Query Optimizer as a Service: An Ildea Whose Time
Has Come!

Alekh Jindal*
alekh@keebo.ai

ABSTRACT

Query optimization is a critical technology that is com-
mon across all modern data processing systems. How-
ever, it is traditionally implemented in silos and is deeply
embedded in different systems. Furthermore, over the
years, query optimizers have become less understood

and rarely touched pieces of code that are brittle to changes

and very expensive to maintain, thus slowing down the
pace of innovation. In this paper, we argue that it is time
to think of query optimizer as a service in modern cloud
architectures. Such a design can help build a common
set of well-maintained optimizations that are external-
ized from the query engines and that could be learned
and improved using the large workloads present in mod-
ern clouds. We present, Oasis, a reference architecture
for query optimizer as a service and describe our success
in deploying the early version of it in Cosmos. Finally,
we discuss the risks and responsibilities involved with
Oasis to ensure it is a win-win for everyone.

1. INTRODUCTION

Query optimization has been the bread and butter of
data processing engines for improving performance and
reducing the cost of declarative user queries. It is now
also becoming critical piece in modern clouds where
data systems are pervasive, user expertise is minimal,
and lowering operational costs is paramount. Conse-
quently, we are seeing a lot of effort and investment
in building advanced query optimization capabilities in
cloud-native data systems, such as Spark [27], Green-
plum [10], Snowflake [25], F1 [23], Azure SQL [2],
SCOPE [7], Spanner [26], Big Query [4], RedShift [20],
Athena [1], CockroachDB [9], among others.

Unfortunately, the current approach to building query
optimization capabilities results in re-implementing sim-
ilar techniques in different systems over and over again.
For example, many systems, including Spark, Calcite,
Greenplum, Snowflake, F1, SQL Server, and SCOPE,
have implemented Cascades-style query optimization.

“Work done while the author was at Microsoft.

Jyoti Leeka

jyoti.leekal@microsoft.com

As a result, there is a lot of repeated effort to get query
optimization right in each of these systems. Instead, uni-
fying the query optimization capabilities into a common
platform will help serve these customers better by ad-
vancing the state-of-the-art across the board.

Apart from the redundant effort across systems, get-
ting query optimization right just for a given system is
hard by itself. This is evidenced by decades of research
on improving strategies for query plan search, models
for estimating query costs, and models for intermediate
cardinalities and other statistics. In fact, most produc-
tion systems have been hardened over the years based on
countless user scenarios, performance regressions, and
customer incidents seen by the product teams over time.
This has also resulted in query optimizers turning into
massive black boxes that are not just hard to understand
or tune but also something that the product teams are
highly skeptical to touch or change significantly.

The heart of the problem in current query optimizers
is the deep coupling of the optimizer within the query
engine, a design decision that is now a big problem for
development costs and is hard to advance the query opti-
mizer to fast changing needs of the newer query process-
ing engines. Therefore, it is time to decouple the query
optimizer from the query engine into a separate plat-
form. This will help consolidate the efforts and advance
the state-of-the-art rapidly. This is also akin to how dif-
ferent components in the Hadoop stack, including the
file system (HDFS [5]), resource manager (YARN [30]),
task scheduler (Tez [29]), etc., were carved out into in-
dependent layers for more agility and standardization. It
is time to do the same for the query optimizer.

In this paper, we rethink the traditional query opti-
mizer and present a service-oriented architecture for query
optimization in modern clouds. Our core philosophy is
not to build yet another query optimizer that replaces
the existing ones, something not practical for the large
number of systems deployed out there, but rather to ex-
ternalize the various query optimizer components to an
external service and look them up when optimizing each
new incoming query. A key enabler for such external-



ization is the plethora of recent machine learning based
techniques to improve various query optimizer compo-
nents, such as cardinality, cost model, and query plan-
ner. These learning-based approaches could train over
large cloud workloads and specialize for various databases
or workload instances. The learning algorithms and mod-
els can then accrue towards a common query optimiza-
tion platform that can be shared across and developed
much more rapidly. We have taken a series of incre-
mental steps in recent years towards realizing this ar-
chitecture at Microsoft, and this paper puts these efforts
together into a coherent vision.

