
ADAMIX: MIXTURE-OF-ADAPTER FOR
PARAMETER-EFFICIENT TUNING OF LARGE

LANGUAGE MODELS

Yaqing Wang§, Subhabrata Mukherjee†, Xiaodong Liu†,
Jing Gao§, Ahmed Hassan Awadallah†, Jianfeng Gao†

§Purdue University, †Microsoft Research
{wang5075, jinggao}@purdue.edu,

{submukhe, xiaodl, hassanam, jfgao}@microsoft.com

ABSTRACT

Fine-tuning large-scale pre-trained language models to downstream tasks require
updating hundreds of millions of parameters. This not only increases the serving
cost to store a large copy of the model weights for every task, but also exhibits in-
stability during few-shot task adaptation. Parameter-efficient techniques have been
developed that tune small trainable components (e.g., adapters) injected in the large
model while keeping most of the model weights frozen. The prevalent mechanism
to increase adapter capacity is to increase the bottleneck dimension which increases
the adapter parameters. In this work, we introduce a new mechanism to improve
adapter capacity without increasing parameters or computational cost by two key
techniques. (i) We introduce multiple shared adapter components in each layer
of the Transformer architecture. We leverage sparse learning via random routing
to update the adapter parameters (encoder is kept frozen) resulting in the same
amount of computational cost (FLOPs) as that of training a single adapter. (ii) We
propose a simple merging mechanism to average the weights of multiple adapter
components to collapse to a single adapter in each Transformer layer, thereby,
keeping the overall parameters also the same but with significant performance
improvement. We demonstrate these techniques to work well across multiple task
settings including fully supervised and few-shot Natural Language Understanding
tasks. By only tuning 0.23% of a pre-trained language model’s parameters, our
model1 is the first one to fully outperform the full model fine-tuning performance
and several competing methods.

1 INTRODUCTION

Large-scale language models ( (Devlin et al., 2019; Liu et al., 2019; Brown et al., 2020; Raffel
et al., 2019) are pre-trained in a self-supervised fashion over massive amounts of unlabeled data.
Adapting these models to downstream tasks require fine-tuning all of the model parameters. Given
the ever-increasing size of large pre-trained language models (PLMs) (e.g., GPT-3 consists of 175
billion parameters and MT-NLG consists of 530 billion parameters), such adaptation mechanism
massively increases the serving cost since it requires storing one copy of the model weights for
every task. To address these challenges, recent works have developed parameter-efficient fine-tuning
techniques. These approaches typically keep most of the model weights frozen and update only a
part of the model parameters or inject small trainable modules in the Transformer layers that are
tuned for every task. While there are many varieties of such parameter-efficient tuning techniques,
including prefix-tuning (Li & Liang, 2021) and prompt-tuning (Lester et al., 2021) to condition
frozen language models via natural language descriptions of the task, low dimensional projections
using adapters (Houlsby et al., 2019; Pfeiffer et al., 2020; 2021) and more recently using low-rank
approximation (Hu et al., 2021). However, for all of the above methods, we observe a performance
gap with respect to full model tuning where all the parameters are updated for many of the tasks.

The above parameter-efficient adaptation techniques introduce certain hyper-parameters to control for
the adaptation capacity, for instance, the rank for low-rank adaptation techniques or the bottleneck

1Code and model checkpoints will be made available at https://aka.ms/AdaMix
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dimension of adapters like Houlsby (Houlsby et al., 2019). The prevalent mechanism to increase
the capacity to match the full model tuning performance is to increase the rank or the adapter width
which increases the number of adapter parameters. In this work, we develop a different mechanism
to increase adapter capacity to match the full model tuning performance without increasing overall
number of newly-added parameters or FLOPs.

We take inspiration from sparsely-activated mixture-of-experts (MoE) models. In traditional dense
models (e.g., Transformer-based language models like BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020)), all of the model weights are activated for every input example. MoE models induce
sparsity by activating only a subset of the neural network weights for each incoming example. This
is achieved via conditional computation based on routing input examples to a subset of experts
introduced in each other layer of the Transformer model. This conditional computation, for instance,
selection of top − 1 expert in each other layer, allows the sparse models to be computationally
efficient i.e. match the FLOPs of that of a dense model, but also improves its capacity by increasing
the number of parameters.
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Figure 1: Performance of differ-
ent parameter-efficient tuning methods
on the GLUE development set with
RoBERTa-large encoder. We report the
performance of Pfeiffer and Houlsby
adapters with their default number of
tunable parameters as well as that used
in our method AdaMix. Red dash
shows the performance of full model
fine-tuning.

With this design in mind, we introduce multiple adapter
components in each layer of the Transformer architec-
ture to take best advantage of the pre-trained knowledge
in PLMs. Consider the Houlsby (Houlsby et al., 2019)
adapter as one of the most popular parameter-efficient
fine-tuning technique for illustration. It introduces two
feedforward layers to down-project the hidden represen-
tation to a low dimension d (also called the bottleneck
dimension) followed by another up-project operation to
match the dimensionality of the next layer. In order to
introduce sparsity, we inject multiple feedforward layers
(FFN) (corresponding to project-up and project-down) in
each Transformer layer. We introduce a simple protocol
to stochastically route instances to one of the project-up
and then to one of the project-down FFN’s resulting in the
same amount of computational cost (FLOPs) as that of
using a single adapter but introducing more capacity.

