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Abstract. Methane leak detection and remediation efforts are critical
for combating climate change due to methane’s role as a potent green-
house gas. In this work, we consider the problem of source attribution
and leak quantification: given a set of methane ground sensor readings,
our goal is to determine the sources of the leaks and quantify their size
in order to enable prompt remediation efforts and to assess the environ-
mental impact of such emissions. Previous works considering a Bayesian
inversion framework have focused on the over-determined (more sensors
than sources) regime and a linear dependence of methane concentration
on the leak rates. In this paper, we focus on the opposite, industry-
relevant regime of few sources per sensor (under-determined regime) and
consider a non-linear dependence on the leak rates. We find the model to
be robust in determining the location of the major emission sources, and
their leak rate quantification, especially when the signal strength from
the source at a sensor location is high.

Keywords: Bayesian framework · source attribution · inverse problem
· leak quantification.

1 Introduction

Methane (CH4), the primary component of natural gas, is a potent greenhouse
gas (GHG) with a Global Warming Potential (GWP) of 84–87 over a 20-year
timescale [6]. The Intergovernmental Panel on Climate Change (IPCC) affirms
that reduction of anthropogenic methane emissions is the most efficient way to
curb a global temperature rise of 1.5◦C above pre-industrial levels by 2030 [17].

The global oil and gas industry is one of the primary sources of anthropogenic
methane emissions, with significant leaks occurring across the entire oil and
gas value chain, from production and processing to transmission, storage, and
distribution. Examples of sources of methane leaks are malfunctioning clamps,
flares, flow lines, tanks, pressure regulators, thief hatches, and valves. Capacity
limitations in gathering, processing, and transportation infrastructure can also
lead to the venting of excess methane. The International Energy Agency (IEA)
estimates [10] that it is technically possible to avoid around 70% of today’s
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methane emissions from global oil and gas operations. These statistics highlight
the importance of leveraging various methane detection technologies and source
attribution techniques to address this critical issue.

Most of these technologies rely on complex models of particulate transport
in the atmosphere. Complexity is due to the interplay of multiple spatial scales
(from the particle scale to near-source and long-range effects), multi-physics
(coupling mass transport, turbulence, chemistry, and wet/dry deposition), and
complex geometry (e.g., flow over topography or man-made structures). Atmo-
spheric dispersion models have a long history, reaching back to Richardson’s [16]
and Taylor’s [21] pioneering investigations of turbulent diffusion. However, main-
taining accuracy is a prevalent challenge in dispersion modeling since many mod-
els have large uncertainties in effective parameters, such as the Monin-Obukhov
length [15], atmospheric stability classes, or terrain roughness length.

Past research has mostly focused on improving forward transport models to
evaluate downstream pollutant concentrations given source leak rates and mete-
orological variables. However, few works have focused on the source attribution
problem, which belongs to the class of inverse problems. Methods for estimat-
ing source strength and/or location from measurements of concentration can be
divided into two major categories depending on the physical scale of the prob-
lem. Researchers employed ground-based measurements and a high-resolution
mesoscale air transport model to quantify GHG emissions at the urban, regional,
and continental scales. They use a Bayesian statistical technique to predict emis-
sions and the associated uncertainty by combining previous emission inventories
with atmospheric measurements [14]. When the physical distance between the
sources and sensor observations is minimal, using mesoscale air transport models
for inversion becomes challenging. Typically, at such scales, atmospheric inver-
sions are performed using plume dispersion and surface layer models. In this
paper, we are primarily interested in observations taken relatively close to the
source, and we limit ourselves to analyzing the uncertainty in inverse modeling
linked to plume dispersion models.

A considerable number of inversion studies based on plume inversion mod-
els have been published in peer-reviewed journals. Several of these papers deal
with uncertainty estimations [11, 18]. Garcia et al. [8], for instance, considered a
Bayesian regression model using a non-stationary forward operator while Lushi
and Stockie [13] considered a positively constrained, linear least squared method
together with the Gaussian Plume model to determine the leak rates of the
sources. However, both studies considered a linear dependence on the leak rates
and a design where the number of sensors (9) is much greater than the number
of sources (4). Mathematically, the latter scenario results in an over-determined
system, for which Linear Programming solvers work well.

