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Abstract
Adaptive Momentum Estimation (Adam), which
combines Adaptive Learning Rate and Momen-
tum, would be the most popular stochastic opti-
mizer for accelerating the training of deep neural
networks. However, it is empirically known that
Adam often generalizes worse than Stochastic
Gradient Descent (SGD). The purpose of this pa-
per is to unveil the mystery of this behavior in
the diffusion theoretical framework. Specifically,
we disentangle the effects of Adaptive Learning
Rate and Momentum of the Adam dynamics on
saddle-point escaping and flat minima selection.
We prove that Adaptive Learning Rate can es-
cape saddle points efficiently, but cannot select
flat minima as SGD does. In contrast, Momen-
tum provides a drift effect to help the training
process pass through saddle points, and almost
does not affect flat minima selection. This partly
explains why SGD (with Momentum) general-
izes better, while Adam generalizes worse but
converges faster. Furthermore, motivated by the
analysis, we design a novel adaptive optimiza-
tion framework named Adaptive Inertia, which
uses parameter-wise adaptive inertia to accelerate
the training and provably favors flat minima as
well as SGD. Our extensive experiments demon-
strate that the proposed adaptive inertia method
can generalize significantly better than SGD and
conventional adaptive gradient methods.

1. Introduction
Adam (Kingma & Ba, 2015), which combines Adaptive
Learning Rate and Momentum, would be the most popular
optimizer for accelerating the training of deep networks.
However, Adam often generalizes worse and finds sharper

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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minima than SGD (Wilson et al., 2017) for popular con-
volutional neural networks, where the flat minima have
been argued to be closely related with good generalization
(Hochreiter & Schmidhuber, 1995; 1997a; Hardt et al., 2016;
Zhang et al., 2017).

Meanwhile, the diffusion theory has been used as a tool to
study how SGD selects minima (Jastrzkebski et al., 2017; Li
et al., 2017; Wu et al., 2018; Xu et al., 2018; Hu et al., 2019;
Nguyen et al., 2019; Zhu et al., 2019; Xie et al., 2020a;
Li et al., 2021). This line of research also suggests that
injecting or enhancing SGD-like sharpness-dependent gra-
dient noise may effectively help find flatter minima (An,
1996; Neelakantan et al., 2015; Zhou et al., 2019; Xie et al.,
2021a;b; HaoChen et al., 2021). Especially, Zhou et al.
(2020) argued the better generalization performance of SGD
over Adam by showing that SGD enjoys smaller escaping
time than Adam from a basin of the same local minimum.
However, this argument does not reflect the whole picture
of the dynamics of SGD and Adam. Empirically, it does
not explain why Adam converges faster than SGD. More-
over, theoretically, all previous works have not touched the
saddle-point escaping property of the dynamics, which is
considered as an important challenge of efficiently training
deep networks (Dauphin et al., 2014; Staib et al., 2019; Jin
et al., 2017; Reddi et al., 2018).

Our work mainly has two contributions. 1) We disentangle
the effects of Adaptive Learning Rate and Momentum in
Adam learning dynamics and characterize their behaviors
in terms of saddle-point escaping and flat minima selection,
which explains why Adam usually converges fast but does
not generalize well. Particularly, we prove that, Adaptive
Learning Rate is good at escaping saddle points but not good
at selecting flat minima, while Momentum helps escape sad-
dle point and matters little to escaping sharp minima1. 2)
Our theoretical analysis motivated us to propose a novel
Adaptive Inertia (Adai) optimization framework which is
conceptually orthogonal to the existing adaptive gradient
framework. Adai does not parameter-wisely adjust learning
rates, but parameter-wisely adjusts the momentum hyper-
parameter, called inertia. Theoretically, Adai can provably

1When we talk about saddle points, we mean strict saddle
points in this paper.
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Table 1. Adaptive Learning Rate versus Adaptive Inertia. We de-
note advantages as"and disadvantages as$.

SGD Adaptive Learning Rate Adaptive Inertia

Saddle-Escaping Slow$ Fast" Fast"

Minima Selection Flat" Sharp$ Flat"

escape saddle points fast while learning flat minima well,
summarized in Table 1. The extensive empirical results fully
support the theoretical advantage of Adai.

The paper is organized as follows. In Section 2, we first
introduce the dynamics of SGD and analyze its behavior on
saddle-point escaping, which serves as a basis to compare
with the behavior of Adaptive Learning Rate and Momen-
tum. In Section 3, we analyze the behavior of Momentum.
In Section 4, we analyze the dynamics of Adam. In Section
5, we introduce the new optimizer Adai. In Section 6, we
empirically compare the performance of Adai, Adam vari-
ants, and SGD. Section 7 concludes the paper with remarks.

2. SGD and Diffusion
In this section, we introduce some preliminaries about the
SGD diffusion and then present the saddle-point escaping
property of SGD dynamics.

2.1. Prerequisites for SGD Diffusion

We first review the SGD diffusion theory for escaping min-
ima proposed by Xie et al. (2020a). We denote the model
parameters as θ, the learning rate as η, the batch size as
B, and the loss function over one minibatch and the whole
training dataset as L̂(θ) and L(θ), respectively. A typi-
cal optimization problem can be formulated as minθ L(θ).
We may write the stochastic differential equation/Langevin
Equation that approximates SGD dynamics (Mandt et al.,
2017; Li et al., 2019) as

dθ = −∇L(θ)dt+ [ηC(θ)]
1
2 dWt, (1)

where dWt ∼ N (0, Idt), I is the identity matrix, and C(θ)
is the gradient noise covariance matrix. The gradient noise
is defined through the difference of the stochastic gradient
over one minibatch and the true gradient over the whole
training dataset, ξ = ∇L̂(θ) − ∇L(θ). It is well known
that the Fokker-Planck Equation describes the probability
density governed by Langevin Equation (Risken, 1996; Sato
& Nakagawa, 2014). The Fokker-Planck Equation is

∂P (θ, t)

∂t
= ∇ · [P (θ, t)∇L(θ)] +∇ · ∇D(θ)P (θ, t), (2)

where ∇· is the divergence operator and D(θ) = ηC(θ)
2 is

the diffusion matrix (Xie et al., 2020a). We note that the

dynamical time t is equal to the product of the number of
iterations T and the learning rate η: t = ηT .

As the gradient variance dominates the gradient expectation
near critical points, we have

D(θ) =
ηC(θ)

2
≈ η

2B

 1

N

N∑
j=1

∇Lj(θ)∇Lj(θ)>


=
η

2B
FIM(θ) ≈ η

2B
[H(θ)]+ (3)

near a critical point c, where N is the number of train-
ing samples, Lj(θ) is the loss function of the j-th training
sample, H(θ) is the Hessian of the loss function at θ, and
FIM(θ) is the observed Fisher Information matrix, referring
to Chapter 8 of Pawitan (2001) and Zhu et al. (2019). We
further verified that Equation (3) approximately holds even
not around critical points in Figure 1. Equation (3) was also
proposed by Jastrzkebski et al. (2017) and Zhu et al. (2019)
and verified by Xie et al. (2020a) and Daneshmand et al.
(2018). Please refer to Appendix C for the detailed analysis
of the stochastic gradient noise.

Given H = U diag(H1, . . . ,Hn−1, Hn)U>, we use
[·]+ to denote the transformation that [H]+ =
U diag(|H1|, . . . , |Hn−1|, |Hn|)U>. The i-th column vec-
tor of U is the eigenvector corresponding to Hi.

In the following analysis, we use the second-order Taylor
approximation near critical points. This assumption is com-
mon and mild, when we focus on the behaviors near critical
points (Mandt et al., 2017; Zhang et al., 2019a; Xie et al.,
2020a). Note that, by Equation (3) and Assumption 1, the
diffusion matrix D is independent of θ near critical points.
Assumption 1. The loss function around the critical point
c can be approximately written as

L(θ) = L(c) +
1

2
(θ − c)>H(c)(θ − c).

2.2. SGD Diffusion near Saddle Points

In this subsection, we establish the saddle-point escaping
property of SGD diffusion as Theorem 1.
Theorem 1 (SGD Escapes Saddle Points). Suppose c is
a critical point, Assumption 1 and Equation (3) hold, the
dynamics is governed by Equation (1), and the initial pa-
rameter is at the saddle point θ = c. Then the proba-
bility density function of θ after time t is given by the
Gaussian distribution θ ∼ N (c,Σ(t)), where Σ(t) =
U diag(σ2

1 , . . . , σ
2
n−1, σ

2
n)U> and

σ2
i (t) =

Di

Hi
[1− exp(−2Hit)],

where Di is the i-th eigenvalue of the diffusion matrix D
and Hi is the i-th eigenvalue of the Hessian matrix H at c.
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Figure 1. We verified Equation (3) using pretrained and random
three-layer fully-connected networks on MNIST (LeCun, 1998).
Top: Pretrained Models. Bottom: Random Models.

The column vectors of U are exactly the eigenvectors of H .
The dynamical time t = ηT . In terms of SGD notations and
|Hi|ηT � 1 near saddle points, we have

σ2
i (T ) =

|Hi|η2T

B
+O(B−1H2

i η
3T 2).

The proof is relegated to Appendix A.1. We note that 1)
if Hi > 0, the distribution of θ along the direction i con-
verges to a Gaussian distribution with constant variance,
N
(
ci,

η
2B

)
; 2) if Hi < 0, the distribution is Gaussian with

the variance exponentially increasing with time t.

As the displacement ∆θi from the saddle point c can be
modeled as a center-fixed Gaussian distribution, the mean
squared displacement is equivalent to the variance, namely
〈∆θ2

i (t)〉 = σ2
i (t). The result means that SGD escapes

saddle points very slowly (〈∆θ2
i 〉 = O(|Hi|)) if Hi is close

to zero. Note that, in the diffusion analysis, the direction
i denotes the direction of an eigenvector instead of a coor-
dinate’s direction. While SGD updates model parameters
along the coordinates, we do not need to treat the coordi-
nates’ directions specially in the continuous-time analysis.