In the rest of the paper, we first describe a rethinking
of query optimizers from traditional deeply embedded
one to an external and service-oriented one (Section 2).
We present, Oasis, a reference architecture for optimizer
as a service (Section 3), and discuss our production suc-
cesses in implementing Oasis by externalizing different
components of the SCOPE query optimizer (Section 4).
Finally, we touch upon several risks that an externalized
and ML-based optimizer service carries and our respon-
sibilities towards them (Section 5).

2. RETHINKING QUERY OPTIMIZER

In this section, we describe our rethinking of query
optimizers from traditional to a service-oriented one.

2.1 Traditional Query Optimizer

Traditionally, a query optimizer consists of three core
components, namely the cardinality estimator, the cost
model, and the query planner, that are embedded inside
a query engine. Figure 1(a) illustrates this simplified
architecture. We describe each of the three components
in more detail below.

The query planner explores the space of possible query
plans for the given user query. Various query plan search-
ing approaches have been proposed in the literature, in-
cluding bottom-up planner that starts from the input and
builds up to the final, top-down planner that starts from
the final required plan and implements it down to the
base inputs, and randomized planner that explores per-
mutations in the neighborhood to discover more opti-
mal plans. In particular, the Cascades optimizer, a top-
down query planner, has become widespread in indus-
try with several engines such as SCOPE, SQL Server,
Spark, Snowflake, Greenplum, F1, and others adopting
it. The goal of the query planner is to produce the cheap-
est query plan to execute based on the cost model.

The cost model estimates the cost of a candidate query
plan. It uses the cardinality or the intermediate size af-
ter each operator in the query plan as a core ingredi-
ent to estimate the CPU, IO, latency, and other costs
into a single numerical value for each candidate query
plan. Naturally, this numerical value does not corre-
spond to any standard metric such as seconds but rather

it gives a relative value to compare how good differ-
ent query plan candidates are. For multi-core and dis-
tributed query processors, parallelism is another key fac-
tor since the costs are going to be very different based
on the number of threads or the number of nodes that
can process data in parallel. This becomes tricky be-
cause the system may not want to use all available par-
allelism due to other concurrent queries [22] and also
because the performance may not consistently improve
at higher parallelism due to increased data movement
and 10 [19]. As a result, picking the right parallelism is
very challenging and yet very important for parallel and
distributed plans. In practice, cost models are highly
sensitive components of the query optimizer which are
typically tuned over some key customers or benchmarks
and rarely touched henceforth. Any changes in the cost
model could not only take years in development but are
also hard to deploy due to their large and unknown im-
pact on the query plans [24].

The cardinality estimator estimates the output number
of rows (or cardinality) from each operator in the query
plan. It is a key ingredient when estimating the cost of a
query subexpression and further combining those costs
recursively for the entire query. A cardinality estimator
relies on statistics such as histograms, sketches, min/-
max, distinct value counts, etc., on the base tables, op-
erator semantics to determine the output size given the
inputs, e.g., key foreign key join, cross join, etc., and
heuristics derived from customer experience for many
other unknowns, e.g., the selectivity of table and scalar
UDFs. Cardinality estimator also suffers from limited or
stale statistics due to their cost of collection, exponential
error propagation which grows worse with larger query
plans [17], and the black box nature of user defined op-
erators that are typically present in production work-
loads. Consequently, cardinality estimation is highly
challenging and is routinely found to be off by orders
of magnitude in production systems [32].

Some open-source projects have attempted to abstract
out the query optimizer into more modular code struc-
ture that could be applied to different query processing
engines. Most notably, the Apache Calcite [6] project
provides a generic and extensible planner framework,
with adapters built for many different query engines.
Unfortunately, getting the cardinality estimator and the
cost model right are the bare essentials of the query op-
timizer, and these two highly depend on the execution
environment and the workload instances at hand. There-
fore, Calcite requires users to plug-in these things from
their environments which is non-trivial.

