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Abstract
Transformer-based pretraining techniques have achieved im-
pressive performance on learning cross-model representations
for various multi-modality tasks. However, most off-the-shelf
models do not take advantage of commonsense knowledge
and logical reasoning that are crucial to many real-world tasks.
To this end, we introduce a new variant of the Transformer
model for representation learning, Knowledge Reasoning
Intelligence in Vision-Language Transformer (KRIT). It uti-
lizes a reasoning module and the commonsense knowledge
embeddings extracted from text and detected image object
tags to perform knowledge-grounded representation learning
to improve model generalization and interpretability. KRIT is
pretrained on a large image-text corpus and automatically ex-
tracted knowledge embeddings, and then finetuned on several
downstream vision-language tasks. Experiments show that
KRIT not only achieve the significant result on the OK-VQA
task, but also for the first time, to the best of our knowledge,
make the transformer model interpretable by illustrating its
reasoning via a set of rules.

1 Introduction
Large-scale pretrained models have dramatically improved
the quality of natural language processing (NLP) and vision-
language models. Although these methods use image and text
information as inputs and learn image-text alignments via
well designed pretraining tasks, most still lack the external
commonsense knowledge necessary for many tasks. The ex-
ternal knowledge is usually hard or impossible to be learned
from standard datasets. More specifically, existing models
often disregard the shared and complementary information
provided by different modalities and do not leverage effec-
tively the structure of knowledge graphs and commonsense
reasoning. To address these challenges, we argue that model-
ing should leverage not only data of multiple modalities (i.e.,
vision and language) but also the rich structural and logical
information embedded in commonsense knowledge bases.
In this paper, we develop a general-purpose vision-language
pretraining method, Knowledge Reasoning Intelligence in
Vision-Language Transformer (KRIT). We leverage a knowl-
edge graph (Wikidata5m (Wang et al. 2020)) which has about
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Figure 1: Examples of visual questions that requires knowledge.

five million entities and corresponding relations. The knowl-
edge graph provides rich information useful for many vision-
language understanding tasks. Figure 1 shows two visual
question-answering examples that require external knowl-
edge.

To demonstrate the effectiveness of KRIT, we apply it
to two downstream tasks: visual question answering (VQA)
(Antol et al. 2015) and knowledge-based VQA (OK-VQA)
(Marino et al. 2019). Experiments show that KRIT is effec-
tive in leveraging external knowledge for vision language
understanding and reasoning tasks, and achieves the new sig-
nificant on OK-VQA and competitive performance on VQA.

To summarize our contribution: i) We develop a
knowledge-reasoning self-supervised Transformer using a
knowledge graph to learn multi-modal representations, which
includes physical properties, and ontological qualia/relations
that are hard or impossible to recover from standard datasets;
ii) We adapt knowledge-reasoning-patches besides use text
and image bounding box features. Our approach enables the
model to identify the types of knowledge and the space of
entities, etc. that we are interested in and which may not be
captured by detected objects. We promote these newer repre-
sentations to handle a broader space of visual semantics than
previous methods. iii) We leverage the Wikidata5M knowl-
edge graph as the commonsense knowledge base, which
includes entities, corresponding relations and information
for general-purpose applications on multi-modal tasks. We



present experiments and analysis to demonstrate the effec-
tiveness of our approach. iv) We extend a Reasoner Patch
Module to learn inference rules that can perform reasoning
on extracted knowledge entities. This module enhances the
interpretation of the existing deep learning model, optimizes
the limitations of the internal small dataset and unifies the
abundant external knowledge.

2 Related Work
Vision-Language Transformer. Multi-modal representa-
tion learning is essential for vision-language tasks, such
as image-captioning, visual question answering and visual
commonsense reasoning. Large-scale architectures based on
Transformer (Vaswani et al. 2017) have achieved impressive
performance by pretraining representations for natural lan-
guage processing (NLP) tasks (Peters et al. 2018; Devlin et al.
2018; Yang et al. 2019; Liu et al. 2019; Radford et al. 2019;
Brown et al. 2020). Recent works on vision-language pre-
training (VLP) have shown that these large-scale pretraining
methods can also lead to effective cross-modal representa-
tions (Lu et al. 2019a; Tan and Bansal 2019; Zhou et al. 2019;
Chen et al. 2019; Alberti et al. 2019; Li et al. 2020a, 2019,
2020b; Zhang et al. 2021; Kim, Son, and Kim 2021). Most
methods have two stages: Firstly, the model architecture is
pretrained using a large set of image-text pairs. Then they are
finetuned on task-specific vision-language tasks. For exam-
ple, Lu et al. (2019a); Tan and Bansal (2019) propose multi-
stream Transformer-based frameworks with co-attention to
fuse these modalities. Zhou et al. (2019); Chen et al. (2019);
Alberti et al. (2019); Li et al. (2020a, 2019, 2020b); Zhang
et al. (2021) propose unified pretrained architectures to work
on both visual-language understanding and visual-language
generation tasks. Kim, Son, and Kim (2021) introduces a
pretraining approach to learn self-attention representations
directly on image patches. Although these models achieve
impressive results on standard vision-language tasks, they
do not use information from external knowledge graph. Our
proposed KRIT architecture shows how the knowledge and
reasoning information extracted from text and image facili-
tates learning more robust and knowledge-aware representa-
tions for vision-language tasks. Gardères et al. (2020) uses
ConceptNet knowledge graph as the knowledge base to fa-
cilitate commonsense vision-language question-answering.
However, it does not pretrain a Transformer model to unify
multi-model inputs.

