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#DalviKS11
http://dblp.uni-trier.de/db/journals/pvldb/pvldb4.html#DalviKS11
http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-00838
http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-00838
http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-02356
http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-02356
http://dblp.uni-trier.de/db/conf/pldi/pldi2019.html#IyerJPRR19
http://dblp.uni-trier.de/db/conf/pldi/pldi2019.html#IyerJPRR19
https://doi.org/10.1145/2479787.2479798
http://dblp.uni-trier.de/db/conf/pldi/pldi2014.html#LeG14
http://dblp.uni-trier.de/db/conf/pldi/pldi2014.html#LeG14
https://doi.org/10.1002/smr.1771
https://doi.org/10.1002/smr.1771
https://doi.org/10.1145/1357054.1357323

PLDI ’22, June 13–17, 2022, San Diego, CA, USA S. Parthasarathy et al.

10-15, 2010, Elizabeth D. Mynatt, Don Schoner, Geraldine Fitzpatrick,

Scott E. Hudson, W. Keith Edwards, and Tom Rodden (Eds.). ACM,

723–732. https://doi.org/10.1145/1753326.1753432
[33] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A.

Lau. 2009. End-user programming of mashups with vegemite. In

Proceedings of the 14th International Conference on Intelligent User
Interfaces, IUI 2009, Sanibel Island, Florida, USA, February 8-11, 2009,
Cristina Conati, Mathias Bauer, Nuria Oliver, and Daniel S. Weld (Eds.).

ACM, 97–106. https://doi.org/10.1145/1502650.1502667
[34] Weihong Lin, Qifang Gao, Lei Sun, Zhuoyao Zhong, Kai Hu, Qin Ren,

and Qiang Huo. 2021. ViBERTgrid: A Jointly Trained Multi-Modal

2D Document Representation for Key Information Extraction from

Documents.. In 16th International Conference on Document Analysis
and Recognition.

[35] Chong Long, Xiubo Geng, Chang Xu, and Sathiya Keerthi. 2012. A

simple approach to the design of site-level extractors using domain-

centric principles.. In CIKM, Xue wen Chen, Guy Lebanon, Haixun

Wang, andMohammed J. Zaki (Eds.). ACM, 1517–1521. http://dblp.uni-
trier.de/db/conf/cikm/cikm2012.html#LongGXK12

[36] Microsoft. [n.d.]. Azure Form Recognizer. https://azure.microsoft.com/
en-in/services/form-recognizer/.

[37] Ion Muslea, Steve Minton, and Craig Knoblock. 1999. A hierarchical

approach to wrapper induction. In Proceedings of the third annual
conference on Autonomous Agents. 190–197.

[38] Jussi Myllymaki and Jared Jackson. 2002. Robust web data extraction

with xml path expressions. Technical reportz (2002).
[39] Adi Omari, Sharon Shoham, and Eran Yahav. 2017. Synthesis of for-

giving data extractors. In Proceedings of the tenth ACM international
conference on web search and data mining. 385–394.

[40] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit

Gulwani, and Todd D. Millstein. 2018. FlashProfile: a framework for

synthesizing data profiles. Proc. ACM Program. Lang. 2, OOPSLA
(2018), 150:1–150:28. https://doi.org/10.1145/3276520

[41] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework

for inductive program synthesis.. In OOPSLA, Jonathan Aldrich and

Patrick Eugster (Eds.). ACM, 107–126. http://dblp.uni-trier.de/db/
conf/oopsla/oopsla2015.html#PolozovG15

[42] Juan Raposo, Alberto Pan, Manuel Alvarez, and Angel Vina. 2005.

Automatic wrapper maintenance for semi-structured web sources

using results from previous queries. In Proceedings of the 2005 ACM
symposium on Applied computing. 654–659.

[43] Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause.

2016. Learning programs from noisy data.. In POPL, Rastislav Bodík
and Rupak Majumdar (Eds.). ACM, 761–774. http://dblp.uni-trier.de/
db/conf/popl/popl2016.html#RaychevBVK16

[44] Mohammad Raza and Sumit Gulwani. 2017. Automated data extrac-

tion using predictive program synthesis. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 31.

[45] Mohammad Raza and Sumit Gulwani. 2018. Disjunctive Program

Synthesis: A Robust Approach to Programming by Example.. In AAAI,
Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 1403–

1412. http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#RazaG18
[46] Mohammad Raza and Sumit Gulwani. 2020. Web data extraction using

hybrid program synthesis: A combination of top-down and bottom-

up inference. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1967–1978.