The above design, however, introduces two major chal-
lenges. The first one results from training instability due to
stochastic selection of different adapter components, e.g.,
routing instances via different pairs of FFN-up and FFN-
down projections in different training steps. To mitigate
this, we explore different design choices like consistency
regularization and sharing of adapter components during stochastic routing. The second challenge
results in increased number of adapter parameters that increases the serving cost although it keeps
the computational cost the same. To address this, we develop a merging mechanism to average
weights from differently learned adapter components to a single adapter that preserves the perfor-
mance gains, while keeping the number of parameters and FLOPs also the same as that of a single
adapter design. Our adapter merging is inspired by recent works on model weight averaging like
model soups (Wortsman et al., 2022) and multi BERTs (Devlin et al., 2019). Such weight averaging
of models with different random initialization has been shown to improve model performance in
recent works (Matena & Raffel, 2021; Neyshabur et al., 2020; Frankle et al., 2020) that show the
optimized models to lie in the same basin of error landscape. While the above works are geared
towards fine-tuning independent models, we extend this idea to parameter-efficient fine-tuning with
randomly initialized adapters and a frozen language model. Overall, our work makes the following
contributions:

• We propose a new mechanism of increasing adapter capacity for parameter-efficient fine-
tuning by stochastic routing to a mixture of adapter components while keeping the same
computational cost (FLOPs) as that of a single adapter design.

• We propose a merging mechanism to average weights of multiple adapter components to
preserve the improved performance from the aforementioned design while keeping the
parameters also the same as that of a single adapter design.
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• We demonstrate this simple technique to work well in different task settings and variable
amounts of labeled training data, including fully supervised and few-shot fine-tuning of
large language models on Natural Language Understand tasks. By tuning only 0.23%
of a pre-trained model’s parameters, our method outperforms the full model fine-tuning
performance on GLUE and several competing methods.

2 BACKGROUND

2.1 MIXTURE-OF-EXPERTS

The objective of sparsely-activated model design is to support conditional computation and increase
the parameter count of neural models like Transformers while keeping the floating point operations
(FLOPs) for each input example constant. Mixture-of-Experts (MoE) Transformer models (Shazeer
et al., 2017; Fedus et al., 2021; Lepikhin et al., 2020; Zuo et al., 2021) achieve this by using N
feed-forward networks (FFN), namely “experts" denoted as ENi=1, each with its own set of learnable
weights that compute different representations of an input token x based on context. In order to
sparsify the network to keep the FLOPs constant, there is an additional gating network G whose
output is a sparse N -dimensional vector to route each token via a few of these experts. Note that, a
sparse model with N = 1 corresponding to only one FFN layer in each Transformer block collapses
to the traditional dense model.

Consider xs as the input token representation in the sth position to the MOE layer comprising of the
{E}Ni=1 expert FFNs. Also, consider wini and wouti to be the input and output projection matrices for
ith expert. Expert output Ei(xs) is given by:

Ei(xs) = wouti ·GeLU(wini · xs) (1)

Consider G(xs) to be output of the gating network. Output of the sparse MoE layer is given by:

h(xs) =
∑
i

G(xs)i Ei(xs) (2)

where G(xs)i the ith logit of the output of G(xs) denotes the probability of selecting expert Ei.

In order to keep the number of FLOPs in the sparse Transformer to be the same as that of a dense
one, the gating mechanism can be constrained to route each token to only one expert FFN, i.e.∑
iGt(xs)i = 1.

2.2 ADAPTERS
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Figure 2: Conventional adapter de-
sign in standard Transformer archi-
tecture.

The predominant methodology for task adaptation is to tune all
of the trainable parameters of the PLMs for every task. This
raises significant resource challenges both during training and
deployment. A recent study (Aghajanyan et al., 2021) shows
that PLMs have a low instrinsic dimension that can match the
performance of the full parameter space.

To adapt PLMs for downstream tasks with a small number of
parameters, adapters (Houlsby et al., 2019) have recently been
introduced as an alternative approach for lightweight tuning.

The adapter tuning strategy judiciously introduces new param-
eters into the original PLMs. During fine-tuning, only the
adapter parameters are updated while keeping the remaining
parameters of the PLM frozen. Adapters usually consist of two
fully connected layers as shown in Figure 2, where the adapter
layer uses a down projectionWdown ∈ Rd×r to project input
representation x to a low dimensional space r (referred as the
bottleneck dimension) with d being the model dimension, followed by a nonlinear activation function
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f(·), and a up-projection with Wup ∈ Rr×d to project the low-dimensional features back to the
original dimension. The adapters are further surrounded by residual connections.

Practical benefits of lite tuning. The most significant benefit of lightweight adapter tuning comes
from the reduction in memory and storage usage. For a Transformer, The VRAM consumption
could be significantly reduced as we do not need to keep track of the optimizer states for the frozen
parameters. For storage usage, we also reduce the checkpoint size by 444x (from 355MB to 0.8MB
in our setting with RoBERTa-large encoder) since we store only task-specific adapter parameters
instead of shared PLM, largely benefiting deployment scenarios.

