
Cornet: Learning Table Formatting Rules By Example
Mukul Singh

Microsoft
Delhi, India

singhmukul@microsoft.com

José Cambronero
Sánchez
Microsoft

New Haven, USA
jcambronero@microsoft.com

Sumit Gulwani
Microsoft

Redmond, USA
sumitg@microsoft.com

Vu Le
Microsoft

Redmond, USA
levu@microsoft.com

Carina Negreanu
Microsoft Research
Cambridge, UK

cnegreanu@microsoft.com

Mohammad Raza∗
Microsoft

Redmond, USA
moraza@microsoft.com

Gust Verbruggen
Microsoft

Keerbergen, Belgium
gverbruggen@microsoft.com

ABSTRACT

Spreadsheets are widely used for table manipulation and presenta-
tion. Stylistic formatting of these tables is an important property
for presentation and analysis. As a result, popular spreadsheet soft-
ware, such as Excel, supports automatically formatting tables based
on rules. Unfortunately, writing such formatting rules can be chal-
lenging for users as it requires knowledge of the underlying rule
language and data logic. We present Cornet, a system that tackles
the novel problem of automatically learning such formatting rules
from user-provided formatted cells. Cornet takes inspiration from
advances in inductive programming and combines symbolic rule
enumeration with a neural ranker to learn conditional formatting
rules. To motivate and evaluate our approach, we extracted tables
with over 450K unique formatting rules from a corpus of over 1.8M
real worksheets. Since we are the first to introduce the task of
automatically learning conditional formatting rules, we compare
Cornet to a wide range of symbolic and neural baselines adapted
from related domains. Our results show that Cornet accurately
learns rules across varying setups. Additionally, we show that in
some cases Cornet can find rules that are shorter than those writ-
ten by users and can also discover rules in spreadsheets that users
have manually formatted. Furthermore, we present two case studies
investigating the generality of our approach by extending Cornet
to related data tasks (e.g., filtering) and generalizing to conditional
formatting over multiple columns.

PVLDB Reference Format:

Mukul Singh, José Cambronero Sánchez, Sumit Gulwani, Vu Le, Carina
Negreanu, Mohammad Raza, and Gust Verbruggen. Cornet: Learning
Table Formatting Rules By Example. PVLDB, 16(10): 2632 - 2644, 2023.
doi:10.14778/3603581.3603600

PVLDB Artifact Availability:

The code, data, and/or other artifacts have been made available at https://gi
thub.com/microsoft/prose-benchmarks/tree/main/ConditionalFormatting.

∗Work performed while at Microsoft
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.
doi:10.14778/3603581.3603600

1 INTRODUCTION

Spreadsheets are the most common table manipulation software,
with around a billion monthly active users [26]. Formatting the
style of cells is a fundamental and frequently used visual aid to
better display, emphasize or distinguish data points in a spreadsheet.
By analyzing a large public spreadsheet corpus [2, 14] we found
that close to 25% of spreadsheets use some form of cell formatting.

Conditional formatting (CF) is a feature that automates table
formatting based on user-defined rules. It is available in all major
spreadsheet manipulation tools like Microsoft Excel, Google Sheets
and Apple Numbers. All these tools support predefined templates
for popular rules, such as cell value is greater than a specific value.
In Excel and Sheets, users can also author a custom boolean-valued
formula to format cells. We find that 18% of spreadsheets in a large
public spreadsheet corpus [2] use conditional formatting.

We present the Cornet (Conditional ORNamentation by Ex-
amples in Tables) system that automatically generates a formatting
rule from examples of formatted cells.Cornet takes a small number
of user-formatted cells as input to learn a likely formatting rule that
generalizes to other cells in the column. For example, in Figure 1,
after the user formats only two cells, Cornet suggests the intended
rule without exposing the user to the underlying rule language.

The complexity associated with manually writing conditional
formatting rules is reflected in the volume of related help forum
posts on the topic. As of June 2022, more than 10,000 conditional
formatting related questions were posted on the Excel tech help
community alone [10]. By analyzing these posts we discovered mul-
tiple factors that contribute to the difficulty of authoring such rules
manually. These factors range from fundamental logic challenges
in rules to the lack of user interface support in existing platforms.
We outline the most prominent factors.

First, many users are unaware of the CF feature and manually
format spreadsheets, which can be highly inefficient and introduce
errors. Second, even basic rule authoring requires that the user
understand the syntax and logic behind conditional formatting, the
predefined templates, and potentially the formula language to write
more complex rules. Writing such formulas is further complicated
by the absence of data type validation. For example, a user can
choose numerical comparison on columns with text. This results
in wrong formatting or no formatting at all. Third, when users do
succeed in writing correct rules, they often write formulas that are
more complex than needed to capture their intended logic.

2632

https://doi.org/10.14778/3603581.3603600
https://github.com/microsoft/prose-benchmarks/tree/main/ConditionalFormatting
https://github.com/microsoft/prose-benchmarks/tree/main/ConditionalFormatting
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603600
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3603581.3603600&domain=pdf&date_stamp=2023-06-01

Figure 1: Adding a CF Rule in Excel: User needs to select CF

in the “Styles” portion of the home ribbon menu and select

add rule from the drop-down menu. The image depicts: 1○
the dialog box to add a new CF rule; 2○ the rule the user

needs to write 3○ the resulting formatted column. After the

user formats two cells, Cornet can automatically suggest

the intended CF rule for the user.

Cornet is designed to address each of these concerns. First,
Cornet can learn conditional formatting rules from as few as one
example, opening up the possibility of dynamically suggesting rules
to users. Because Cornet can learn rules for a wide range of tasks—
about 90% of our benchmarks—users can rely on Cornet to cover a
substantial amount of their conditional formatting needs. Cornet
only learns rules specific to the data type at hand, removing a
substantial cause of incorrect rules. Finally, we found that when
users write complex custom rules, Cornet can learn a shorter rule
in approximately 60% of the cases.

The key technical challenge in learning conditional formatting
rules by example is that few boolean examples (formatted or not)
result in a very weak specification: many candidate rules will satisfy
them and there is little information to constrain the search space.
To tackle this, Cornet first approximates a stronger specification
by considering other cells using semi-supervised clustering and
assigning them to formatted and unformatted groups—providing a
richer signal for pruning the search space. This clustering uses a
similarity between cells computed over the same properties that
are used to learn candidate rules.

While the approximate specification allows us to navigate the
search space, some examples can be noisy and there can still be mul-
tiple rules that satisfy them. To handle potentially noisy examples
in this approximation, Cornet uses the concept of soft examples,
which are given less weight during learning. To compensate for
the greediness of the learner, in addition to soft examples, Cor-
net learns multiple candidate rules and ranks them. We propose
two rankers: a lightweight ranker based on manual features (and
learned weights) and a slightly better but more costly neural ranker.

To train and evaluate Cornet, we created a benchmark of 105K
real user tasks from public Excel spreadsheets. We use 80K of these

tasks for training and 25K for evaluation. We found that Cornet
can learn CF rules from as few as two examples and outperforms ex-
isting and custom symbolic and neural baselines that were adapted
for this task. In addition, we perform two case studies where we
explore how Cornet generalizes to other data tasks and how it
generalizes to conditional formatting over multiple columns.

This paper makes the following key contributions:
• Based on the observation that users often struggle to format

tabular data, we introduce the novel problem of learning
conditional formatting (CF) rules from examples.

• We propose Cornet, a system that learns CF rules from
examples over tabular data.

• We create a dataset of 105K real formatting tasks extracted
from public spreadsheets. We release this dataset to encour-
age future research.1

• We evaluate Cornet extensively on 25K CF tasks, compare
to existing and custom baselines, and show that Cornet
outperforms both symbolic and neural baselines by 20% on
our benchmark.

2 PROBLEM DEFINITION

Let 𝐶 = [𝑐𝑖]𝑛𝑖=1 be a column of 𝑛 cells with each cell 𝑐𝑖 ∈ C rep-
resented by a tuple (𝑣𝑖 , 𝑡𝑖) of its value 𝑣𝑖 ∈ V and its annotated
type 𝑡𝑖 ∈ T . In this paper, we consider string, number, and date as
possible types—these are available in most spreadsheet software.
We associate a format identifier 𝑓𝑖 ∈ N0 (or simply format) with
each cell, which corresponds to a unique combination of formatting
choices made by the user. A special identifier 𝑓⊥ = 0 is reserved
for cells without any specific formatting. In this paper, we consider
cell fill color, font color, font size, and cell borders.

Example 1. In Figure 2, which will serve as a running example,

colored cells have 𝑓1 and all other cells have 𝑓⊥ as format identifiers,

where 𝑓1 corresponds to {cell color: #beaed4, font color: default, font
size: 12, border: default}.

