
Towards Natural Language-Based Visualization Authoring

Yun Wang, Zhitao Hou, Leixian Shen, Tongshuang Wu, Jiaqi Wang,
He Huang, Haidong Zhang, and Dongmei Zhang

Abstract— A key challenge to visualization authoring is the process of getting familiar with the complex user interfaces of authoring
tools. Natural Language Interface (NLI) presents promising benefits due to its learnability and usability. However, supporting NLIs for
authoring tools requires expertise in natural language processing, while existing NLIs are mostly designed for visual analytic workflow.
In this paper, we propose an authoring-oriented NLI pipeline by introducing a structured representation of users’ visualization editing
intents, called editing actions, based on a formative study and an extensive survey on visualization construction tools. The editing
actions are executable, and thus decouple natural language interpretation and visualization applications as an intermediate layer.
We implement a deep learning-based NL interpreter to translate NL utterances into editing actions. The interpreter is reusable and
extensible across authoring tools. The authoring tools only need to map the editing actions into tool-specific operations. To illustrate
the usages of the NL interpreter, we implement an Excel chart editor and a proof-of-concept authoring tool, VisTalk. We conduct a user
study with VisTalk to understand the usage patterns of NL-based authoring systems. Finally, we discuss observations on how users
author charts with natural language, as well as implications for future research.

Index Terms—Visualization authoring, Natural language interface, Natural language understanding

1 INTRODUCTION

Modern visualization authoring systems have emerged to enable cre-
ation of expressive visualizations. Nevertheless, they involve com-
plicated GUIs and incur a steep learning curve. In recent years, as a
complementary input modality to traditional WIMP interaction, Natural
Language Interfaces (NLI) are adopted to lower the barrier of using
advanced visualization tools [53]. In contrast to WIMP interfaces,
which require complex menu items and mouse interactions, natural
language-based systems require less prior knowledge of user interfaces,
and users are not restricted to the locations of menus and buttons to
author visualizations [20, 51].

While there has been active research into natural language interfaces
for visualization systems [14,17,51,61,72], these systems are primarily
designed for analyzing and exploring data. As shown in Figure 1(a),
an analysis-oriented NLI parses NL queries (e.g., “find the relationship
between player goals and salaries across player foot.”) into analytic
tasks and data attributes, which are then translated into visualization
specifications according to visual design constraints [39, 53]. These
specifications may meet the intended analysis [9, 54], but they may not
necessarily be the most preferred ones. In fact, users typically need
to change the underlying data, specify visual encodings, and adjust
visual presentations like axes, legends, marks, and layouts (e.g., “move
the legend to the right of the chart”, “set mark to woman icon”, and
“change color to pink”). Various modern visualization tools [12,49] and
authoring systems [24,32,44,47,66,70] have recognized the importance
of rich and flexible data binding and visual configurations; however,
analysis-oriented NLIs do not fully support these diverse editing intents.

In this paper, we aim to lower the barrier to supporting NLI in vi-
sualization authoring tools. We design a pipeline (Figure 1(b)) that
decouples the natural language understanding (with a natural language
interpreter) and visualization editing command execution (by a visu-
alization application). At the core of the pipeline is a set of editing
actions. These actions are machine-executable commands for modeling

• Y. Wang, Z. Hou, H. Huang, H. Zhang, D. Zhang are with Microsoft
Research Asia (MSRA). E-mail: {wangyun,zhith}@microsoft.com.

• L. Shen is with Tsinghua University. E-mail: slx20@mails.tsinghua.edu.cn.
• T. Wu is with Carnegie Mellon University. E-mail: sherryw@cs.cmu.edu.
• J. Wang is with Oxford University. E-mail: jiaqi.wang@cx.ox.ac.uk.
• Work done during L. Shen and J. Wang’s internship at MSRA.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Data Query

Data Query

NL Analysis Query

Visualization Spec.
Generator

NL
Interpreter

Analytic
Tasks

NL Authoring
commands

Operation mapperNL
Interpreter

Data

Data
Metadata

Metadata

Editing
Actions

Visualization

Updated
Visualization

Tool-specific
operations

Render

Execute

Visualization Application

Visualization
Specification

Analysis-oriented NLI

Authoring-oriented NLI
(a) Pipeline of analysis-oriented NLI

Data Query

Data Query

NL Analysis Query

Visualization Spec.
Generator

NL
Interpreter

Analytic
Tasks

NL Authoring
Commands

Operation MapperNL
Interpreter

Data

Data
Metadata

Metadata

Editing
Actions

Visualization

Updated
Visualization

Tool-specific
Operations

Render

Execute

Visualization Application

Visualization
Specification

Analysis-oriented NLI

Authoring-oriented NLI

(b) Pipeline of authoring-oriented NLI

Figure 1. Analysis-oriented NLIs generate one-shot visualizations to
satisfy users’ analytic tasks, covering subsets of editing operations for
visualization authoring. In our authoring-oriented NLI pipeline, we model
users’ editing intents as editing actions, which decouple natural language
interpreter and visualization applications as an intermediate layer.

the aforementioned visualization editing intents. They bridge users and
visualization applications: the natural language interpreter parses users’
utterances into a sequence of such editing actions, and the actions are
mapped into tool-specific operations. The visualization applications
can then adapt and execute the operations to update the visualization.

We make our pipeline realistic by designing two primary building
blocks. First, the formalization of editing actions. The role of editing
actions in our authoring-oriented NLI pipeline is obvious; however,
there is still a lack of comprehensive guidance on how to model visual-
ization editing intents. To fill in the gap, we conduct a formative study
and literature surveys on visualization construction tools and explicate
editing actions as mappings between a series of well-defined editing
operations, their target objects, and the corresponding parameters. Sec-
ond, a multi-stage NL interpreter, for parsing users’ NL queries into
editing actions. It first recognizes data entities and replace them with
abstract arguments; then, it uses a deep sequence-labeling model to
extract intents and entities from the abstracted utterances; finally, it
synthesizes the extracted information into a sequence of editing actions.
With the deep-learning model, we envision that the interpreter can be

ar
X

iv
:s

ub
m

it/
44

60
72

0
 [

cs
.H

C
]

 2
3

A
ug

 2
02

2

easily extended to cover wider range of editing actions as we collect a
larger corpus of editing utterances.

Both the editing actions and the NL interpreter can be reused across
multiple visualization applications, eliminating the needs to re-design
NL interfaces for each one. Authoring tool developers only need to
build an operation mapper to map the editing actions sequence into
tool-specific operations. The only step required for authoring tool
developers is to build an operation mapper for mapping editing actions
sequences to tool-specific operations. We enumerate key desiderata in
building these mappers, and provide empirical guidance on how to best
reuse the provided two building blocks.

We demonstrate the utility of our design with two example applica-
tions, i.e., an Excel chart editor and a proof-of-concept authoring tool,
VisTalk. We further conduct an exploratory user study, where partici-
pants complete chart reconstruction tasks with natural utterances. Our
observations shed light on future work: we should consider how the
interpreters can cope with users with different backgrounds, and how
the applications can resolve ambiguities and make recommendations
when users’ initial command is not supported.

The contributions of this work are summarized as follows:
• We propose an authoring-oriented NLI pipeline by formulating

users’ visualization editing intents as editing actions, which are
atomic units executable by applications.