Language Transformer Models with External Knowledge.
Numerous researches have injected knowledge into language
pretraining models (Yu et al. 2020; Xu et al. 2021; Rosset et al.
2021; Zhou et al. 2020; He et al. 2020a; Xiong et al. 2019;
He et al. 2020b; Agarwal et al. 2021) with an emphasis on
NLP tasks. For example, Yu et al. (2020) extracts knowledge
graph information of language inputs from Wikipedia, and
use them to help the pretraining progress. Xu et al. (2021)
injects domain-specific knowledge in pretraining language
model for NLP tasks. Although, these studies work on using
the knowledge in pretraining, these methods only focus on
language tasks, and have not been applied to multi-modal
transformers (e.g. for vision and language). Additionally,

some proposed structures and representations are domain-
specific and are hard to extend to new tasks. In this paper,
we introduce a knowledge-based pretraining model using the
Transformer architecture for multi-modal understanding and
reasoning. The knowledge representations in our method can
be easily extracted from massive data.

3 KRIT model
When humans reason about the world, they process multiple
modalities and combine external knowledge related to these
inputs. Inspired by this idea, we introduce a new pretrain-
ing approach, Knowledge Reasoning Intelligence in Vision-
Language Transformer (KRIT), which uses a multi-layer
Transformer model to learn unified representations on exter-
nal knowledge and vision-language inputs. Given an image-
text pair, we extract the knowledge information from the text
and image, and convert them to knowledge embedding vec-
tors using a reasoner patch module. These embeddings are
used as additional inputs for pretraining. Figure 2 shows the
illustration of KRIT. In this section, we first present how we
extract the external knowledge from the knowledge base and
then we introduce the details of our pretraining approach.

3.1 Extracting Knowledge
For our experiments we choose the Wikidata5M knowledge
base (Wang et al. 2020) as a source of external knowledge.
Wikidata5M is a knowledge graph created upon Wikidata
(Vrandecic and Krotzsch 2014) and contains about 5 million
relevant and important real-world entities, where each entity
has a corresponding text description. Given a piece of text
T with n words {w0, ..., wn}, we first perform named entity
recognition on T based on the Wikidata5M knowledge graph
and generate an entity set E, which has m named entities
{e0, ..., em}. Each entity has a span in T with length of one
or more words. Therefore, after the named entity recogni-
tion, words in T can be separated into two subsets P and Q.
The first subset P has p words {w0, ..., wp}, that construct
the recognized entities. The second subset Q has q words
{w0, ..., wq}, which are the remaining words excluding the
recognized entities. Next, a natural-language description is
extraceted for each recognized entity. These knowledge de-
scriptions are used in our pretraining stage.

3.2 Input
KRIT represents each image-text pair as six parts
(w, kw, t, p, v, kt), where w is the sequence of word embed-
dings of the text, t is the word embedding sequence of the
image object tags, p is the entity patches (alias of entities)
extracted from Wikidata, v is the set of region feature vectors
of the image, kw is a set of KR-patches extracted from the
text, and kt is a set of KR-patches extracted from the object
tags.

For each image-text pair, most of the existing VLP models
represent the input pair as a sequence of word embeddings
of the text, and a set of region vectors of the image. Inspired
by Li et al. (2020b) and Zhang et al. (2021), we adopt an
additional input, a sequence of object tags, which are used as
anchor points to ease the learning of image-text alignment.