3. Analysis of Momentum Dynamics
In this section, we analyze Momentum in terms of saddle-
point escaping and flat minima selection.

The continuous-time Momentum dynamics. The Heavy
Ball Method (Zavriev & Kostyuk, 1993) can be written as{

mt = β1mt−1 + β3gt,

θt+1 = θt − ηmt,
(4)

where β1 and β3 are the hyperparameters. We note there
are two popular choices, which are, respectively, β3 = 1
corresponding to SGD-style Momentum and β3 = 1 −
β1 corresponding to Adam-style Momentum, namely the
exponentially moving average.

We can write the motion equation in physics with the mass
M and the damping coefficient γ as{

rt = (1− γdt)rt−1 + F
M dt

θt+1 = θt + rtdt,
(5)

where rt = −mt, F = gt, dt = η, 1 − γdt = β1, and
dt
M = β3. Thus, we obtain the differential form of the
motion equation as

Mθ̈ = −γMθ̇ + F, (6)

where θ̈ = d2θ
dt2 and θ̇ = dθ

dt . The left-hand side as the inertia
force is equal to the mass M times the acceleration θ̈, the
first term in the right-hand side as the damping force is equal
to the damping coefficient γ times the physical momentum
Mθ̇, and the second term in the right-hand side is equal to
the external force F in physics. We can easily obtain the
mass M = η

β3
and the damping coefficient γ = 1−β1

η by
comparing (5) and (6).

As F corresponds to the stochastic gradient term, we obtain

Mdθ̇ = −γMdθ − ∂L(θ)

∂θ
dt+ [2D]

1
2 dWt. (7)

Its Fokker-Planck Equation in the phase space (the θ-θ̇
space) is well known as

∂P (θ, r, t)

∂t
=−∇θ · [rP (θ, r, t)]+

∇r ·
[
γr +M−1∇θL(θ)

]
P (θ, r, t)+

∇r ·M−2D · ∇rP (θ, r, t) (8)

where r = θ̇. Equation (8) is not specialized for learning dy-
namics but a popular result in Langevin Dynamics literatures
(Risken, 1996; Risken & Eberly, 1985; Zhou, 2010; Kalinay
& Percus, 2012). Equation (57) of Radpay (2020) gives
an exactly same form for describing finite-inertia Langevin
Dynamics, Equation (7). We contribution is the first to apply
it to deep learning dynamics.

Momentum escapes saddle points. We formulate how
Momentum escapes saddle points as Theorem 2, whose
proof is relegated to Appendix A.2.

Theorem 2 (Momentum Escapes Saddle Points). Suppose
c is a critical point, Assumption 1 holds, the dynamics is
governed by Momentum, and the initial parameter is at the
saddle point θ = c. Then the mean squared displacement
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near saddle points is

〈∆θ2
i (t)〉 =

Di

γ3M2
[1− exp(−γt)]2+

Di

γMHi
[1− exp(−2Hit

γM
)], (9)

where ∆θ(t) = θ(t) − θ(0) is the displacement of θ, and
〈·〉 denote the mean value. This first term is the momentum
drift effect, and the second term is the diffusion effect. As
|Hi|ηT � 1 near ill-conditioned saddle points, it can be
written in terms of Momentum notations as

〈∆θ2
i 〉 =

|Hi|β2
3η

2

2(1− β1)3B
[1− exp (−(1− β1)T )]

2
+

|Hi|β2
3η

2T

B(1− β1)2
+O(B−1H2

i η
3T 2).

By comparing Theorems 1 and 2, we notice that, SGD es-
capes saddle points only due to the diffusion effect (similar
to the second term in Equation (9)), but Momentum pro-
vides an additional momentum drift effect (the first term in
Equation (9)) for passing through saddle points (Wang et al.,
2019). This momentum drift effect has not been mathemati-
cally revealed before, to the best of our knowledge.

Momentum escapes minima. We first introduce two clas-
sical assumptions.

Assumption 2 (Quasi-Equilibrium Approximation). The
system is in quasi-equilibrium near minima.

Assumption 3 (Low Temperature Approximation). The sys-
tem is under low temperature (small gradient noise).

Xie et al. (2020a) modeled the process of SGD escaping min-
ima as a Kramers Escape Problem in deep learning. Recent
machine learning papers (Jastrzkebski et al., 2017; Xie et al.,
2020a; Zhou et al., 2020) also used Assumptions 2 and 3 as
the background implicitly or explicitly. Quasi-Equilibrium
Approximation and Low Temperature Approximation have
been widely used in many fields’ Kramers Escape Problems
for state transition/minima selection, including statistical
physics(Kramers, 1940; Hanggi, 1986), chemistry(Eyring,
1935; Hänggi et al., 1990), biology(Zhou, 2010), electri-
cal engineering(Coffey & Kalmykov, 2012), and stochastic
process(Van Kampen, 1992; Berglund, 2013).

Assumptions 2 and 3 mean that the diffusion theory is good
at modeling “slow” escape processes that cost more itera-
tions. As this class of “slow” escape processes takes main
computational time compared with “fast” escape processes,
this class of “slow” escape process is more interesting for
training of deep neural networks. Empirically, Xie et al.
(2020a) reported that the escape processes in the wide range
of iterations (50 to 100,000 iterations) can be modeled as a
Kramers Escape Problem very well. Our empirical results

in Section 6 support this point again. Thus, Assumptions
2 and 3 are reasonable in practice (see more discussions in
Appendix B).

We next formulate how Momentum escapes minima as The-
orem 3, which is based on Theorem 3.2 in Xie et al. (2020a)
and the effective diffusion correction for the phase-space
Fokker-Planck Equation (8) in Kalinay & Percus (2012).
We analyze the mean escape time τ (Van Kampen, 1992;
Xie et al., 2020a) required for the escaping process from
a loss valley. Suppose that the saddle point b is the exit
of Loss Valley a, and ∆L = L(b) − L(a) is the barrier
height(See more details in Appendix E.).
Theorem 3 (Momentum Escapes Minima). Suppose As-
sumptions 1, 2, and 3 hold, and the dynamics is governed
by Momentum. Then the mean escape time from Loss Valley
a to the outside of Loss Valley a is given by

τ =π

[√
1 +

4|Hbe|
γ2M

+ 1

]
1

|Hbe|
·

exp

[
2γMB∆L

η

(
s

Hae
+

(1− s)
|Hbe|

)]
,

where the subscript e indicates the escape direction, s ∈
(0, 1) is a path-dependent parameter, and Hae and Hbe

are the eigenvalues of the Hessians of the loss function
at the minimum a and the saddle point b along the escape
direction e. When 4|Hbe|

γ2M � 1, it reduces to SGD. In terms of

Momentum notations, we have log(τ) = O
(

2(1−β1)B∆L
β3ηHae

)
.

Note that the escape direction is aligned with some eigenvec-
tor in the diffusion theory (Xie et al., 2020a). We leave the
proof in Appendix A.3. We note that log(τ) = O

(
2B∆L
ηHae

)
has been obtained for SGD (Xie et al., 2020a). We see that
Momentum does not affect flat minima selection in terms
of the mean escape time, if we properly choose the learning
rate, i.e., ηMomentum = 1−β1

β3
ηSGD.

4. Analysis of Adam Dynamics

Algorithm 1 Adam

gt = ∇L̂(θt)
mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2

t

m̂t = mt

1−βt
1

v̂t = vt
1−βt

2

θt+1 = θt − η√
v̂t+ε

m̂t

In this section, we analyze the effects of Adaptive Learning
Rate in terms of saddle-point escaping and flat minima
selection.

A motivation behind Adaptive Learning Rate. The pre-
vious theoretical results naturally point us a good way to
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Algorithm 2 Adai

gt = ∇L̂(θt)
vt = β2vt−1 + (1− β2)g2

t

v̂t = vt
1−βt

2

v̄t = mean(v̂t)
β1,t = (1− β0

v̄t
v̂t).Clip(0, 1− ε)

mt = β1,tmt−1 + (1− β1,t)gt
m̂t = mt

1−
∏t

z=1 β1,z

θt+1 = θt − ηm̂t

help escape saddle points: adaptively adjust the learning
rates for different parameter as ηi ∝ |Hi|−

1
2 . However,

estimating the Hessian is expensive in practice. In Adam
(Algorithm 1), the diagonal v can be regarded as a diago-
nal approximation of the full matrix E[gtg

>
t ] (Staib et al.,

2019). Following Staib et al. (2019), our analysis considers
the “idealized” Adam where v = E[gtg

>
t ] is a full matrix.

Note that E[gtg
>
t ] = C(θ) = H

B approximately holds near
critical points.

The continuous-time Adam dynamics. The continuous-
time dynamics of Adam can also be written as Equation (6),
except the mass M = η̂

1−β1
and the damping coefficient

γ = 1−β1

η̂ . We emphasize that the learning rate is not a real
number but the diagonal approximation of the ideal learning
rate matrix η̂ = ηC−

1
2 in practice. We apply the adaptive

time continuation dt̂i = η̂i in the i-th dimension, where t̂i
of T iterations is defined as the sum of η̂i of each iteration.
Thus, the Fokker-Planck Equation for Adam can still be
written as Equation (8). We leave more details in Appendix
H.

Adam escapes saddle points. Similarly to Theorem 2, we
formulate how Adam escapes saddle point as Proposition 1,
which can be obtained from Theorem 2 and η̂ = ηC−

1
2 .

Proposition 1 (Adam Escapes Saddle Points). Suppose c
is a critical point, Assumption 1 and Equation (3) hold,
the dynamics is governed by Adam, and the initial param-
eter is at the saddle point θ = c. Then the mean squared
displacement is written as

〈∆θ2
i (t̂i)〉 =

Di

γ2M
[1− exp(−γt̂i)]2+

Di

γMHi
[1− exp(−2Hit̂i

γM
)].