Given the above adapter design with parameters ψ, the dataset DK , a pre-trained language model en-
coder enc with parameters ΘPLM, where ΘPLM ≫ ψ, we want to perform the following optimization
for efficient model adaptation:

ψ ← argminψ L(Dk; ΘPLM, ψ) (3)
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Figure 3: Mixture-of-Adapter (AdaMix) architecture withM = 4 adapter components for illustration
consisting of feedforward up (FFN_U ) feedforward down (FFN_D) projection matrices. The
above block shown for one Transformer layer is repeated across all the layers. AdaMix uses
a stochastic policy to route instances from an input batch through randomly selected projection
matrices resulting in FLOPs match to a single adapter with consistency regularization and parameter
sharing. Adapter merging (Figure 4) collapses projection matrices to match single-adapter parameters.

3 MIXTURE-OF-ADAPTER

We adopt the popularly used Transformer architecture Vaswani et al. (2017) as the basic encoder
consisting of L repeated Transformer blocks, where each block consists of a self-attention sub-layer, a
fully connected feed-forward network (FFN) and residual connections around the sub-layers followed
by layer normalization.

Consider a set of M adapters injected in each layer of the Transformer model, where Aij : i ∈
{1 · · ·L}, j ∈ {1 · · ·M} represents the jth adapter in the ith Transformer layer. Each adapter
component Aij in our framework follows the Houlsby Houlsby et al. (2019) adapter design consisting
of a feedforward upWup

ij and a feedforward downWdown
ij projection matrices.

Standard Mixture-of-Experts (MoE) models with token-level routing have been shown effective
for autoregressive or encoder-decoder language models for tasks like Neural Machine Translation.
In contrast, in this work, we focus on encoder-only models (e.g., BERT Devlin et al. (2019) and
RoBERTa Liu et al. (2019)) for Natural Language Understanding tasks (e.g. tasks in the GLUE
benchmark Wang et al. (2019)). Correspondingly, we adopt instance-level routing for classification
tasks as opposed to token-level routing.

Recent work like THOR Zuo et al. (2021) has demonstrated stochastic routing policies like the random
routing to work as well as classical routing mechanisms like Switch routing Fedus et al. (2021) with
some added benefits. For instance, since input examples are randomly routed to different experts,
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there is no requirement for additional load balancing since each expert has an equal opportunity of
being triggered, further, simplifying the framework. Additionally, there are no added parameters at
the Switch layer for expert selection. The latter is particularly important in our setting for parameter-
efficient fine-tuning to keep the parameters and FLOPs the same as that of a single adapter design.
Correspondingly, we adopt a stochastic routing policy in our framework.

To this end, at any training step, we randomly select a pair of feedforward up and feedforward down
projection matrices in the ith Transformer layer as Ai = {Wup

ij ,Wdown
ik } and Bi = {Wup

ij′ ,Wdown
ik′ }

respectively where j ̸= j′, k ̸= k′ . Given this selection of adapter components Ai and Bi in each
Transformer layer in every step, all the inputs in a given batch are processed through the same set of
adapters. Given an input representation x in a given Transformer layer, the above pair of adapters
perform the following transformations:

x← x+ f(x · Wdown) · Wup (4)

Such stochastic routing enables the adapter components to learn different transformations during
training and obtain multiple views of the task. However, this also creates a challenge on which sets of
projection matrices to use during inference due to the random routing protocol during training. We
address this challenge with the following two techniques that further allow us to collapse the adapter
parameters and obtain the same computational cost (FLOPs) as that of a single adapter design.

Consistency regularization. Consider A = {ALi=1} and B = {BLi=1} to be the sets of adapter
components (i.e. projection matrices) triggered during two stochastic forward passes through the
network for an input x across the L layers of the Transformer model. The objective of consistency
regularization is to enable the adapter components to share information and prevent divergence. To
this end, we add the following consistency loss as a regularizer to the task-specific optimization loss:

L = −
C∑

c=1

(
I(x, c) log softmax(zAc (x)) +

1

2

(
KL(zAc (x)||zBc (x)) + KL(zBc (x)||zAc (x))

))
(5)

where I(x, c) is a binary indicator (0 or 1) if class label c is the correct classification for x and zAc (x)
and zBc (x) are the predicted logits corresponding to class c from the two sets of adapters A and B
respectively with KL denoting the Kullback-Leibler divergence. From Equations 3 and 5, x is the
input representation from the encoder enc(ΘPLM ) with frozen parameters and only the parameters
of projection matrices ψ = {Wup,Wdown} are updated during training.

Training Stage 

FFN_U

+

FFN_D

Averaging Weights 
of Adapters

Inference Stage 

FFN_D 1

+

FFN_D 2 FFN_D 3 FFN_D 4

FFN_U 1 FFN_U 2 FFN_U 3 FFN_U 4

Figure 4: Stochastic routing during training triggers different
projection matrices for the adapters to have multiple views
of the task with FLOPs match to a single adapter. Merging
weights of the adapter components ({FFN_Ui}, {FFN_Di} :
i ∈ {1 · · · 4}) by averaging preserves improved performance
with parameter match to a single-adapter design.

Adapter merging. While the above
regularization mitigates the inconsis-
tency in random adapter selection dur-
ing inference, it still results in in-
creased serving cost to host all the
projection matrices from the different
adapter components. Prior works in
fine-tuning language models for down-
stream tasks have shown improved
performance on averaging the weights
of different models fine-tuned with
different random seeds outperform-
ing a single fine-tuned model. Recent
work Wortsman et al. (2022) has also
shown that differently fine-tuned mod-
els from the same initialization lie in
the same error basin motivating the
use of weight aggregation for robust
task summarization. We adopt and extend prior techniques for language model fine-tuning to our
parameter-efficient training of multi-view adapters.