A conditional formatting rule (or simply rule) is a function 𝑟 :
C → N0 that maps a cell to a formatting identifier. Given a column
𝐶 and specification, a rule 𝑟 that satisfies the specification is one
such that 𝑟 (𝑐𝑖) = 𝑓𝑖 for all 𝑐𝑖 ∈ 𝐶

Example 2. Returning to Figure 2, the formatting can be described

by the following rule:

𝑟1 (𝑐) =
{
𝑓1 𝑐 starts with "RW" and does not end with "T"

𝑓⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Let 𝐶★ = {𝑐𝑖 | 𝑐𝑖 ∈ 𝐶, 𝑓𝑖 ≠ 𝑓⊥} be the cells with formatting
applied. The goal of automatic conditional formatting by example is
to find 𝑟 given only a small, observed subset𝐶𝑜𝑏𝑠 ⊂ 𝐶★. Throughout
this workwewill refer to the elements of𝐶𝑜𝑏𝑠 as formatted examples.
Any cell in 𝐶 \ 𝐶𝑜𝑏𝑠 is considered unlabelled, which includes all
unformatted cells.

Example 3. In Figure 2, the user has provided two examples and

𝐶𝑜𝑏𝑠 = {RW-187, RW-159}). The rest of the cells in the column are

unlabeled. The goal is to learn rule 𝑟1 from Example 2.

1To adhere to compliance requirements, we release the data as URLs to xlsx files, that
can be downloaded, and scripts to generate benchmarks from the downloaded files.

2633

In the remainder of this paper, we will consider the case where
there is only one formatting identifier for simplicity. We then do
not have to make assumptions about the order in which a user
provides examples for different formats and the order in which
the rules for different formats should be applied. Note that we can
generalize the single format case to𝑘 different formatting identifiers
by simply solving 𝑘 different formatting by example problems, such
that when learning the rule for a format identifier 𝑓𝑖 , all other format
identifiers are treated as 𝑓⊥. This approach to multiple formats is
closely aligned with popular spreadsheet software, where each
format is applied using a different rule. Different rules can overlap
and the order in which they are applied, as chosen by the user,
determines the final color for each cell. As only 0.63% of rules in our
corpus format overlapping cells, we do not consider overlapping
rules and their order.

3 APPROACH

This section describes how Cornet learns formatting rules from a
small number of user-provided examples. Figure 2 shows a schematic
overview of Cornet’s approach. Step 1○ enumerates properties of
cells as predicates. Step 2○ approximates the expected output using
semi-supervised clustering. Cornet then iteratively generates rules
that match this output in step 3○, and ranks them in step 4○. The
following sections describe challenges and solutions for each step.

3.1 Predicate Generation

Cornet uses cell properties to reason about the target formatting.
This step enumerates a set of these properties that hold for a non-
empty proper subset of the cells of the given column. Each property
is encoded as a predicate—a boolean-valued function that takes a
cell 𝑐 along with zero or more additional arguments and returns
true if the property that it describes holds for the cell 𝑐 . To avoid
type errors, all predicates are assigned a type and they only match
cells of their type. Supported predicates are shown in Table 1. The
predicates for Cornet have been chosen based on formatting rule
operations supported by popular spreadsheet software.

For each predicate, we need to generate constant values for all
additional (not 𝑐) arguments. Given a column of cells and a predicate,
the goal is to initialize each additional argument to a constant value
such that the predicate returns true for a non-empty proper subset
of cells in the column. We do this by generating a set of constant
values for each type, derived from the column values or common
constants, and instantiating each predicate with combinations of
constants of the appropriate types. Table 2 shows an overview of
how the constant values are generated for predicates of each type.

Example 4. For the topmost cell of the column in Figure 2 and

TextContain(c, s), we generate three constants for 𝑠 . The first is simply

the whole cell value (RW-187). Splitting the cell on non-alphanumeric

characters obtains tokens {RW, -, 187}. As TextContain(c, "-") is true
for all cells in the column, this is not considered and dropped. We get

{TextContain(c,"RW-187"), TextContain(c,"RW"), TextContain(c,"187")}

as the three generated predicates from TextContains(c, s).

Table 1: Supported predicates and their arguments for each

datatype (top) and also general (bottom). The 𝑑 argument

in datetime predicates determines which part of the date

is compared—day, month, year, or weekday. For example,

greater(𝑐, 2, month) matches datetime cells with a date in

March or later for any year.

Numeric Datetime Text

greater(𝑐 , 𝑛) greater(𝑐 , 𝑛, 𝑑) equals(𝑐 , 𝑠)
greaterEquals(𝑐 , 𝑛) greaterEquals(𝑐 , 𝑛, 𝑑) contains(𝑐 , 𝑠)
less(𝑐 , 𝑛) less(𝑐 , 𝑛, 𝑑) startsWith(𝑐 , 𝑠)
lessEquals(𝑐 , 𝑛) lessEquals(𝑐 , 𝑛, 𝑑) endsWith(𝑐 , 𝑠)
between(𝑐 , 𝑛1, 𝑛2) between(𝑐 , 𝑛1, 𝑛2, 𝑑) length(𝑐 , 𝑛)
numDigits(𝑐 , 𝑛) workDay(𝑐) hasDigits(𝑐)
isInteger(𝑐) weekNum(𝑐 , 𝑛4) hasSpecial(𝑐)
isPercentage(𝑐) isEmail(𝑐)
isCurrency(𝑐) isUrl(𝑐)
isEven(𝑐)
isOdd(𝑐)

General

isNum(𝑐) isError(𝑐) isFormula(𝑐)
isLogical(𝑐) isNA(𝑐) isText(𝑐)

Table 2: Overview of constants for concretizing predicates

of each type. For example, we generate constants for text

predicates from two token sources: delimiter-based splitting

and prefixes.

Type Arg(s) Values

numeric 𝑛 all numbers that occur in the column
numeric 𝑛 summary statistics: mean, min, max, and per-

centiles
numeric 𝑛 popular constants such as 0, 1 and 10𝑛
numeric 𝑛1 and 𝑛2 use numeric generators for𝑛 and keep the ones

𝑛1 < 𝑛2
text 𝑠 whole cell value
text 𝑠 tokens obtained by splitting on non-

alphanumeric delimiters
text 𝑠 tokens from prefix trie
date 𝑛 and 𝑑 for available 𝑑 , extract numeric value and use

generator for 𝑛

3.2 Semi-supervised Clustering

Rather than immediately combine predicates into rules, we first
predict the expected output of possible rules on the unformatted
cells by clustering. There are 2𝑛 ways to cluster a column of𝑛 cells in
two clusters (formatted and unformatted) but 22

𝑝
unique rules can

be written with 𝑝 predicates.2 In other words, many rules yield the
same clustering. Clustering then allows us to leverage the relatively
small search space of output configurations to find programs that
generalize to similar cells. Cornet biases the predicted output
towards the generated predicates by using their output to compute

2Conjunction and disjunction can represent all boolean functions over 𝑝 inputs, and
there are 22𝑝 such functions.

2634

Figure 2: Cornet architecture illustrated through the example case from Figure 1: 0○ input table with partial formatting, 1○
predicate generation for all cells in the table, 2○ semi-supervised clustering using examples and other cells to address the

challenge of unlabeled cells, 3○ enumerating rules based on the clustering using multiple decision trees, 4○ neural ranker to

score generated rules, and 5○ final learned conditional formatting rule.

... ...

Initialize1 2Reassign

Figure 3: Schematic overview of the initialize and reassign

steps for clustering cells into formatted (𝑓), unformatted (⊥)
and unassigned (𝑢) clusters. Only initially unassigned cells

are reassigned and obtain a noisy label when this happens.

the similarity between cells. FlashProfile [30] uses the same concept
with regular expressions to learn syntactic profiles of data.

More concretely, we assign a (potentially noisy) formatting label
𝑓𝑖 to each unobserved cell 𝑐𝑖 ∉ 𝐶𝑜𝑏𝑠 by building on two insights.
First, tables are typically annotated by users from top to bottom,
which implies that there is positional information available. In par-
ticular, cells 𝑐𝑖 ∉ 𝐶𝑜𝑏𝑠 such that there exist 𝑐 𝑗 , 𝑐𝑘 ∈ 𝐶𝑜𝑏𝑠 for which
𝑗 < 𝑖 < 𝑘 are likely intended to have no formatting associated with
them. We refer to this set of 𝑐𝑖 as soft negative examples [33]. Sec-
ond, user-provided examples𝐶obs should be treated as hard positive
examples—we assume that the user does not make errors, which is
a common assumption in PBE [15]. During learning, hard examples
have to be correctly classified. The learner tries to optimize the
accuracy on soft examples, subject to a threshold on the maximum
number of nodes in the tree to account for rule complexity.