Under |Hi|ηT � 1, it can be written in terms of Adam
notations as:

〈∆θ2
i 〉 =

η2

2(1− β1)
[1− exp (−(1− β1)T )]

2
+

η2T +O(
√
B|Hi|η3T 2).

From Proposition 1, we can see that Adam escapes saddle

points fast, because both the momentum drift and the dif-
fusion effect are approximately Hessian-independent and
isotropic near saddle points, which is also supported by
Staib et al. (2019). Proposition 1 indicates that one advan-
tage of Adam over RMSprop (Hinton et al., 2012) comes
from the additional momentum drift effect on saddle-point
escaping.

Adam escapes minima. We next formulate how Adam
escapes minima as Proposition 2, which shows that Adam
cannot learn flat minima as well as SGD. We leave the proof
in Appendix A.4.
Proposition 2 (Adam Escapes Minima). The mean escape
time of Adam only exponentially depends on the square root
of the eigenvalues of the Hessian at a minimum:

τ =π

√1 +
4η
√
B|Hbe|

1− β1
+ 1

 |det(H−1
a Hb)|

1
4

|Hbe|
·

exp

[
2
√
B∆L

η

(
s√
Hae

+
(1− s)√
|Hbe|

)]
,

where τ is the mean escape time. Thus, we have

log(τ) = O

(
2
√
B∆L

η
√
Hae

)
.

In comparison, Adam has log(τ) = O(H
− 1

2
ae ), while SGD

and Momentum both have log(τ) = O(H−1
ae ). We say

that Adam is weaker Hessian-dependent than SGD in terms
of sharp minima escaping, which means that if Hae in-
creases, i.e., the escaping direction becomes steeper, the
escaping time log(τ) for SGD decreases more dramatically
than log(τ) for Adam. In the diffusion theory, the minima
sharpness is reflected by Hae, the eigenvalue of the Hessian
corresponding to the escape direction along an eigenvec-
tor. The weaker Hessian-dependent diffusion term of Adam
hurts the efficiency of selecting flat minima in compari-
son with SGD. In summary, Adam is better at saddle-point
escaping but worse at flat minima selection than SGD.

Adam variants. Many variants of Adam have been pro-
posed to improve performance, such as AdamW (Loshchilov
& Hutter, 2018), AdaBound (Luo et al., 2019), Padam (Chen
& Gu, 2018), RAdam (Liu et al., 2019), AMSGrad (Reddi
et al., 2019), Yogi (Zaheer et al., 2018), and others (Shi
et al., 2021; Défossez et al., 2020; Zou et al., 2019). Many
of them introduced extra hyperparameters that require tun-
ing effort. Most variants often generalize better than Adam,
while they may still not generalize as well as fine-tuned SGD
(Zhang et al., 2019b), which we also discuss in Appendix
F. Moreover, they do not have theoretical understanding of
minima selection. Loosely speaking, our analysis suggests
that Adam variants may also be poor at selecting flat minima
due to Adaptive Learning Rate.
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Table 2. Test performance comparison of optimizers. We report the mean and the standard deviations (as the subscripts) of the optimal test
errors computed over three runs. Our methods, including Adai and AdaiW, consistently outperforms all other popular optimizers.

DATASET MODEL ADAIW ADAI SGD M ADAM AMSGRAD ADAMW ADABOUND PADAM YOGI RADAM

CIFAR-10 RESNET18 4.590.16 4.740.14 5.010.03 6.530.03 6.160.18 5.080.07 5.650.08 5.120.04 5.870.12 6.010.10

VGG16 5.810.07 6.000.09 6.420.02 7.310.25 7.140.14 6.480.13 6.760.12 6.150.06 6.900.22 6.560.04

CIFAR-100 RESNET34 21.050.10 20.790.22 21.520.37 27.160.55 25.530.19 22.990.40 22.870.13 22.720.10 23.570.12 24.410.40

DENSENET121 19.440.21 19.590.38 19.810.33 25.110.15 24.430.09 21.550.14 22.690.15 21.100.23 22.150.36 22.270.22

GOOGLENET 20.500.25 20.550.32 21.210.29 26.120.33 25.530.17 21.290.17 23.180.31 21.820.17 24.240.16 22.230.15

5. Adaptive Inertia
In this section, we propose a novel adaptive inertia optimiza-
tion framework.

Adaptive Inertia Optimization (Adai). The basic idea of
Adai (Algorithm 2) comes from Theorems 2 and 3, from
which we can see that parameter-wise adaptive inertia can
achieve the approximately Hessian-independent momentum
drift without damaging flat minima selection. The total
momentum drift effect during passing through a saddle point
in Theorem 2 is given by

〈∆θi〉2 =
|Hi|η2

2(1− β1)B
. (10)

We generalize the scalar β1 in Momentum to a vector β1 in
Adai. The ideal adaptive updating is to keep β1 = 1− β0

v̄ v,
where the rescaling factor v̄, namely the mean of all ele-
ments in the estimated v̂, could be used to make the op-
timizer more robust in practice. The default values of β0

and β2 are 0.1 and 0.99, respectively. The hyperparameter
ε is for avoiding extremely large inertia. The default set-
ting ε = 0.001 means the maximal inertia is 1000 times
the minimal inertia, as Mmax = η(1− β1,max)−1 = ηε−1.
Compared with Adam, Adai does not increase the number
of hyperparameters. Note that an existing “adaptive momen-
tum” method (Wang & Ye, 2020) is not parameter-wisely
adaptive and essentially different from Adai.

The Fokker-Planck Equation associated with Adai dynamics
in the phase space can be written as Equation (8), except that
we replace the mass coefficient and the damping coefficient
by the mass matrix and the damping matrix: M = η(I −
diag(β1))−1 and γ = η−1(I − diag(β1)).

Adai escapes saddle points. Proposition 3 shows that Adai
can escape saddle points efficiently due to an isotropic and
approximately Hessian-independent momentum drift, while
the diffusion effect is the same as Momentum. Proposition
3 is a direct result of Theorem 2.

Proposition 3 (Adai Escapes Saddle Points). Suppose c is
a critical point, Assumption 1 and Equation (3) hold, the
dynamics is governed by Adai, and the initial parameter is
at the saddle point θ = c. Then the total momentum drift in
the procedure of passing through the saddle point is given

by

〈∆θi〉2 =
v̄η2

β0
=

∑n
i=1 |Hi|η2

β0nB
,

where
∑n
i=1 |Hi| is the trace norm of the Hessian at c.

Intuitively, the momentum drift effect of Adai can be signif-
icantly larger than Adam by allowing larger inertia, which
can be verified in experiments. We do not rigorously claim
that Adai must converge faster than or as fast as Adam. In-
stead, we empirically compare Adai with Adam and other
popular optimizers on various datasets (See Table 2 and
Section 6)).

Adai escapes minima. We formulate how Adai escapes
minima in Proposition 4, which shows Adai can learn flat
minima better than Adam. We leave the proof in Appendix
A.5.

Proposition 4 (Adai Escapes Minima). The mean escape
time of Adai exponentially depends on the eigenvalues of
the Hessian at a minimum:

τ =π

√1 +
4η
∑n
i=1 |Hbi|
β0n

+ 1

 1

|Hbe|
·

exp

[
2B∆L

η

(
s

Hae
+

(1− s)
|Hbe|

)]
,

where τ is the mean escape time. Thus, we have log(τ) =

O
(

2B∆L
ηHae

)
.

We can see that both SGD and Adai have log(τ) =

O(H−1
ae ), while Adam has log(τ) = O(H

− 1
2

ae ). Thus, Adai
favors flat minima as well as SGD and better than Adam.

Convergence Analysis. Theorem 4 proves that Adai has
similar convergence guarantees to SGD Momentum(Yan
et al., 2018; Ghadimi & Lan, 2013). The proof is relegated
to Appendix A.6.

Theorem 4 (Convergence of Adai). Assume that L(θ) is
an L-smooth function2, L is lower bounded as L(θ) ≥ L?,
E[ξ] = 0, E[‖g(θ, ξ)−∇L(θ)‖2] ≤ δ2, and ‖∇L(θ)‖ ≤ G

2It means that ‖∇L(θa)−∇L(θb)‖ ≤ L‖θa − θb‖ holds for
any θa and θb.
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Figure 2. The learning curves on CIFAR-10 and CIFAR-100. Left:
ResNet18 on CIFAR-10. Right: ResNet34 on CIFAR-100.
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(b) VGG16
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(c) DenseNet121
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(d) DenseNet121

Figure 3. Generalization and Convergence Comparison. Left Col-
umn: Test curves. Right Column: Training curves. Adai shows bet-
ter Generalization in the comparison with Momentum and Adam
under similar convergence speed.

for any θ, where ξ represents the gradient noise of sub-
sampling. Let Adai run for t + 1 iterations and β1,max =
1− ε ∈ [0, 1) for any t ≥ 0. If η ≤ C√

t+1
, we have

min
k=0,...,t

E[‖∇L(θk)‖2] ≤ 1√
t+ 1

(C1 + C2 + C3),

where C1 = L(θ0)−L?

(1−β1,max)C , C2 =
β1,maxC

2(1−β1,max)2G
2, and C3 =

LC
2(1−β1,max)2 (G2 + δ2).

We note that Adai is the base optimizer in the adaptive inertia
framework, while Adam is the base optimizer in the adap-
tive gradient framework. We can also combine Adai with
stable/decoupled weight decay (AdaiS/AdaiW) (Loshchilov
& Hutter, 2018; Xie et al., 2020b) (see more discussions in
Appendix G.) or other techniques from adaptive gradient
methods.
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Figure 4. ResNet50 on ImageNet. Left Subfigure: Top 1 Test Error.
Right Subfigure: Training Loss. Table: Top-1 and top-5 test errors.
Note that the popular SGD baseline performance of ResNet50 on
ImageNet has the test errors as 23.85% in PyTorch and 24.9% in
He et al. (2016), which are both weaker than our SGD baseline.