In this paper, we propose a solution based on Bayesian optimization to iden-
tify the source of a methane leak and to quantify the size of the leak, using
readings from a spatially sparse array of sensors, which corresponds to a math-
ematically under-determined system. This is a particularly relevant scenario for
many industrial applications that require monitoring of large areas with costly
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ground sensors. The scenario that we consider in this study is for continuous
monitoring of an Area of Interest (AoI), where an operator would be interested
in detecting anomalous methane leaks, identifying their likely sources, and esti-
mating leak size in near-real-time, to allow for prompt inspection and remedia-
tion. As a result, the proposed methodology focuses on achieving a reasonable
trade-off between accuracy and a relatively low computational time.

2 Methods

Source attribution belongs to the class of inverse problems; it aims at finding
the sources that generated a certain field configuration given readings of field
values at some restricted number of points {x1,x2, · · · ,xM} ∈ Rd, where d is
the number of space dimensions. In this work, we consider the following sce-
nario: during some observation time δt, some or all the sensors deployed in the
field record methane concentration signals, exceeding a determined threshold. As
there are multiple sources being monitored in the field, the sensors only record
a compound signal that is assumed to be given by the linear combination of
concentrations generated by a subset of sources at the each sensor location. The
objective is therefore to find the decomposition of the compound signal to de-
termine the contribution of each source. We are interested in determining the k
sources that contribute the most to the signal and estimate their strength.

2.1 Bayesian approach

The Bayesian approach relies on inverting the forward model using Bayes’ princi-
ple and sampling algorithms, based on some form of Markov Chain Monte Carlo
(MCMC) or Stochastic Variational Inference (SVI). In a physical model, all
empirical parameters are subject to systematic and statistical errors; the former
considers the measurement error associated with the instrument(s), while the lat-
ter encompasses statistical uncertainty in a set of measurements. In a Bayesian
approach, this input uncertainty naturally propagates through the model in a
non-parametric fashion. As a result, inferred parameters come with confidence
levels that better reflect the physical reality of the model. This means that all
quantities are expressed by probability distributions rather than single num-
bers. In general, given a parameter set θ, a variable set q, and sensor readings
w, Bayes’ principle reads: P (q,θ|w) = P (w|q,θ)P (q,θ)/Z(w), where P (q,θ)
is the prior, based on our current knowledge or assumptions on the form of the
distribution, P (w|q,θ) is the likelihood, and P (q,θ|w) the posterior. Finally,
Z(w) is a normalization. In this work we restrict our analysis to a scenario where
all the source locations are known. In this case, the unknowns are the leak rates
of the N sources q = [q1, q2, · · · , qN ]T measured in kg/h. The methods presented
here can be extended to scenarios with known and unknown sources, where the
latter was considered in Wade and Senocak [24].

Let us call Amn(q,θ) the M ×N (M sensors and N sources, M ≪ N) for-
ward operator mapping the concentration field from source to sensor location,
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parametrized by θ = {u, ϕ, p}, where u is the modulus of the wind velocity
[ms−1]; ϕ its in-plane direction [rad]; and possibly other p parameters that
depend on the details of the model. While θ are measured quantities (with un-
certainties), q are unknown and constitutes the fitting parameters of the model.
Given an array of M sensors, let us call Wm the compound signal recorded at
sensor m at time intervals δt. Then we have the relation:

wm =

N∑
n=1

Amn(qn,θ) ≡ A(q,θ). (1)

In general, this is a non-linear, time-dependent mapping, solution of the Diffusion-
Advection partial differential equation (PDE). Following [8], we write it as:

(
∂t +L(θ)

)
C(x, t) =

N∑
n=1

qn(t)δ(x− xn) (2)

L(θ) = ∇ ·
(
u(x, t)−D(x)∇

)
, (3)

where L(θ) is a linear operator, possibly depending non-linearly on the parame-
ters θ, comprising an advection and a diffusion term controlled by the diffusion
matrix,D(x). The term C(x, t) is the concentration field at location x = (x, y, z)
and time t. Finally, note that we are considering point-emission sources speci-
fied by the xn coordinates in the Dirac delta function on the right hand side
of Eq. (2). The solution implemented in the next section imposes a series of
assumptions on the form of C(x, t) and, therefore, of A that makes the problem
numerically manageable at different levels of complexity.