We perform iterative clustering over three clusters of formatted
(cluster𝑓), unformatted (cluster⊥) and unassigned (cluster𝑢) cells.
Some supervision is introduced by initializing each cell 𝑐𝑖 ∈ 𝐶obs
to cluster𝑓 and soft negative example cells to cluster⊥. These cells
are never assigned to another cluster. The remaining cells 𝐶𝑢 are
assigned to cluster𝑢 . Taking inspiration from 𝑘-medoids [19] we
iteratively reassign 𝑐𝑢 ∈ 𝐶𝑢 to a new cluster. Figure 3 shows a

schematic overview of initialization and reassignment. Instead of
computing a cluster medoid, however, we average the minimal and
maximal distance to any element of the cluster, which was found
to perform well in practice. The distance between two cells is the
size of the symmetric difference between the sets of predicates that
hold for either cell. When clusters become stable or a maximum
number of iterations is reached, cells 𝑐𝑖 from cluster𝑢 and cluster⊥
are assigned 𝑓𝑖 = 𝑓⊥ (soft negative examples). Cells 𝑐𝑖 from cluster𝑓
are assigned 𝑓𝑖 = 𝑓 (soft and hard positive examples).

3.3 Candidate Rule Enumeration

After clustering, we have a target formatting label 𝑓𝑖 for each 𝑐𝑖 in
𝐶 . We now learn a rule 𝑟 such that 𝑟 𝑓 (𝑐𝑖) = 𝑓𝑖 for all 𝑐𝑖 ∈ 𝐶𝑜𝑏𝑠 (hard
examples) and

∑[𝑟 𝑓 (𝑐𝑖) = 𝑓𝑖] for 𝑐𝑖 ∉ 𝐶𝑜𝑏𝑠 is greedily maximized
(soft examples). We define the space of rules and a search procedure
in the following two subsections.

3.3.1 Predicates to Rules. A rule in Cornet for a column 𝐶 and
format 𝑓 is a function 𝑟 𝑓 : C → B that takes a cell and returns
whether the cell should be formatted as 𝑓 or not. Cornet supports
𝑟 𝑓 that can be built as a propositional formula in disjunctive normal
form over predicates. In other words, every 𝑟 𝑓 is of the form

(𝑝1 (𝑐) ∧ 𝑝2 (𝑐) ∧ . . .) ∨ (𝑝 𝑗 (𝑐) ∧ 𝑝 𝑗+1 (𝑐) ∧ . . .) ∨ . . .

with 𝑝𝑖 a generated predicate or its negation. Our goal is to strike a
balance between expressiveness and simplicity.

3.3.2 Enumerating Rules. We greedily enumerate candidate rules
by iteratively learning decision trees that predict the noisy label 𝑓𝑖
for each 𝑐𝑖 from their predicate outputs. Each decision tree then
corresponds to a rule in disjunctive normal form [3]. We identify
and address three challenges: variety in rules, simplicity of rules,
and coping with noisy labels. To induce variety in rules, during
iteration we remove the predicate associated with the root node of
the current tree from possible predicates, so any subsequent trees
learned cannot use it. To induce simplicity of rules, we limit the
depth of learned decision trees to _𝑛 or fewer nodes. To cope with
our noisy (cluster-based) labels, we 1) weigh labeled cells twice as

2635

much as unlabeled ones to bias our tree towards perfectly classify-
ing user-provided examples (and we perform a check after the tree
is learned to ensure this property), and 2) we allow misclassifica-
tions for soft-labeled (i.e. originally unassigned) cells by allowing
accuracy to fall up to _𝑎 . This learning procedure is schematically
shown in Figure 4.

3.3.3 Setting parameters. _𝑛 limits the complexity of generated
rules. We set _𝑛 = 10 as only 17 rules in our 105K corpus had more
than 10 predicates. _𝑎 filters rules with lower accuracy. We set
_𝑎 = 0.8 as CF rules tend to have lower noise tolerance.

StartsWith("RW")
Learn and

evaluate

Features
Remove4

AND(,)

Rule

1

2 3

Figure 4: Schematic overview of iterative rule learning. Steps

2○ until 4○ are repeated as long as the decision tree achieves

the desired accuracy and there are features remaining.

3.4 Candidate Rule Ranking

To choose a final rule from candidates generated by the iterative
learner we rank candidates. Prior work has proposed ranking pro-
grams based on output features [27] or rule features [9]. We build
on these approaches and develop a neural ranker that combines
information from both types of features.

Information about the rule is captured by handpicked features:
depth of rule, count of predicates used, number of arguments, mean
length of arguments, number of cells and data type of column,
percentage of cells that satisfy the rule, accuracy with respect to
approximated labels (𝑓) and source of constant arguments (cell
value, statistical value, popular constant, delimiter or trie).

Information about the column data is captured by turning the
column into a sequence of words and using a pre-trained language
model (BERT) [6] to obtain cell-level embeddings. These embed-
dings are augmented with information about the execution of the
rule through cross-attention [21].

Both the rule and data representations previously described are
concatenated and passed to a linear layer with sigmoid activation
to produce a single score. This score thus combines both syntac-
tic (rule) and semantic (data and execution) information. Figure 5
shows an overview of our ranking architecture.

We train the ranking model by treating this problem as binary
classification of the correctness of learned rules and we use the
output of the final linear layer after sigmoid activation as the rule
score. To generate training data we apply Cornet up to the rule
enumeration step using 1, 3, and 5 examples on a held-out dataset
of columns with ground-truth conditional formatting rules. We
keep rules that do not match the user rule as negative samples and
rules that do match the user rule as positive examples. Additionally,

we apply user rules on other columns to obtain both positive (by
construction) and negative (by the procedure above) examples. This
process results in 174K examples for our ranking model.

TextEquals("in-progress")

Manual
features Cross attention

Linear layer

BERT

Concatenate

Linear layer +
Sigmoid

1 2

3

Figure 5: Ranking model: 1○ model inputs - rule to be scored

and the corresponding data column; 2○ the column encoding

model pools BERT token embeddings, passes them through

cross attention with the rule’s execution outputs (formatted

or not), and then through a linear layer; and 3○ the resulting

embedding is concatenated with manually-engineered rule

features and fed into a final linear layer which outputs the

score after applying a sigmoid activation.

4 BASELINES

As we are the first to introduce the problem of learning conditional
formatting rules from examples, there are no existing systems that
tackle this task. We therefore adapt a variety of approaches related
to this problem. Six approaches are symbolic, five of which are
able to generate rules. Three neural approaches cast conditional
formatting as cell classification and we consider different baseline
models and cross-attention mechanisms. The following sections
describe these baselines in more detail. We focus on the case where
we have a single format identifier.

4.1 Symbolic

4.1.1 Decision trees. We fit a decision tree with formatted and
unformatted cells as positive and negative examples, respectively.
We consider two variations of encoding cells. In the first one, raw
cell values are passed to the decision tree, where text columns
are categorically encoded. This encoding does not allow learning
rules that involve partial strings, summary statistics for numbers
or date parts. In the second encoding, we therefore use the outputs
of our generated predicates as features for cells. In the latter case,
we perform an additional improvement by allowing the splitting
criterion to use our ranker when impurity is equal across different
predicates. There are then three decision tree baselines in total.

4.1.2 ILP. We cast conditional formatting as an inductive logic
programming (ILP) problem over the same grammar of rules as
Cornet. This requires examples (both positive and negative) and
background knowledge as input and learns a program that satisfies
the examples using the background knowledge. In our setting, the

2636

background knowledge consists of the grammar and the constants
extracted from the column. Again, we consider two variants by
using raw cell values and by augmenting the grammar to use our
generated predicates. We use popper [5], a state-of-the-art ILP tool.

Example 5. Consider a numerical column with values [7, 6, 3, 4].

An excerpt of the background knowledge is

Le s sThan (A , B) : − A < B .

c o n s t 1 (7) . c o n s t 2 (6) . c o n s t 3 (3) . c o n s t 4 (4) .

where the first line defines a predicate and the second line defines

constants that the predicate can use. We define col (A) as the predicate

to be learned and give col (3) and col (6) as a positive and negative

example, respectively. The program produced by popper is

c o l (A) : = Le s sThan (A , B) .

B : = c o n s t 4 (4) .

4.1.3 Constrained Clustering. Conditional formatting can be treated
as a constrained (cell) clustering problem where clusters must re-
spect the provided formatted examples. COP-KMeans is a 𝑘-means
based clustering strategy that supports linkage constraints for clus-
ters [37]. Besides a distance function between cells and the number
of clusters, it also takesmust-link 𝑒+ and cannot-link 𝑒− constraints
as input. We use the size of the symmetric difference between the
sets of predicates that hold for two cells to measure their distance.
The formatted examples and the implicit negative examples are
used to populate 𝑒+ and 𝑒− . All pairs of formatted cells and pairs
of negative cells are in 𝑒+. All pairs consisting of a formatted and
an implicit negative example are in 𝑒− . For example, in Figure 5, 𝑒+
contains the positive pair (RW-187, RW-159) and the negative pair
(RS-762, RW-131-T). The mixed pair (RW-187, RS-762) is in 𝑒− .