In contrast to the aforementioned techniques like stochastic routing and consistency regularization
that are applied at the training phase, we employ adapter merging only during inference. Given a
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set of projection matrices,Wup
ij andWdown

ik for i ∈ {1 · · ·L} and {j, k} ∈ {1 · · ·M}, we simply
average the weights of all the project-up or project down matrices in every Transformer layer to
collapse to a single adapter component {W ′up

i ,W ′down
i }, where:

W ′up
i ←

1

M

M∑
j=1

Wup
ij W ′down

i ← 1

M

M∑
j=1

Wdown
ij (6)

Adapter sharing. While stochastic routing to multi-view adapters increases the model capacity, it
can also impact downstream tasks with less amounts of labeled data for fine-tuning the large number
of parameters. To address this challenge, we use another mechanism to share some of the projection
matrices for the project-down or the project-up operation to reduce the number of trainable parameters
during training. In the standard setting in our experiments, we share only the feedforward projection
matrices i.e.,Wup

ij =Wup
i . We investigate these different design choices via ablation studies in our

experiments.

3.1 CONNECTION TO BAYESIAN NEURAL NETWORKS AND MODEL ENSEMBLING

Bayesian Neural Networks (BNN) (Gal & Ghahramani, 2015) replaces a deterministic model’s
weight parameters by a distribution over the parameters. For inference, BNN averages over all the
possible weights, also referred to as marginalization. Consider fW(x) ∈ Rd to be the d−dimensional
output of such a neural network where the model likelihood is given by p(y|fW(x)). In our setting,
W = ⟨Wup,Wdown⟩ with frozen language model encoder. For classification, we can further apply a
softmax likelihood to the output to obtain: P (y = c|x,W ) = softmax(fW(x)). Given an instance x,
the probability distribution over the classes is given by marginalization over the posterior distribution
as: p(y = c|x) =

∫
W p(y = c|fW(x))p(W|X,Y )dW .

This requires averaging over all possible model weights, which is intractable in practice. Therefore,
several approximation methods have been developed based on variational inference methods and
stochastic regularization techniques using dropouts. In this work, we leverage another stochastic
regularization in the form of random routing. Here, the objective is to find a surrogate distribution
qθ(w) in a tractable family of distributions that can replace the true model posterior that is hard to
compute. The ideal surrogate is identified by minimizing the Kullback-Leibler (KL) divergence
between the candidate and the true posterior.

Consider qθ(W) to be the stochastic routing policy which allows us to sample T masked model
weights {W̃t}Tt=1 ∼ qθ(W). For classification tasks, the approximate posterior can be now obtained
by Monte-Carlo integration as:

p(y = c|x) ≈ p(y = c|fW(x))qθ(W)dW

≈ 1

T

T∑
t=1

p(y = c|fW̃t(x)) =
1

T

T∑
t=1

softmax(fW̃t(x))
(7)

However, computing the approximate posterior above in our setting requires storing all the stochastic
model weightsWt(x) which increases the serving cost during inference. To reduce this cost, we
resort to the other technique for weight averaging via adapter merging during inference.

Consider LAMW = Ex,yL(softmax(fW̃(x), y) denote the expected loss with merging of the stochas-
tic adapter weights with W̃ = 1

T

∑
t W̃t (from Equation 6) and L denoting the cross-entropy loss.

Consider LEnsW = Ex,yL( 1
T

∑T
t=1 softmax(f

W̃t(x)), y) denote the expected loss from logit-level
stochastic model ensembling (from Equation 7).

Prior work (Wortsman et al., 2022) show that averaging the weights of multiple models fine-tuned
with different hyper-parameter configurations improves model performance. They analytically show
the similarity in loss between weight-averaging (LAMW in our setting) and logit-ensembling (LEnsW
in our setting) as a function of the flatness of the loss and confidence of the predictions. While the
above analysis is geared towards averaging of multiple independently fine-tuned model weights, we
can apply a similar analysis in our setting with multiple stochastic adapter weights obtained from the
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random routing policy to demonstrate the benefit of adapter merging in obtaining a favorable loss
LAMW as well as reducing the serving cost during inference. The latter is made possible since we need
to retain only one copy of the merged adapter weights as opposed to logit-ensembling which requires
copies of all the adapter weights.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We perform large-scale experiments with eight natural language understanding tasks in the
General Language Understanding Evaluation (GLUE) benchmark Wang et al. (2019). We exclude the
WNLI dataset2 following prior studies Devlin et al. (2019); Houlsby et al. (2019). The eight tasks can
be categorized into four types of natural language tasks, including linguistic acceptability (CoLA),
sentiment analysis (SST-2), similarity and paraphrase tasks (MRPC, STS-B, QQP), natural language
inference (MNLI, QNLI) and textual entailment task (RTE).

Baselines. We compare AdaMix with full model fine-tuning and several state-of-the-art parameter-
efficient fine-tuning (PEFT) methods, namely, Pfeiffer Adapter Pfeiffer et al. (2021), Houlsby
Adapter Houlsby et al. (2019), LoRA Hu et al. (2021), BitFit Zaken et al. (2021), Prefix-tuning Li &
Liang (2021) and UNIPELT Mao et al. (2021) with BERT-base Devlin et al. (2019) and RoBERTa-
large Liu et al. (2019) as encoders in Table 1 and Table 2.