[47] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and

Clark W. Barrett. 2015. Counterexample-Guided Quantifier Instan-

tiation for Synthesis in SMT.. In CAV (2) (Lecture Notes in Computer
Science, Vol. 9207), Daniel Kroening and Corina S. Pasareanu (Eds.).

Springer, 198–216. http://dblp.uni-trier.de/db/conf/cav/cav2015.html#
ReynoldsDKTB15

[48] Shambwaditya Saha, Pranav Garg, and P. Madhusudan. 2015. Al-

chemist: Learning Guarded Affine Functions.. In CAV (1) (Lecture Notes
in Computer Science, Vol. 9206), Daniel Kroening and Corina S. Pasare-

anu (Eds.). Springer, 440–446. http://dblp.uni-trier.de/db/conf/cav/
cav2015-1.html#Saha0M15

[49] Arnaud Sahuguet and Fabien Azavant. 1999. Building light-weight

wrappers for legacy web data-sources using W4F. In Vldb, Vol. 99.
738–741.

[50] Sandeepkumar Satpal, Sahely Bhadra, Sundararajan Sellamanickam,

Rajeev Rastogi, and Prithviraj Sen. 2011. Web information extraction

using Markov logic networks. In Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyderabad, India, March
28 - April 1, 2011 (Companion Volume), Sadagopan Srinivasan, Krithi

Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi

Kumar (Eds.). ACM, 115–116. https://doi.org/10.1145/1963192.1963251
[51] Sandeepkumar Satpal, Sahely Bhadra, Sundararajan Sellamanickam,

Rajeev Rastogi, and Prithviraj Sen. 2011. Web information extraction

using markov logic networks.. In KDD, Chid Apté, Joydeep Ghosh,

and Padhraic Smyth (Eds.). ACM, 1406–1414. http://dblp.uni-trier.de/
db/conf/kdd/kdd2011.html#SatpalBSRS11

[52] Vishal Sunder, Ashwin Srinivasan, Lovekesh Vig, Gautam M. Shroff,

and Rohit Rahul. 2019. One-shot Information Extraction from Doc-

ument Images using Neuro-Deductive Program Synthesis.. In 14th
International Workshop On Neural-symbolic Learning And Reasoning,
Vol. abs/1906.02427. http://dblp.uni-trier.de/db/journals/corr/corr1906.
html#abs-1906-02427

[53] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela

Mador-Haim,MiloM. K.Martin, and RajeevAlur. 2013. TRANSIT: spec-

ifying protocols with concolic snippets. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan

(Eds.). ACM, 287–296. https://doi.org/10.1145/2491956.2462174
[54] Wikipedia. [n.d.]. Precision and Recall. https://en.wikipedia.org/wiki/

Precision_and_recall.
[55] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming

Zhou. 2020. LayoutLM: Pre-training of Text and Layout for Document

Image Understanding.. In 26th ACM SIGKDD Conference On Knowledge
Discovery And Data Mining, Vol. abs/1912.13318. http://dblp.uni-
trier.de/db/journals/corr/corr1912.html#abs-1912-13318

[56] Rahulkrishna Yandrapally, Suresh Thummalapenta, Saurabh Sinha,

and Satish Chandra. 2014. Robust test automation using contextual

clues. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis. 304–314.

[57] Yanhong Zhai and Bing Liu. 2006. Structured Data Extraction from

the Web Based on Partial Tree Alignment. IEEE Trans. Knowl. Data
Eng. 18, 12 (2006), 1614–1628. https://doi.org/10.1109/TKDE.2006.197

[58] Mengshi Zhang, Daniel Perelman, Vu Le, and Sumit Gulwani. 2020.

An Integrated Approach of Deep Learning and Symbolic Analysis

for Digital PDF Table Extraction.. In 25th International Conference on
Pattern Recognition (ICPR).