2.2 Non-linear Bayesian regression: stationary model

To simulate the contribution of each source, we consider a forward operator
based on the Gaussian plume model [23], which is a special solution of Eqs. (2)
and (3) under the following simplifying assumptions:

1. The leak rates, q(t), vary slowly in time such that it can be considered
constant over the measurement time scale, i.e. q(t) = q.

2. The wind velocity and direction are stationary and aligned along the x di-
rection for x ≥ 0, i.e. u = (u, 0, 0).

3. The diffusion matrix, D(x), is replaced by effective parameters based on the
Pasquill stability class.

Boundary conditions include finiteness of the concentration field at the origin and
infinity, together with the condition that the contaminant does not penetrate the
ground, see [20] for details. Under these conditions, the PDE admits an analytical
solution in the form of a Gaussian kernel:

Cn(x) =
qn

2π uσy σz
exp

{
− (z − h)2

2σ2
z

− (z + h)2

2σ2
z

− y2

2σ2
y

}
, (4)
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with the (scalar) concentration field measured in [kg m−3], although we will
often convert this to parts per million per volume (ppmv) in the rest of the
paper. The σi are standard deviations, and h is the height of the source. Our
implementation of the Gaussian plume model follows the one implemented in the
Chama1 open-source library [12], where the value of the standard deviations is
re-defined to include heuristic information on the stability of the plume: σi(x) =
ai x (1 + x b−1

i )−ci , where the values of the parameters ai, bi, ci depend on the
atmospheric stability class (indexed from A to F) and are different for the y and z
components. Weather stability classes are evaluated given the surface wind, cloud
coverage, and the amount of solar radiation in the AoI on a specific date and time.
Wind direction and source location are re-introduced respectively by rotating
the simulation grid in-plane and by re-centering it on the source position. This
expression, linear in the leak rate q, was used in [13] as the diffusion/advection
operator of a linear regression model. Following Chama [12], we consider buoyancy
corrections to dispersion along the z-axis, introduced heuristically in Eq. (4) as:

z′n = z + 1.6
B

1/3
n x2/3

u
, Bn =

g qn
π

(
1

ρCH4

− 1

ρair

)
. (5)

Where g is the gravitational constant while ρCH4
and ρair are the density of

methane and air measured in standard conditions. As such, we measure buoy-
ancy in units of m4 s−3. Note that this transformation introduces a non-linear
dependence on q, making our source attribution model non-linear.

To accelerate the Gaussian plume model for large-scale simulations, we lever-
age PyTorch2 to parallelize evaluation over both sensors and sources. This allows
for a massive speedup of over 50 times (on CPU) compared to the Chama imple-
mentation, with further speed-up possible by leveraging GPUs. Moreover, this
enables gradient evaluation of training parameters in the model (in our case the
leak rates and possibly the atmospheric data) necessary for the Bayesian opti-
mization process using the Hamiltonian Montecarlo algorithm provided by the
open-source Bayesian optimization library, Pyro 3 [4].

Assuming a normal distribution of the noise with covariance matrix Σ, the
likelihood of the model reads:

P (w|q,θ) = 1

(2π detΣ)1/2
e−

1
2 ||Σ

−1/2(w−A(q,θ))||2 . (6)

Due to the M ≪ N regime we are interested in, corresponding to a low-density
sensor placement, the problem is under-determined. While the parameters θ
depends on atmospheric conditions, the leak rates depend on the specifics of the
physical process that led to the emission. Therefore, following Garćıa et al. [8], we
reasonably assume θ and q to be statistically independent; as a consequence, the
prior distribution factorizes as P (q,θ) = P (q)P (θ), where the distribution on θ