6. Empirical Analysis
In this section, we first conduct experiments to compare
Adai, Adam, and SGD with Momentum in terms of con-
vergence speed and generalization, and then empirically
analyze flat minima selection.

Datasets: CIFAR-10, CIFAR-100(Krizhevsky &
Hinton, 2009), ImageNet(Deng et al., 2009), and
Penn TreeBank(Marcus et al., 1993). Models:
ResNet18/ResNet34/ResNet50 (He et al., 2016), VGG16
(Simonyan & Zisserman, 2014), DenseNet121 (Huang
et al., 2017), GoogLeNet (Szegedy et al., 2015), and Long
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber,
1997b). More details and results can be found in Appendix
D and Appendix F.

Generalization and Convergence Speed. We present the
test results of Adai and other popular optimizers in Table 2.
Table 2 and Figure 2 shows that Adai has excellent general-
ization compared with other popular optimizers on CIFAR-
10/CIFAR-100. Figure 3 further demonstrates that Adai
can consistently generalize better than SGD with Momen-
tum and Adam, while maintaining similarly fast or faster
convergence, respectively.

Image Classification on ImageNet. Figure 4 shows that
Adai generalizes significantly better than SGD and Adam
by training ResNet50 on ImageNet.

Robustness to the hyperparameters. Figure 5 demon-
strates that Adai not only has better optimal test perfor-
mance, but also has a wider test error basin than SGD with
Momentum and Adam. It means that Adai is more robust to
the choices of learning rates and weight decay.

The Mean Escape Time Analysis. We empirically study
how the escape rate Γ, which equals to the inverse mean
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Figure 5. The test errors of ResNet18 on CIFAR-10 under various learning rates and weight decay. Adai has a much deeper and wider
blue region near dark points (≤ 4.83%) than SGD with Momentum and Adam.
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Figure 6. Flat Minima Selection: Adai ≈Momentum� Adam. The log-scale mean escape time − log(Γ) with the 95% confidence
interval is displayed. We empirically verify that − log(Γ) = O(k−1) holds for Momentum and Adai but does not hold for Adam. Instead,
we observe that − log(Γ) = O(k−

1
2 ) holds better for Adam. While Adai and Momentum favor flat minima similarly, Adai may escape

loss valleys slightly faster than Momentum.

escape time, depends on the minima sharpness for different
optimizers in Figure 6. We use Styblinski-Tang Function as
the test function which has clear boundaries between loss
valleys. Our method for adjusting the minima sharpness is
to multiply a rescaling factor

√
k to each parameter, and

the Hessian will be proportionally rescaled by a factor k.
If we let L(θ) = f(θ) → L(θ) = f(

√
kθ), then H(θ) =

∇2f(θ) → H(θ) = k∇2f(θ). Thus, we can use k to
indicate the relative minima sharpness. We leave more
details in Appendix E.

Figure 6 shows that we have log(τ) = O(H−1
ae ) in Adai and

SGD, while we have log(τ) = O(H
− 1

2
ae ) in Adam. More-

over, Adam is significantly less dependent on the minima
sharpness than both Momentum and Adai.

Minima Sharpness. Figure 7 shows that the top eigenval-
ues of the Hessian given by Adai are significantly smaller
than those of SGD and Adam. As the large eigenvalues
and the trace are common measures of minima sharpness, it
verified that Adai learns flat minima well.

Supplementary Experiments. In Appendix F, we present
the results of LSTM on Penn TreeBank in Figure 13 and
evaluate the expected minima sharpness (Neyshabur et al.,
2017) which also support Adai learns flatter minima.
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Figure 7. The top Hessian eigenvalues for ResNet18 on CIFAR-10.

7. Conclusion
To the best of our knowledge, we are the first to theoreti-
cally disentangle the effects of Adaptive Learning Rate and
Momentum in terms of saddle-point escaping and flat min-
ima selection. Under reasonable assumptions, our theory
explains why Adam is good at escape saddle points but not
good at selecting flat minima. We further propose a novel
optimization framework, Adai, which can parameter-wisely
adjust the momentum hyperparameter. Supported by good
theoretical properties, Adai can accelerate training and favor
flat minima well at the same time. Our empirical analysis
demonstrates that Adai generalizes significantly better than
popular Adam variants and SGD.
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A. Proofs
A.1. Proof of Theorem 1

Proof. It is easy to validate that the probability density function

P (θ, t) =
1√

(2π)n det(Σ(t))
exp

(
−1

2
(θ − c)>Σ(t)(θ − c)

)
(11)

is the solution of the Fokker-Planck Equation (2). Without losing generality, we only validate one-dimensional solution,
such as Dimension i.

The first term in Equation (2) can be written as

∂P (θ, t)

∂t
= −1

2

1√
2πσ2

1

σ2
exp

(
− θ2

2σ2

)
∂σ2

∂t
+

1√
2πσ2

exp

(
− θ2

2σ2

)
θ2

2σ4

∂σ2

∂t
(12)

=
1

2

(
θ2

σ4
− 1

σ2

)
P (θ, t)

∂σ2

∂t
. (13)

The second term in Equation (2) can be written as

∇ · [P (θ, t)∇L(θ)] = P (θ)H +Hθ
1√

2πσ2
exp

(
− θ2

2σ2

)(
− θ

σ2

)
(14)

= H

(
1− θ2

σ2

)
P (θ, t). (15)

The third term in Equation (2) can be written as

D∇2P (θ, t) = −Dσ
2 − θ2

σ5
√

2π
exp

(
− θ2

2σ2

)
(16)

= D

(
θ2

σ4
− 1

σ2

)
P (θ, t). (17)

By Term1 = Term2 + Term3, we have

1

2
(θ2 − σ2)

∂σ2

∂t
= Hσ2(σ2 − θ2) +D(θ2 − σ2) (18)

∂σ2

∂t
= 2D − 2Hσ2. (19)

The initial condition of σ2 is given by σ2(0) = 0. We can validate that σ2 satisfies

σ2
i (t) =

Di

Hi
[1− exp(−2Hit)]. (20)

It is true along all eigenvectors’ directions.

By D = η
2BH , we can get the results of SGD diffusion:

σ2
i (T ) = sign(Hi)

η

2B
[1− exp(−2HiηT )] (21)
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Adaptive Inertia

A.2. Proof of Theorem 2

Proof. Without losing the generality, we consider the one-dimensional case that aligns with an eigenvector of the Hessian.
The stationary solution in equilibrium to the phase-space Fokker-Planck Equation near a critical point is given by a canonical
ensemble

Peq(θ, r) = Z−1 exp[−β(L(θ) +
1

2
Mr2)], (22)

where Z is a partition function and the inverse temperature β = γMD−1. This result is famous in a large number of physics
literature (Van Kampen, 1992; Risken, 1996; Balakrishnan, 2008). Thus, we have the equilibrium distribution in velocity
space and position space as

Peq(r) = Z−1
r exp(−βMr2

2
) (23)

and

Peq(θ) = Z−1
r exp(−βL(θ)), (24)

respectively, where Zr is the partition function for Peq(r) and Zθ is the partition function for Peq(θ).

It is known that the phase-space probability density solution P (θ, r, t) can be obtained from the position-space solution
P (θ, t) and the velocity-space solution P (r, t). Thus, we may compute the velocity-space solution (in Step I) and the
position-space solution (in Step II), respectively.

Step I:

We further argue that the velocity-space solution P (r, t) has reached its equilibrium Boltzmann distribution Peq(r) when
the particle is passing saddle points. This is reasonable because the equilibrium solution in the velocity space is stable
under Assumption 1. The velocity distribution P (r, t) must be the solution of the free diffusion equation in the velocity
space. We can approximately ignore the gradient expectation term −∂L(θ)

∂θ in dynamical equations near critical points, as
the gradient expectation is much smaller the gradient noise scale near critical points. Near critical points, the velocity r
obeys the equilibrium distribution

P (r, t) ≈ Peq(r) = (2π)−
n
2 det(βM)

1
2 exp(−βMr2

2
), (25)

where n = 1 in one-dimensional case. This is a classical Boltzmann distribution. The expected velocity (also called
“equilibrium velocity”) along dimension i can be given by r2

eq,i = Di

γM2 .

Step II:

As we discussed in Theorem 1, the position-space distribution in equilibrium is time-dependent near saddle points. Following
the form of the solution to the position-space Fokker-Planck Equation (Seen in Appendix A.1), the ansatz solution of P (θ, t)
is given by {

P (θ, t) = 1√
(2π)n det(Σ(t))

exp
(
− 1

2 (θ − c(t))>Σ(t)(θ − c(t))
)

Σ(t) = U diag(σ2
1(t), . . . , σ2

n−1(t), σ2
n(t))U>

The time-dependent components in P (θ, t) are caused by two effects. The first effect is the momentum drift effect (due to
equilibrium velocity), which decides c(t), the center position of the probability density. As we studied in Theorem 1, the
second effect is the diffusion effect (due to random noise), which decides the covariance of the probability density, Σ(t).

The momentum drift effect is governed by the motion equation without random noise, while the diffusion effect is governed
by the diffusion equation where gradient noise dominates gradient mean.

Step II (a): the momentum drift effect.

We can write the dynamics of the momentum drift effect as

Mc̈(t) = −γMċ(t). (26)
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Adaptive Inertia

We also have ignored the conservative force −H[c(t) − c(0)] near saddle points, as |Hi| � γM exists for ill-condition
Hessian eigenvalues. We focus on the behaviors near ill-conditioned saddle points, where Hessian eigenvalues are small
along the escape directions.

The initial condition is given by c(0) = c, ċ(0) = req , and c̈(0) = −γreq . Then we can obtain the solution c(t) as

ci(t) = ci +
ri,eq
γ

[1− exp(−γt)]. (27)

Step II (b): the diffusion effect.