Figure 2: The KRIT model: Given an image-text pair, the input is represented as a tuple (w, kw, v, t, kt, p), where w is the sequence of
embedding for the text, kw is the sequence of text-KR-patch embeddings for the text entities extracted from the knowledge base, v is the
sequence of embeddings for the image region bonding-box features, t is the sequence of embeddings for the object tags, and kt is the sequence
of image-KR-patch embeddings for image entities extracted from the knowledge base, p is the sequence of entity-patches.

These object tags are the category names or semantically sim-
ilar words of detected objects in the image. For generating v,
we used a X152-C4 architecture as the object detection model
(OD), which is initialized from an ImageNet-5K checkpoint
(Deng et al. 2009). The OD model is pretrained on four vi-
sion datasets including Visual Genome (Krishna et al. 2016),
COCO (Lin et al. 2014), Objects365 (Shao et al. 2019) and
OpenImagesV5 (Kuznetsova et al. 2020). Given an image,
the pretrained OD model generated the set of detected object
names and the set of region features. Each region feature
contains an vector of the image feature with 2048 dimension
and a positional encoding of the region with 6 dimension.
The image feature vector is concatenated with the positional
encoding to construct the vectors in v, where each region
vector in v has 2054 dimension. In pretraining, t uses the
object tags in image captioning datasets and answer text in
visual question answering datasets.

For each text-image pair, we also extract the KR-patches
kw and kt from both the text and the image, where each KR-
patch is an entity description corresponding an entity from
Wikidata5M. One text side, the text in each pair is used for
knowledge extraction and construct the kw. On image side,
we use the tags of objects in each image for knowledge ex-
traction and generate the kt. The kw and kt are concatenated
together to construct a set of KR-patches k as inputs for the
reasoner patch module. As each KR-patch has a correspond-
ing entity, we adapt the similar ideas as using object tags.
For the extracted entities, we use the alias of each entity as a
entity patch and concatenate all entity patches to construct
the p. These entity patches can be used as anchor points to
facilitate alignment learning.

3.3 Reasoner Patch Module
The reasoner patch module contains a KR-patch encoder and
a reasoner. This module takes two inputs, the sequence of
words w of the text input and the sequence of KR-patches
k. We use a pretrained BERT-Base model as the KR-patch
encoder. w and k are encoded by the encode and the embed-
ding vectors corresponding special token [CLS] are used as
the outputs. The encoded vector rw for w is regarded as an-
tecedent vector and the encoded vector rk for k is regarded as
consequence vector, which are passed to reasoner. Reasoner
module has b rule blocks, where each block learns to apply
an inference rule on the KR-patches based on different types
of text input. Inspired by classic inference systems, each rule
block has three main components, an antecedent MLP fa

i ,
a consequence MLP fs

i and a learned rule matching vector
hi. The rule matching vector is used to check whether the
antecedent is satisfied to apply the rule. Thus, we compute
the attention weights between antecedent vector and the rule
matching vectors of all rule blocks. The attention weights
decide whether rules should be applied or not. Antecedent
MLP in each block takes the antecedent vector rw as input
and outputs a vector ai. Consequence MLP in each block
takes the consequence vector rk as input and outputs a vector
si. The outputs of the reasoning module a and s are gen-
erated by computing the weighed sums of each ai and ci
based on the rule attention weights. The reasoner module
is presented in Figure 4 Finally, w, t, p, v, a and s are con-
catenated together as a sequence and passed as the input for
the pretraining Transformer model. The following formulas
describe the details of the reasoner patch module:

rw = KRPatchEncoder(w) (1)



Figure 3: Overview of extracting knowledge on a text piece: given a text-image sample, we first perform named entity recognition on both text
and image tags and detect a set of entities and rest of words. Then, we use these recognized entities to extract the text descriptions (KR-patches)
corresponding to these entity.

Figure 4: Reasoner in the Reasoning Module

rk = KRPatchEncoder(k) (2)

β1, β2, ..., βn = Attention(rw, h1, h2, ..., hn) (3)

ai = fa
i (r

w) si = fs
i (r

k) (4)

a =

n∑
i=1

βiai s =

n∑
i=1

βici (5)

3.4 Pretraining Objective
KRIT is pretrained with two types of objectives: sequence-
level and token-level. Sequence-level objective distinguishes
the representations of the text, image and the external knowl-
edge. Token-level objective distinguishes the semantic space

of inputs. Thus, we propose the novel KRIT pretrainig loss
Lpretraining as in Equation 6, where LSL is the loss from
sequence-level pretraining and LTL is the loss from token-
level pretraining. Next, we introduce the details for each loss.