[59] Weinan Zhang, Amr Ahmed, Jie Yang, Vanja Josifovski, and Alexan-

der J. Smola. 2015. Annotating Needles in the Haystack without

Looking: Product Information Extraction from Emails. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015,
Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb,

Dragos D. Margineantu, and GrahamWilliams (Eds.). ACM, 2257–2266.

https://doi.org/10.1145/2783258.2788580
[60] Weinan Zhang, Amr Ahmed, Jie Yang, Vanja Josifovski, and Alexan-

der J. Smola. 2015. Annotating Needles in the Haystack without

Looking: Product Information Extraction from Emails.. In KDD, Long-
bing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb, Dra-

gos D. Margineantu, and Graham Williams (Eds.). ACM, 2257–2266.

http://dblp.uni-trier.de/db/conf/kdd/kdd2015.html#ZhangAYJS15

https://doi.org/10.1145/1753326.1753432
https://doi.org/10.1145/1502650.1502667
http://dblp.uni-trier.de/db/conf/cikm/cikm2012.html#LongGXK12
http://dblp.uni-trier.de/db/conf/cikm/cikm2012.html#LongGXK12
https://azure.microsoft.com/en-in/services/form-recognizer/
https://azure.microsoft.com/en-in/services/form-recognizer/
https://doi.org/10.1145/3276520
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2015.html#PolozovG15
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2015.html#PolozovG15
http://dblp.uni-trier.de/db/conf/popl/popl2016.html#RaychevBVK16
http://dblp.uni-trier.de/db/conf/popl/popl2016.html#RaychevBVK16
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#RazaG18
http://dblp.uni-trier.de/db/conf/cav/cav2015.html#ReynoldsDKTB15
http://dblp.uni-trier.de/db/conf/cav/cav2015.html#ReynoldsDKTB15
http://dblp.uni-trier.de/db/conf/cav/cav2015-1.html#Saha0M15
http://dblp.uni-trier.de/db/conf/cav/cav2015-1.html#Saha0M15
https://doi.org/10.1145/1963192.1963251
http://dblp.uni-trier.de/db/conf/kdd/kdd2011.html#SatpalBSRS11
http://dblp.uni-trier.de/db/conf/kdd/kdd2011.html#SatpalBSRS11
http://dblp.uni-trier.de/db/journals/corr/corr1906.html#abs-1906-02427
http://dblp.uni-trier.de/db/journals/corr/corr1906.html#abs-1906-02427
https://doi.org/10.1145/2491956.2462174
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
http://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-13318
http://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-13318
https://doi.org/10.1109/TKDE.2006.197
https://doi.org/10.1145/2783258.2788580
http://dblp.uni-trier.de/db/conf/kdd/kdd2015.html#ZhangAYJS15

Landmarks and Regions: A Robust Approach to Data Extraction PLDI ’22, June 13–17, 2022, San Diego, CA, USA

[61] Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. 2005.

2D Conditional Random Fields for Web information extraction. In Ma-
chine Learning, Proceedings of the Twenty-Second International Confer-
ence (ICML 2005), Bonn, Germany, August 7-11, 2005 (ACM International
Conference Proceeding Series, Vol. 119), Luc De Raedt and StefanWrobel

(Eds.). ACM, 1044–1051. https://doi.org/10.1145/1102351.1102483
[62] Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma.

2006. Simultaneous record detection and attribute labeling in web data

extraction. In Proceedings of the Twelfth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Philadelphia, PA,
USA, August 20-23, 2006, Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven,

and Dimitrios Gunopulos (Eds.). ACM, 494–503. https://doi.org/10.
1145/1150402.1150457

[63] Jun Zhu, Zaiqing Nie, Bo Zhang, and Ji-Rong Wen. 2008. Dynamic Hi-

erarchical Markov Random Fields for Integrated Web Data Extraction.

J. Mach. Learn. Res. 9 (2008), 1583–1614. https://dl.acm.org/citation.
cfm?id=1442784

https://doi.org/10.1145/1102351.1102483
https://doi.org/10.1145/1150402.1150457
https://doi.org/10.1145/1150402.1150457
https://dl.acm.org/citation.cfm?id=1442784
https://dl.acm.org/citation.cfm?id=1442784

	Abstract
	1 Introduction
	2 Overview
	2.1 Jointly Inferring Landmarks and Clusters
	2.2 Synthesizing Extraction Programs

	3 Formed Document Extraction
	3.1 Preliminaries and Problem Statement
	3.2 Landmarks and Regions
	3.3 Landmark-Based DSLs

	4 Landmark and Region Based Synthesis
	4.1 LRSyn: The Solution Outline
	4.2 Clustering Documents and Inferring Landmarks
	4.3 Synthesizing Extraction Programs

	5 Instantiating LRSyn
	5.1 HTML Documents
	5.2 Form Images

	6 Discussion
	6.1 Hierarchical Landmarks
	6.2 Robustness of LRSyn

	7 Evaluation
	7.1 HTML Extraction
	7.2 Form Image Extraction
	7.3 Nature of Synthesized Programs
	7.4 Robustness of Experimental Results

	8 Related Work
	9 Conclusion
	References