We can get the dynamics of the diffusion effect as

γMdθ = −∂L(θ)

∂θ
dt+ [2D(θ)]

1
2 dWt. (28)

This is equivalent to SGD dynamics with η̂ = η
γM . The expression of P (θ, t) and σ2

i (t) is directly given by Theorem 1 as

σ2
i (t) =

Di

γMHi
[1− exp(−2Hit

γM
)]. (29)

We combine the momentum drift effect and the diffusion effect together, and then obtain the mean squared displacement of
θ as

〈∆θ2
i (t)〉 = (ci(t)− ci)2 + σ2

i (t) =
Di

γ3M2
[1− exp(−γt)]2 +

Di

γMHi
[1− exp(−2Hit

γM
)]. (30)

We respectively introduce the notations of Adam-style Momentum and SGD-style Momentum, and apply the second order
Taylor expansion in case of small − 2Hit

γM . Then we obtain

〈∆θ2
i 〉 =

|Hi|η2

2(1− β1)B
[1− exp (−(1− β1)T )]

2
+
|Hi|η2T

B
+O(B−1H2

i η
3T 2) (31)

for Adam-style Momentum, and

〈∆θ2
i 〉 =

|Hi|η2

2(1− β1)3B
[1− exp (−(1− β1)T )]

2
+
|Hi|η2T

B(1− β1)2
+O(B−1H2

i η
3T 2) (32)

for SGD-style Momentum.

A.3. Proof of Theorem 3

Proof. The proof closely relates to the proof of Theorem 3.2 in Xie et al. (2020a) and a physics work (Kalinay & Percus,
2012).

We first discover how SGD dynamics differs from Momentum dynamics in terms of escaping loss valleys. In this approach,
we may transform the proof for Theorem 3.2 of Xie et al. (2020a) into the proof for Theorem 3 with the effective diffusion
correction. We use J and j to denote the probability current and the probability flux respectively. According to Gauss
Divergence Theorem, we may rewrite the Fokker-Planck Equation (8) as

∂P (θ, r, t)

∂t
=− r · ∇θP (θ, r, t) +∇θL(θ) ·M−1∇rP (θ, r, t)

+∇r ·M−2D(θ) · Peq(r)∇r[Peq(r)−1P (θ, r, t)] (33)
=−∇ · J(θ, t). (34)
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We will take similar forms of the proof in Xie et al. (2020a) as follows. The mean escape time is written as

τ =
P (θ ∈ Va)∫
Sa
J · dS

. (35)

To compute the mean escape time, we decompose the proof into two steps: 1) compute the probability of locating in valley
a, P (θ ∈ Va), and 2) compute the probability flux j =

∫
Sa
J · dS. The definition of the probability flux integral may refer

to Gauss Divergence Theorem.

Step 1:

Fortunately, the stationary probability distribution inside Valley a in Momentum dynamics is also given by a Gaussian
distribution in Theorem 1 as

σ2
i (t) =

Di

γMHi
. (36)

Under Quasi-Equilibrium Assumption, the distribution around minimum a is P (θ) =

P (a) exp
[
−γM2 (θ − a)>(D

− 1
2

a HaD
− 1

2
a )(θ − a)

]
. We use the T notation as the temperature parameter in the

stationary distribution, and use the D notation as the diffusion coefficient in the dynamics, for their different roles.

P (θ ∈ Va) (37)

=

∫
θ∈Va

P (θ)dV (38)

=P (a)

∫
θ∈Va

exp

[
−γM

2
(θ − a)>(D

− 1
2

a HaD
− 1

2
a )(θ − a)

]
dV (39)

≈P (a)

∫
θ∈(−∞,+∞)

exp

[
−γM

2
(θ − a)>(D

− 1
2

a HaD
− 1

2
a )(θ − a)

]
dV (40)

=P (a)
(2πγM)

n
2

det(D−1
a Ha)

1
2

(41)

This result of P (θ ∈ Va) in Momentum only differs from SGD by the temperature correction γM .

Step 2: We directly introduce the effective diffusion result from (Kalinay & Percus, 2012) into our analysis. Kalinay & Percus
(2012) proved that the phase-space Fokker-Planck Equation (8) can be reduced to a space-dependent Smoluchowski-like
equation, which is extended by an effective diffusion correction:

D̂i(θ) = Di(θ)

(
1−

√
1− 4Hi(θ)

γ2M

)(
2Hi(θ)

γ2M

)−1

. (42)

As we only employ the Smoluchowski Equation along the escape direction, we use the one-dimensional expression along
the escape direction (an eigenvector direction) for simplicity. Without losing clarity, we use the commonly used T to denote
the temperature in the proof.

In case of SGD (Xie et al., 2020a), we can obtain Smoluchowski Equation in position space:

J = D(θ) exp

(
−L(θ)

T

)
∇
[
exp

(
L(θ)

T

)
P (θ)

]
, (43)

where T = D. According to (Kalinay & Percus, 2012), in case of finite inertia, we can transform the phase-space equation
into the position-space Smoluchowski-like form with the effective diffusion correction:

J = D̂(θ) exp

(
−L(θ)

T

)
∇
[
exp

(
L(θ)

T

)
P (θ)

]
, (44)

where T = D
γM , and D̂ defined by Equation (42) replaces standard D.
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We assume the point s is a midpoint on the most possible path between a and b, where L(s) = (1− s)L(a) + sL(b). The
temperature Ta dominates the path a→ s, while temperature Tb dominates the path s→ b. So we have

∇
[
exp

(
L(θ)− L(s)

T

)
P (θ)

]
= JD−1 exp

(
L(θ)− L(s)

T

)
. (45)

We integrate the equation from Valley a to the outside of Valley a along the most possible escape path

Left =

∫ c

a

∂

∂θ
[exp

(
L(θ)− L(s)

T

)
P (θ)]dθ (46)

=

∫ s

a

∂

∂θ

[
exp

(
L(θ)− L(s)

Ta

)
P (θ)

]
dθ (47)

+

∫ c

s

∂

∂θ

[
exp

(
L(θ)− L(s)

Tb

)
P (θ)

]
dθ (48)

=[P (s)− exp

(
L(a)− L(s)

Ta

)
P (a)] + [0− P (s)] (49)

=− exp

(
L(a)− L(s)

Ta

)
P (a) (50)

Right =− J
∫ c

a

D−1 exp

(
L(θ)− L(s)

T

)
dθ (51)

We move J to the outside of integral based on Gauss’s Divergence Theorem, because J is fixed on the escape path from
one minimum to another. As there is no field source on the escape path,

∫
V
∇ · J(θ)dV = 0 and ∇J(θ) = 0. Obviously,

probability sources are all near minima in deep learning. So we obtain

J =
exp

(
L(a)−L(s)

Ta

)
P (a)∫ c

a
D̂−1 exp

(
L(θ)−L(s)

T

)
dθ
. (52)

Near saddle points, we have ∫ c

a

D̂−1 exp

(
L(θ)− L(s)

T

)
dθ (53)

≈
∫ c

a

D̂−1 exp

[
L(b)− L(s) + 1

2 (θ − b)>Hb(θ − b)
Tb

]
dθ (54)

≈D̂−1
b

∫ +∞

−∞
exp

[
L(b)− L(s) + 1

2 (θ − b)>Hb(θ − b)
Tb

]
dθ (55)

=D̂−1
b exp

(
L(b)− L(s)

Tb

)√
2πTb
|Hb|

. (56)

Besides the temperature correction T = D
γM , this result of J in Momentum also differs from SGD by the effective diffusion

correction D̂b

Db
. The effective diffusion correction coefficient is given by

D̂i(θ)

Di(θ)
=

1−
√

1− 4Hi(θ)
γ2M

2Hi(θ)
γ2M

. (57)

Based on the formula of the one-dimensional probability current and flux, we obtain the high-dimensional flux escaping
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through b: ∫
Sb

J · dS (58)

=J1d

∫
Sb

exp

[
−γM

2
(θ − b)>[D

− 1
2

b HbD
− 1

2

b ]⊥e(θ − b)
]
dS (59)

=J1d
(2πγM)

n−1
2

(
∏
i 6=e(D

−1
bi Hbi))

1
2

(60)

=

exp
(
L(a)−L(s)

Tae

)
P (a) (2πγM)

n−1
2

(
∏

i6=e(D−1
bi Hbi))

1
2

D̂−1
be exp

(
L(b)−L(s)

Tbe

)√
2πTbe

|Hbe|

(61)

where [·]⊥e indicates the directions perpendicular to the escape direction e.

Based on the results of Step 1 and Step 2, we have

τ =
P (θ ∈ Va)∫
Sb
J · dS

(62)

=P (a)
(2πγM)

n
2

det(D−1
a Ha)

1
2

D̂−1
be exp

(
L(b)−L(s)

Tbe

)√
2πTbe

|Hbe|

exp
(
L(a)−L(s)

Tae

)
P (a) (2πγM)

n−1
2

(
∏

i6=e(D−1
bi Hbi))

1
2

(63)

=
1

D̂be

2π
Dbe

|Hbe|
exp

[
2γMB∆L

η

(
s

Hae
+

(1− s)
|Hbe|

)]
(64)

=π

[√
1 +

4|Hbe|
γ2M

+ 1

]
1

|Hbe|
exp

[
2γMB∆L

η

(
s

Hae
+

(1− s)
|Hbe|

)]
. (65)

We have replaced the eigenvalue of Hb along the escape direction by its absolute value.