4.2 Neural

To build neural baselines, we frame conditional formatting as a
table/cell classification problem and pick state-of-the-art models
from this domain. Two of these neural approaches are based on
table embedding models and one is built on top of a language model.
All neural baselines are fine-tuned on our 80K training tasks.

4.2.1 TAPAS. TAPAS [17] is a table encoding model trained for
sequential question answering (SQA). We apply it to conditional
formatting by using it to encode the input column and getting an
embedding for each cell and applying cross-attention between the
formatted cells and the rest of the column. A linear layer followed
by a sigmoid activation is used to make a prediction (formatted or
unformatted) for each cell. Figure 6 (a) describes the architecture.

4.2.2 TUTA. TUTA [38] is a tree based transformer model that is
pre-trained on multiple table-related objectives. One of the down-
stream tasks it has been fine-tuned for is cell type classification
(CTC). TUTA uses cell values in a table along with their position,
data type and formatting information to predict the role of a cell.
By considering formattings as cell types, we fine-tune it to predict
the format of each cell from a partially annotated column.

4.2.3 BERT. Finally, we use an architecture similar to the TAPAS
baseline, but use the BERT language model [6] to produce column
embeddings. Each cell in a column is tokenized, the tokens for dif-
ferent cells are concatenated with a separator token in between,

Cross attention

Linear (Sigmoid)

TAPAS

(a) Baseline using TAPAS table

embedding model.

Cross attention

Linear (Sigmoid)

BERT

(b) Neural baseline with BERT.

Cells are tokenized, embedded

and average pooled.

Figure 6: Two custom neural baseline architectures in our

evaluation. We cast conditional formatting as cell classifi-

cation. Green cells represent formatted examples. TAPAS

directly encodes all formatted cells to a single embedding

while BERT does a cell level embedding.

this sequence of tokens is embedded, and cell-level embeddings
are obtained by average pooling. Tokenization and average pooling
is also used to obtain individual cell embeddings for the positive
examples. A cross attention layer, where the full column provides
queries (Q) and formatted cells provide keys (K) and values (V),
is used to combine these embeddings—a thorough discussion on
attention in transformers is given in [36]. Finally, a linear layer fol-
lowed by a sigmoid activation converts the cross embedding output
to predictions for each cell. Figure 6 (b) shows the architecture.

5 EVALUATION

We perform experiments to answer the following questions:
Q1. Is Cornet able to quickly and correctly learn conditional

formatting rules from few examples?
Q2. How do our design decisions (clustering, iterative learning

and ranking) impact learning time and correctness?
Q3. How do properties of the input table (number of examples,

row order and column type) impact learning?
Q4. Can Cornet learn rules that are shorter than those au-

thored by users?
Q5. Can Cornet learn rules for spreadsheets that users format-

ted manually?
Additionally, we investigate two dimensions of generality – gen-

eralizing to related data tasks and generalizing to complex multi-
column conditional formatting scenarios – through case studies:
CS1. We apply Cornet to two related problems: data filtering

and learning the conditions for conditional formulas (IF).
CS2. We evaluate Cornet on the rare cases where the condi-

tion spans multiple columns (0.9% of cases in our CF rule
corpus).

5.0.1 Benchmarks. To train and evaluate Cornet, we leveraged
a corpus of 1.8 million publicly available Excel workbooks from
the web. Among these, 236.5K workbooks contain at least one CF
rule added by users. In total, we extracted 410.6K CF rules and their
corresponding cell values and formatting. We deduplicate files by
filename, sheets by column headers and rules by exact syntactic

2637

Table 3: Average properties of benchmark problems divided

by type. Rule depth is defined as the tree depth of the abstract

syntax tree produced by parsing the rule using our grammar.

Type Rules # Cells # Formatted Rule Depth

Text 13.81 K 107.5 32.1 2.3
Numeric 9.32 K 184.8 111.2 1.8
Date 1.87 K 73.3 23.5 1.7
Total 25 K 133.7 60.9 2.1

match. Furthermore, we remove rules that operate on less than
five cells, format the entire column or only format a single cell.
After deduplicating and filtering, we retain 105K tasks where a task
consists of a (formatted) column and the associated CF rule. Table 3
shows a summary of the benchmarks. We split the 105k tasks into
a train set of 80K, which we use for training Cornet and baselines,
and a test set of 25K tasks, which we use for evaluation. 3

5.0.2 Evaluation Metrics. To evaluate learned rules against user-
written rules, we consider three metrics: exact match, execution
match and cell match. Exact match is a syntactic match between
a learned rule and the user-written rule, with tolerance for differ-
ences arising from white space and alternative argument order,
which do not impact execution. Execution match consists of exe-
cuting two rules and comparing the formatting produced —there
is an execution match if the formatting are identical. In addition
to capturing the fact that different rules can produce the same for-
matting, execution match allows us to evaluate against baselines
that directly predict formatting rather than produce rules. This dis-
tinction between exact and execution match is also made in related
areas, such as natural language to code [23, 31]. We also report
cell-level precision and recall over the predicted and the ground
truth formatting. These are micro-averaged over all tasks. We refer
to these two metrics as Cell Match.

Example 6. Because they are equivalent after removing spaces and

swapping (equivalent) argument order, OR(Equals(10), Equals(20))
and OR(Equals(20),Equals(10)) are an exact match. On the other

hand, TextStartsWith("D12") and TextContains("D12") are not an exact
match because the rules are not equivalent. These may be an execution

match on a column that only has "D12" at the start of values.

5.1 Q1. Performance

Table 4 presents an overview of our results. Cornet outperforms
symbolic and neural baselines on both exact and execution match
metrics. Both popper and decision treemethods performworse than
Cornet even when provided with Cornet’s predicates. TUTA is
the only neural model that is competitive with symbolic methods—
likely due to being trained for cell type classification. However,
TUTA does not do well at capturing syntactic patterns. and as a
result does not perform as well as Cornet. Cornet is the only ap-
proach that achieves, on average, both high recall (97.8%) and high
precision (92.2%). Symbolic methods achieve high precision but low

3The benchmarks are released and can be accessed at github.com/microsoft/prose-
benchmarks/tree/main/ConditionalFormatting

10 50 100 500 1000
Length of Column

0

200

400

600

800

1000

R
ul

e
Le

ar
ni

ng
 T

im
e

(m
s) 1334 1836 2084 2257 2312

CORNET Decision Tree TUTA Popper

Figure 7: Rule learning time in milliseconds plotted against

the number of cells in a column. We compare Cornet with

the fastest and best (execution match) symbolic methods

(decision tree and Popper, respectively) and the fastest and

best (execution match) neural method (TUTA). Cornet is

faster than both TUTA and Popper by over half a second.

recall, indicating poor generalization. Neural methods achieve high
recall, but low precision, indicating too aggressive generalization.

5.1.1 Limitations of Baselines. Our symbolic baselines are limited
to learning a single rule, whereas Cornet learns multiple rules and
then uses more context to rank them. Neural models are heavily
dependent on tokenization and mainly appear to capture semantic
properties. This makes them less effective in cases that require
identifying syntactic patterns, which is often the case for CF rules.
In rare cases, this ability to capture the semantic meaning of text
gives neural models an advantage overCornet. For example, TUTA
is able to color cells that contain High or Medium even though
the single formatted example provided is High, whereas Cornet
would only color High. A second advantage of neural models is that
they are not bound by our conditional formatting grammar and
can support some scenarios that require arbitrary Excel formulas.
While Cornet does not support such cases, our analysis shows
they are rare in practice (377 cases in our full corpus).

5.1.2 Execution Time. We also evaluate the time required by each
system to predict formatting as a function of the number of cells
in the target column. Figure 7 shows the average time taken to
predict a rule as a function of the increasing number of cells in a
column. We show results for Cornet, the fastest (decision tree)
baseline and the symbolic (Popper) and neural baselines (TUTA)
with highest execution match. Learning multiple shallow decision
trees (Cornet) is faster than learning one large one. TUTA is backed
by a medium-sized neural network (110M parameter) that makes
inference slow in our testing environment, which has resources
beyond those that a target CF user would typically have. Popper is
the slowest out of these baselines as the hypothesis space quickly
explodes as a result of predicate generation for different cells.

5.1.3 Memory Consumption. Table 5 shows the total amount of
disk space required to store a system, and the average CPU and
GPU memory used for prediction over benchmarks for Cornet
and neural baselines. Cornet uses BERT for ranking, hence their

2638

Table 4: Comparison of Cornet with neural and symbolic baselines. We report exact and execution match for 1, 3 and 5 user

formatted examples. We report cell match using 3 formatted examples. “Rules” denotes if an approach generates symbolic rules.