Implementation Details. We implement our framework in Pytorch and use Tesla V100 gpus for
experiments. AdaMix uses adapter dimension size of 16 and 48 using BERT-base and RoBERTa-
large encoders respectively, following the setup of existing works Hu et al. (2021); Mao et al. (2021)
for a fair comparison. The number of adapters in AdaMix is set to 4 for all the tasks and encoders
unless otherwise specified. The impacts of adapter dimension size and adapter number are investigated
in Table 6 and 7. More hyper-parameter configurations are presented in Appendix.

4.2 GLUE MAIN RESULTS

Model #Param. MNLI QNLI SST2 QQP MRPC CoLA RTE STS-B Avg.
Acc Acc Acc Acc /F1 Acc/F1 Mcc Acc Pearson

Fine-tuning† 355.0M 90.2 94.7 96.4 92.2/- 90.9/- 68.0 86.6 92.4 88.9

Pfeiffer Adapter† 3.0M 90.2 94.8 96.1 91.9/- 90.2/- 68.3 83.8 92.1 88.4

Pfeiffer Adapter† 0.8M 90.5 94.8 96.6 91.7/- 89.7/- 67.8 80.1 91.9 87.9

Houlsby Adapter† 6.0M 89.9 94.7 96.2 92.1/- 88.7/- 66.5 83.4 91.0 87.8

Houlsby Adapter† 0.8M 90.3 94.7 96.3 91.5/- 87.7/- 66.3 72.9 91.5 86.4

LoRA† 0.8M 90.6 94.8 96.2 91.6/- 90.2/- 68.2 85.2 92.3 88.6
AdaMix 0.8M 90.9 95.4 97.1 92.3/ 91.9/ 70.2 89.2 92.4 89.9

89.8 94.1

Table 1: Main results on GLUE development set with RoBERTa-large encoder. The best result on
each task is in bold and “-” denotes missing measure. AdaMix outperforms all competing methods
as well as fully fine-tuned large model with only 0.23% tunable parameters.† denotes that the reported
results are taken from Hu et al. (2021). Mcc refers to Matthews correlation coefficient, and Pearson
refers to Pearson correlation.The average performance is calculated based on accuracy of QQP and
MRPC for an easy comparison. #Param. refers to the number of tunable parameters used during
inference.

Tables 1 and 2 show the performance comparison among PEFT models with RoBERTa-large and
BERT-base as the encoder respectively. Fully fine-tuned RoBERTa-large and BERT-base are used to
provide the ceiling performance. We observe AdaMix to significantly outperform other state-of-the-
art baselines on most of tasks with different encoders. Specifically, AdaMix with RoBERTa-large

2See (12) in https://gluebenchmark.com/faq.
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Model #Param. MNLI QNLI SST2 QQP MRPC CoLA RTE STS-B Avg.
Acc Acc Acc Acc /F1 Acc/F1 Mcc Acc Pearson

Fine-tuning† 110M 83.2 90.0 91.6 -/87.4 -/90.9 62.1 66.4 89.8 82.7

Houlsby Adapter† 0.9M 83.1 90.6 91.9 -/86.8 -/89.9 61.5 71.8 88.6 83.0
BitFit⋄ 0.1M 81.4 90.2 92.1 -/84.0 -/90.4 58.8 72.3 89.2 82.3

Prefix-tuning† 0.2M 81.2 90.4 90.9 -/83.3 -/91.3 55.4 76.9 87.2 82.1

LoRA† 0.3M 82.5 89.9 91.5 -/86.0 -/90.0 60.5 71.5 85.7 82.2

UNIPELT (AP)† 1.1M 83.4 90.8 91.9 -/86.7 -/90.3 61.2 71.8 88.9 83.1

UNIPELT (APL)† 1.4M 83.9 90.5 91.5 85.5 -/90.2 58.6 73.7 88.9 83.5
AdaMix 0.9M 84.7 91.5 92.4 90.7/ 89.5/ 62.9 74.7 89.9 84.5

0.9M 87.6 92.4

Table 2: Main results on GLUE development set with BERT-base encoder. The best result on each
task is in bold and “-” denotes the missing measure. † and ⋄ denote that the reported results are taken
from Mao et al. (2021); Zaken et al. (2021). The average performance is calculated based on F1 of
QQP and MRPC. #Param. refers to the number of updated parameters in the inference stage.

encoder achieves the best performance in terms of different task metrics in the GLUE benchmark.
AdaMix is the only PEFT method which outperforms full model fine-tuning on all the tasks and
on average score. Additionally, the improvement brought by AdaMix is more significant with
BERT-base as the encoder, demonstrating 2.2% and 1.2% improvement over the performance of full
model fine-tuning and the best performing baseline UNIPELT with BERT-base. The improvement is
observed to be consistent as that with RoBERTa-large on every task. Moreover, AdaMix outperforms
all the baselines on all other tasks except RTE.

4.3 ABLATION STUDY

Analysis of averaging adapter weights. In this ablation study, we keep separate copies of adapters
to investigate the impact of weight averaging by introducing two different routing strategies for
comparison. The first routing strategy is the same as the routing strategy adopted in the training stage
i.e. random routing to adapter components. We denote this variation as AdaMix-RandomRouting.
The second routing strategy adopts a fixed routing strategy, where we route all the input to the
first adapter component in our AdaMix. The second baseline is denoted as AdaMix-FixedRouting.
Table 3 shows that AdaMix outperforms AdaMix-RandomRouting and AdaMix-FixedRouting
on all the tasks, demonstrating the superiority of averaging adapter weights. Moreover, AdaMix-
RandomRouting and AdaMix-FixedRouting demonstrate improvement over the full model tuning,
depicting the effectiveness of AdaMix design.