Lpretraining = LSL + LTL (6)
Sequence-Level Objective. The sequence-level loss LSL

is a four-way contrastive loss. Given the input tuples
(w, kw, t, p, v, kt) from dataset D, we construct negative in-
puts by polluting the tuples to compute the loss. At each time,
we keep the correct tuple or replace one of tuple elements
including the text, tags or knowledge with a random element
from other documents, which results three different types of
polluted tuples: (wneg, k

w, t, p, v, kt), (w, kw, tneg, p, v, kt)
and (w, kw, t, pneg, v, k

t). In 50% of the time, the correct
tuple stays unchanged. In the rest of 50% of the time, the
three types of negative samples have equal probabilities to
be generated. During pretraining, KRIT model aims to pre-
dict whether the tuple is correct or polluted. Following the
tradition of Transformer-based pretraining model, the encod-
ing of [CLS] token can be used as the representation of the
tuple input. We passed this encoding of [CLS] to a fully-
connected layer f(.) and predict four classes: the tuple is
correct (c=0), w is unmatched (c=1), t is unmatched (c=2)
or p are unmatched (c=3). Then the sequence-level loss is
defined as:
LSL = −E(w,t,p,v,kw,kt;c)∼D log p(c|f(w, t, p, v, kw, kt))

(7)
Token-Level Objective. The token-level loss LTL uses the
masked token loss LMTL (Devlin et al. 2018) on each text
element in (w, t and p), and thus we have Lw

MTL, Lt
MTL and

Lp
MTL. We asked the model to predict the original token for

each masked token. Then, we compute cross-entropy loss for
all prediction as the LMTL. Based on this design, the token-
level loss is defined as: LTL = Lw

MTL + Lt
MTL + Lp

MTL

3.5 Knowledge Based Context
Existing notions of semantic scope for MLM based pretrain-
ing objectives assume that the local sentence context provides



all necessary meaning to a word. While visual pretraining
expands that notion of scope (Bisk et al. 2020), semantics
is still restricted to within a sentence. Our Knowledge Base
representations capture long-distance semantic links gener-
ally only recoverable by document level understanding (e.g.
linking both the artist and the location of a painting). The
Knowledge embeddings provide a complementary source
of information which we force the model to integrate into
its contextualized lexical (and visual) representations of ob-
jects, reshaping them to place otherwise disparate concepts
near each other in space. Specifically, existing VLP models
rely heavily on a shared initial embedding space to make
cross-modal connections. A single projection layer is used
to convert visual features to 720 word embeddings in a pre-
trained linguistic space. This has two effects: 1. It assumes
that visual information can be mapped to an existing “hub”
in the BERT embedding space and 2. It allows the trans-
former to operate on a single embedding space throughout
contextualization. Our approach makes a minor but funda-
mentally different and more general decision, by allowing
several input embedding manifolds which the initial layers
of the transformer must reconcile. In this way, the attention
mechanism works over heterogenous data sources to extract
relevant knowledge when appropriate and opens up a larger
research question about how and where additional data can
be integrated into multi-modal transformers.

3.6 Pretraining Corpus
We use the public corpus of Zhang et al. (2021) for pre-
training. This corpus contains image-text pairs from several
existing vision-language datasets, including COCO (Lin et al.
2014), Conceptual Captions (Sharma et al. 2018), SBU cap-
tions (Ordonez, Kulkarni, and Berg 2011), Flickr30k (Young
et al. 2014), GQA (Hudson and Manning 2019), VQA (Antol
et al. 2015), VG-QAs, and a subset of OpenImages. The final
corpus has about 5.65 million images, 2.5 million QA pairs,
4.68 million captions, and 1.67 million pseudo-captions.

3.7 Implementation Details
KRIT uses the Transformer architecture from BERT, initial-
ized with parameters from BERT models. We use a linear
projection matrix WI to transform the image region features
to the dimensionality of the BERT model. For knowledge
encoder, we initialize it using BERT-Base model and use 30
rule blocks in the reasoner module. We keep up to 20 entities
for each training sample and the maximum length of each
entity description is 25 tokens. Thus, after adding the special
token at the begining of the text piece [CLS], the total length
of the knowledge text piece is 501. The AdamW optimizer
is picked for model optimization and the learning rate is set
to 5e−5. KRIT is trained for at least one million steps with a
batch size of 240 on 16 V100 GPUs.

4 Adapting to Vision-Language Tasks
After pretraining, we apply KRIT to several downstream
vision-language understanding tasks. Each task poses differ-
ent knowledge and reasoning challenges.