1 https://github.com/sandialabs/chama
2 https://github.com/pytorch/pytorch
3 https://github.com/pyro-ppl/pyro
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is obtained via direct measurement of the weather data at a particular location,
together with their experimental (and possibly statistical) uncertainties due to
temporal or spatial averaging. However, in the application considered in the
next sections, we will make the simplifying assumption of θ being deterministic;
the reason for this choice is related to the considered industrial scenario, see
Sect. 3 for details. In comparison, the scenario considered in Garcia [8] and
Lushi [13] dealt with the detection of lead-zinc emission; in this case, sensors
need to collect enough samples from direct deposition of the pollutants in a
collection device, which may require hours, depending on the deposition velocity
of the pollutant. In this case, ten minute averages of wind data were used over
the measurement time. In the case of methane, sensors operate in near real-time
using direct measurements based on a variety of techniques, such as mid/near
infra-red lasers or metal oxide semiconductors to name a few. As we detail in
Sect. 3 below, we are interested in a near real-time source attribution scenario;
in this case, weather data will be taken at the time of measurement from the
sensor’s weather stations. By taking θ as deterministic, we are therefore assuming
that weather data are homogeneous across the AoI, in agreement with the same
assumption used to obtain the Gaussian plume solution, and neglect systematic
errors.

2.3 Ranking Model

To rank the source contributions, we use multi-point estimates of each leak
rate’s posterior distribution. As estimators, we take percentiles from 0 to 100 at
steps of 2 lying in the 68% HPDI confidence interval, plus the sample average.
Sampled point estimates are then used to reconstruct the source contribution
to the signal measured at each sensor using again the forward model. For each
prediction, we evaluate again the error with the observed value at each sensor
location and evaluate the posterior predictive likelihood Ps ≡ Ps(w|q⋆

s ,θ), q
⋆
sn

being the s-th point estimates of the n-th leak rate from the marginal posterior
distribution; this will be used in the final ranking step to weight the goodness of
the ranking solution. Note that we denote with ⋆ a variable or parameter fixed
by a particular operation, e.g. optimization, sorting, or max.

Each one of the s samples from point estimates (also referred to as point
samples) propose a different source reconstruction within the 68% HPDI of the
marginal posteriors. By ranking emission sources by their contribution at each
sensor, we obtain an ensemble of possible ranking:

Rs
mn⋆ = arg sort

n
As

mn(q
⋆
sn,θ), (7)

where s is the point sample index and As
mn(q

⋆
sn,θ) is the methane concentration

value of source n measured from sensor m, obtained from the point estimate s of
the leak rate. Each member of the ranking ensemble is weighted by the related
predictive likelihood. The final ranking is obtained as a composite estimator. For
each sensor, we take the proposed ranking with the highest likelihood:
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Fig. 1: Flow chart of the source attribution methodology

Rmn⋆ = argmax
Ps

Ps
m Rs

mn⋆ . (8)

Finally, to each predicted ranking we can assign a probability obtained by mul-
tiplying the (selected) marginal posterior point estimate of the source and the
predictive likelihood: P (q⋆

s⋆ ,θ|w) ≃ P (w|q⋆
s⋆ ,θ)P (q⋆

s⋆).
The end-to-end source attribution process is re-assumed in the flow chart of

Fig. 1. In the next section, we apply the methods described here to a scenario
of practical relevance.

3 Case Study

The scenario we considered is of direct practical relevance as it can be pro-
hibitively expensive to monitor large areas of interest with a 1:1 or higher sensor-
to-source ratio. IoT sensors transmit real-time data on methane concentration
and weather readings. An anomaly detection algorithm is employed to detect ab-
normal methane emissions; if anomalous readings are detected, these are flagged
to the source attribution system that returns the most likely location(s) of the
leak. The setup of the experimental AoI is shown in Fig. 2. We consider an AoI
of approximately 9 km2, in the Permian Basin in West Texas and Southeastern
New Mexico, for our study. The Permian Basin is one of the most prolific oil and
gas basins in the US, and contains numerous oil and gas infrastructure assets,
many of which are likely emitters of methane. The scenario that we consider for
our study is one where 100 possible sources are monitored by 15 high resolution
methane sensors in the AoI. Sensor locations have been determined using the
sensor placement optimization procedure detailed in Wang [25]; the optimization
output is shown in Fig. 2, where sensors are placed either close to ground level
or at heights of 5 and 10 m. In the next sections, we discuss data collection and
processing. We will also describe how the test scenario and sensor readings were
simulated in the absence of field sensor data.
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(a) (b)