(a) BERT-base (b) RoBERTa-large

Figure 5: Violin plot of AdaMix-RandomRouting performance distribution with BERT-base and
RoBERTa-large encoders. Red dot denotes the performance of AdaMix.
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Model #Param. MNLI QNLI SST2 QQP MRPC CoLA RTE STS-B Avg.
Acc Acc Acc Acc /F1 Acc/F1 Mcc Acc Pearson

BERTBASE

Fine-tuning 110M 83.2 90.0 91.6 -/87.4 -/90.9 62.1 66.4 89.8 82.7
AdaMix 0.9M 84.7 91.5 92.4 90.7/ 89.5/ 62.9 74.7 89.9 84.5

87.6 92.4
AdaMix-RandomRouting 0.9∼3.6M 84.3 91.1 91.8 90.6/ 85.6/ 60.5 72.1 89.8 83.3

87.4 89.1
AdaMix-FixedRouting 0.9M 84.5 91.1 91.6 90.5/ 87.5/ 61.4 73.3 89.8 83.7

87.3 90.8
AdaMix-Ensemble 0.9∼3.6M 84.3 91.2 91.6 90.5/ 85.9/ 59.4 72.1 89.8 83.2

87.4 89.4
RoBERTaLARGE

Fine-tuning 355.0M 90.2 94.7 96.4 92.2/- 90.9/- 68.0 86.6 92.4 88.9
AdaMix 0.8M 90.9 95.4 97.1 92.3/ 91.9/ 70.2 89.2 92.4 89.9

89.8 94.1
AdaMix-RandomRouting 0.8∼3.2M 90.8 95.2 96.8 92.2/ 90.8/ 68.8 88.5 92.2 89.4

89.6 93.3
AdaMix-FixedRouting 0.8M 90.7 95.1 96.8 92.1/ 91.2/ 68.6 89.2 92.2 89.5

89.5 93.6
AdaMix-Ensemble 0.8∼3.2M 90.9 95.3 97.0 92.2/ 91.0/ 69.3 89.1 92.4 89.7

89.7 93.5

Table 3: Comparing the impact of different routing and ensembling strategies with AdaMix. Results
are presented on GLUE development set with BERT-base and RoBERTa-large encoders. Average
results are calculated following Table 1 and Table 2 for consistency. The best result on each task is in
bold and “-” denotes the missing measure.

Averaging weights v.s. ensembling outputs. We further compare AdaMix with a model variant
of logit ensembling method, denoted as AdaMix-Ensemble. To this end, we make four random
routing passes through the network for every input (T=4) and average the logits from different passes
as the final predicted logit. The inference time for this ensembling method is 4x AdaMix. We
run repeated experiments with three different seeds and report the mean performance in Table 3.
This experiment has two interesting take-aways: (1) AdaMix outperforms logit-ensembling method
with less inference time with different encoders. (2) While logit-ensembling with a large encoder
like RoBERTa-large shows some improvement in general, the one with BERT-base encoder shows
significant regression.

Table 4 demonstrates the impact of other design choices of AdaMix.

Analysis of consistency loss. In AdaMix, we train the model with consistency regularization to
enable adapter components to share information. To validate the contribution of the consistency
loss term, we develop a model variation by dropping the consistency regularization during training.
Table 4 shows significant performance drop on four out of five tasks after removing this regularizer.

Model/# Train MNLI QNLI SST2 MRPC RTE
393k 108k 67k 3.7k 2.5k

Fine-tuning 90.2 94.7 96.4 90.9 86.6

AdaMix 90.9 95.4 97.1 91.9 89.2
AdaMix-NoConsistencyLoss 90.7 95.0 97.1 91.4 84.8

AdaMix-NoSharing 90.9 95.0 96.4 90.4 84.1

Table 4: Ablation study demonstrating the impact of various design choices in our Mixture-of-Adapter
(AdaMix) framework.
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(a) MNLI (b) QNLI (c) SST2

Figure 6: Convergence analysis demonstrating the impact of adapter sharing design in our Mixture-
of-Adapter (AdaMix).

Model MNLI SST2
Acc Acc

Sharing Project-up 90.9 97.1

Sharing Project-down 90.8 97.1

Table 5: Ablation study demonstrating
the impact of parameter sharing in our
Mixture-of-Adapter (AdaMix) frame-
work.

Analysis of adapter weight sharing. Adapter weight
sharing is adopted in AdaMix to facilitate the training con-
vergence and prevent divergence. To investigate the role
of adapter weight sharing, we remove the weight sharing
mechanism and keep four different copies of projection-
down layers and four projection-up layers. Table 4 demon-
strates the contribution of adapter weight sharing in the
training procedure. As the size of the dataset decreases
(from 393k in MNLI to 2.5k in RTE), the performance gap
between AdaMix and AdaMix-NoSharing is observed to
be larger. Particularly, the accuracy drop is 9.4% in RTE after removing adapter weight sharing.