Cornet outperforms neural and symbolic baselines in both execution and exact rule match. Cornet achieves high precision

and recall, given 3 formatted examples, compared to symbolic/neural systems which have low recall/precision, respectively.

System description Execution match Exact match Cell match (3 ex.)

Name Technique Rules 1 ex. 3 ex. 5 ex. 1 ex. 3 ex. 5 ex. Precision Recall

Decision Tree Symbolic Yes 47.2 58.3 63.2 20.3 27.2 31.1 93.1 69.7
Decision Tree + Predicates Symbolic Yes 55.5 66.9 71.7 40.2 49.1 50.6 91.3 76.4
Decision Tree + Predicates + Ranking Symbolic Yes 56.1 68.7 73.5 43.8 51.5 52.9 92.5 84.6
Popper Symbolic Yes 56.2 63.4 67.8 45.6 53.5 57.1 94.0 77.0
Popper + Predicates Symbolic Yes 58.3 68.9 74.1 46.1 54.2 57.8 95.0 80.4
Constrained Clustering Symbolic No 51.7 61.9 66.4 – – – 79.3 89.2
TUTA for Cell Type Classification Neural No 57.4 66.1 69.3 – – – 85.3 92.8

TAPAS + Cell Classification Neural No 44.3 55.8 59.4 – – – 77.2 83.5
BERT + Cell Classification Neural No 40.6 54.9 60.2 – – – 73.4 81.0
Cornet Neuro-symbolic Yes 66.3 78.2 82.8 50.8 59.8 63.2 97.8 92.2

Table 5: Total disk space and average memory used in

megabytes for inference over benchmark tasks for Cornet

and neural baselines. Cornet needs GPU resources because

it uses a neural ranker based on BERT. Cornet with sym-

bolic ranker is lightweight with a disk space of only 2.7MB.

System Disk Space CPU Memory GPU Memory

TUTA 722.4 5.4 1335.2
TAPAS 443.6 2.3 1416.8
BERT 416.7 4.4 775.9
Cornet 419.2 21.3 804.2
Cornet Symbolic 2.7 32.4 0.0

similar footprint. The overhead for the rest of Cornet is minimal—
with a symbolic ranker it uses only 2.7MB of memory. Section 5.2.3
describes the symbolic ranker for low-resource environments.

5.2 Q2. Impact of Design Decisions

We discuss the impact of the three main components in Cornet:
semi-supervised clustering, iterative rule learning, and ranking.

5.2.1 Clustering. First, we carry out experiments with three dif-
ferent versions of our clustering approach and show the results in
Table 6. First, no clustering removes the semi-supervised cluster-
ing step altogether. It considers user formatted cells to be positive
examples and all unlabeled cells to be negative examples. Note
that this ablation can still learn rules (with worse performance)
because the iterative tree learning procedure in Cornet only re-
quires satisfying the user formatted examples and tolerates noise
in other examples through the accuracy threshold during learning.
Second, we consider a version of clustering where there are only
two clusters: one for user formatted cells (positive examples) and
one for all unassigned examples. Upon termination, all cells still
in the unassigned cluster are relabeled as negative examples. We
label this no negative examples in our results table. Third, we con-
sider a version that only has hard negative examples by setting the

Table 6: Execution match for the top rule with 1, 3 and 5

examples, average number of candidates and learning time

(in milliseconds) for different clustering configurations.

Model 1 ex. 3 ex. 5 ex. candidates t (ms)

No clustering 58.7 74.4 79.3 122.7 104
No neg. examples 61.8 75.3 80.5 42.2 152
Hard neg. examples 63.7 76.6 81.9 20.1 174
Cornet 66.3 78.2 82.8 22.5 187

weight of labeled and unlabeled cells equal during iterative tree
learning—see Section 3.3 for details.

Table 6 shows accuracy and number of candidate rules for each
of these clustering versions. We find that clustering reduces the
number of candidates by 80%, which allows ranking to select a
better rule. Not using negative examples drops performance with
1 example by 4.5%. Hard negatives constrain the search space too
much with a 2.6% failure rate in finding desired rule with 1 example.

5.2.2 Iterative Rule Learning. Iterative learning allows Cornet
to learn multiple candidate rules and then rank them separately.
However, this iterative procedure is greedy and as a result is not
complete—it only considers a subset of all possible rules. To evaluate
the extent to which this impacts performance, we compared our
greedy approach to an iterative full search up to tree depth 5.

In Figure 8, we compare the top-1 and top-all execution match
accuracy for iterative greedy search (Cornet), a single decision
tree and an exhaustive search with a maximal depth of five. As
expected, Cornet is slightly less expressive and loses about 3%
execution match accuracy on average against the full search, but
this effect reduces as more examples are given.

In Figure 9, we compare the learning time for Cornet, single
decision tree and the exhaustive search strategy as a function of
the depth of the rule. Our results indicate that Cornet can be up
to 40x to 80x faster than an exhaustive search, despite the small
decrease in execution match accuracy as shown in Figure 8.

2639

2 4 6 8 10
Number of Formatted Examples

60

65

70

75

80

85

Ex
ec

ut
io

n
M

at
ch

 A
cc

ur
ac

y

Full Search (Top 1)

CORNET (Top 1)

Decision Tree

(a) Execution Match on Top-1

2 4 6 8 10
Number of Formatted Examples

60

70

80

90

Ex
ec

ut
io

n
M

at
ch

 A
cc

ur
ac

y

Full Search (Top All)

CORNET (Top All)

Decision Tree

(b) Execution match on Top-All

Figure 8: (a) Top-1 and (b) top-all execution match accuracy

for increasing number of examples for Cornet, a decision

tree and an exhaustive search. Cornet sacrifices only 3%

and 8% in top-1 and top-all execution match accuracy, respec-

tively, compared to a depth-bounded (to 5) exhaustive search.

1 2 3 4 5
Depth of Rule

0

100

200

300

400

500

R
ul

e
Le

ar
ni

ng
 T

im
e

(m
s) 903 1966 4341 8962

CORNET Decision Tree Full Search

Figure 9: Rule learning time in milliseconds for increasingly

deeper rules. We compare Cornetwith a single decision tree

and a bounded depth exhaustive search. Cornet is much

faster than the exhaustive search and scales better as the

depth of the target rule grows.

5.2.3 Ranking. Finally, we compare the neural ranker with two
ablated versions: a purely symbolic ranker that only uses a linear
combination of the handpicked features, and a purely neural ranker
that replaces the handpicked features with a CodeBERT [13] en-
coding of the formatting rule. Table 7 shows that combining both
sources of information outperforms both ablated versions. Note
that the symbolic ranker is only about 4% worse than the combined
ranker while requiring significantly less computation and memory,
as it does not use a large neural model. This symbolic ranker is a
good alternative in resource constrained domains.

5.3 Q3. Impact of Input Configuration

The exact input to Cornet has an effect on its performance. We
thus study how different properties of this input, like the number of
formatted examples, order of examples, and number of unformatted
cells, affect the performance of Cornet.

First, the number of examples that a user provides influences the
accuracy. Ideally, this influence diminishes after a certain number
of examples. Figure 10 shows this dependency on the provided

Table 7: Execution match within top-𝑘 candidates with 3

formatted examples for different ranking models. Top-all

represents the performance of an oracle ranker. #pm shows

the number of trainable parameters in the model. Cornet

outperforms both ablated versions.

Ranker #pm top-1 top-3 top-5 top-10 top-all

Symbolic 45 73.4 74.4 75.2 75.8 84.3
Neural 124M 74.4 76.1 76.9 79.4 84.3
Cornet 1.7M 78.2 80.4 81.8 82.8 84.3

1 3 5 7 9 11 13 15
Number of Formatted Examples

50

60

70

80

90

Ex
ec

ut
io

n
M

at
ch

 A
cc

ur
ac

y

Text

Total

Date Time

Numeric

Figure 10: Execution match over the number of formatted

examples for different columndata types.Cornethas higher

accuracy for Text and DateTime columns. Numeric columns

require more examples, given the larger search space.

number of examples, which varies significantly across data types.
For text, two examples is sufficient for more than 90% of the cases.
For numbers, performance steadily improves until 15 examples are
provided. We hypothesise that more examples are needed in the
numeric cases because constants in numeric rules are harder to
learn—examples close to the decision boundary are needed, which
might only appear lower in the column. When suggesting rules
to users, we can thus be more conservative in numeric columns.
Note that rules for text columns are on average longer than those
for numbers (2.9 predicates versus 1.6) and we can more quickly
suggest rules in cases that may be harder for the user.