Fig. 2: a) Aerial view of the Area of Interest, showing locations of emission sources
(black triangles) and sensors (red dots). b) Methane concentration (above back-
ground level) map in ppmv, on 20-07, at 3 pm. Level curve represent z direction.

3.1 Data collection and processing

We gather various inputs required for the Bayesian analysis in the AoI, such
as weather variables, historical methane leak rate data, and oil and gas facility
maps. We obtain hourly weather data (wind speed, wind direction, temperature,
pressure, cloud coverage) from the weather station closest to the study area,
from the National Oceanic and Atmospheric Administration (NOAA) Integrated
Surface Dataset (ISD) [1]. The wind rose diagram for our AoI is shown in Fig.3a
for a given test date and time. Methane emissions data can be obtained from
aerial surveys or IoT sensor measurements or from historical knowledge of leaks
from specific oil and gas assets. For our study, we leverage data from an extensive
airborne campaign across the Permian Basin from September to November of
2019 [7] that quantified strong methane point source emissions (super emitters)
at facility-scales. Since this data corresponds to leak rates from super emitters,
we have a tunable parameter to scale the leak rates down. For our analysis, we
scale it down by a factor of 3 to better represent the order of magnitude of leaks
from normal methane emitters, while maintaining the heavy-tailed distribution
shape from the original Permian Basin airborne campaign data set. We find
the data to be in good agreement with an exponential distribution. Oil and gas
facilities locations data, including wells, natural gas pipelines and processing
plants, available in the public domain, are ingested for the area of interest [3,
22]. Satellite map of the AoI is obtained from Sentinel-2 data [2].

3.2 Scenario Simulation

Given the input data defined in the previous section, we use the forward model
to simulate the methane concentration at each sensor location. The simulation is
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(a) Wind rose. (b) Wind speed distribution.

Fig. 3: Wind speed and angle distribution for a specific day (07-20-2020 ).

performed on an area of approximately 9 km2, and up to 200m in the z-direction;
the grid size (dx, dy, dz) is (25, 25, 5) m. The number of sources is 100, and the
number of sensors is 15 (see Fig.2). We sample the leak rate of each source from
the fitted exponential leak rate distribution and use weather data at the time of
detection as an input to the plume model defined in Sect. 2.2. As there are no
interaction terms in Eq. 2, the concentration field at each point is assumed to be
additive. As a consequence, the compound signal at a sensor location is evalu-
ated via summation of individual source contributions. Finally, Gaussian noise is
applied to the readings, with a standard deviation corresponding to the sensor’s
systematic error, together with a detection threshold; for both parameters, we
have used values reported by the sensor’s vendor of 0.002 ± 0.0001 ppmv over
background level (estimated at 1.8 ppmv in the AoI). Throughout this paper,
we always report concentration values over background. In Fig. 4a we show an
example input data for the leak rates; this shows a typical pattern where most
sources have low emissions with few of them being anomalous, i.e. outliers. This
is one of the most challenging scenarios we encountered, and we present it here
in detail; in practice, there are many possible scenarios, the most favourable
being when all the sensors can capture a strong signal. We comment on these
other results at the end of Sect. 3.3. In Fig. 4a we use Tukey’s fence criteria to
separate the bulk of the sample from the outliers; the shaded area in the plot
is determined by the interval [Q1 − α IQR, Q3 + α IQR], where IQR = Q3 −Q1

is the inter quantile range, and Q1, Q3 the quantiles. A value of α = 1.5 is
used to determine the outliers, while α = 3 determines extreme values. There
are three outliers, corresponding to sources [10, 80, 92], with source 10 being the
highest emitter. The median separates low (50%) from average (47%) emitters,
with high leak rate outliers constituting only the remaining 3%. However, not
all emissions are measured by the sensors, as the concentration value depends
on both weather conditions (determining dispersion) and sensor positioning. For
the example considered here, one of the high leak rate outliers (80) is not cap-
tured at all by the sensors. The compound sensor readings are then used as an
input to the source attribution algorithm as detailed in the next section.
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(a) Leak rates sample. (b) Sensor measurements.