The role of adapter weight sharing in facilitating convergence can be further demonstrated in Fig-
ure 6 which shows the training loss trend on MNLI, QNLI and SST2. With the same number of
training steps, AdaMix consistently shows a lower training loss compared to AdaMix-NoSharing,
demonstrating a faster convergence behavior of AdaMix. We explore another interesting choice
about adapter weight sharing strategy in the project-up layer versus the project-down layer. Empirical
studies in Table 5 demonstrate similar effects with both of these choices.

Impact of the number of adapters. In this ablation study, we vary the number of adapters in
AdaMix with 2, 4 and 8 during the training procedure to investigate their impact. Table 6 shows
that increasing the number of adapters do not result in consistent performance gain. AdaMix with 4
adapters deliver the better performance when compared to that of AdaMix with 2 and 8. We also
observe the performance variation to be related to the dataset size. As we increase sparsity and the
number of parameters via increasing the number of adapters, some tasks like RTE and SST2 with
less amount of labeled fine-tuning data are impacted in contrast to tasks with large amount of labeled
data like MNLI.

# Adaptes/# Train MNLI QNLI SST2 MRPC RTE
393k 108k 67k 3.7k 2.5k

2 90.9 95.2 96.8 90.9 87.4

4* 90.9 95.4 97.1 91.9 89.2
8 90.9 95.3 96.9 91.4 87.4

Table 6: Varying the number of #Adapter components in AdaMix with RoBERTa-large encoder. *

denotes the # Adapter used in AdaMix.

Impact of adapter bottleneck dimension size. To further study the effect of bottleneck dimension,
we conduct experiments by varying the dimension size of adapters from 8 to 64 in AdaMix with
BERT-base encoder, and to 32 with RoBERTa-large encoder. Table 7 shows that the model perfor-
mance improves as we increase the number of trainable parameters by increasing the bottleneck
dimension with diminishing returns after a certain point.
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Adapter Dim MNLI QNLI SST2 MRPC RTE
393k 108k 67k 3.7k 2.5k

BERTBASE
8 82.2 91.1 92.2 87.3 72.6

16 83.0 91.5 92.2 88.2 72.9

32 83.6 91.3 92.2 88.5 73.6

48* 84.7 91.5 92.4 89.5 74.7

64 84.4 91.8 92.3 88.2 75.1
RoBERTaLARGE

8 90.7 95.2 96.8 91.2 87.7

16* 90.9 95.4 97.1 91.9 89.2
32 91.0 95.4 96.8 90.7 89.2

Table 7: Varying the bottleneck dimension of adapters in AdaMix with RoBERTa-large encoder. *

denotes the bottleneck dimension used in AdaMix.

4.4 FEW-SHOT PERFORMANCE

Data. In contrast to the fully supervised setting in the above experiments, we also perform few-shot
experiments following the prior study Wang et al. (2021) on six tasks including MNLI Williams
et al. (2018), RTE (Dagan et al., 2005; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), QQP3 and SST-2 (Socher et al.). The results are reported on their development set
following (Zhang et al., 2021). MPQA (Wiebe et al., 2005) and Subj (Pang & Lee, 2004) are used
for polarity and subjectivity detection, where we follow Gao et al. (2021) to keep 2, 000 examples
for testing. The few-shot model only has access to |K| labeled samples for any task. Following
true few-shot learning setting (Perez et al., 2021; Wang et al., 2021), we do not use any additional
validation set for any hyper-parameter tuning or early stopping. The performance of each model is
reported after fixed number of training epochs. For a fair comparison, we use the same set of few-shot
labeled instances for training as in Wang et al. (2021). We train each model with 5 different seeds
and report average performance with standard deviation across the runs. In the few-shot experiments,
we follow Wang et al. (2021) to train AdaMix via the prompt-based fine-tuning strategy. In contrast
to Wang et al. (2021), we do not use any unlabeled data.

Model MNLI RTE QQP SST2 Subj MPQA Avg.

Full Prompt Fine-tuning* 62.8 (2.6) 66.1 (2.2) 71.1 (1.5) 91.5 (1.0) 91.0 (0.5) 82.7 (3.8) 77.5

Head-only* 54.1 (1.1) 58.8 (2.6) 56.7 (4.5) 85.6 (1.0) 82.1 (2.5) 64.1 (2.1) 66.9

BitFit* 54.4 (1.3) 59.8 (3.5) 58.6 (4.4) 87.3 (1.1) 83.9 (2.3) 65.8 (1.8) 68.3

Prompt-tuning* 47.3 (0.2) 53.0 (0.6) 39.9 (0.7) 75.7 (1.7) 51.5 (1.4) 70.9 (2.4) 56.4

Houlsby Adapter* 35.7 (1.1) 51.0 (3.0) 62.8 (3.0) 57.0 (6.2) 83.2 (5.4) 57.2 (3.5) 57.8

LiST Adapter* 62.4 (1.7) 66.6 (3.9) 71.2 (2.6) 91.7 (1.0) 90.9 (1.3) 82.6 (2.0) 77.6

AdaMix 65.6 (2.6) 69.6 (3.4) 72.6 (1.2) 91.8 (1.1) 91.5 (2.0) 84.7 (1.6) 79.3

Table 8: Average performance and standard deviation of several parameter-efficient fine-tuning
strategies based on RoBERTa-large with |K| = 30 training labels. The best performance is shown in
bold. Prompt-tuning, Head-only and BitFit tune 1M model parameters during inference. Houlsby
Adapter, LiST Adapter and AdaMix tune 14M model parameters. * denotes that the results are taken
from Wang et al. (2021).