In summary, traditional query optimizers have been
built over the years with significant effort and using do-
main knowledge that were relevant at some point in time.
However, they have now turned into system components



relationship assumptions that are
derived from statistics/best practices

Cardinality
Estimator

Estimate intermediate sizes using a
variety of tuple selectivity and column

of possible
plans and
Cost Query Ic)ﬁcel::];gg
Model Planner one based
on the cost

model

Defines a notion of cost for running a query
considering factors critical for system/user;
typically, tuned over some key workloads

Shared set of models for different

query optimizer components providing

predictions for query patterns.

REST end point to ”lookup” OASIS
models for query optimization. Also,
access control to customers/workloads.

\ Learned Cardinality \

‘ Learned Cost Model ‘

‘Learned Query Planner ‘

‘in process scoring Hin process scoring ‘

& patterns - -

i Cardinality

g Estimator

I Skeleton

i Cost Query
§| OASIS Model lanner
£ | models Skeleton Leleton
a

C

&

Trained over large cloud workloads; easier to
improve, re-train, maintain, and even specialize
for different workloads and/or customers

Overriding query optimization components|
with predictions (scored in-process) from
OASIS models wherever available.

(a) Traditional Query Optimizer

(b) Service-oriented Query Optimizer
Figure 1: Contrasting traditional and service-oriented query optimizer architectures.

that are too sensitive to touch and too brittle to change.

2.2 Service-oriented Query Optimizer

Given the limitations of traditional query optimizers,
let us now consider an alternative service-oriented ap-
proach to query optimization. Figure 1(b) illustrates this
new architecture. The first thing to notice is the external-
ization of the three main components of the query opti-
mizer, namely the cardinality estimator, the cost model,
and the query planner, from the deeply embedded query
optimizer to an external service. Second, the external-
ized components are hosted as learned ML-models trained
over the past query workloads seen by a given set of
customers in a given environment. For each incoming
query, relevant models are loaded to the query engine,
based on the patterns in the query, over a REST end-
point. The query engine still contains its default query
optimizer; however, its components are overridden by
learned models loaded from the external service.

The above service-oriented design for query optimizer
a.k.a. QO, has several advantages:

e We do not introduce yet another QO but rather a practi-
cal approach for better query optimizer development.

e The service-oriented approach is decoupled yet com-
pletely integrated end-to-end, unlike Calcite that re-
quires to plug-in cardinality estimator and cost model.

e [t opens up the black box to see how good different
components are, and which ones really matter.

e [t constantly improves the different components of
query optimizer via better machine learning techniques.

e The system gets better with more usage on the cloud
since more diverse training data becomes available.

e Externalization allows exploring better optimization
possibilities without worrying about overloading QO.

e There is a natural instance optimization for specific
workloads and patterns, something which is desirable.

e The decoupled approach allows scaling query engine
and externalized optimization decisions separately.

e The hosted models and techniques are shareable across
different databases or even engines since models learn
the characteristics of the underlying data anyways.

e We essentially build a single knowledge base that could
be easily instantiated for different settings.

e We can deploy several versions of the optimizer at the
same time; users can choose which version they want.

e It is easier to debug and investigate the issue with re-
spect to each of the components.

e [t is easier to roll back for a specific customer.
e We can easily fall back to default behavior if required.

e System developers can focus more on training the core
query optimizer components independently, thus ac-
celerating the software engineering life cycle.

o Finally, the service-oriented design makes the query
optimizer future proof for the scale, variety, and com-
plexity of the cloud workloads; future workloads sim-
ply means training newer and better ML models, e.g.,
better featurization, better model selection, or param-
eter tuning over the new workload.

In summary, the service-oriented approach opens a
new way to think about query optimization, bringing
in several notable advantages of doing so. It is also
the most natural design in modern clouds where com-
plex systems are typically broken down into smaller and
simpler services that could be managed independently.
With this, in the following section, we present a ref-
erence architecture for turning a traditional query op-
timizer into a service-oriented one.

3. Oasis

We now present the Oasis reference architecture. This
is derived from our prior work on building workload op-
timizations for cloud query engines [12, 21], however,
we tailor the discussion for building Oasis below. Our
goal is not to replace the traditional query optimizer with
a new one, since that is not possible in production set-
ting, but rather to transform it into a service-oriented
one. Below we present a seven-step recipe for turning a
given query optimizer into Oasis.