Finally, by introducing γ and M , we obtain the log-scale expression as

log(τ) = O
(

2(1− β1)B∆L

β3ηHae

)
(66)

A.4. Proof of Proposition 2

Proof. The proof closely relates to the proof of 3. We only need replace the standard learning rate by the adaptive learning
rate η̂ = ηv−

1
2 , and set γM = 1. Particularly,

Dadam = Dv−
1
2 =

η[H]+v−
1
2

2B
=

1

2
η

√
[H]+

B
. (67)

We introduce η̂ = ηv−
1
2 into the proof of 3, and obtain

τ =
P (θ ∈ Va)∫
Sb
J · dS

(68)

=

[
|det(D−1

b V
1
2

b Hb)|

det(D−1
a V

1
2
a Ha)

] 1
2

π

[√
1 +

4|Hbe|
γ2M

+ 1

]
1

|Hbe|
exp

[
2γMB∆L

η

(
s

V
− 1

2
ae Hae

+
(1− s)

V
− 1

2

be |Hbe|

)]
(69)

=π

√1 +
4η
√
B|Hbe|

1− β1
+ 1

 |det(H−1
a Hb)|

1
4

|Hbe|
exp

[
2
√
B∆L

η

(
s√
Hae

+
(1− s)√
|Hbe|

)]
. (70)
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A.5. Proof of Proposition 4

Proof. The proof closely relates to the proof of 3. We only need introduce the mass matrix M and the dampening matrix γ.
Fortunately, γM = I . Thus we directly have the result from the proof of 3 as:

τ =
P (θ ∈ Va)∫
Sb
J · dS

(71)

=π

[√
1 +

4|Hbe|
γ2M

+ 1

]
1

|Hbe|
exp

[
2γMB∆L

η

(
s

Hae
+

(1− s)
|Hbe|

)]
. (72)

As M = η(I − β1)−1, γ = η−1(I − β1), and I − β1 = β0

v̄ v, we obtain the result:

τ = π

√1 +
4η
∑n
i=1 |Hbi|
β0n

+ 1

 1

|Hbe|
exp

[
2B∆L

η

(
s

Hae
+

(1− s)
|Hbe|

)]
(73)

A.6. Proof of Theorem 4

Without loss of generality, we assume the dimensionality is one and rewrite the main updating rule of Adai as

θt+1 = θt − η(1− β1,t)gt + β1,t(θt − θt−1). (74)

In the convergence proof, we do not need to specify how to update β1,t but just let β1,t ∈ [0, 1). We denote that θ−1 = θ0.

Before presenting the main proof, we first prove four useful lemmas.

Lemma 1. Under the conditions of Theorem 4, for any t ≥ 0, we have

xt+1 − xt = −η
t∑

k=0

qk,tgt,

where

qk,t = (1− βk)

t∏
i=k+1

β1,i.

Then we have

1− βt+1
1,max ≤

t∑
k=0

qk,t ≤ 1.

Proof. Recall that

θt+1 =θt − η(1− β1,t)gt + β1,t(θt − θt−1) (75)
θt+1 − θt =β1,t(θt − θt−1)− η(1− β1,t)gt. (76)

Then we have

θt+1 − θt = −η
t∑

k=0

(1− β1,k)gk

t∏
i=k+1

β1,i. (77)

Let qk,t = (1− βk)
∏t
i=k+1 β1,i.
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For analyzing the maximum and the minimum, we calculate the derivatives with respect to β1,k for any 0 ≤ k ≤ t:

∂
∑t
k=0 qk,t
∂β1,0

= −
t∏

i=k+1

β1,i ≤ 0. (78)

Note that 0 ≤ β1,k ≤ β1,max. Then we have

t∑
k=0

qk,t|β1,0=β1,max
≤

t∑
k=0

qk,t ≤
t∑

k=0

qk,t|β1,0=0. (79)

Recursively, we can calculate the derivatives with respect to β1,1, β1,2, . . . , β1,t.

Then we obtain max(
∑t
k=0 qk,t) = 1 by letting β1,k = 0 for all k.

Similarly, we obtain min(
∑t
k=0 qk,t) = 1 by letting β1,t = β1,max for all k.

Then we obtain

1− βt+1
1,max ≤

t∑
k=0

qk,t ≤ 1 (80)

The proof is now complete.

Lemma 2. Under the conditions of Theorem 4, for any t ≥ 0, we have

E[L(θt+1)− L(θt)] ≤
1

2

t∑
k=0

qk,tE[

t−1∑
j=k

‖∇L(θj+1)− L(θj)‖2]+

t∑
k=0

qk,t(
t− k

2
η2 − η)E[‖∇L(θk)‖2] +

Lη2

2
‖

t∑
k=0

qk,tgk‖2.

Proof. As L(θ) is L-smooth, we have

L(θt+1)− L(θt) (81)

≤∇L(θt)
>(θt+1 − θt) +

L
2
‖θt+1 − θt‖2 (82)

=− η
t∑

k=0

qk,t∇L(θt)
>gk +

Lη2

2
‖

t∑
k=0

qk,tgk‖2 (83)

=− η
t∑

k=0

qk,t

t−1∑
j=k

(∇L(θj+1)−∇L(θj))
>(∇L(θk) + ξk)−

η

t∑
k=0

qk,t∇L(θk)>(∇L(θk) + ξk) +
Lη2

2
‖

t∑
k=0

qk,tgk‖2. (84)

Taking expectation on both sides gives

E[L(θt+1)− L(θt)] (85)

≤ 1

2L

t∑
k=0

qk,tE[

t−1∑
j=k

(∇L(θj+1)−∇L(θj))
>∇L(θk)]− (86)

t∑
k=0

qk,tηE[‖∇L(θk)‖2] +
Lη2

2
‖

t∑
k=0

qk,tgk‖2. (87)
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By the Cauchy-Schwarz Inequality, we have

E[L(θt+1)− L(θt)] (88)

≤
t∑

k=0

qk,tE[
1

2
‖∇L(θt)−∇L(θk‖2 +

η2

2
‖∇L(θk)‖2]−

η

t∑
k=0

qk,tE[‖∇L(θk)‖2] +
Lη2

2
E[‖

t∑
k=0

qk,tgk‖2] (89)

=
1

2

t∑
k=0

qk,tE[

t−1∑
j=k

‖∇L(θj+1)− L(θj)‖2]+

t∑
k=0

qk,t(
t− k

2
η2 − η)E[‖∇L(θk)‖2] +

Lη2

2
‖

t∑
k=0

qk,tgk‖2. (90)

The proof is now complete.

Lemma 3. Under the conditions of Theorem 4, for any t ≥ 0, we have

t∑
k=0

qk,t(t− k) ≤ β1,max

1− β1,max

Proof. For analyzing the maximum, we calculate the derivatives with respect to β1,k for any 0 ≤ k ≤ t.

With respect to β1,1, we have

∂
∑t
k=0 qk,t(t− k)

∂β1,0
= −

t∏
k=1

β1,kt ≤ 0. (91)

Then we let β1,0 = 0 and obtain the derivative with respect to β1,1 as

∂
∑t
k=0 qk,t(t− k)

∂β1,1
=

t∏
k=2

β1,k(t− (t− 1)) ≥ 0. (92)

Then we let β1,j = β1,max for 1 ≤ j ≤ k − 1 and obtain the derivative with respect to β1,k as

∂
∑t
k=0 qk,t(t− k)

∂β1,k
≥ (t− k)

∂
∑t
k=0 qk,t
∂β1,k

= 0. (93)

Thus, we have β1,0 = 0 and β1,k = β1,max for 1 ≤ j ≤ t to maximize
∑t−1
k=0 qk,t(t− k). We may write it as

t∑
k=0

qk,t(t− k) ≤ βt+1
1,maxt+

t∑
k=0

(1− β1,max)βk1,maxk (94)

Note that (1− β1,max)βk1,maxk is an arithmetico-geometric sequence. Thus, we have

max(

t∑
k=0

qk,t(t− k)) ≤βt+1
1,maxt+

[
β1,max − βt+1

1,maxt+
β2

1,max(1− βt−1
1,max)

1− β1,max

]
(95)

≤β1,max +
β2

1,max

1− β1,max
(96)

=
β1,max

1− β1,max
(97)

The proof is now complete.



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Adaptive Inertia

Lemma 4. Under the conditions of Theorem 4, for any t ≥ 0, we have

1

2

t∑
k=0

qk,tE[

t−1∑
j=k

‖∇L(θj+1)− L(θj)‖2] +
Lη2

2
‖

t∑
k=0

qk,tgk‖2 ≤
Lη2

2(1− β1,max)
(G2 + δ2).

Proof. As L(θ) is L-smooth, we have

‖∇L(θj+1)− L(θj)‖2 (98)

≤L‖θj+1 − θj‖2 (99)

=L‖ − η
j∑
i=0

qi,jgi‖2. (100)

By
∑j
i=0 qi,j ≤ 1 in Lemma 1, we have

E[‖∇L(θj+1)− L(θj)‖2] (101)

≤Lη2(G2 + δ2). (102)

and

Lη2

2
‖

t∑
k=0

qk,tgk‖2 (103)

≤Lη
2

2
(G2 + δ2). (104)

By Lemma 3, we have

1

2

t∑
k=0

qk,tE[

t−1∑
j=k

‖∇L(θj+1)− L(θj)‖2] (105)

≤η
2

2
(G2 + δ2)

t∑
k=0

qk,t(t− k) (106)

≤ η2β1,max

2(1− β1,max)
(G2 + δ2). (107)

Then we obtain

1

2

t∑
k=0

qk,tE[

t−1∑
j=k

‖∇L(θj+1)− L(θj)‖2] +
Lη2

2
‖

t∑
k=0

qk,tgk‖2 (108)

≤ Lη2β1,max

2(1− β1,max)
(G2 + δ2) +

Lη2

2
(G2 + δ2) (109)

≤ Lη2

2(1− β1,max)
(G2 + δ2). (110)

Proof. The proof of Theorem 4 is organized as follows.
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By Lemma 2 and Lemma 4, we have

E[L(θt+1)− L(θt)]

≤1

2

t∑
k=0

qk,tE[

t−1∑
j=k

‖∇L(θj+1)− L(θj)‖2]+

t∑
k=0

qk,t(
t− k

2
η2 − η)E[‖∇L(θk)‖2] +

Lη2

2
‖

t∑
k=0

qk,tgk‖2 (111)

≤
t∑

k=0

qk,t(
t− k

2
η2 − η)E[‖∇L(θk)‖2] +

Lη2

2(1− β1,max)
(G2 + δ2). (112)

Thus, we have

t∑
k=0

qk,tηE[‖∇L(θk)‖2]

≤E[L(θt)− L(θt+1)] +

t∑
k=0

qk,t
t− k

2
η2E[‖∇L(θk)‖2] +

Lη2

2(1− β1,max)
(G2 + δ2). (113)

By Lemma 1 and Lemma 3, we have

(1− βt+1
1,max)η min

k=0,...,t
E[‖∇L(θk)‖2]

≤E[L(θt)− L(θt+1)] +
β1,maxη

2

2(1− β1,max)
G2 +

Lη2

2(1− β1,max)
(G2 + δ2). (114)

By summing the above inequality for t = 0, . . . , t, we have

(t+ 1)(1− β1,max)η min
k=0,...,t

E[‖∇L(θk)‖2]

≤L(θ0)− L? +
β1,maxη

2

2(1− β1,max)
G2(t+ 1) +

Lη2

2(1− β1,max)
(G2 + δ2)(t+ 1). (115)

Then

min
k=0,...,t

E[‖∇L(θk)‖2]

≤ L(θ0)− L?