VQA. VQA is one of the most widely used visual question
answering datasets. Following Antol et al. (2015), the model
is required to answer natural language questions based on an
image. Given an image and a question, the task is to select
the correct answer from a multi-choice list. We use the VQA
v2.0 dataset (Antol et al. 2015) for our experiments. VQA
v2.0 is constructed based on the COCO image corpus and
the dataset is split into a training set with 83k images and
444k questions, a validation set with 41k images and 214k
questions and a test set with 81k images and 448k questions.
The model picks the corresponding answer from a shared set
of 3,129 answer candidates.

For VQA, the model takes one input sequence, which
contains the concatenation of a question, object tags, region
features, and extracted knowledge from the question and tags.
Then KRIT [CLS] token is fed to a linear classifier for pre-
dicting the answer. Following Li et al. (2020b), we treat VQA
as a multi-label classification problem. Each answer is as-
signed a soft target score based on its relevancy to the human
answer responses, and we finetune the model by minimizing
the cross-entropy loss against those soft target scores. At
inference, we simply use a Softmax function for prediction.

OK-VQA. Outside Knowledge Visual Question Answer-
ing (OK-VQA) (Marino et al. 2019) is a new dataset that asks
models to draw upon outside knowledge to answer questions.
This dataset has 14,055 open-ended questions on COCO im-
ages and each question has 10 human annotated answers. We
filter for questions with high-confidence answers in which
5 out of 10 annotated answers are the same (leaving 7,400
questions). As OK-VQA is designed to test how models use
external knowledge, there are a substantial number of highly
dissimilar answer candidates. This differentiates it from sim-
pler multi-choice settings like VQA. Thus, we treat answer
selection as an image-text retrieval task. During training, we
formulate the task as a binary classification problem. Given
an aligned tuple containing the image, question, answer, tags
and extracted knowledge, we randomly select a different im-
age, different knowledge or a different answer to construct a
misaligned tuple. The [CLS] token is then used as the input
to a binary classifier to predict whether the input is aligned
or misaligned. During testing, we use the probability score to
rank each answer for a given image-question pair and top-K
retrieval results are used as the metric for evaluation.

5 Experiments
5.1 Results
We conduct experiments on VQA and OK-VQA and compare
our model against standard VLP baselines and knowledge
VLP baselines. Table 1 shows the overall performance. The
left part in Table 1 presents the results on VQA dataset and
OK-VQA dataset comparing with standard VLP baselines,
where these models do not use any external knowledge. On
VQA dataset, KRIT achieves almost similar accuracy with
VinVL model (Zhang et al. 2021), which provides evidence
that KRIT has competitive visual understanding ability with
other standard VLP models. On OK-VQA, we compare KRIT
with the Oscar and VinVL because they are most similar
with ours. On the filtered testing set (2710 samples), we



Standard VLP Knowledge VLP

VQA OK-VQA OK-VQA
Methods (%) Dev Test R@1 R@5 R@10 Methods Acc-full

ViLBERT (Lu et al. 2019a) 70.63 70.92 – – – – –
VisualBERT (Li et al. 2019) 70.80 71.00 – – – Q only (Marino et al. 2019) 14.93
LXMERT (Tan and Bansal 2019) 72.42 72.54 – – – MLP (Marino et al. 2019) 20.67
12-in-1 (Lu et al. 2019b) 73.15 – – – – BAN (Marino et al. 2019) 25.1
UNITER-B (Chen et al. 2019) 72.27 72.46 – – – BAN+AN (Marino et al. 2019) 25.61
ViLT (Kim, Son, and Kim 2021) 71.26 – – – – MUTAN (Marino et al. 2019) 26.41
Oscar-B (Li et al. 2020b) 73.16 73.44 34.50 63.95 73.47 MUTAN+AN (Marino et al. 2019) 27.84
VinVL (Zhang et al. 2021) 75.95 76.12 39.82 68.26 77.49 ConceptBERT (Gardères et al. 2020) 33.66

KRIT (ours) 75.44 75.86 41.47 69.45 78.56 KRIT (ours) 33.73

Table 1: Left: Results of KRIT on VQA and OK-VQA comparing to standard VLP baselines show that our model has competitive results on
VQA and outperforms existing VLP baselines on OK-VQA. Right: KRIT achieves state-of-the-art performance on OK-VQA full testing set
comparing to knowledge VLP baselines.

report the Recall@1, Recall@5 and Recall@10 metrics for
comparison. The OK-VQA dataset requires models to use
external knowledge to answer questions. As standard VLP
models such as Oscar or VinVL do not use such information
during pretraining, KRIT provides a significant improvement
on this dataset. We also test our model on the whole testing set
(5046 samples) and use the same evaluation method described
in Marino et al. (2019) to provide a fair comparison with
other vision-language models using external knowledge. The
right part in Table 1 presents our result comparing with the
models on OK-VQA leaderboard. Our result achieves the
state-of-the-art performance, which provides more evidence
that KRIT is promising on commonsense VQA tasks. More
details on the finetuning setting are described in Appendix A
and more experiments are presented in Appendix E.