Fig. 4: a) Sample from the leak rate distribution, together with median and bulk;
see text for details. b) Simulated measurement at sensor location on 07-20-2020
at 3 pm. This sample shows a typical pattern where most sources have low
emissions, with few of them being super-emitters. In this scenario, only 12 of the
deployed 15 sensors report above threshold readings.

3.3 Results

We leverage the Pyro [4] implementation of the No-U-Turn, Hamiltonian Monte
Carlo [9] to sample the marginal posterior; the entire process is summarized in
Fig. 1. We found that a relatively small collection of 1000 samples provides a
good compromise between accuracy and computational time; the sampler re-
turns the leak rate distribution for each of the 100 sources, at different degrees
of convergence. As we are using priors obtained from empirical data, these are
not necessarily conjugated, hence the marginal posterior distribution is unknown
and needs to be fitted. Although it is possible to look for a continuous paramet-
ric fit, here we opt to use the Kernel Density Estimation (KDE) implementation
in scikit-learn 4 using grid search with cross validation to fix the kernel and
bandwidth of each leak rate distribution. In Fig. 5 we show two examples of dis-
tributions where convergence is achieved and where it is not. Each figure shows
the histogram of the samples, the KDE fit, the 68% Highest Posterior Density
Interval (HPDI), together with two vertical lines showing true value and sample
average. Following the discussion of Sect. 2.3, we use 51 sample point estimates
within the HPDI, for each leak rates marginal posterior distributions. In gen-
eral, we found the posterior sample average to be a robust central estimator; in
addition we use 50 percentiles points estimate (from 0 to 100 at steps of two).
The point estimates are used in the forward model to estimate the predictive
likelihood and the source contribution at each sensor. The latter are used in the
ranking model to extract the top three sources, per sensor, contributing the most
to the measured methane concentration, together with their ranking confidence.
After this process, we are left with 51 ranking and concentration values for each
sensor. In the final step, for each sensor, we select the the maximum (predictive)
likelihood value out of the 51 evaluated and use this as our best estimate for

4 https://scikit-learn.org/
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(a) Source 92. (b) Source 9.

Fig. 5: Marginal posterior distributions: samples histogram and KDE fit are
shown together with a 68% HPDI interval (shaded area), the sample mean and
the true value. In Fig. 5a, the sample mean provides a good estimation of the
the true value, while this is not the case in Fig. 5b, where it lies in the tail of
the distribution.

likely sources. We can visualize this result via the network map in Fig. 6, showing
sensor to source connectivity for the three selected sources, weighted by source
leak rate. Ultimately, this constitutes the model recommendation presented to
the monitoring operator, to help them plan further field investigation and plan
leak remediation by prioritizing the most likely source of leakage. For testing, we
evaluate the mean average precision [19] at k = 3 (mAP@3); as our intent is to
detect the highest emitting sources at each sensor, k = 3 represents a good com-
promise between keeping this focus while looking at mid-level emissions as well.
As we explained later, the performance of the model decreases when including
more sources, as optimization samples are dominated by the higher emitters.
mAP@3 evaluates how many of the three proposed sources have been correctly
ranked, and average the result over all available sensors. For the example above,
we find mAP@3=0.86. Crucially, the ranking error depends on the relative mag-
nitude of the source’s leak rates, this being true also for the regression metrics
presented in the next section. Fig. 7 shows the true and predicted source contri-
butions to the methane concentration signal and leak rates detected at a sensor.