(1− β1,max)(t+ 1)η
+

β1,maxη

2(1− β1,max)2
G2 +

Lη
2(1− β1,max)2

(G2 + δ2). (116)

Let η ≤ C√
t+1

. We have

min
k=0,...,t

E[‖∇L(θk)‖2]

≤ L(θ0)− L?

(1− β1,max)C
√
t+ 1

+
β1,maxC

2(1− β1,max)2
√
t+ 1

G2+

LC
2(1− β1,max)2

√
t+ 1

(G2 + δ2) (117)

(118)

The proof is now complete.



1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Adaptive Inertia

B. Classical Approximation Assumptions
Assumption 2 indicates that the dynamical system is in equilibrium near minima but not necessarily near saddle points. It
means that ∂P (θ,t)

∂t ≈ 0 holds near minima, but not necessarily holds near saddle point b. Quasi-Equilibrium Assumption is
actually weaker but more useful than the conventional stationary assumption for deep learning (Welling & Teh, 2011; Mandt
et al., 2017). Under Assumption 2, the probability density P can behave like a stationary distribution only inside valleys,
but density transportation through saddle points can be busy. Quasi-Equilibrium is more like: stable lakes (loss valleys) is
connected by rapid Rivers (escape paths). In contrast, the stationary assumption requires strictly zero flux between lakes
(loss valleys). Little knowledge about density motion can be obtained under the stationary assumption.

Low Temperature Assumption is common (Van Kampen, 1992; Zhou, 2010; Berglund, 2013; Jastrzkebski et al., 2017), and
is always justified when η

B is small. Under Assumption 3, the probability densities will concentrate around minima and
MPPs. Numerically, the 6-sigma rule may often provide good approximation for a Gaussian distribution. Assumption 3 will
make the second order Taylor approximation, Assumption 1, even more reasonable in SGD diffusion.

Here, we try to provide a more intuitive explanation about Low Temperature Assumption in the domain of deep learning.
Without loss of generality, we discuss it in one-dimensional dynamics. The temperature can be interpreted as a real number
D. In SGD, we have the temperature as D = η

2BH . In statistical physics, if ∆L
D is large, then we call it Low Temperature

Approximation. Note that ∆L
D appears insides an exponential function in the theoretical analysis. People usually believe

that, numerically, ∆L
D > 6 can make a good approximation, for a similar reason of the 6-sigma rule in statistics. In the final

training phase of deep networks, a common setting is η = 0.01 and B = 128. Thus, we may safely apply Assumption 3
to the loss valleys which satisfy the very mild condition ∆L

H > 2.3× 10−4. Empirically, the condition ∆L
H > 2.3× 10−4

holds well in SGD dynamics.

C. Stochastic Gradient Noise Analysis
In this section, we empirically discussed the covariance of stochastic gradient noise (SGN) and why SGN is approximately
Gaussian in common settings.

In Figure 1, following Xie et al. (2020a), we again validated the relation between gradient noise covariance and the Hessian.
We particularly choose a randomly initialized mode so that the model is not near critical points. We display all elements
H(i,j) ∈ [1e − 4, 0.5] of the Hessian matrix and the corresponding elements C(i,j) of gradient covariance matrix in the
space spanned by the eigenvectors of Hessian. Even if the model is far from critical points, the SGN covariance is still
approximately proportional to the Hessian and inverse to the batch size B. The correlation is especially high along the
directions with small-magnitude eigenvalues of the Hessian. Fortunately, small-magnitude eigenvalues of the Hessian
indicate the flat directions which we care most in saddle-point escaping.

We also note that the SGN we study is introduced by minibatch training, ∂L(θt)
∂θt

− ∂L̂(θt)
∂θt

, which is the difference between
gradient descent and stochastic gradient descent.

In Figure 8 of the Appendix, Xie et al. (2020a) empirically verified that SGN is highly similar to Gaussian noise instead
of heavy-tailed Lévy noise. Xie et al. (2020a) recovered the experiment of Simsekli et al. (2019) to show that gradient
noise is approximately Lévy noise only if it is computed across parameters. Figure 8 of the Appendix actually suggests
that the contradicted observations are from the different formulations of gradient noise. Simsekli et al. (2019) computed
“SGN” across n model parameters and regarded “SGN” as n samples drawn from a single-variant distribution. In Xie et al.
(2020a), SGN computed over different minibatches obeys a N -variant Gaussian distribution, which can be θ-dependent and
anisotropic. Simsekli et al. (2019) studied the distribution of SGN as a single-variant distribution, while Xie et al. (2020a)
relaxed it as a n-variant distribution. Figure 8 holds well at least when the batch size B is larger than 16, which is common
in practice.

D. Experimental Details

Computational environment. The experiments are conducted on a computing cluster with GPUs of NVIDIA R© Tesla
TM

P100 16GB and CPUs of Intel R© Xeon R© CPU E5-2640 v3 @ 2.60GHz.
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Figure 8. The Stochastic Gradient Noise Analysis (Xie et al., 2020a). The histogram of the norm of the gradient noises computed with
ResNet18 on CIFAR-10. Subfigure (a) follows Simsekli et al. (2019) and computes “stochastic gradient noise” across parameters.
Subfigure (c) follows the usual definition and computes stochastic gradient noise across minibatches. Obviously, SGN computed over
minibatches is more like Gaussian noise rather than Lévy noise.
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D.1. Image Classification

Data Preprocessing: For CIFAR-10/CIFAR-100, we perform the per-pixel zero-mean unit-variance normalization, horizon-
tal random flip, and 32× 32 random crops after padding with 4 pixels on each side. For ImageNet, we perform the per-pixel
zero-mean unit-variance normalization, horizontal random flip, and the resized random crops where the random size (of
0.08 to 1.0) of the original size and a random aspect ratio (of 3

4 to 4
3 ) of the original aspect ratio is made.

Hyperparameter Settings for CIFAR-10 and CIFAR-100: We select the optimal learning rate for each experiment from
{0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10} for non-adaptive gradient methods and use the default learning rate in original
papers for adaptive gradient methods. The settings of learning rates: η = 1 for Adai;η = 0.1 for SGD with Momentum and
AdaiW; η = 0.001 for Adam, AMSGrad, AdamW, AdaBound, Yogi, and RAdam; η = 0.01 for Padam. For the learning
rate schedule, the learning rate is divided by 10 at the epoch of {80, 160} for CIFAR-10 and {100, 150} for CIFAR-100.
The batch size is set to 128 for CIFAR-10 and CIFAR-100. The L2 regularization hyperparameter is set to λ = 0.0005
for CIFAR-10 and CIFAR-100. Considering the linear scaling rule of decoupled weight decay and initial learning rates
(Loshchilov & Hutter, 2018), we chose decoupled weight decay hyperparameters as: λ = 0.5 for AdamW on CIFAR-10 and
CIFAR-100; λ = 0.005 for AdaiW on CIFAR-10 and CIFAR-100. We set the momentum hyperparameter β1 = 0.9 for
SGD with Momentum. As for other optimizer hyperparameters, we apply the default hyperparameter settings directly.

Hyperparameter Settings for ImageNet: We select the optimal learning rate for each experiment from
{0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10} for Adai, SGD with Momentum, and Adam. The settings of learning rates:
η = 1 for Adai;η = 0.1 for SGD with Momentum; η = 0.0001 for Adam. For the learning rate schedule, the learning
rate is divided by 10 at the epoch of {30, 60, 90}. The batch size is set to 256. The L2 regularization hyperparameter
is set to λ = 0.0001. We set the momentum hyperparameter β1 = 0.9 for SGD with Momentum. As for other training
hyperparameters, we apply the default hyperparameter settings directly.

Some papers often choose λ = 0.0001 as the default weight decay setting for CIFAR-10 and CIFAR-100. We study the
weight decay setting in Appendix F.

D.2. Language Modeling

Moreover, we present the learning curves for language modeling experiments in Figure 13. We empirically compare three
base optimizers, including Adai, SGD with Momentum, and Adam, for language modeling experiments. We use a classical
language model, Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997b) with 2 layers, 512 embedding
dimensions, and 512 hidden dimensions, which has 14 million model parameters and is similar to “medium LSTM” in
Zaremba et al. (2014). The benchmark task is the word-level Penn TreeBank (Marcus et al., 1993).

Hyperparameter Settings. Batch Size: B = 20. BPTT Size: bptt = 35. Weight Decay: λ = 0.00005. Learning Rate:
η = 0.001. The dropout probability is set to 0.5. We clipped gradient norm to 1. We select optimal learning rates from
{10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001} for each optimizer.

E. The Mean Escape Time Analysis
Mean Escape Time: The mean escape time is the expected time for a particle governed by Equation 1 to escape from
Sharp Valley a1 to Flat Valley a2, seen in Figure 9. The mean escape time is widely used in related statistical physics and
stochastic process (Van Kampen, 1992; Nguyen et al., 2019). Related machine learning papers (Xie et al., 2020a; Hu et al.,
2019; Nguyen et al., 2019) also studied how SGD selects minima by using the concept of the mean escape time.