3.1 Signatures

The first step to creating an Oasis is to implement
signatures, or hashes, for every query subexpression (or
query sub-tree).A signature essentially captures a query
sub-pattern whose behavior could be learned across the
entire workload. Therefore, it could also be seen as an
extremely lightweight featurization, which is very use-
ful given the sub-second end-to-end time spent in many
typical query optimizers. One could also create multiple
signatures for different granularity of the sub-patterns.
Finally, as we will see in this section below, signatures
facilitate training smaller micromodels and trivially dis-
tributing the training pipeline over large clusters.

3.2 Observability

The query engine needs to emit the signatures along
with its corresponding runtime metrics telemetry. This
observability helps understanding the query performance
in a given runtime environment, i.e., it can help build
better cardinality and cost models for these workloads.
Some of the key things to consider include keeping the
overheads of observability minimal on the query perfor-
mance and making sure the telemetry store can handle
the volume of incoming data, e.g., by making telemetry
collection asynchronous and scaling the back-end store
to support fast ingestion. Furthermore, we need to pre-
serve the customer privacy by anonymizing any business
sensitive or personally identifiable information.

3.3 Training Input

Once the telemetry is collected, we need the train-
ing input for different optimizer components. This is a
cumbersome process that involves extracting the teleme-
try into a tabular structure, imputing missing data val-
ues, denormalizing the data into a flat table that is more
amenable to training, and applying data cleaning tech-
niques to it. Given the complexity, we want to do this
step once and share the resulting training data for build-
ing all models. This is also the step where we can bring
in data from other sources, e.g., resource manager or the
machine counters, and combine them with the query op-
timizer telemetry to produce a rich training input.

It is noteworthy that, as workloads and underlying
data in shared cloud infrastructures change we repeat
this step periodically. We do it once for each instance,
depending on the rate of change of data and workload.

3.4 Micromodels

The crux of Oasis is micromodels [13], or per-signature
models which are lightweight (typically linear models),
way smaller in size, and much more specialized than
large general-purpose models. As aresult, they are faster
to train and easy to replace quickly. Micromodels trade
the generality of traditional query optimizers, wherein
they had to produce the exact same behavior for ev-

ery query and every customer, with specialized behav-
ior that is ultra-local to a given customer and a given
workload, i.e., each customer can essentially have their
own cardinality estimator, cost model, and query plan-
ner customized for their workloads. Furthermore, mi-
cromodels do not see a customer workload as monolithic
but rather splits it into fine-grained chunks that could be
learned independently and then combined later for the
overall query optimization.

3.5 Model Lookup

One of the key aspects of Oasis is how query opti-
mizer components are loaded into the query optimizer.
We can load models by customers, query templates, or
signatures. We can even choose to load the models se-
lectively for subset of customers (e.g., pilot customers
or those who have signed up), while still providing the
default behavior to others. Such access control makes
deployment and onboarding of Oasis far easier. This
change requires establishing a contract between query
engine and externalized service. Over and above that
model lookup is fast, for Cosmos users we found lookup
time to be 10-15 msec, we achieved this by caching.

3.6 In-process Scoring

Oasis scores models in-process within the query op-
timizer. This is to reduce the overhead of making thou-
sands of external invocations for model scoring. Instead,
Oasis loads the model into the optimizer and scores them
wherever needed. While this requires changes to the op-
timizer context, the models themselves have low foot-
print since they are way smaller in size, and the actual
scoring is fast since they are typically linear models.

3.7 Opverriding Default Behavior

Finally, Oasis needs to override the default optimizer
behavior. This could be done either by additional condi-
tion checks for the presence of available models or ex-
isting mechanisms for overriding the default behavior,
e.g., row counts hints could be used to substitute cardi-
nality from default estimator with those obtained from
the learned models. This is a one-time deep change in
the existing query optimizers that is useful to control the
behavior from the externalized service.

4. PRODUCTION SUCCESS

In this section, we describe our production success in
deploying the Oasis architecture for Cosmos big data
platform in Microsoft. Below we discuss how we went
about externalizing each of the three components in the
SCOPE query optimizer and the lessons learned so far.
Sharing the same infrastructure with other query engines
like Spark and SQL DW [28] is still an ongoing effort.