Second, we investigate the impact of the number of unformat-
ted cells on performance. Less data, and thus fewer unformatted
cells, might be available when deploying systems like Cornet in
browsers or on mobile devices. Our aim is to estimate the minimum
number of unformatted cells needed for acceptable performance.
Figure 11 shows how accuracy increases with the number of unfor-
matted cells for different numbers of formatted cells. Performance
gains diminish after more than 20 unformatted cells, across settings
which provide 1, 3, and 5 formatted examples.

Third, we evaluate the effect of the order in which the user
provides examples. To do so, we take each formatting task and
randomly shuffle the formatted (positive) rows in the column five
times to create five random orderings. For each shuffled task, we
apply Cornet to an increasing number of formatted examples
to learn a rule. We compute three statistics from this. First, we
compute an all-shuffles execution match accuracy, which is the
fraction of tasks where Cornet achieves execution match in all

2640

0 20 40 60 80 100
Number of Unformatted Rows

40

60

80

Ex
ec

ut
io

n
M

at
ch

 A
cc

ur
ac

y

1 Examples

3 Examples

5 Examples

Figure 11: Execution match over the number of unformat-

ted rows for different number of formatted examples given.

Cornet is able to generalize with as few as 20 unformatted

examples after which performance stabilizes.

1 2 3 4 5 6 7 8 9 10
Number of Formatted Examples

60

70

80

90

Ex
ec

ut
io

n
M

at
ch

 A
cc

ur
ac

y

At least one Shuffle

Average

All Shuffles

Figure 12: Executionmatch in our shuffling experiments. We

report execution match for tasks where Cornet achieves

execution match in all shuffles, at least one shuffle, and on

average. We find that formatted example order impacts exe-

cution match accuracy, but the average performance is com-

parable to that achieved with the original user’s cell order.

five shuffled orderings. Second, we compute an at-least-one-shuffle

execution match accuracy, which is the fraction of tasks where
Cornet achieves execution match in at least one shuffled ordering.
Finally, we report an average execution match accuracy where we
simply report the fraction of tasks and orderings where Cornet
learns a rule with the correct execution match.

Figure 12 reports the results over these shuffling experiments.
We found that there is a 9% difference between the all-shuffles and
at-least-one-shuffle execution match accuracy at three formatted
examples, showing that there can indeed be an effect in the ordering
of formatted examples. However, the original example order—used
in all other experiments for this work—roughly aligns with the
average accuracy found in these shuffling experiments.

5.4 Q4. Simplicity of Rules

When comparing execution match and exact match, we find that
these metrics are roughly 20% apart for any given amount of exam-
ples. This suggests that Cornet learns rules that are syntactically
different from rules that users write, while resulting in the same for-
matting. Our experiments show that often,Cornet actually learns a
simpler rule. We use rule length as a proxy for simplicity, as shorter

2 4 6 8 10
Number of Formatted Examples

0

20

40

60

80

100

Pr
op

or
ti

on

Syntactic Match

Shorter

Same Length

Longer

Figure 13: Comparing the rules learned by Cornet against

user rules for tasks where the user wrote a custom condi-

tional formatting formula (rather than choose a predefined

template), we find that Cornet produces shorter rules in

approximately 60% of the cases.

rules are easier to interpret, write, and maintain. This notion of
length-based simplicity has been used in prior PBE systems [8].

We treat all functions, operators and arguments as individual
tokens and define the length of the rule as the associated count of
tokens. For example, IF(A1="Not Applicable", TRUE, FALSE) consists
of tokens {IF, =, "Not Applicable", TRUE, FALSE} and thus has a
length of 5. Similarly, GreaterThan(10) has a length of 2.

In Figure 13, we consider all tasks where the user wrote a custom
conditional formatting formula—not a predefined template—and
we compare lengths of these formulas with the rules learned by
Cornet. We find that in the majority of cases (∼60%) Cornet
learns shorter rules, while maintaining execution match. As more
examples are given, Cornet seems to learn comparatively longer
rules. This happens because tasks that need more examples to be
solved are more likely to require a (longer) complex rule.

We also found that reductions in formula length can be substan-
tial: for complex rules, where we need up to 5 examples to learn
a rule, the Cornet rule can be on average up to 65% shorter than
the user-written rule. Figure 14 shows the average formula length
reduction as a function of the length of the original user formula.
In cases where Cornet requires more examples, rules are more
complex and Cornet can provide greater reductions. This suggests
that Cornet can be used for rule refactoring as well.

Some concrete examples of user rules and the associated Cornet
rules are shown in Table 8. When Cornet learns a shorter rule,
the user has often resorted to a custom formula instead of using a
built-in predicate. When the length is the same, Cornet either uses
the same predicate with a different constant or a different predicate
with the same constant. For different constants, due to enumeration,
Cornet yields less precise numbers (10 versus 10.5). For different
predicates, due to ranking, Cornet is generally more conservative
and yields more specific rules (Equals versus Contains).

5.5 Q5. Manual (re)Formatting

Not all users are aware of CF and manually format spreadsheets.
We study the extent to which Cornet can help with discoverability
of this feature. We analyze manually formatted columns. From our
corpus of spreadsheets, we sample 100K columns with at least 5

2641

2 4 6 8 10
Length of User Written Rule

0

20

40

60

A
vg

. L
en

gt
h

R
ed

uc
ti

on
 (%

)

1 Example

3 Example

5 Example

Figure 14: Average reduction length (in %) achieved by Cor-

net’s rule, as a function of user-written rule length, given

1, 3, and 5 examples for cases with execution match. With

more examples, Cornet achieves execution match for more

complex rules, which it can simplify to a greater extent.

Table 8: Examples comparing rules generated by Cornet

to user written rules. The cases shown are where Cornet

produces the correct execution and simplifies the rule, learns

a different rule of the same length or learns a longer rule.

Length Cornet Gold Rule

Shorter TextStartsWith("Dr") IF(LEFT(A1,2)="Dr",TRUE,FALSE)
GreaterThan(5) IF(NOT(A1<=5), TRUE)
TextContains("Pass") ISNUMBER(SEARCH("Pass",A1))

Equal TextEquals("Aramco") TextContains("Aramco")
GreaterThan(10) GreaterThan(10.5)
TextEndsWith("ARM") TextContains("_ARM")

Longer OR(Equal(0),Equal(1)) NOT(Equal(-1))
NOT(TextEquals("OK")) TextContains("Not")

non-empty cells, of which at least 3 have a custom background
color applied without CF. Figure 15 shows some examples.

First, we provide Cornet with all formatted cells to learn a rule.
If the learned rule has fewer predicates than formatted cells, we
heuristically label this as a case where the user could have written
a rule. We find 93.4K such columns. This distribution is shown in
Figure 16a. Our results show that 80% of these learned rules have 3
or fewer predicates, which may benefit interpretability. Next, for all
the columns identified, we find the minimal number of examples the
user could have given to Cornet to obtain their desired formatting.
The distribution of minimum number of examples needed for these
cases is shown in Figure 16b. We find that Cornet learns over 90%
of the rules with 4 or fewer examples.

5.6 CS1: Filtering and Conditional Formulas

Generating predicates and learning binary classifiers from few
examples can be applied to related problems. We explore two such
related problems in tabular data: filtering rows of data and learning
the condition for conditional formulas. Filtering maps naturally to
CF, as hidden and visible cells can be treated as unformatted and
formatted, respectively. Similarly, we can map the true and false
branches of a conditional formula to formatted and unformatted.

Figure 15: Examples of columns with manual cell formatting

but no CF Rules along with Cornet’s learned rule (below)

0 1 2 3 4 5 6 7 8 9 10 10+
Number of Predicates

0K

10K

20K

30K

N
um

be
r

of
 C

ol
um

ns

(a) Predicates

0 1 2 3 4 5 6 7 7+
Number of Examples

0K

10K

20K

30K

40K

N
um

be
r

of
 C

ol
um

ns

(b) Examples

Figure 16: Histograms showing (a) the number of predicates

in the CF rule learned by Cornet for users’ manual format-

ting and (b) the minimum number of examples needed by

Cornet to learn that CF rule. Cornet is able to learn more

than 90% of these rules with fewer than 4 examples.

We consider data filtering in both Excel (from our corpus and
StackOverflow) and Python (from StackOverflow). We sourced 330
filters that users created through the spreadsheet interface from a
sample of 20K workbooks, 33 FILTER formulas from StackOver-
flow posts, which either use the interface or a custom FILTER,
and 87 Python (Pandas) filtering tasks from StackOverflow.

We sampled 250 conditional formulas from the same subset
of spreadsheets used to sample filtering tasks. The conditional
formulas we consider are of the form =IF(𝑐, 𝑎, 𝑏) where 𝑎 and
𝑏 do not contain nested IF operators, and where 𝑐 only mentions a
single column. Learning conditional (𝑐) in formulas is an important
problem studied extensively in programming-by-example [15].