Data Set: We generate 50000 Gaussian samples as the training data set, where x ∼ N (0, 4I).

Hyperparameters: The batch size is set 10. No weight decay. The learning rate: 0.001 for Adai, 0.0001 for Momentum
(with β = 0.9), and 0.03 for Adam.

Test Function: Styblinski-Tang Function is a commonly used function in nonconvex optimization, written as

f(θ) =
1

2

N∑
i=1

(θ4
i − 16θ2

i + 5θi).
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Figure 9. The illustration of Kramers Escape Problems (Xie et al., 2020a). Assume there are two valleys, Sharp Valley a1 and Flat Valley
a2. Also Col b is the boundary between two valleys. a1 and aa are minima of two neighboring valleys. b is the saddle point separating the
two valleys. c locates outside of Valley a1.

We use 10-dimensional Styblinski-Tang Function as the test function, and Gaussian samples as training data.

L(θ) = f(θ − x),

where data samples x ∼ N (0, 4I). The one-dimensional Styblinski-Tang Function has one global minimum located at a =
−2.903534, one local minimum located at d, and one saddle point b = 0.156731 as the boundary separating Valley a1 and
Valley a2. For a n-dimensional Styblinski-Tang Function, we initialize parameters θt=0 = 1√

k
(−2.903534, . . . ,−2.903534),

and set the valley’s boundary as θi < 1√
k

0.156731, where i is the dimension index. We record the number of iterations
required to escape from the valley to the outside of valley.

Observation: we observe the number of iterations from the initialized position to the terminated position. As we are more
interested in the number of iterations than “dynamical time” in practice, we use the number of iterations to denote the mean
escape time and ignore the time unit η in “dynamical time”. We repeat experiments 100 times to estimate the escape rate Γ
and the mean escape time τ . As the escape time is approximately a random variable obeying an exponential distribution,
t ∼ Exponential(Γ), the estimated escape rate can be written as

Γ =
100− 2∑100
i=1 ti

. (119)

The 95% confidence interval of this estimator is

Γ(1− 1.96√
100

) ≤ Γ ≤ Γ(1 +
1.96√

100
). (120)

F. Supplementary Empirical Results
Some papers (Luo et al., 2019; Chen & Gu, 2018) argued that their proposed Adam variants may generalize as well as SGD.
But we found that this argument is contracted with our comparative experimental results, such as Table 2. The main problem
may lie in weight decay. SGD with weight decay λ = 0.0001, a common setting in related papers, is not a good baseline
on CIFAR-10 and CIFAR-100, as λ = 0.0005 often shows better generalization, seen in Figures 10. We also conduct
comparative experiments with λ = 0.0001, seen in Table 3. While some Adam variants under this setting sometimes may
compare with SGD due to the lower baseline performance of SGD, Adai and SGD with fair weight decay still show superior
test performance.

We display all learning curves of Adai, SGD, and Adam on CIFAR-10 and CIFAR-100 in Figure 11. We further compare
convergence of Adai and Adam with the fixed learning rate scheduler for 1000 epochs in Figure 12.

For Language Modeling, we display the results of LSTM in Figure 13.

Finally, we use the measure of the expected minima sharpness proposed by Neyshabur et al. (2017) to compare the sharpness
of minima learned by Adai, Momentum, and Adam. The expected minima sharpness is defined as Eζ [L(θ? + ζ)− L(θ?)],
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Figure 10. The test errors of ResNet18 on CIFAR-10 and VGG16 on CIFAR-10 under various weight decay. Left: ResNet18. Right:
VGG16. The optimal test performance corresponds to λ = 0.0005. Obviously, Adai has better optimal test performance than SGD with
Momentum.
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(a) ResNet18
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(b) VGG16
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(c) DenseNet121
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(d) GoogLeNet
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Figure 11. Generalization and Convergence Comparison. Subfigures (a)-(b): ResNet18 and VGG16 on CIFAR-10. Subfigures (c)-(d):
DenseNet121 and GoogLeNet on CIFAR-100. Top Row: Test curves. Bottom Row: Training curves. Adai with η = 1 and η = 0.5
converge similarly fast to SGD with Momentum and Adam, respectively, and Adai generalizes significantly better than SGD with
Momentum and Adam.
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Figure 12. Convergence comparison by training VGG16 on CIFAR-10 for 1000 epochs with the fixed learning rate. When they converge
similarly fast, Adai converges in a lower training loss in the end. When they converge in a similarly low training loss, Adai converges
faster during training.
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Table 3. Test performance comparison of optimizers with the weight decay hyperparmeter λ = 0.0001. In this setting, some Adam
variants may compare with SGD mainly because the baseline performance of SGD is lower than the baseline performance in Table 2. The
test errors of AdaiW, Adai, and Momentum in middle columns is the original results in Table 2.

DATASET MODEL ADAIW ADAI SGD M SGD M ADAM AMSGRAD ADAMW ADABOUND PADAM YOGI RADAM

CIFAR-10 RESNET18 4.590.16 4.740.14 5.010.03 5.58 6.08 5.72 5.33 6.87 5.83 5.43 5.81
VGG16 5.810.07 6.000.09 6.420.02 6.92 7.04 6.68 6.45 7.33 6.74 6.69 6.73

CIFAR-100 RESNET34 21.050.10 20.790.22 21.520.37 24.92 25.56 24.74 23.61 25.67 25.39 23.72 25.65
DENSENET121 19.440.21 19.590.38 19.810.33 20.98 24.39 22.80 22.23 24.23 22.26 22.40 22.40
GOOGLENET 20.500.25 20.550.32 21.210.29 21.89 24.60 24.05 21.71 25.03 26.69 22.56 22.35
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(a) Test Perplexity

0 25 50 75 100 125 150 175 200
Epochs

50

100

150

200

250

Tr
ai

ni
ng

 P
er

pl
ex

ity

Adai
Momentum
Adam LR=1e-3
Adam LR=1e-2

(b) Training Perplexity

Figure 13. Language Modeling. The learning curves of Adai, SGD (with Momentum), and Adam for LSTM on Penn TreeBank. The
optimal test perplexity of Adai, SGD, and Adam are 74.3, 74.9, and 74.3, respectively. Adai and Adam outperform SGD, while Adai may
lead to a lower training loss than Adam and SGD.

where ζ is Gaussian noise and θ? is the empirical minimizer learned by a training algorithm. If the loss landscape near θ? is
sharp, the weight-perturbed loss Eζ [L(θ? + ζ)] will be much larger than L(θ?). Figure 14 empirically supports that Adai
and Momentum can learn significantly flatter minima than Adam.
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Figure 14. The expected minima sharpness analysis of the weight-perturbed training loss landscape of ResNet18 on CIFAR-10. The
weight noise scale is the standard deviation of the injected Gaussian noise. The minima learned by Adai and SGD are more robust to
weight noise. Obviously, Adai and Momentum can learn much flatter minima than Adam in terms of the expected minima sharpness.
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G. Adai with Stable/Decoupled Weight Decay

Algorithm 3 AdaiS/AdaiW

gt = ∇L̂(θt−1)
vt = β2vt−1 + (1− β2)g2

t

v̂t = vt
1−βt

2

v̄t = mean(v̂t)
β1,t = (1− β0

v̄t
v̂t).Clip(0, 1− ε)

mt = β1,tmt−1 + (1− β1,t)gt
m̂t = mt

1−
∏t

z=1 β1,z

θt = θt−1 − ηm̂t − ληθt−1

H. Expressions of Adam Dynamics
In this section, we discuss why Adam dynamics can also be expressed as Equation (7) similarly to Momentum dynamics.

The derivation that generalizes Momentum dynamics to Adam dynamics is trivial. We only need to replace η by the adaptive
η̂ in Equations (4), (5), and (6). We write the updating rule of Adam as{

mt = β1mt−1 + β3gt,

θt+1 = θt − η̂mt,
(121)

where β3 = 1− β1, β1 is the hyperparameter, and η̂ is the adaptive learning rate. For simplicity, it is fine to consider the
updating rules as element-wise operation. We can also write the Newtonian motion equations of Adam with the mass M
and the damping coefficient γ as {

rt = (1− γdt)rt−1 + F
M dt

θt+1 = θt + rtdt,
(122)

where rt = −mt, F = gt, dt = η̂, 1 − γdt = β1, and dt
M = β3 = 1 − β1. Thus, we obtain the differential-form motion

equation of Adam as

Mθ̈ = −γMθ̇ + F, (123)

where the mass M = η̂
1−β1

and the damping coefficient γ = 1−β1

η̂ .

This shows that the analysis can be applied to both Adam dynamics and Momentum dynamics. This is not surprising,
because the Newtonian motion equations, including Equations (5) and (6), are universal. The basic updating rules, Equations
(4), generally holds for any optimizer that uses Momentum, including Adam. As the terms in Equations (4) can correspond
to the terms in Equations (5) one by one, any dynamics governed by Equations (4) can also corresponds to a differential-form
Equation (6), where M and γ may have different expressions.

We note that Equations (5) in our paper is not contradictory to the SDEs of Adam in Zhou et al. (2020), as long as we let the
expressions of M and γ follow Adam dynamics. In fact, the updating rule of vt of the SDEs in Zhou et al. (2020) can be
incorporated into the expressions of M and γ. Equation (5) in our work, which is a single stochastic differential equation,
may be more concise for analyzing optimization dynamics than the SDEs in Zhou et al. (2020).

We also point out that the most important property of using Momentum is to employ the phase-time dynamics for training of
deep neural networks. If we let β1 = 0 in Adam, Adam will be reduced to RMSprop. Similarly SGD, RMSprop has no
the momentum drift effect on saddle-point escaping but has an isotropic diffusion effect. Our theoretical analysis about
Momentum and Adam helps us understand how manipulate element-wise momentum and learning rate separately to improve
saddle-point escaping as we want.