• We develop a multi-stage natural language interpreter to parse NL
utterances into a sequence of editing actions. The interpreter can
be reused across visualization applications.

• We design an Excel chart editor and a proof-of-concept authoring
tool, VisTalk, to demonstrate the utility of the NL interpreter. We
further conduct a user study with VisTalk to understand how users
can construct and edit data charts through natural language.

2 RELATED WORK

Our work draws upon prior efforts in visualization creation tools and
natural language interfaces for data visualization.

2.1 Visualization Creation Tools
A variety of visual authoring approaches have been proposed to facili-
tate visualization creation. For example, Polaris [63], Tableau [7], and
Many Eyes [4] help users conduct data encoding with visual channels
in a visualization. These tools enable users to create visualizations in
a short time, but they are less flexible. The resulting visualizations
are usually standard visual charts. More advanced techniques, such as
Lyra [47] and iVisDesigner [43], have been proposed to enable more
expressive visualization designs. With these systems, users can easily
specify properties of graphical marks and bind them with data. How-
ever, these systems only support the modifications of properties by
adjusting a set of style parameters. Later, Data Illustrator [32] uses
repetition and partition operators for multiplying marks and generating
data-driven expressive visualizations. Charticulator [44] also adopts
a bottom-up approach to bind data fields to vector graphics and build
visualizations with an emphasis on visualization layouts. Recently,
Data-Driven Guides [24] has allowed users to draw and design graph-
ical shapes to achieve creative designs. Similarly, DataInk [70] and
InfoNice [66] also bind graphical elements with data fields to facilitate
the generation of creative visualizations.

Researchers have explored the design of visualization authoring
systems and supported creation from different perspectives. To support
visualization creation, the systems have different internal logics. With
these systems, we summarize and categorize most common functions
used. We further formulate the functions as editing actions, which
is an abstract layer that bridges human intents and editing functions.
The editing actions can be explained and executed by the functions
supported by different tools.

2.2 Natural Language Interfaces for Visualization
Natural language interfaces have been adopted extensively to improve
the usability of visualization systems [53]. Commercial tools like
IBM Watson Analytics [4], Microsoft Power BI [5], Tableau [7],
ThoughtSpot [64], and Google Spreadsheet [14] automatically translate

the natural language questions to data queries and present query results
with visualizations. However, these systems limit natural language
interactions to data queries and corresponding standard charts.

Extensive research has been devoted to a better experience of using
natural language for visual analytics [53]. To complete the analytical
tasks, they treat user input utterances as natural language queries, and
translate them to logic query languages [10, 28, 74]. Researchers fur-
ther study the interactive visual analytic systems that support natural
language queries. Wen et al. [67] design a system to update the visual-
izations based on user queries dynamically. Articulate [11] generates a
graph to select proper visualizations to answer users’ natural language
questions and complete analytic tasks. ADVISor [31] and ncNet [34]
leverage deep learning models to translate an NL query to a visualiza-
tion. Going beyond data exploration, FlowSense [72] applies natural
language techniques to dataflow visualization systems. Gridbook [55]
eases the difficulty of writing formulas on the spreadsheet grid by sup-
porting formulas expressed in natural language. Vis-Annotator [26]
accepts textual descriptions and outputs annotated visualizations while
Kim et al. [23] focus on answering questions about the given visualiza-
tion. Srinivasan et al. integrate natural language interfaces to facilitate
multimodal interaction for visual exploration [46, 56–58, 62].

Researchers also try to address ambiguity problems through different
means. On the one hand, researchers attempt to address ambiguities
through the design of interactive systems to invite users to clarify their
requests. For example, DataTone [17] introduces interactive widgets
to address ambiguity problems. Eviza [51] further enhances interac-
tions by providing graphical answers that can be directly manipulated.
Iris [16] is a conversational interface that enables users to combine com-
mands through many rounds of question-answering. Sneak pique [3]
explores autocompletion to help users formulate analytical questions
while Snowy [60] recommends utterances for conversational visual
analysis. On the other hand, design principles are also summarized to
improve the understanding of users’ utterances. To enhance natural
language interactions, Hoque et al. [20] apply pragmatics principles
and propose a theoretical framework for interaction with visual ana-
lytics. Hearst et al. [19] conduct an empirical study to explore default
visualizations for vague expressions in natural language queries. Simi-
larly, Setlur et al. [52] explore inferring underspecified natural language
queries and propose a systematic approach to resolve partial utterances.

Existing work enables the natural language interfaces in a case-by-
case manner, and mainly focuses on visual analysis. In comparison,
we formalize users’ diverse visualization editing intents into editing
actions, covering a richer set of flexible visual configurations. The edit-
ing actions bridge the gap between the NL interpreter and visualization
applications. The design and implementation of the natural language
interpreter can be reused across applications, alleviating the burden of
re-designing NLI per application.

3 FORMATIVE STUDY

User utterances are apt to be free and variant among usage scenarios. To
better understand how visualizations are created with natural language,
we conduct a formative study in the form of one-hour meetings with six
participants on how they express their intentions for visualization au-
thoring. Understanding usage patterns is conducive to the design of our
natural language interpreter. All the participants had previously created
visualizations for presentation purposes (e.g., data reports, presentation
slides) in their daily work. They have used GUI-based (e.g., Excel and
Power BI) or code-based (e.g., Python) tools to create visualizations.
All of them have conducted configurations to standard visual charts
or created expressive visualizations such as pictographs. Two create
charts for data analysis as their daily work. Three other participants
have used design tools (e.g., Adobe PhotoShop and Illustrator).

3.1 Procedure

The meeting was started with a semi-structured interview. During the
interview, the participants were asked to describe their process when
developing visualizations, as well as the major challenges they face
when they want to ask a system to do the job for them. Then, they were

asked to list example natural language sentences to describe the opera-
tions and commands they will give if an intelligent assistant can do the
job for them. Then, we collected six visualizations by sampling charts
from systems like Excel, Tableau and more expressive chart designs
from InfoNice [66] and Charticulator [44]. We told the participants
to imagine using an authoring system that would correctly understand
all the commands and update the visualization step by step. We asked
them to articulate a list of natural language commands that they would
use to clearly describe the steps to create these visualizations. These
exercises helped us understand our users’ natural way of thinking and
workflow through concrete examples.

3.2 Results

All of our participants expressed interests in having a natural language-
based tools. They felt a natural language-based authoring tool is useful
especially when they are not familiar with the user interfaces, which
are more likely to happen when they need to create bespoke visualiza-
tions and involves a large number of steps in design tools. Here we
summarize the common design practices.

General Workflow. All of the participants showed similar prefer-
ences of the general workflow of creating visualizations with natural
language. In general, they preferred a top-down method for basic charts
such as bar chart, column chart, pie chart, and so on. More specifically,
they usually started with the chart type and encoding, then followed up
with more configurations. The names of the charts give them the conve-
nience of defining data encoding and basic properties of a visualization
with several simple words, such as “Show me the sales by year with a
line chart.” Based on the chart generated by the system, users could do
more customization. At the same time, two of the participants also tried
to describe and control the data encoding by themselves. For example,
“Bind sales to y axis and year to x axis.” They felt it especially useful
when they were not sure of the name of the charts to create, or when
they thought they were creating a bespoke chart that the system may not
support by default. As the final step, participants preferred to further
fine tune the visualizations by adding or removing chart components,
or modifying the default formatting of charts.