5.2 Ablation Studies
In this paper, we perform ablation experiments to evaluate
the effects of reasoner patch module and the number of rule
blocks in the module. We compared two different settings
with KRIT. To study the effect of our novel reasoner patch
module, we perform experiment with a pretraining setting
without the reasoner in the module. Given a set of entities,
we extract the KR-patches of these entities. Then, the patches
are encoded with the text encoder and the output vector is
directly concatenated with text inputs and image inputs for
pretraining. To study the effect of the number of rule blocks
in reasoner module, we test two settings to compare 30 rule
blocks and 50 rule blocks. We trained the two different set-
tings and our KRIT 1 million steps with 4 V100 GPUs with
same batch size and finetuned them on VQA and OKVQA
datasets. Results for the three models are presented in the
Table 2.

The Effect of Reasoning Module. Based on the results, the
model without reasoner outperforms KRIT on VQA dataset
but has lower performance on OK-VQA dataset. As VQA
dataset is designed to learn the alignments between image and
language, model does not require any external knowledge.

Thus, the model without reasoner may be easier to learn the
alignments. However, OK-VQA dataset is designed for com-
monsense visual question-answering, our reasoner module is
helpful to interpret the external knowledge and learns how to
use the knowledge. Thus, KRIT has better performance on
OK-VQA dataset.

The Effect of the Number of Rule Blocks. Based on the
results, the model with 30 rules in reasoner has better per-
formance than the model with 50 rules on OK-VQA dataset.
To have a better understanding on the reasoner module, we
analyze the attention weights in the reasoner module with
30 rule-blocks and 50 rule-blocks. We randomly sampled
2,500 training samples from OK-VQA dataset and for each
question, we only picked the top-5 selected rule with highest
attention weights. After visualization, most of the samples
select 5 rules in the reasoner with 30 rule-blocks. In the rea-
soner with 50 rule-blocks, the pattern of rule selection is less
obvious than the reasoner with 30 rule-blocks. The model
with 30 rule blocks seems enough to handle various tasks in
our pretraining corpus. Thus, we choose 30 rule blocks in
KRIT, which provides relatively clear rule selection results
on samples to understand. The section B in Appendix shows
the visualization results.

Model (%) VQA OKVQA

No Reasoner 72.06 28.41
KRIT-50 71.95 29.63
KRIT-30 71.42 31.02

Table 2: Results of ablation studies.

5.3 Explainability
The reasoner module provides us explainability to understand
what types of questions each rule block applies. Given a
training sample, the question is used as antecedent to activate
rule blocks. The attention weights between the antecedent and



rule matching vectors show us which rule blocks are used on
this question. To better understand the reasoner module, we
randomly sampled 2500 samples from VQA training set and
input the question in each sample into the pretrained KRIT
with 30 rules. We only pick the rule block with the highest
attention weight on each question and group them together
if they choose the same rule. After inspection, we find that
similar types of questions tend to choose same rule blocks.
Figure 5 shows a selected set of rules, the corresponding
question types and some examples. From the figure, each
rule block tends to apply on one or two types of questions.
Each type of questions asks some specific information such
as color or time. Thus, if our system does not generate correct
answer on a question, we might be able to examine the rules
it selects to understand the reason why it fails. We also shows
the question types in selected rules on OK-VQA dataset
in Appendix B. We believe this direction is a interesting
direction for future research.

Figure 5: Selected rules in reasoner and question types.

Question Type VinVL KRIT Gain

Plants and Animals 32.12 35.58 +3.46
Science and Technology 27.97 28.97 +1.00
Sports and Recreation 35.95 40.39 +4.44
Geo, History, Lang, and Culture 27.06 29.79 +2.73
Brands, Companies, and Products 25.88 27.33 +1.45
Vehicles and Transportation 27.12 29.56 +1.44
Cooking and Food 33.53 31.51 -2.02
Weather and Climate 34.43 37.73 +3.30
People and Everyday 29.28 32.17 +2.89
Objects, Material and Clothing 37.62 36.21 -1.41
Other 35.06 35.27 +0.21

Table 3: Accuracy of question types in OK-VQA full testing set.