Results for both problems are shown in Figure 17. We found that
the filtering tasks resulted in higher performance than learning
formula conditionals. We believe this is a result of our grammar,
which is well aligned with the predicates available in the filtering
interface and those often used in the FILTER function. In contrast,
conditional formulas may use different functions, as well as use
numeric conditions more often. Extending Cornet’s grammar with
such predicates could help mitigate this performance difference.

2642

1 3 5 7 9 11 13 15
Number of Formatted Examples

70

80

90

Ex
ec

ut
io

n
M

at
ch

 A
cc

ur
ac

y

Filter Rules

Formula Conditionals

Figure 17: Case study: Cornet performance for filtering and

learning conditions as a function of the number of examples.

Performance is consistently higher for filtering tasks.

1 3 5 7 9 11 13 15
Number of Formatted Examples

40

60

80

Ex
ec

ut
io

n
M

at
ch

 A
cc

ur
ac

y

Single Column

Multi Column

Figure 18: Case study: Cornet performance on rules over

multiple columns. More examples are required for the same

performance, if the rule involves multiple columns.

5.7 CS2: Conditions over Multiple columns

We extended Cornet to learn conditions over multiple columns. In
this extension, predicates that accept two arguments can instantiate
those arguments over cells that are in the same row but in different
columns. For example, if 𝑐𝐴

𝑖
and 𝑐𝐵

𝑖
are the 𝑖th cell in columnA and B,

respectively, then greater(𝑐𝐴
𝑖
, 𝑐𝐵

𝑖
) is a valid predicate. We introduce

an optimizing assumption to keep the number of predicates linear
in the number of columns considered: that one of the cells in pair
predicates must be in the column being formatted. Note that multi-
column CF rules are relatively uncommon: in our corpus of 410.6K
rules, we found 3647 (0.9%) that required more than one column.

Figure 18 summarizes the performance of Cornet for single and
multi-column cases. For learning rules over multiple columns, the
number of examples needed for high performance increases. This
is expected as the number of candidates in the search space and
rule complexity is exponentially higher for multi-column cases.

6 RELATEDWORK

Despite the large spreadsheet userbase, there have been relatively
few formal studies on CF. [28] gives detailed coverage of how this
feature works in the context of Excel. [1] discusses how CF in Excel
can improve the demonstration of mathematical concepts.

Recent progress in automatic table formatting includes [7] which
describes CellGAN, a conditional Generative Adversarial Network
model which learns the hierarchical headers and data groups in

tables. Other work like [18, 24] focus on formatting cells based on
table structure and cell sizes. In contrast, Cornet targets example
based data formatting, and generates the associated formatting rule.

Cornet uses a programming-by-example (PBE) paradigm, which
has been popularized by systems like FlashFill [15] and FlashExtract
[20]. These systems, which are available in Excel, learn string trans-
formation and data extraction programs from few input-output
examples. Popper [5] is another popular inductive logic program-
ming (ILP) system for learning programs by specifying examples.

In terms of search techniques, [25, 32] use goal-driven top-down
symbolic backpropagation. This is not applicable in our setting
because the boolean signal (i.e., is a cell formatted) is too-weak to
derive strong-enough constraints to navigate the search space. A
popular alternative in PBE is bottom-up enumeration [12, 29, 34],
which is infeasible in our setting because of the large search space.
The notion of re-interpretation in [16] finds outputs and programs
in separate DSLs. In contrast,Cornet first hypothesizes the outputs
(cell formats) and then learns the associated rule. Cornet is the
first system to take an “output-first” synthesis approach motivated
by the fact that our output space is smaller than program space.

Past work on using PBE systems on databases have shown great
success in the domain of querying [11, 22, 25] and data understand-
ing and cleaning [12]. Cornet builds upon these systems to solve
the problem of data formatting. Past PBEwork has ranked programs
using program features [9, 25] or output features [22, 27]. Cornet
uses both program and output features for ranking programs.

Neural approaches have previously been applied in various ta-
ble tasks. For example, TaBERT [39] and TAPAS [17] are popular
Question Answering systems that use a neural model to encode
the table and query. TUTA [38] is a weakly supervised model for
cell and table type classification tasks. SpreadsheetCoder [4] is a
predictive system for learning spreadsheet formulas from table con-
text. TabNet [35] predicts cell types using a neuro-symbolic model.
Unlike these systems, Cornet targets learning formatting rules.

7 CONCLUSION

In this paper, we introduced the novel problem of learning condi-
tional formatting rules from user examples. We proposed Cornet,
a system that learns such data-dependent rules from few examples.
To evaluate Cornet, we created a benchmark of 105K CF tasks ex-
tracted from 1.8 million real Excel spreadsheets. To facilitate future
research into this novel problem, we release our set of benchmarks.
To effectively evaluate Cornet, we compare performance to base-
lines by framing the problem as an ILP task, a clustering task, a
cell classification task and a table fine tuning task. We also create
custom neural and symbolic baselines for a more comprehensive
comparison and result analysis. We study how Cornet can help
with discoverability of CF and learn shorter CF rules. Finally, we
present two case studies applying Cornet to other related data
tasks and multi-column formatting. Cornet opens future work like
predictive CF rule learning and conditional data transformations.

ACKNOWLEDGMENTS

We would like to thank Yair Helman, Almog-Ben Kandi, Sophie
Gerzie, Avital Nevo, Israela Solomon, Christian Poelitz and Yoav
Hayun for their feedback on this research.

2643

REFERENCES

[1] Sergei Abramovich, Stephen Sugden, Sergei Abramovich, and Stephen J Sug-
den. 2004. Spreadsheet Conditional Formatting: An Untapped Resource for
Mathematics Education. Spreadsheets in Education 1 (2004), 85105.

[2] Titus Barik, Kevin Lubick, Justin Smith, John Slankas, and Emerson Murphy-Hill.
2015. Fuse: a reproducible, extendable, internet-scale corpus of spreadsheets. In
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE,
IEEE/ACM, Florence, Italy, 486–489.

[3] Hendrik Blockeel and Luc De Raedt. 1998. Top-down induction of first-order
logical decision trees. Artificial intelligence 101, 1-2 (1998), 285–297.

[4] Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max
Lin, and Denny Zhou. 2021. SpreadsheetCoder: Formula Prediction from Semi-
structured Context. In Proceedings of the 38th International Conference on Machine

Learning (Proceedings of Machine Learning Research), Marina Meila and Tong
Zhang (Eds.), Vol. 139. PMLR, virtual, 1661–1672. https://proceedings.mlr.press/
v139/chen21m.html

[5] Andrew Cropper and Rolf Morel. 2021. Learning Programs by Learning from
Failures. Mach. Learn. 110, 4 (Apr 2021), 801–856. https://doi.org/10.1007/s10994-
020-05934-z

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Tech-

nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1

(Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio
(Eds.). Association for Computational Linguistics, Minneapolis, USA, 4171–4186.
https://doi.org/10.18653/v1/n19-1423

[7] HaoyuDong, JinyuWang, Zhouyu Fu, Shi Han, andDongmei Zhang. 2020. Neural
Formatting for Spreadsheet Tables. In Proceedings of the 29th ACM International

Conference on Information & Knowledge Management (Virtual Event, Ireland)
(CIKM ’20). Association for Computing Machinery, New York, NY, USA, 305–314.
https://doi.org/10.1145/3340531.3411943

[8] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems. Association for Computing Machinery, New York,
NY, USA, 1–12. https://doi.org/10.1145/3313831.3376442

[9] Kevin Ellis and Sumit Gulwani. 2017. Learning to Learn Programs from Examples:
Going Beyond Program Structure. In IJCAI 2017 (ijcai 2017 ed.). IJCAI 2017,
Melbourne, Australia, 1638–1645. www.microsoft.com/research/publication/lea
rning-learn-programs-examples-going-beyond-program-structure/

[10] Microsoft Excel. 2022. Excel Tech Help Forum. https://techcommunity.microsof
t.com/t5/forums/searchpage/tab/message?q=conditional%20formatting. Last
Accessed: 2022-06-30.

[11] Anna Fariha and Alexandra Meliou. 2019. Example-Driven Query Intent Discov-
ery: Abductive Reasoning Using Semantic Similarity. Proc. VLDB Endow. 12, 11
(jul 2019), 1262–1275. https://doi.org/10.14778/3342263.3342266

[12] Anna Fariha, Ashish Tiwari, Alexandra Meliou, Arjun Radhakrishna, and Sumit
Gulwani. 2021. CoCo: Interactive Exploration of Conformance Constraints
for Data Understanding and Data Cleaning. In Proceedings of the 2021 Inter-

national Conference on Management of Data (Virtual Event, China) (SIGMOD

’21). Association for Computing Machinery, New York, NY, USA, 2706–2710.
https://doi.org/10.1145/3448016.3452750

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In EMNLP 2020.
Association for Computational Linguistics, Online, 1536–1547. https://doi.org/
10.18653/v1/2020.findings-emnlp.139

[14] Marc Fisher and Gregg Rothermel. 2005. The EUSES spreadsheet corpus: a
shared resource for supporting experimentation with spreadsheet dependability
mechanisms. In Proceedings of the first workshop on End-user software engineering.
Association for Computing Machinery, New York, NY, USA, 1–5.