Intention Description. When conducting authoring, users expected
the systems to react directly to each of their natural language commands.
Sometimes, they used simple sentences, for example, “change the color
of the bars”, or “please make the title bold”. They might also use
complex utterances with more than one intent is included. For example,
the sentence “I want a chart with rounded rectangles, showing me the
distribution of the data” implies users wanted a column or bar chart
with rectangles replaced with rounded shapes. Besides, the complexity
of users’ input may relate to users’ experience of using natural language
agents and visual chart creation. In our study, the more experienced
the user is, the simpler the commands are. This might be because
experienced users have lower expectations for parsing capabilities of
natural language agents.

Visual Property Setting. When referring to the objects, they also
used data labels. For example, “make the China bar red.” Some users
prefer to use some properties to refer to an object. For example, they
may use “red line” or “dashed line” to refer to a red reference line on
a bar chart. Participants also tried to use pronoun (e.g., it, them) to
refer to the objects, especially when they wanted to specify several
properties of one visual element successively. When describing visual
properties, our participants felt it easy to describe general properties
like “blue” for colors, “> 200” for filters, “dashed line” for formatting,
etc. They might directly use common adjectives, or the category name
for these properties. By contrast, it is harder to describe degree, value,
extents or positions precisely. As a result, our participants preferred to
use relation to describe degree, level, extent, value, position, etc, such
as “on the top of A”, “larger than B”, “lower than C”, “darker than
current one”, “wider than D”.

The results of our formative study show the diversity of users’ expres-
sions when they are not given guidance on their NL input. A structured
representation is required to execute users’ intents. Further, we need
to formulate them into intent units that can be combined so that users’
utterances can be represented with flexibility.

4 EDITING ACTIONS

As illustrated in Figure 1(b), the core of our pipeline is an intermediate
layer called editing actions, which are a list of structured descriptions
of user intents that can be executed by visualization applications. We
design editing actions to bridge users and applications: the natural
language interpreter parses users’ utterances into a sequence of these
actions, and the actions can then be adapted and executed by the ap-
plications. On the one hand, these editing actions are somewhat akin
to the declarative languages of visualizations (e.g., Vega-Lite), in the
sense that they offer an implementation-independent bridge between
the NL and the visualization. On the other hand, the editing actions
differ from existing declarative grammars of visualizations, because
they model the delta of visualization (e.g., “Turn the dashed lines black
and thicker”), and is a potential first step towards authoring-oriented
declarative language. Below, we formalize the model of editing action
representation based on the formative study and surveys of prior work,
and discuss the necessary designs to address vague, under-specified, or
context-dependent descriptions in user utterances.

4.1 Editing Action Representation
Various systems have covered a wide range of functions to enable the
composition of both standard charts and highly customized interactive
visualizations. However, there was no common design model that can
let us consistently describe visualization editing intents [48]. To address
the lack of modeling, we survey and unify intent descriptions from our
formative study and modern visualization construction systems, which
all involve gradual editing and refinement. In particular, following
the visualization guidelines [15, 22, 50], we examine editing actions
involved in creating and editing visualization designs in commercial
products or online demos1, including Microsoft Excel, Tableau, Voy-
ager [68], Data Illustrator [32], ChartAccent [42], Charticulator [44],
and InfoNice [66].

These systems widely cover the three common categories of vi-
sualization construction tools [48], namely, template editor, shelf-
construction, and visual builders. Each of the categories construct
charts with different editing workflows: (1) In template editor tools
like Microsoft Excel and RAWGraphs [37], users frequently start with
high-level command queries to generate template charts before making
further extensive customization. These commands omit details on vi-
sualization channels, and instead stress chart types and targeted data
entries. For example, to query a bar chart with y-axis encoded with
Sales and x-axis encoded with different countries from these tools, the
most natural driving utterance might be “Give me a bar chart for Sales
by Country”. (2) Tools supporting shelf-construction (e.g., Tableau,
Voyager [68]) builds charts by mapping data fields to encoding chan-
nels (e.g., x, y, color, shape). To construct the same example above,
the utterance that best aligns with these tools would be “Bind Sales to
y-axis” and “Bind Country to x-axis”. (3) Visual builders tools like
Data Illustrator [32], Charticulator [44], ChartAccent [42], and InfoN-
ice [66] would gradually tune marks, glyphs, coordinate systems, and
layouts. Users might start with “draw a rectangle”, and then, “repeat it
horizontally on Country”, and finally “bind height to Sales” to arrive at
a similar bar chart.

Comparing across the aforementioned chart editing actions, we
make two observations: (1) The levels of editing intent vary greatly
from single element editing to integrated construction; and (2) despite
the varying intents, the operation and its targeted data entries remain
present in all utterances. Therefore, we consider operations, objects,
and parameters as the core entries, and formally propose the notion of
an editing action as a combination of the three:

editing action := {operation, objects, parameters}

The operation identifies the type of editing intent (e.g., “change
color”, “add annotation”). With a single notion of “operation”, we
maintain flexibility across varying levels of editing intent (e.g., low-
level operations like “Bind Sales to y-axis” versus high-level ones like

1The editing actions are collected from the tools’ official introduction web-
sites and third-party online tutorials.

Operations Objects Parameters Example utterances

Data op.

Encoding op.

Mark op.

Layout op.

Styling op.

Annotation op.

filter

setChartType

bindX

bindY

setShape

moveDirection

relativePlace

setColor

setColor

setWidth

addTrend

“2012”

bar chart

“Brand”

“Sales”

“woman icon”

direction=down

position=chart[right]

color=red

color=black

width=self[+]

*

“Give me a bar chart of Sales by Brand in 2012”

“Set the marks to woman icons “

“Make it lower”

“Move the legend to the right of the chart”

“Set color of the Ford bar to red”

“Turn the dashed lines black and thicker”

“Add a trendline to the chart”

data field

chart

x axis

y axis

mark

*

legend

[mark=bar, data=”Ford”]

[shape=line, type=dashed]

[shape=line, type=dashed]

trend line

Figure 2. An utterance can be mapped into a series of editing actions. An editing action consists of three parts: operation, objects, and parameters.
The examples show the usages of object selector, vague parameters, and relational parameters. * denotes unknown properties.

“Give me a bar chart for Sales by Country”), and therefore can fit into
different styles of visualization tools. Meanwhile, the objects are the
targets that the operation applies to, such as the canvas area, the bars
in a bar chart, the title text, etc, whereas the parameters indicate the
degree or configurations of the operations. Figure 2 is an example that
illustrates the process to author an annotated bar chart through natural
language. We will describe them in detail below.

4.1.1 Operations
We first go through the category of Vega-Lite grammar [49], and a large
number of editing operations related to data, encoding, and mark. To
support more expressive changes for communication and presentation,
we further survey ChartAccent [42], Charticulator [44], Data Illustrator
[32], and InfoNice [66] to develop three more categories related to
layout, styling, and annotation, which are not covered by analysis-
oriented NLIs. They form the eventual six main categories, which we
use as guidance for designing the concrete operations (examples are
listed in Figure 2):

• Data operations are those that retrieve and calculate data from
datasets. Typical operations include filter, aggregate, bin, set time
unit, and sort.