5.4 Qualitative Analysis
Category Results on OK-VQA. Here we present qualita-
tive analyses to illustrate how external knowledge influences
the output of the pretraining model. We choose OK-VQA
dataset full testing set for the qualitative analysis because this
dataset requires external knowledge. Based on the types of
knowledge required, questions in OK-VQA are categorized
into 11 categories and the accuracy results of each category
are reported in Table 3. In most categories, KRIT outper-
forms the VinVL model. This observation illustrates that the
external knowledge used in KRIT includes many different

aspects. Specifically, on categories ”Plants and Animals”,
”Sports and Recreation” and ”Weather and Climate”, KRIT
provides the most significant improvements.

Correct Examples from KRIT. Existing VLP models are
not able to learn much additional knowledge from general
vision language datasets. The knowledge embeddings used
in KRIT provide extra information that cannot be reflected
from image-text pairs. Figure 6 has two examples compar-
ing the answers generated by KRIT and VinVL. From the
example, we find that the VinVL model is limited to visual
detection and KRIT has stronger visual understanding and
reasoning ability. For example, in the first example, the gen-
erated answer from VinVL is ”Clock Tower” instead of the
correct answer ”Big Ben”. Presumably the VinVL model
detects clock tower but does not have the knowledge that Big
Ben is the tallest clock towers in the world. Similarly, the
second question ”The read vehicle in the image fights what?”
requires knowledge about the usage of fire engines instead
of recognizing it as bus. More correct examples are shown in
Appendix C and Appendix D.

Figure 6: Two examples from OK-VQA dataset that KRIT generates
correct answer but VinVL fails.

6 Conclusion
This paper proposes a new VLP method, KRIT, which in
addition to text-image pairs, uses the text and image tags
as queries to extract external knowledge from Wikipedia.
KRIT takes the extracted knowledge as additional inputs. We
propose two novel pretraining tasks using this external knowl-
edge designed to enhance semantic alignment and generate
representations with stronger knowledge-awareness. We pre-
trained KRIT on a public corpus of ∼9M image-text pairs
and finetuned it on vision-language downstream tasks. Ex-
periments on two datasets demonstrate that KRIT has better
performance compared to the baselines and in particular is
successful at answering questions that require external knowl-
edge. Future work should explore the design of structure
learning pretraining tasks and the use of commonsense KBs
for vision-language.
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Appendix
A Fine-tuning Settings

VQA. During training, we randomly sample a set of 2k
images from the validation set as our validation set, the rest
of images in training and validation sets are used in the VQA
fine-tuning. We finetune the model for 30 epochs with a
learning rate of 5e−5 and a batch size of 192.

OK-VQA. After filtering the question-answer pairs with
high-confidence, the training set contains 4,690 questions and
the testing set contains 2710 questions. We finetune KRIT
200 epochs on the filtered dataset with batch size 128. We use
the learning rate 2e−5 and linearly decreases. We finetune
the baseline model with the same parameter setting.

B Rule Selection in Ablation Studies
To better understand the ablation results, we randomly picked
2500 samples from OK-VQA and perform clustering on the
top 5 rules each sample selected. Figure 8 visualizes the
distributions. In Figure 8, x-axis represents the rule index,
and the color indicates the percent of samples of selection.
From the visualization, most of the samples select 5 rules
in the reasoner with 30 rule-blocks. In the reasoner with
50 rule-blocks, the pattern of rule selection is less obvious
than the reasoner with 30 rule-blocks. The model with 30
rule blocks seems enough to handle various tasks in our
pretraining corpus. With clear rule selection, reasoner module
provides explainability. We can analyze the selected rule for
a given question to examine the insights of the answer. For
example, if our model does not generate correct answer, we
can explore the selected rules to check whether the model
applies the correct rule.

Figure 7 shows our interpretation of selected rules in the
samples from OK-VQA and the rough estimation of the
question types. The selected five rules are the top-5 rules
selected in the model with 30 rule blocks. Based on the
analysis, samples in each rule requires a different type of
ability to answer the question. For example, most of the
samples in rule 9 are still recognition problems but models
are required to generate more specific categories of an object
with external knowledge. Samples in rule 0 requires more
inference and rationale to generate the answer.

Based on the analysis of learned rules in our KRIT model,
we integrated reasoner module and deep learning. The rea-
soner module provides a tool to interpret the neural models
and the MLPs in reasoner boost learning and reasoning infer-
ence using the structures of rule blocks. This novel module
increases the explainability and is a promising direction for
future research.