3https://www.quora.com/q/quoradata/
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Table 8 shows the performance comparison among different PEFT models with |K| = 30 labeled
examples while fixing RoBERTa-large as the encoder. We observe that most of the PEFT methods
are not able to match the performance of full model prompt-based fine-tuning (i.e. with all the model
parameters being updated) besides LiST Adapter. LiST combines prompt-based fine-tuning and
Houlsby adapter design and performs at par with full model prompt fine-tuning with updating only
4% model parameters. AdaMix outperforms all the other PEFT methods and full model prompt
fine-tuning with only 4% model parameters being updated. Specifically, AdaMix improves over the
best performing baseline LiST by 2% in aggregate performance across six tasks.

5 RELATED WORK

Parameter-efficient fine-tuning of PLMs. Standard fine-tuning methods tune all trainable model
parameters for every task. Recent efforts have focused on parameter-efficient fine-tuning (PEFT)
of large PLMs by updating a small set of parameters while keeping most of parameters in PLMs
frozen. Existing studies can be roughly categorized into two folds: (1) tuning a subset of existing
parameters including head fine-tuning Lee et al. (2019), bias term tuning Zaken et al. (2021), (2)
tuning newly-introduced parameters including adapters Houlsby et al. (2019); Pfeiffer et al. (2020),
prompt-tuning Lester et al. (2021), prefix-tuning Li & Liang (2021) and low-rand adaptation Hu
et al. (2021). The design of AdaMix update several copies of newly-introduced parameters during
fine-tuning stage and then aggregates different copies of updated parameters into on component for
inference. Despite the similar goal of parameter-efficient fine-tuning, AdaMix is a parallel direction
to existing PEFT methods and has potentials to improve all the other PEFT approaches. We mainly
develop our method based on adapter, which is one of the most representative PEFT methods, and
leave other combinations to future work.

Mixture-of-Expert. Mixture-of-Experts models have recently achieved promising results by in-
troducing an outrageously large number of parameters while keeping a fixed computation cost via
gating mechanism. Shazeer et al., 2017 first proposed the MoE layer with a single gating network
with Top-k routing and load balancing across experts. Fedus et al., 2021 propose initialization and
training schemes for Top-1 routing. Zuo et al., 2021 propose a consistency regularizer loss for random
routing; Yang et al., 2021 propose k Top-1 routing with expert-prototypes, and Roller et al., 2021;
Lewis et al., 2021 address other load balancing issues. All the above works study sparse MoE with
pre-training the entire model from scratch. In contrast, we study parameter-efficient adaptation of
pre-trained language models by tuning only a very small number of sparse adapter parameters.

Averaging model weights. Recent explorations Szegedy et al. (2016); Matena & Raffel (2021);
Wortsman et al. (2022); Izmailov et al. (2018) study model aggregation by averaging the weights.
Matena and Raffel Matena & Raffel (2021) propose to merge pre-trained language models which
are fine-tuned on various text classification tasks. Wortsman et al. (2022) explores averaging model
weights from various independent runs on the same task with different hyper-parameter configura-
tions. Different from existing works, we focus on averaging weights of newly-added parameters
for parameter-efficient fine-tuning purpose. We introduce a consistency loss to connect different
copies of parameters during the training to prevent divergence and observe additional performance
improvement.

6 CONCLUSIONS

We develop a new method AdaMix for parameter-efficient fine-tuning of large pre-trained language
models for NLP tasks. AdaMix develops a new mechanism to improve adapter capacity by injecting
multiple copies of adapters into language models that are trained via stochastic routing policy to
keep the same computational cost (FLOPs). During inference, the weights of different adapters
are aggregated via averaging to consistently improve the task performance while keeping the same
number of model parameters and the same serving cost as that of a single adapter. We validate the
effectiveness of AdaMix via a comprehensive empirical study on the GLUE benchmark in both
high-resource setting as well as few-shot learning setting on multiple tasks. With tuning only 0.23%
parameters of large pre-trained language model, AdaMix consistently improves over full model
fine-tuning that updates all the model parameters as well as other state-of-the-art parameter-efficient
tuning methods.
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Task Learning rate epoch batch size warmup weight decay adapter size adapter num
BERTBASE

MRPC 4e−4 100 16 0.06 0.1 48 4
CoLA 5e−4 100 16 0.06 0.1 48 4
SST 4e-4 40 64 0.06 0.1 48 4
STS-B 5e-4 80 32 0.06 0.1 48 4
QNLI 4e-4 20 64 0.06 0.1 48 4
MNLI 4e-4 40 64 0.06 0.1 48 4
QQP 5e-4 60 64 0.06 0.1 48 4
RTE 5e-4 80 64 0.06 0.1 48 4

RoBERTaLARGE
MRPC 3e-4 60 64 0.6 0.1 16 4
CoLA 3e-4 80 64 0.6 0.1 16 4
SST 3e-4 20 64 0.6 0.1 16 4
STS-B 3e-4 80 64 0.6 0.1 16 4
QNLI 3e-4 20 64 0.6 0.1 16 4
MNLI 3e-4 20 64 0.6 0.1 16 4
QQP 5e-4 80 64 0.6 0.1 16 4
RTE 5e-4 60 64 0.6 0.1 16 4

Table 9: Hyperparameter Setup for GLUE tasks.
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