• Encoding operations are the ones that bind data fields to differ-
ent encoding channels. Users may specify encodings by explicitly
binding elements, or by assigning chart types.

• Mark operations refer to the configurations related to the sym-
bols that encode data in a visualization. By changing the attributes
of marks like shape, color, and style, users may implicitly cus-
tomize the encoding styles applied to all related data points (e.g.,
use circles rather than rectangles in shape encodings).

• Styling operations include graphical and textual edits. Graphical
operations can change the color, size, shape, icon, and stroke of
graphical elements (e.g., axis lines), whereas textual operations
are acted on text-related properties such as font and content. Com-
pared to mark operations, styling specifically refine on elements
without data encoding.

• Layout operations concern the positions and offsets of chart ele-
ments (e.g., annotations and legends). Users can place an object
at a designated position, or move it along a certain direction.

• Annotate operations manipulate annotations that enhance the
charts. Common types of annotations include labels, annotation
text, reference line/band, trend line, average line, etc. They can
be bounded with data; for example, trend lines can show the trend
between two time points.

4.1.2 Objects
Objects are the components that operations target. For basic visual
charts, the objects include marks, axes, titles, legends, gridlines, etc.
More advanced objects include annotations such as trend lines, ref-
erence lines, reference bands, text annotations, and embellishments.
These objects correspond to different operations. For example, the ob-
jects of data operations include data fields, data points, data type, data

range, etc. The objects of encoding operations include the data fields,
chart components (e.g., axes, legends, and title), and mark channels
(e.g., mark size, mark shape, and mark position). The objects of styling
operations include visual properties such as opacity, stroke, text font,
text color, etc.

Identifying objects from user utterances can be nontrivial for two
reasons. First, the objects in an editing action can be underspecified.
For example, a user may say “give me a chart” after uploading a dataset.
We directly model users’ intent and use a special notation ‘‘*’’ to
represent the under-specified objects, such that the explicit reference
can be deferred to the visualization system implementation.

Further, rather than using standard terms like “mark”, users may
refer to objects with descriptive languages on object properties (“red
line”, where it is not clear whether the line is a mark or an additional
visual shape), or with names created on-the-fly (e.g., users may simply
name the chart as “US2020” after applying a filter “US” and “2020” to
the chart) [20, 27]. We help capture such reference patterns with object
selectors and naming:

Object Selectors. We use object selector to process implicit fil-
ters. Consider the intention “turn the red line blue”. While it does
not directly specify an object, we use the selector to present it as
[shape=line,color=red], i.e., to select objects with the properties
“line” and “red.”

Object Naming. We allow dynamically assigning names to chart
to reflect the aforementioned use case of “US2020”. Besides easy
reference, object naming further enables nested designs of charts. For
example, users may put two charts together by opening up a new canvas
and saying “put US2019 and US2020 side by side.” This also helps
enable creative visualization design. Figure 7(c) shows an example
where the user uses two icons to create a pictograph and reuses it in
another chart to create novel visualization designs.

4.1.3 Parameters
Parameters are specific configurations of the operations. They cor-
respond to the operations and objects, describing to what extent the
operations are performed, or how operations are applied to objects. As
a result, the parameter types vary with object properties. They can be
numerical values for chart width and height, enumerations for font style
and encoding channels, and boolean values for adding or removing
components. Figure 2 shows example parameters corresponding to
different chart objects. While the parameters can be definite in some
cases (e.g., the absolute pixel quantity in “set the chart 10px wide and
13px height.”), they sometimes take more qualitative or relative forms:

Vague Parameters. Utterances usually contain free-form param-
eters that sound natural to humans, yet are hard-to-decode for the
machines [19]. We collect these keywords as part of the parameter li-
brary, and expect the application tool to further interpret and map them
into machine-understandable values based on design environments.
For example, for color values, we support a list of color names (e.g.,
color=red, color=navy blue). We also define a number of extent
keywords, ranging from “extremely”, “very”, “moderate”, “little”, to

Utterances Editing actions
(a) Add a trendline to the chart {AddTrend, trend line, *}

(b) Move legend to the right of the chart {RelativePlace, legend, position = chart[right]}

(c) Make it lower {MoveDirection, *, moving direction = down}

(d) Turn the dashed lines thicker {SetWidth, [shape = line, type = dashed], line
width = self[+]}

(e) Set color of the Ford bar to red {SetColor, [data = "Ford", mark shape = "bar"],
color = red}

(f) Set mark to pink woman icon {BindChannel, mark shape, shape = "woman"}

{SetColor, mark, color = pink}
(g) Give me a bar chart of Sales by

Brand in 2012
{SetChartType, chart, chart type = bar chart}

{BindX, x axis, data field = "Brand"}

{BindY, y axis, data field = "Sales"}

{Filter, * , data value = 2012}

Table 1. Example utterances (left) and corresponding editing actions
(right). One utterance may correspond to multiple editing actions.

“very little”. Users can therefore describe the adjustments of size as
“make it really large”, which will be mapped to “very large” and can be
parsed as {setSize, *, size=very.large}.

Relational Parameters. Users also tend to make relative state-
ments anchoring on some existing visual elements, e.g., “make it
larger”, or “set the color of the title darker than the bars”. For
these relational parameters, we expect users to specify the ob-
jects it compared to, and the direction of change. For example,
“make the title darker” is explained as make itself darker, where
the object is the title; “place the legend on the right of the plot
area” is explained as right to the plot. Formally, the utterances
are interpreted to {setColor, title, color=self[darker]}
and {place, legend, position=plot[right]}. self[darker]
means the color darker than it self while plot[right] means on the
right of the plot. Applications should further determine the exact values
of these parameters after receiving these vague parameters.

4.2 Example Utterances

Combining operations, objects, and parameters, authoring actions can
represent various authoring utterances. An utterance may corresponds
to multiple editing actions. Here we show example utterances and the
corresponding editing actions to further illustrate the use of editing
actions. In Table 1, the utterances are represent with one to four
editing actions. These examples include object selectors (d, e), vague
parameters (b, c, d, e, f), and relational parameters (b, d).

5 NL INTERPRETER

To demonstrate the efficacy of the editing actions and enable visualiza-
tion applications to assess our modeling, we provide proof-of-concept
design and implementation of an NL interpreter. For an input utterance,
NL interpreter aims to translate it to a sequence of editing actions that
will then be passed to visualization applications. As shown in Figure 3,
we design a multi-stage interpreter to parse a natural language utter-
ances into editing actions. First, it identifies user intents in the utterance
as operations; then, it extracts useful parts as objects and parameters
for the targeting operations; finally, it recognizes the relations between
the identified operations, objects and parameters, and organizes them
into editing action tuples.

5.1 Stage 1: In-context Data Entry Abstraction

To reduce the sparsity and uncertainty of intent recognition, we use
a data entry recognizer to identify and abstract dataset-related data
entries in the utterance. The recognizer enumerates through the N-
grams in the utterances, checking for the similar entities (words or short
phrases) that can be matched with the data attributes, including the table
names, column names, and cell values of a dataset table. To resolve
ambiguities, we compute the similarity between the tokenized entry and
the data attributes in a similar way to NL4DV [39]. Once we completed
data entry recognition, we replace the entities with placeholders like
<column>, <value> to obtain the abstracted utterances. In the case of

draw a blue bar chart of Sales by Brand Entity:

Color ChartType YField XField

Label: draw a blue bar chart of Sales by Brand

O O B-Color B-ChartType B-YField I-ChartType O B-XField O

Intent Tag: SetChartType, SetColor, BindX, BindY

Figure 3. A multi-stage natural language interpreter: A natural language
utterance is first abstracted by replacing data-related entries. Then, we
extract operation categories. Following the BIO format [41], we can map
the words in the sentence into a sequence of labels, where B-, I-, and O
represent begin, inside, and outside. The extracted parameters, objects,
and operations are further synthesized into editing actions.

special numbers and dates, we further specify value into <integer>,
<float>, <date>, and <year>.