C Correct Examples from KRIT
Existing VLP models are not able to learn much additional
knowledge about these categories from general image cap-
tioning or visual question-answering datasets. The knowledge
embeddings used in KRIT provide extra knowledge among
entities that cannot be reflected from image-text pairs. Figure
9 has six examples from different categories comparing the
answers generated by KRIT and VinVL. From examples, we

Figure 7: Selected rule analysis on OK-VQA dataset and question
types

find that the VinVL model is limited to visual detection and
KRIT has stronger visual understanding and reasoning ability.
These examples are from several different categories and ex-
ternal knowledge is important to answer them. For example,
the first question at the top requires the model to know that
fireplace is used for keeping warm before central air. The
second question in the top row asks the model to answer the
information of a famous person, which can only be extracted
from external knowledge. Similarly, in the last example at
bottom, VinVL thinks the camera is fisheye instead of Go
Pro for sport activities. Without external knowledge, VinVL
may not be able to learn the knowledge that Go Pro is more
like the camera the guy use for skiing.

D Incorrect Examples from KRIT
VinVL only outperforms KRIT on questions in categories
“Cooking And Food” and“Objects, Material and Clothing”.
One potential reason for this is that these questions require re-
liable object detection and uses less knowledge reasoning. By
adding external knowledge in pretraining, our model might
generate related but not accurate answers. Figure 10 presents
four examples that KRIT fails to generate correct answers.
These examples reflect that rich external knowledge vectors
in KRIT may increase the complexity of visual understanding.
For instance, in the first image, KRIT generates the answer
“Minneapolis” instead of the correct simple answer “Street”,
because the model might learn high correlations between
Minneapolis, city and street signs from external knowledge
but fail to ground the knowledge to the question. Similarly,
KRIT generates the “Loafer” instead of the correct answer
“Sandal” and “Red Relvet” instead of “Birthday”. One inter-
esting sample is the third image. Based on the image, people
might answer “Down” naively. However, if you check the
location of the sun, “North” might be a correct answer as well
and requires more complicated reasoning ability. Although
KRIT fails to generate correct answers on these examples, the
analysis on these failed samples demonstrates that external
knowledge can enhance the knowledge-awareness of existing
VLP models.

E Experiments on NLVR2

We also perform experiments on NLVR2 (Suhr et al. 2019).
The Natural Language Visual Reasoning for Real (NLVR2)
dataset (Suhr et al. 2019) asks a model to determine if a nat-
ural language statement is true or not of a pair of images.



Figure 8: The visualizations of top-5 selected rules in Reasoner Module

NLVR2

Model Dev Test-P
VisualBERT (Li et al. 2019) 67.40 67.00
LXMERT (Tan and Bansal 2019) 74.90 74.50
12-in-1 (Lu et al. 2019b) – 78.87
UNITER-B (Chen et al. 2019) 77.14 77.87
ViLT (Kim, Son, and Kim 2021) 75.70 76.13
Oscar-B (Li et al. 2020b) 78.07 78.36
VinVL (Zhang et al. 2021) 82.05 83.08
KR-VLT (ours) 79.38 79.58

Table 4: Results of KRIT on NLVR2

When fine-tuning, we construct two input sequences, each
containing the concatenation of the text, an image and the ex-
tracted knowledge from text and the image. Then, the [CLS]
tokens for the two sequences are concatenated as the joint
input for a binary classifier to predict whether the statement
is true. Table 4 presents the result.

Broader Impacts
Multi-modal language and vision understanding has many
applications. Examples include: information retrieval and
tagging and designing accessible interfaces (i.e., image de-
scriptions and closed captioning). However, we need to care-
fully understand the limitations and problems presented by
the data that these methods are typically trained on. Datasets
are often not representative of all people and demographic
groups. A dataset crawled from the Internet is more likely
to capture affluent western concepts and examples. While
it is very challenging to create truly representative data, we
can characterize datasets to help avoid models trained on
them being applied in ways that are inappropriate. The fact
that these datasets are not representative of all groups is one
limitation of our work. Before a system such as the one pre-
sented here is deployed more work would need to be done to
understand how such a model, in the context of an applica-
tion, may disadvantage or advantage certain people. Training
large models often consumes a lot of power and we must not

neglect the environment impact of this process. During our
experiments we made every effort to use the computational
resources efficiently.



Figure 9: Eight examples from OK-VQA testing set that KRIT model generates correct answers but VinVL does not. Comparing the generated
answers from KRIT and VinVL indicates that VinVL model is limited to visual detection and KRIT has stronger reasoning and understanding
ability.

Figure 10: Four examples from OK-VQA testing set that KRIT model generates incorrect answers but VinVL gets correct answers.