4.1 Externalized Cardinality
Cardinality estimation in SCOPE could be orders of



magnitude off — from up to tens of thousand times under-
estimation to up to a million times over-estimation [32].
This is due to user defined operations that end up as
black boxes for query optimizer. Fortunately, SCOPE
workloads have many subexpression patterns that could
be generalized across queries. As a result, we were able
to achieve up to six orders of magnitude more accu-
racy. Unfortunately, better cardinality does not neces-
sarily translate to better performance. Therefore, we had
to identify scenarios that lead to consistently better per-
formance with externalized cardinality models. Via ex-
tensive experimentation, we identified a range of heavy
over-estimation, which when fixed leads to lower pro-
cessing time. This was an important step in enabling
externalized cardinality in production, and it was made
possible due to externalization since the cardinality mod-
els could be independently trained, tested, validated, and
experimented over and over again. In a nutshell, exter-
nalization helped achieve quick deployment and com-
mon subexpression helped achieve accuracy.

Still, many gaps remain in current version of exter-
nalized cardinality. For instance, combining cardinality
from learned and default models could lead to expen-
sive plans. Our solution so far has been to leverage re-
training. Improving cardinality models remains ongoing
work and something that is facilitated by Oasis.

4.2 Externalized Cost Models

Cost models in the SCOPE query engine have remained
relatively static for several years. There was a signifi-
cant effort to replace the original cost model, however,
it never got enabled by default due to unknown impli-
cations. As such it remains optional for customers to
try out [24]. Our learning when trying to build learned
cost model was that one of the biggest influences of cost
estimates in SCOPE is on resource selection. Specif-
ically, we realized that the number of containers to be
used for each query is often mis-calculated, resulting in
either wasted resources or poor performance [22]. Fur-
thermore, query and resource optimization decisions are
often made independently, even though they affect each
other [31]. Therefore, we focused on extending the cost
models to also make resource decisions in the query
optimizer. Our deployed solution was to avoid over-
allocation by predicting peak resources for a query plan.
This resonated well with customers since they could get
more work done with the same amount of resources.

Several follow-ups are possible to our initial deploy-
ment of externalized cost models. Approaches we tried
include predictively giving up resources in later parts of
the query plan [3]. These approaches have gaps in terms
of production readiness, e.g., how do we avoid ending
up under-allocating. However, the externalized architec-
ture of Oasis provides a solid foundation for iteratively
improving these approaches.

4.3 Externalized Query Planning

The SCOPE query planner consists of 256 rules. Un-
fortunately, one third of the rules are not enabled in any
of the current workloads [18]. This is because even

though a significant effort is spent in writing new rules [16],

it is very hard to understand their implications on wider
workloads, leading them to remain optional and unused.
Our approach to externalizing the query planner was
to identify which set of rules make sense for a query,
thereby steering its search space towards efficient plans.
Additionally, it will be inefficient for optimizers to steer
the search space without externalization because work-
loads as well as data keeps evolving, which requires fre-
quent changes to the optimizer code, and the need to
wait for optimizer’s next release cycle to be deployed.

To keep things explainable, our current production
deployment only changes the space of rules by one at
a time, thereby incrementally steering queries to paths
that are also understandable to engineers and customers.

Other than steering the search space for a given query,
multi-query optimization is also an important part of the
query planner. CloudViews [8, 14] is our approach to
reuse common computations across queries, whereby
we externalize which computations could be reused and
load them via Oasis. CloudViews has been deployed in
production and given its automatic and self-discovering
nature, customers have found it very useful. Further-
more, the externalized aspect naturally allows for exper-
imenting with newer view selection algorithms that can
be readily plugged into [11].

Finally, physical layouts (partitioning, etc.) of tables
are important for avoiding expensive shuffles. This is
a multi-query optimization problem since choosing the
right layouts depend on all consumers of the dataset.
Given that datasets in Cosmos have producer-consumer
relationships, our approach is to analyze all consumers
of a given dataset to decide on the layout that the pro-
ducer should be creating. However, when deploying
in production we realized that making this automatic
can have unexpected implications on some consumers.
Therefore, our current version simply recommends lay-
outs for the owners of the producer jobs, and they can
choose to apply them. Again, providing these multi-
query optimization decisions from an external service
allows them to be refined and improved over time.