5.2 Stage 2: Information Extraction for the Editing Action

At the core of the interpreter is the ability to parse the utterances into
operations, objects, and parameters. Operations are usually summarized
or abstracted from utterances, whereas objects and parameters are
directly extracted. As such, while there might be other alternatives, we
treat this step as two NLP sub-tasks: (1) a multi-label classification
task, to detect potentially multiple operations from an utterance; and (2)
a sequence labeling task using BIO sequence tagging [41], to recognize
token chunks that represent objects and parameters from one sentence.
Specifically, we chose to frame extraction step as sequence tagging
(as oppose to e.g., end-to-end NL to code translation) for its richer
interpretability. With fine-grained semantic annotation on each entity, it
is easier for people to inspect and potentially amend the parsing result
of a given utterance.

As shown in Stage 2 of Figure 3, we design a deep-learning model
to simultaneously performs the aforementioned two tasks, outputting
separated lists for operations, objects, and parameters. While various
prior work used rule-based methods (e.g., both FlowSense [72] and
NL4DV [39] use lexical and dependency parsing structures) for precise
recognition, we argue that heuristic rules usually only handle limited
forms of utterance. In comparison, deep-learning models are more
capable of flexibly interpreting diverse utterances. One can easily
extend the capability of the NL interpreter by adding training examples
that express intended operations, objects, and parameters [18,30,71,73].

In specific, as shown in Figure 4, the neural model is based on
the encoder-decoder framework [30], attention mechanism [65], and
Conditional Random Fields (CRF) algorithm [25]. We chose the model
for its balanced quality and efficiency. On the one hand, Bi-LSTM-CRF
is commonly used for similar sequence tagging tasks like Named Entity
Recognition, and empirically we found its accuracy to be sufficiently
high; On the other hand, the model is lightweight enough that it can
be deployed and integrated into various different platforms without
causing much latency (unlike some pre-trained models, e.g., BERT).

We train the model on a dataset containing a mix of real and synthetic
utterances expressing certain visualization editing intents. We first
crowdsourced real utterances on Amazon Mechanical Turk (AMT).
To do so, we created 75 pairs of charts such that in each pair, the
second chart can be made from the first one through up to three editing
operations. We present these pairs to crowdworkers, and ask them
to describe in natural language how they would make the edits (e.g.,
“change the color in the bar chart, and then rescale”). We collected
100 descriptions per chart pair, resulting in ∼5.4k utterances, and kept
4.7k after manual validation. We configured the AMT HIT such that
each crowdworker would describe ten chart pairs. We collected the
dataset from ∼400 unique workers. We further augment the dataset
with synthetic examples by (1) paraphrasing these utterances through
back translation and crowdsourcing [21], and (2) creating syntactic
templates inspired by Malandrakis et al. [36]. The augmentation is a
common technique for accelerating early collections of user intents [36].

AttentionDecoder

Probability：

I1 I2 I3 ... I

Encoder

NL Input

n

Predictor

CRF

LSTM LSTM LSTM

H1 H2 Hn

O2

h1

h1
’

h

h’

h2

h2
’

hn

hn
’

Y1 Y2 Yn

LSTM LSTM LSTMh1 h2 hn

LSTM LSTM LSTMh2
’

X1 X2 Xn

hn
’h1

’

O1
...

...

...

...
...

...

Figure 4. The architecture of the deep learning model for intent and entity
extraction, which is based on the encoder-decoder framework, attention
mechanism, and CRF algorithm.

In total, our dataset contains 10.7k utterances 2. We use 80% of the
data for model training and the rest for testing. In the training process,
we use the Adam optimizer. The batch size is 32, and the epoch is 150.
Our model worked well on the test set: the operation classification and
the tagging F1 scores for objects and parameters were 94.75%, and
97.34%, respectively. The sequence labeling F1 score is evaluated at
entity-level using seqeval python library [6].

The performance is promising, and partially benefits from the fact
that the data binding and data abstraction in Stage 1 (Section 5.1)
eliminates noise in entity recognition. However, another primary factor
driving the high performance would be our modest coverage of the
utterances. The chart pairs we created to collect data involves 1-3
operations, which were easy to be expressed by the crowdworkers and
learned by the model. It should be noted that the accuracy of the model
may decrease when the user utterances become more complex. In
fact, being “data hungry” is a significant bottleneck for deep learning
models: to reach the best performance, a large amount of training data
is required to provide enough training signal on more rare and complex
patterns. Limited by the training data, we only see our implementation
of the deep learning model as a starting point and a proof-of-concept.
We note that to maximize the utility of such models, future work should
collect a large number of utterances, and additionally rely on data
augmentation techniques as we explored.

5.3 Stage 3: Editing Action Synthesis

Given the recognized information, we then map between the indepen-
dently outputted operations, objects, and parameters, to organize them
into a sequence of editing actions. We take a bottom-up approach to
traverse the operation list. Because each operation determines its ex-
pected parameters and objects, we match the corresponding parameters
and objects among the candidates. For example, setColor would only
accept colors as parameters. Thus, we traverse the list of parameters
and objects to search for an entity “blue” labeled as color. If there
is no parameter or object for an operation, we fill it with a * mark to
denote the default state. If there is more than one parameter for an
operation, we duplicate the operations into two or more and synthesize
more editing actions. We further heuristically rank these actions based
on the category they belong to. We prioritize global operations over
local operations. The operations in the category of data operations (e.g.,
sum) and encoding operations (e.g., bind a colum to x axis) should be
executed before mark operations (e.g., changing the shape of marks),
styling operations (e.g., changing the color or the title content), layout
operations (e.g., move upward), and annotate operations (e.g., add text
labels). The editing actions are then ordered by their appearance in the
utterance. The operation mappers can then implemented to map the
editing action sequence to application-specific operations.

2https://github.com/microsoft/VisTalk

5.4 Guideline for Reusing the Interpreter

Instead of directly translating NL utterances into application-specific
commands, our NL interpreter abstracts out the interpretation of editing
intents to enable reusability, following the existing NLI framework [39].
The only difference across visualization applications is the implemen-
tation of operation mapper, as shown in Figure 1(b). When users’ input
is complete and accurate, the interpreter can support easy binding and
the editing action can be directly mapped to executable application-
wise commands. When users input application- or context-dependent
utterances, we expect the application to clarify the vague and relational
parameters we define in Section 4.1.3. For example, when users input
“change color to cyan” in Figure 7(a), the objects corresponding to the
operation setColor is underspecified and denoted as “*” by the NL
interpreter. Therefore, the system should trace back to find the most
recent utterances with the objects where the operation can be applied.
Here, we discuss some implications on such handling.