[15] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets using
Input-Output Examples. In PoPL’11, January 26-28, 2011, Austin, Texas, USA.
Association for Computing Machinery, New York, NY, USA, 317–330. https:
//www.microsof t.com/en-us/research/publication/automating- string-
processing-spreadsheets-using-input-output-examples/

[16] Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radicek, and Mohammad Raza.
2020. Structure interpretation of text formats. In Object-Oriented Programming,

Systems, Languages & Applications (OOPSLA). ACM, Association for Computing
Machinery, New York, NY, USA, 29. https://www.microsoft.com/en-us/researc
h/publication/structure-interpretation-of-text-formats/

[17] Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. Tapas: Weakly Supervised Table Parsing
via Pre-training. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Seattle, Washington, United States, 4320–4333. https://www.aclweb

.org/anthology/2020.acl-main.398/
[18] Nathan Hurst, Kim Marriott, and Peter Moulder. 2005. Toward tighter tables. In

Proceedings of the 2005 ACM symposium on Document engineering. Association
for Computing Machinery, New York, NY, USA, 74–83.

[19] Leonard Kaufman and Peter J Rousseeuw. 2009. Finding groups in data: an

introduction to cluster analysis. John Wiley & Sons, online.
[20] Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data extraction

by examples. In 2014 Programming Language Design and Implementation. ACM,
New York, NY, USA, 542–553. https://www.microsoft.com/en-us/research/publ
ication/flashextract-framework-data-extraction-examples/

[21] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xiaodong He. 2018.
Stacked Cross Attention for Image-Text Matching. In Computer Vision – ECCV

2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss
(Eds.). Springer International Publishing, Cham, 212–228.

[22] Hao Li, Chee-Yong Chan, and David Maier. 2015. Query from Examples: An
Iterative, Data-Driven Approach to Query Construction. Proc. VLDB Endow. 8,
13 (sep 2015), 2158–2169. https://doi.org/10.14778/2831360.2831369

[23] Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella, Bo-
jan Cukic, and Samira Shaikh. 2022. Can we generate shellcodes via natural
language? An empirical study. Automated Software Engineering 29 (2022), 1–34.

[24] Xiaofan Lin. 2006. Active layout engine: Algorithms and applications in variable
data printing. Computer-Aided Design 38, 5 (2006), 444–456.

[25] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.
2016. Exemplar Queries: A New Way of Searching. The VLDB Journal 25, 6 (dec
2016), 741–765. https://doi.org/10.1007/s00778-016-0429-2

[26] Joseph N. 2022. Number of Google Sheets and Excel Users Worldwide. https://as
kwonder.com/research/number-google-sheets-users-worldwide-eoskdoxav.
Last Accessed: 2022-07-30.

[27] Nagarajan Natarajan, Danny Simmons, Naren Datha, Prateek Jain, and Sumit
Gulwani. 2019. Learning Natural Programs from a Few Examples in Real-Time.
In AIStats. PMLR, online, 1714–1722. https://www.microsoft.com/en-us/researc
h/publication/learning-natural-programs-from-a-few-examples-in-real-time/

[28] Erich Neuwirth and Deane Arganbright. 2003. The Active Modeler: Mathematical

Modeling With Microsoft Excel. Duxbury Press, online.
[29] Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, and Charles Sut-

ton. 2021. BUSTLE: Bottom-up program-Synthesis Through Learning-guided
Exploration. ArXiv abs/2007.14381 (2021).

[30] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani,
and Todd D. Millstein. 2017. FlashProfile: Interactive Synthesis of Syntactic
Profiles. CoRR abs/1709.05725, Article 150 (2017), 28 pages. arXiv:1709.05725
http://arxiv.org/abs/1709.05725

[31] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christo-
pher Meek, and Sumit Gulwani. 2022. Synchromesh: Reliable code generation
from pre-trained language models. CoRR abs/2201.11227 (2022). arXiv:2201.11227
https://arxiv.org/abs/2201.11227

[32] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for
Inductive Program Synthesis. SIGPLAN Not. 50, 10 (oct 2015), 107–126. https:
//doi.org/10.1145/2858965.2814310

[33] Mohammad Raza and Sumit Gulwani. 2020. Web data extraction using hybrid
program synthesis: A combination of top-down and bottom-up inference. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data. Association for Computing Machinery, New York, NY, USA, 1967–1978.
[34] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev

Novik. 2014. Discovering Queries Based on Example Tuples. In Proceedings of the

2014 ACM SIGMOD International Conference on Management of Data (Snowbird,
Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY,
USA, 493–504. https://doi.org/10.1145/2588555.2593664

[35] Kexuan Sun, Harsha Rayudu, and Jay Pujara. 2021. A Hybrid Probabilistic
Approach for Table Understanding. Proceedings of the AAAI Conference on

Artificial Intelligence 35, 5 (May 2021), 4366–4374. https://ojs.aaai.org/index.php
/AAAI/article/view/16562

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[37] KiriWagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. 2001. Constrained K-
Means Clustering with Background Knowledge. In Proceedings of the Eighteenth

International Conference on Machine Learning (ICML ’01). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 577–584.

[38] Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei
Zhang. 2021. TUTA: Tree-Based Transformers for Generally Structured Table
Pre-Training. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining (KDD ’21). Association for Computing Machinery,
New York, USA, 1780–1790. https://doi.org/10.1145/3447548.3467434

[39] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data.
In Proceedings of the 58th Annual Meeting of the Association for Computa-

tional Linguistics. Association for Computational Linguistics, Online, 8413–8426.
https://doi.org/10.18653/v1/2020.acl-main.745

2644

https://proceedings.mlr.press/v139/chen21m.html
https://proceedings.mlr.press/v139/chen21m.html
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3340531.3411943
https://doi.org/10.1145/3313831.3376442
www.microsoft.com/research/publication/learning-learn-programs-examples-going-beyond-program-structure/
www.microsoft.com/research/publication/learning-learn-programs-examples-going-beyond-program-structure/
https://techcommunity.microsoft.com/t5/forums/ searchpage/tab/message?q=conditional%20formatting
https://techcommunity.microsoft.com/t5/forums/ searchpage/tab/message?q=conditional%20formatting
https://doi.org/10.14778/3342263.3342266
https://doi.org/10.1145/3448016.3452750
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/structure-interpretation-of-text-formats/
https://www.microsoft.com/en-us/research/publication/structure-interpretation-of-text-formats/
https://www.aclweb.org/anthology/2020.acl-main.398/
https://www.aclweb.org/anthology/2020.acl-main.398/
https://www.microsoft.com/en-us/research/publication/flashextract-framework-data-extraction-examples/
https://www.microsoft.com/en-us/research/publication/flashextract-framework-data-extraction-examples/
https://doi.org/10.14778/2831360.2831369
https://doi.org/10.1007/s00778-016-0429-2
https://askwonder.com/research/number-google-s heets-users-worldwide-eoskdoxav
https://askwonder.com/research/number-google-s heets-users-worldwide-eoskdoxav
https://www.microsoft.com/en-us/research/publication/learning-natural-programs-from-a-few-examples-in-real-time/
https://www.microsoft.com/en-us/research/publication/learning-natural-programs-from-a-few-examples-in-real-time/
http://arxiv.org/abs/1709.05725
https://arxiv.org/abs/2201.11227
https://doi.org/10.1145/2858965.2814310
https://doi.org/10.1145/2858965.2814310
https://doi.org/10.1145/2588555.2593664
https://ojs.aaai.org/index.php/AAAI/article/view/16562
https://ojs.aaai.org/index.php/AAAI/article/view/16562
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.18653/v1/2020.acl-main.745

	Abstract
	1 Introduction
	2 Problem Definition
	3 Approach
	3.1 Predicate Generation
	3.2 Semi-supervised Clustering
	3.3 Candidate Rule Enumeration
	3.4 Candidate Rule Ranking

	4 Baselines
	4.1 Symbolic
	4.2 Neural

	5 Evaluation
	5.1 Q1. Performance
	5.2 Q2. Impact of Design Decisions
	5.3 Q3. Impact of Input Configuration
	5.4 Q4. Simplicity of Rules
	5.5 Q5. Manual (re)Formatting
	5.6 CS1: Filtering and Conditional Formulas
	5.7 CS2: Conditions over Multiple columns

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