5. RISKS & RESPONSIBILITIES

Applying machine learning for building better sys-
tems has emerged as a hot trend in recent years. It is
motivated by the fact that modern cloud systems have
become too complex and unwieldy to manage or opti-
mize, coupled with rapid advances and the ease of use
of machine learning ecosystem. As a result, it is at-
tractive to leverage machine learning over large work-



loads in modern data systems to derive better perfor-
mance, lower costs, and add more automation for a pro-
ductive yet cost-effective experience for a large body of
data users out there who may not have the expertise to
achieve many of these things on their own.

Even though it makes sense to apply machine learn-
ing for building better query optimizers, it is well known
that machine learning also comes with its own set of
dangers. The question is whether by applying machine
learning for query optimization, we are importing those
dangers as well. Therefore, in this paper, we also make
one of the very first attempts to study the risks and re-
sponsibilities of applying ML to query optimizers. We
believe this will help us as a community of data system
builders to be more responsible. While in the ML com-
munity, ethical and responsible Al emerged as later top-
ics, we want to start this conversation early in the data
systems world to avoid the pitfalls and suggest best prac-
tices before they get baked too deeply in system stack.

Some of the critical questions that we raise include
what is the deeper impact of ML on query optimizers
and for ML-for-systems? Are we making systems strictly
better? Is new system behavior still aligned with the in-
tended one? Should users be aware of a new goal set-
ting? Should system developers be aware of changes
in how users are served? Our goal is to provide point-
ers and suggestions on making ML-for-systems more re-
sponsible, one that is more ethical, fairer, and considers
the overall good of the user community.

5.1 Are We Serving All Customers?

Rich Gets Richer. One of the biggest risks of using ML
for query optimizers is that customers with larger work-
loads benefit more, both in terms of performance and ef-
ficiency, since they can train better models to make the
optimization decisions. In contrast, the cloud provider
has a responsibility to serve all customers and so they
need to devise techniques to transfer the learnings across.

Marginalizing Small Players. Learning-based optimiza-
tions affect specific instances rather than improve the

overall system, small players risk getting seriously marginal-

ized with outdated system behavior with little incentive
for the provider to take them into account given their
smaller size. Therefore, the cloud providers still need to
find mechanisms to democratize Oasis for all players.

5.2 Are We enabling New Workloads?

Penalizing the Explorer. Customers who try new anal-
ysis risk creating diverse workloads that may not pro-
vide enough learnable patterns to Oasis, thus penalizing
the exploring and rewarding repetitive work with better
performance and lower costs. The question then is how
to incentivize explorers with good performance without
asking them to become more predictable.

Differentiating the Workload. Applying ML to query
optimizers is also often considered as instance optimiza-
tion [15], which by definition, seeks to optimize differ-
ent portions of the workload differently. The question
then is how do we divide the workload into different
portions and how to make this a fair division.

5.3 Are We Building Better Systems?

Opaque Systems. By externalizing and replacing parts
of the query optimizer with ML models, we risk sub-
stituting transparent, well understood components with
models that could be hard to explain or reason about,
i.e., are we leading to fundamentally better systems?

The Curse of Convenience. It is convenient to learn
what is already being observed, instead of emitting new
telemetry, and feedback using existing mechanisms, in-
stead of building new ones, thus, missing the big picture.
For instance, learning cardinality over the past work-
loads ends up biasing over known plans and potentially
not guiding the optimizer into unknown spaces.

5.4 Are We Helping System Developers?

MLOps without ML Background. Modern clouds have
a devops model, where developers are part of the oper-
ational process as well. Unfortunately, ML-for-Systems
now puts the developers on the MLOps path without
them having the necessary ML background.

Hammer for Every Nail. Developers can easily fall
into the trap of fixing everything in the system software
via ML, bypassing better coding and system building
practices in the first place. The challenge though is that
they now need to maintain both the default base system
and augmented part of it in Oasis.