Operation mapper. The visualization applications should imple-
ment an operation mapper that maps the interpreted editing actions
into tool-specific operations. If the operations are clearly specified, the
execution engine blends the objects and calls the related functions. If
the operation is not supported, the execution engine can return error
messages to notice the users. If the operation is not supported but re-
lated operations are supported, the application can further show simple
examples to help users understand the functions of the system. When
the actions are not fully specified, the application could predefine a set
of rules to recommend proper actions for under-specified utterances.
Applications could further adopt more advanced chart recommender
such as Draco [38] to resolve the underspecified editing actions to
improve the editing experience.

Manage Contexts. To better understand users’ editing intents, the
applications could manage users’ sessions and maintain a list of ob-
jects on canvas with corresponding attributes. If the objects are clearly
referred, the application simply looks for the objects and applies opera-
tions to the target objects. For objects with selectors, applications can
traverse through the parameters of the objects to find out the referred
objects. If the objects cannot be resolved, the application could infer
the target objects by examining the recent objects being edited, and
recommend possible editing. Alternatively, the application could also
return error messages to notify users to clarify their intents.

Resolve Ambiguities. The applications should build support and
disambiguate between the three types of parameters: exact, vague, and
relational ones. For exact parameters, applications can directly map
the extracted parameters to the data value and check whether the value
can be legally assigned. For example, 10px for height can be directly
assigned to the objects. For vague parameters, applications can develop
a set of metadata or rules to explain vague parameters supported by
the NL interpreter. For example, when users input a vague parameter,
the application looks up the parameter red and yields the color code
RGB(255, 0, 0). For relational parameters, applications need to parse
the parameters into the changing directions of parameter adjustment.
For examples, “on the top” for “put it on the top of the US bar”,
means the object should be placed at a point that has smaller distance
to the top border than the US bar, but with the same distance to the
left/right border as the US bar. Therefore, applications should extract
the positions for the US bar, and calculate a proper position number for
the newly added object. To recommend the proper position for newly
added objects, advanced chart layout algorithms [69] can be adopted
to suggest system generated design under the constraints of users’
intents. Similar design recommendations can also be implemented
by the systems to suggest colors, encodings, etc. To enable users to
conduct even more fine-tuned operations, other modalities such as
mouse and touch should be introduced.

Multimodal Interaction. Obviously, natural language is not always
the best choice of input when conducting visualization editing, and we
believe it acts as a complementary input modality to traditional WIMP
interaction. Other forms of input (e.g., speech, mouse, touch, and pen)
could also be combined to support more multimodal interactions. For
example, instead of expecting users to grasp the jargon for describing
visualization objects (e.g., bar, scatterplot, etc.), they can select objects

Figure 5. An Excel add-in for chart creation and editing. Users can input
NL utterances in the input box. The selected chart updates accordingly.

before voicing natural language commands relevant to the selected
object. Furthermore, voice input is also a design choice to combine
multiple modalities, where users could save the efforts of typing NL
utterances. This could be realized by introducing a speech recogni-
tion [45] module at the beginning of our current pipeline to transform
voice into text. However, speech-based NLI faces unique challenges
(e.g., triggering speech input and transcription errors). The NL input
could also be interleaved with input from other modalities. For exam-
ple, when resolving editing actions that are not partially specified or
ambiguous, visualization systems could also prompt other modalities
of user interfaces, such as interactive widgets to help users clarify their
intents. Multimodal coreference resolution is an important task as users
may input NL queries that follow their direct manipulations on the
interface [2, 53]. So the design of operator mapper should involve
heuristics to handle coreference resolution in multimodal sense based
on the design of the NL interactions of the authoring system.

Enhance Discoverability. Users may not be aware of what opera-
tions are available to the system and whether there is a preference for a
particular language structure in the system. System discoverability is
considered an essential factor that improves the user experience [3, 56].
It could happen that the interpreter could parse the utterances into
editing actions, but the system is not able to execute the operations.
Another possibility is the system has the corresponding operations but
the interpreter could not understand the utterance correctly. For the
former situation, the system could explain its scope of capability based
on the editing actions. For the latter situation, the system could either
notice the users to take other modalities to complete their tasks, or
educate users on how to phrase queries that can be interpreted correctly
by the system. In terms of interaction design, text autocompletion can
be leveraged to help users precisely complete NL input; interactive
widgets with data/visualization previews can be useful for visualization
authoring to enhance discoverability.

6 EXAMPLE APPLICATIONS

As proof-of-concept, we build two example applications of NL-based
visualization editing system powered by the NL interpreter in Sec-
tion 5. The systems are example implementations of the application
component in Figure 1.

6.1 Excel Chart Editor
Based on our NL interpreter, we build Excel Chart Editor, an Excel add-
in to integrate NL-based chart editing into Excel. As shown in Figure 5,
we provide a natural language input panel for users to type in their natu-
ral language commands. The chart editor creates a new chart when users
type in their first sentence and continuously update the chart as they
input follow up utterances. Since Excel already offers rich functions
of creating and editing charts on canvas, the primary implementation
effort is on mapping the editing actions to the predefined executions [1].
This includes resolving object selectors, executing data queries, and
converting vague parameters into accurate default values. For example,
the editing action {setColor, mark, color=red} can directly map

to setSolidColor(color) method in Excel.ChartFill interfaces.
Further, we take a set of simple heuristics to resolve ambiguity. For
example, for input utterance “sort”, users do not specify the order and
the data field. We by default sort the fields corresponding to the y-axis
in descending order. When user input “make the line stroke wider”, we
increase the line stroke width by 50%.

Note that the implementation of the Excel add-in does not concern
about the textual inputs, they are only parsed by the NL interpreter. It
demonstrates how our NL interpreter and editing actions can be plugged
into existing tools, and seamlessly augment the larger pipeline of data
analysis and presentation workflow.

6.2 VisTalk
We also develop VisTalk, an NL-based standalone chart creation tool.
Similar to the Excel add-in, VisTalk takes users’ natural language in-
put through a simple text input box (Figure 6(b)), and automatically
re-renders the visualizations to show changes accordingly (Figure 6(c)).
But uniquely, while Excel add-in concerns augmenting existing tools,
we use VisTalk to show how developers might design their own appli-
cations while maximizing the utility of our NL interpreter.

In particular, VisTalk demonstrates how applications can resolve
ambiguities in the identified editing actions. As mentioned in Sec-
tion 6.3, users commonly submit queries that have missing infor-
mation. Compared to the examples in Figure 2 (“give me a bar
chart of Sales by Brand in 2012”), an utterance “Sales by year”
misses the setChatType operation, and can only be parsed into
{BindX, x axis, data field="Year"} and {BindY, y axis,
data field="Sales"}. In response, VisTalk recommends chart
types from partial specifications of visual charts, following the research
of chart recommendations [35, 52], In the above example, VisTalk
would recommend a bar chart based on the data types. VisTalk also
adopts interactive widgets (Figure 6(f)) and utterance auto-completion
(Figure 6(g)) to disambiguate parameters (e.g., for elemments). For
example, users can click on the keywords within the input utterance to
specify and refine the choice of icons, colors, chart types, and values in
a pop-up window (Figure 6(f)).

Example Gallery: To demonstrate the usability of VisTalk, we pro-
duce a variety of charts with example natural language utterances that
specify the visualizations as shown in Figure 7. These visualizations
cover a wide range of operations that users may take in real world
visualization authoring scenarios, and show that VisTalk can enable the
creation of basic charts with simple operations such as data operations,
encoding operations, and annotate operations with NL utterances.