Leak rate quantification We have repeated the same analysis for 10 more days
randomly sampled through the year at different times of the day. Depending on
factors such as the weather, leak rate sample and crucially the number of sensors
recording the signal (as low as 1), the mAP@3 may vary, although on average is
still ∼ 0.83, showing the robustness of the model. Leak rate quantification and
source attribution are both outputs from the Bayesian learning algorithm. Accu-
rate leak size estimation is critical in quantifying the environmental footprint of
methane leaks, and is also crucial from a regulatory and governance perspective,
helping companies build trust with stakeholders and the public. Fig. 7b shows
the true and predicted leak rate estimates for the highest 3 emitters (sources)
whose signal is detected at a sensor. We use Mean Absolute Percentage Error
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Fig. 6: Network Map: Connections between sensors and sources are used to vi-
sualize attribution

(MAPE) [5] as the metric to evaluate the performance of the leak rate quantifica-
tion algorithm. When evaluated for sources that have been correctly classified as
contributing to the signal at a sensor (as determined by the mAP@3 metric), we
obtain a total MAPE ≃ 29%. As we mentioned in the previous section, routine
sources are more difficult to estimate due to their lower leak rates and the skew
nature of the distribution; following Fig. 4a and the discussion of Sect. 3.2, when
breaking down the error into low, medium and high leak rates (outliers) we find
the corresponding MAPE to be: 50%, 24% and 1.7%, showing how medium and
high leak rates can be reliably estimated. We found this behaviour to be con-
sistent across different different scenarios, see Sect. 3.3. This leak rate estimate
can also be used to update the prior leak rate distribution, which can then be
used for future analyses. This can be thought of as a Bayesian learning process
that iteratively improves the source attribution and estimation process.

4 Conclusions

We have presented a Bayesian source attribution and quantification model ap-
plied to the realistic situation of non linear dependence between concentration
and leak rates, and a regime where the number of sources to monitor greatly
exceeds the number of ground field sensors, mathematically corresponding to an
under-determined system. We use the mean average precision at k = 3 (mAP@3)
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(a) True and predicted source contributions to the methane concentration signal (above
background level) detected at a sensor.

(b) True and predicted leak rate estimates for the highest 3 emitters (sources) whose
signal is detected at a sensor.

Fig. 7: The number on top of each bar represents the source ID. Only correctly
classified sources are shown.

for evaluating the performance of the source attribution algorithm, and observe
a mAP@3=0.86 for the experiments performed, which signifies that 86% of leaks
detected at sensors were correctly attributed to the true sources; we found this
result to be robust across different weather and leak rates sample scenarios, with
an average mAP@3 ∼ 0.83. For leak rate quantification, we use MAPE to evalu-
ate model performance, and we report a total MAPE of 29%. Breaking down this
error by the relative size of the leak rates, we find that most of the estimation
error comes from low emitting sources, obtaining a MAPE of 24% and 1.7% for
medium and high emitters, respectively. The leak rate quantification for sources
with high signal strength at sensors is significantly more accurate than that for
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sources with relatively lower signal strength. Accurate leak source attribution
and quantification are vital for any methane Leak Detection and Remediation
program, and for addressing regulatory and governance aspects, where an accu-
rate assessment of the environmental impact of such leaks is critical.

5 Future Work

Spatial heterogeneity in weather data and transient plume behavior have a cru-
cial impact on the atmospheric dispersion of methane; these effects are not cap-
tured by the simple Gaussian plume model used in this work. When choosing
the forward model, one needs to balance precision vs. computational time. In
this respect, the use of modern machine learning methods to approximate com-
plex modeling constitutes a promising way forward. Some of these methods not
only allow us to replace physics-based solvers, but also to learn directly from a
mix of real and simulated data. In this work we have also restricted our analysis
to very small sample sizes (1000) when performing Bayesian optimization; the
choice is due to favouring response time vs. higher accuracy, the former being
the most important factor in deployment. We are exploring the use of Stochastic
Variational Inference as a replacement for the more costly Hamiltonian Monte
Carlo together with more informative likelihood distributions. Finally, access to
sensor data will allow us to better estimate model parameters, including a more
realistic account of total noise, beyond the systematic error currently modeled.
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