5.5 Are We Generating Value?

Learning vs Improving. It is non-trivial to understand
the improvements due to a learned component before-
hand. In fact, big improvements in accuracy may not
translate to improvement in performance or other met-
rics. Therefore, much effort must be put in before the
real value is understood or derived.

Throwaway Work. Quickly retraining a large number
of ML models that can inform various aspects of the
query optimizer implies creating more work of lesser
value. The question is whether the resources could in-
stead be used for work whose value is longer lasting.

6. CONCLUSION

This paper opens up a fundamentally new debate in
query optimization — to build query optimizer as a ser-
vice. We explored this radically new design from several
practical aspects and presented a reference architecture,
Oasis, as the first step. We also shared lessons from
early deployments of Oasis in Cosmos and also intro-
spected risk and responsibilities associated with it.



REFERENCES

[1] AWS Athena. https://aws.amazon.com/athena/,
2021.

[2] Azure SQL. https://azure.microsoft.com/en-
us/products/azure-sql/.

[3] M. Bag et al. Towards plan-aware resource
allocation in serverless query processing. In
USENIX HotCloud, 2020.

[4] Google BigQuery.
https://cloud.google.com/bigquery.

[5] D. Borthakur et al. Hdfs architecture guide.
Hadoop apache project, 53(1-13), 2008.

[6] Apache Calcite. https://calcite.apache.org/, 2021.

[7] R. Chaiken et al. SCOPE: easy and efficient
parallel processing of massive data sets. PVLDB,
1(2), 2008.

[8] CloudViews Project.
https://www.microsoft.com/en-
us/research/project/cloudviews/, 2021.

[9] CockroachDB. https://www.cockroachlabs.com/,
2021.

[10] Greenplum. https://greenplum.org/, 2021.
[11] A. Jindal et al. Selecting subexpressions to

materialize at datacenter scale. PVLDB, 11, 2018.

[12] A. Jindal et al. Peregrine: Workload optimization
for cloud query engines. In SoCC, 2019.

[13] A. Jindal et al. Microlearner: A fine-grained
learning optimizer for big data workloads at
microsoft. In ICDE, 2021.

[14] A. Jindal et al. Production experiences from
computation reuse at microsoft. In EDBT, 2021.

[15] T. Kraska. Towards instance-optimized data
systems. PVLDB, 14(12), 2021.

[16] J. Leeka et al. Incorporating super-operators in
big-data query optimizers. PVLDB, 13(3), 2019.

[17] V. Leis et al. How good are query optimizers,
really? PVLDB, 9(3), 2015.

[18] P. Negi et al. Steering query optimizers: A
practical take on big data workloads. In SIGMOD,
2021.

[19] A.Pimpley et al. Optimal resource allocation for
serverless queries. 2021.

[20] Amazon Redshift.
https://aws.amazon.com/redshift/.

[21] A. Roy et al. Sparkcruise: Workload optimization
in managed spark clusters at microsoft. PVLDB,
14(12), 2021.

[22] R. Sen et al. Autotoken: Predicting peak
parallelism for big data analytics at microsoft.
PVLDB, 13(12), 2020.

[23] J. Shute et al. F1: A distributed sql database that
scales. In VLDB, 2013.

[24] T. Siddiqui et al. Cost models for big data query

processing: Learning, retrofitting, and our
findings. In SIGMOD, 2020.

[25] Snowflake. https://www.snowflake.com/, 2021.

[26] Google Cloud Spanner.
https://cloud.google.com/spanner, 2021.

[27] Apache Spark. http://spark.apache.org/, 2021.

[28] Dedicated SQL Pool.
https://docs.microsoft.com/en-us/azure/synapse-
analytics/sql-data-warehouse/sql-data-warehouse-
overview-what-is, 2021.

[29] Apache Tez. https://tez.apache.org/, 2021.

[30] V. K. Vavilapalli et al. Apache hadoop yarn: Yet
another resource negotiator. In SoCC, 2013.

[31] L. Viswanathan et al. Query and resource
optimization: Bridging the gap. In ICDE. IEEE,
2018.

[32] C. Wu et al. Towards a learning optimizer for
shared clouds. PVLDB, 12(3), 2018.