6.3 Exploratory Study
With VisTalk at hand, we further conduct a user study to understand
how users interact with visualization systems to construct visualizations
through natural language.

6.3.1 Participants
We recruited 12 participants (three females and nine males, age ranging
from 22 to 45) who had normal or corrected-to-normal vision. The
participants include undergraduate and graduate students, data analysts,
researchers, and software engineers. They are general users who need
to create visualizations to present data in daily work. All of the partic-
ipants had used Excel to create charts before, while five of them had
used Tableau or Power BI to create charts.

6.3.2 Study Procedure
Our user study lasted for about one hour. We first surveyed participants’
background information with a questionnaire. Next, we provided a tuto-
rial outlining the features of VisTalk with two examples. As a warm-up
exercise, we encouraged them to freely explore the tool with one sam-
ple dataset. Then, we provided the participants with five visualization
reproduction tasks. The participants are asked to reproduce the charts
that we provided, ordered by complexity. These tasks included the
reconstruction of five charts: (1) one basic bar chart, where participants
only need to specify data and encoding; (2) two charts with annotations
(i.e., trendline, average line, and annotation band); (3) one pictograph,

Figure 6. VisTalk interface (a). Users can type in their natural language utterances in the text box (b) to customize their visualization design (c).
Users can author different charts at the same time (d). The table view shows the underlying dataset (e). Users can click the words as interactive
widgets to resolve ambiguities (f). The auto-completion panel pops out during the input process (g).

(a) (b)

Close by Date
Show red trend line from July 2007 to Jan 2008
Annotate from July 2007 to Jan 2008 with rectangle
Show trend line from July 2008 to Jan 2009 in green
Add rectangle between July 2008 and Jan 2009

 Show me a column chart of Sales of Compact by Brand
Sort by Sales
Add average line
Highlight Ford in red

(c)
Female Attacks
Set mark to woman icon
Change color to pink
Add series for male Attacks
Set mark to man icon
Name it “my mark”
Attacks by Activity
Use “my mark” as mark

(d)

Bike Sales by Product as column chart
Change mark to bike icon
Set color to Cyan

(e)

Ford Sales by Model in column chart
Highlight top 2 Model in pink
Add rectangle from 0 to 200k
Sort by Sales
Repeat by Brand
Exclude BMW, Ford, Toyota, and Honda
Place in 2 columns

Figure 7. Examples wit VisTalk. (a) is based on a product sales dataset,
(b) and (e) are based on a car sales dataset, (c) is based on a shark
attacks dataset, and (d) is based on a stock datatset. The terms displayed
in bold and italic are column names and values in data, respectively.

where participants need to modify the shape of the marks; and (4) one
chart with multiple views, where participants need to repeat the chart
design on a data column, similar to Figure 7(e). For each task, we
displayed the target chart, described the underlying datasets, and asked
participants to reproduce the chart in VisTalk using natural language
utterances. Afterwards, participants rated their experience with VisTalk
in the form of a five-point Likert scale [29]. We further collected their
free-form feedback through a semi-structured interview.

6.3.3 Results
Subjective Satisfaction: Overall, the participants are positive about
the system. Users highly rated the experience of using VisTalk (M =
4.36, SD = 0.69). Figure 8 lists the feedback of VisTalk. Eleven of
twelve users agree VisTalk is easy to learn and easy to use. Eleven
users think VisTalk has improved their productivity. Twelve users
felt satisfied. The feedback also reveals space of improvement. Our

0 20 40 60 80 100 Percentage

Ease to learn [M=4.50]

Ease of use [M=4.25]

Effectiveness [M=4.42]

Powerfulness [M=3.83]

Productivity [M=4.42]

Enjoyment [M=4.67]

Satisfaction [M=4.42]

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

Response

Figure 8. User ratings of VisTalk system with a 5-point Likert scale.

participants rated it relatively low in terms of the powerfulness of the
system and the effectiveness of completing their jobs. It may be helpful
to design more functions and interactions for VisTalk for future work.

Result Analysis: All the participants have completed the tasks. The
participants learned quickly after the training. While they were typing,
the system were parsing the query automatically in the meantime. If
the utterances were successfully parsed, specific parameters in the
utterances were highlighted (Figure 6 (b)), and the visualization was
updated. If the system could not parse it, the user could iteratively
modify the queries to make them correct.

To understand the complexity of utterances, we use mean length
of utterances (MLU) [40]. The number of words used ranged from 1
to 11. The average MLU across 12 users is 3.61 words per utterance
(SD=1.26). On average, the participants used 2.4 utterances to complete
a visualization creation task (SD=0.72). The average time of creating
one chart was 139s. We found the participants tend to avoid using long
sentences, but instead, shorter utterances for incremental configurations.
Since the input textbox in VisTalk is directly editable, users tend to
correct the NLs inplace instead of appending additional utterances.

Our participants had a positive experience authoring with natural
language. For simple tasks, users usually only type in some keywords to
see how the systems can parse their intentions. For example, after one
user (P2) tried “trend” and then “add trend”, the system automatically
added a trend line to the line chart. The participant said, “It worked well.
Natural language makes the thing easy.” Participants also mentioned
that it is easy to accomplish complex tasks with natural language,
because it allows them to combine many operations within a simple
sentence in the way that meets their needs. One user (P3) commented,
“The experience is very good! In the past I need to search the menus
and click the right buttons to perform the tasks. Sometimes it costs
a long time to find the right menu item. Now I don’t need to think of
where they are.”

The majority of participants (10/12) mentioned that the natural lan-
guage interface saves their time and efforts. Most participants (8/12)
also said they will use natural language as their first choice if their

familiar systems support similar functions. P9 said, “To design a simple
chart, using one simple sentence is enough. It is completely different
from using mouse to select menus, select the data field from the dataset,
specify chart types, and do further adjustments.” Impressed by the
parsing capability of VisTalk, P1 mentioned “It is surprising that the
system could perform correctly even when the sentence was very short
and I misspelled some words and had grammatical errors.”

The participants (12/12) find the system interactions easy to learn,
even for those without much experience in visualization. One partici-
pants stated, “I can quickly understand the effects of the commands.”
One of the participants who was not familiar with visualization creation
tools said, “Now I don’t have motivations to learn to use traditional
visualization tools. I will come to VisTalk if I need to create charts.
It seems much easier to learn.” P3 also mentioned, “It is friendly to
non-expert like me. I don’t find difficulties of learning to use this tool.
It gives me prompt feedback while I am typing and I feel I can complete
the tasks easily. The overall experience is quite smooth.”

Although the chart recommendation functions took simple strategies,
many of our participants (7/12) mentioned the system recommendation
is helpful. One participant said, “The default charts were well-designed
and I don’t think I need to do further modifications.” Three participants
mentioned they enjoyed using short phrases to interact with systems’
default recommendations. P9 said, “I am using these keywords to
explore this system, similar to the experience of using search engines. I
enjoy the way this system gives me surprises.”

Participants also found difficulties when using NLIs. For example,
when a user (P11) wanted to change the color of the charts, he typed
“highlight in blue” and the system did not correctly execute the com-
mand because no object to highlight is provided. Some common errors
in NLIs also happen in the study, such as synonyms (e.g., “bike” and
“bicycle”), ambiguous utterances, and spelling errors. For example,
one user (P2) said, “set bike mark to bike”. The system can not parse
the query as “bike” is ambiguous (the first is mark and the second is
value). One user (P5) also typed some specific configurations (e.g.,
“arrange by 4 × 2” can not be parsed but “arrange in 2 columns” works)
and system control (e.g., “refresh view” and “re-center graph” ask the
system to load and position the visualizations) that are not supported
by the interpreter. Some analysis-oriented NLI users may pose queries
that expresses an intent of data analysis, instead of chart editing (e.g.,
“What is the relationship between sales and product?”). Some other
participants also felt they couldn’t express their requirements especially
at the beginning of the tasks. “Sometimes I forgot the words and felt
hard to describe my requirements.” One user applied to open and read
the examples in the tutorial again at the start of the tasks. Another
user opened search engine to look for a correct word. Although all of
them got used to the natural language experience after a while, we find
that cold start can be a problem for users that are not familiar with the
system. The reason may be that users are dim about how much the
system could tolerate their vague or inaccurate expressions. To solve
this problem, we believe more sufficient guidance and feedback can
address this issue. The interface should also provide recommendations
to give hints about potential choices that they can give commands.

7 DISCUSSION

By taking an one-interpreter-for-all schema, we not only save the efforts
of supporting NLIs for visualization authoring applications, but also
alleviate the need for users to get familiar with specific concept models.
Still, with NLIs freeing users’ mental models from any specific design
paradigms [48], the overflexibility can lead to some challenges in
practice. Below, we discuss three gaps between what people would say
and how a system might (incorrectly) respond, all emerged from NL
commands being overly flexible, and discuss potential future work.

Gap 1: Users express commands in diverse patterns, but NL
parsers cannot recognize them all. Users that have different back-
grounds, or are familiar with different visualization tools, can express
the same objective in drastically different ways. For example, Sec-
tion 4.1 enumerates the different visualization creation types; to create
the chart from scratch, the utterances can be as high level as just men-
tioning the data columns (and the system is expected to automatically

infer the chart type), and it can also go as low-level as binding each
specific mark channel (e.g., rectangles) individually. To achieve the
seamless switch between these types, the interpreters should be able to
understand different commands. Following the deep learning approach
as in our interpreter (or, even to generalize it with recent pretrained
NLP models [13]), a crucial future step would be to collect a diverse
set of training utterances that express the same intent in various usage
scenarios and levels of details. This can be achieved by feeding crowd
labelers with richer visualization objectives. We can even diversify
utterances by constraining them on construction workflows, i.e., to ask
expert users to write utterances that can only be parsed into a serial
of preset actions. Moreover, it is possible to collect naturally occur-
ring utterances without any predetermined objectives or application
workflows. Recently, researchers have asked users to freely submit any
possible queries to analyze charts, so to build taxonomies on represen-
tative utterances [59], and synthesized natural language to visualization
(NL2VIS) benchmarks from NL2SQL benchmarks [33]. Though still
targeting at visual analysis, these work shed light on possible designs
to collect diverse utterances. We can then further augment the datasets
by paraphrasing these commands.

Gap 2: Users have various editing objectives, but the down-
stream application may not implement them all. While the capa-
bility of parsing natural language utterances increases, our applications
might be designed to only focus on a subset of visualization creation
and an editing actions. For example, how should a system react to
“change the rectangle to circle”, if it only wants to support analytical in-
teractions, and therefore does not allow mark customization? Would it
disappoint people, if by design an application ignores more utterances
than another tool, even when the interpreter parses them correctly?
User studies on how users react to the boundary of applications are
interesting. Alternatively, we can improve command recommendation,
make suggestions to users when their utterance does not belong to
the supported function type, and help people understand the scope of
application functions.

Gap 3: Users use NL for various intentions simultaneously, but
the framework does not go beyond authoring. Along with our work,
there exist various frameworks that tackle analysis, authoring, data pro-
cessing, etc. separately. However, users may interchangeably express
these needs through natural language all at once, and it is impractical
to expect users to swiftly switch between these tools. Here, integrating
analysis-oriented and authoring-oriented NLI seems promising. Just
as we have hinted in Section 1, users can start with the visualizations
produced from analysis-oriented NLIs and make further configurations
on top to improve visual interaction with authoring-oriented NLIs. Fur-
thermore, recent NL2SQL [8, 75] advances can also be utilized for
low-level data-driven queries. One challenge could be to design addi-
tional query type classifier modules that can identify analysis-oriented,
authoring-oriented, and database-oriented queries and, more impor-
tantly, how these operations should be correctly ranked so that the final
visualization reflects all the requirements correctly.

8 CONCLUSION

In this paper, we explore a natural language-based visualization au-
thoring pipeline, which supports the understanding of visualization
construction commands. We propose the definition of editing action
that describes users’ visualization editing intents, defined as tuples of
operations, objects, and parameters. The editing actions bridge the gap
between the NL interpreter and visualization applications. We further
implement a deep learning-based NL interpreter, to extract operations,
objects, and parameters from users’ utterances. From these extracted
information, we synthesize the editing actions for visualization applica-
tions to handle. Based on the NL interpreter, we demonstrate the utility
of our pipeline and NL interpreter with two example applications, an
Excel chart editor and a proof-of-concept authoring tool, VisTalk. To
assess our approach, we further conduct a user study with VisTalk to
understand how users edit visualizations through natural language. Our
study is a first step towards NL-based visualization authoring.

REFERENCES

[1] Microsoft excel javascript api. https://docs.microsoft.

com/en-us/office/dev/add-ins/reference/overview/

excel-add-ins-reference-overview.
[2] Multimodal Coreference Resolution for Exploratory Data Visualization

Dialogue: Context-Based Annotation and Gesture Identification. In Work-
shop on the Semantics and Pragmatics of Dialogue, pp. 41–51. ISCA,
2017.

[3] Sneak pique: Exploring autocompletion as a data discovery scaffold for
supporting visual analysis. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology, pp. 966–978.
ACM, 2020.

[4] Ibm watson analytics. http://www.ibm.com/analytics/

watson-analytics/, Mar. 2022.
[5] Power bi q & a. https://docs.microsoft.com/en-us/power-bi/
natural-language/q-and-a-tooling-intro, Mar. 2022.

[6] Seqeval python library. https://github.com/chakki-works/

seqeval, Mar. 2022.
[7] Tableau software: Business intelligence and analytics. https://www.
tableau.com/, Mar. 2022.

[8] K. Affolter, K. Stockinger, and A. Bernstein. A comparative survey of
recent natural language interfaces for databases. The VLDB Journal,
28(5):793–819, oct 2019.

[9] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic
activity in information visualization. In Proceedings of the 11th IEEE
Symposium on Information Visualization, pp. 111–117. IEEE, 2005.

[10] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language
interfaces to databases–an introduction. Natural language engineering,
1(1):29–81, 1995.

[11] J. Aurisano, A. Kumar, A. Gonzalez, J. Leigh, B. Di Eugenio, and A. John-
son. Articulate2: Toward a conversational interface for visual data explo-
ration. In IEEE VIS, vol. 16, p. 1, 2016.

[12] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
transactions on visualization and computer graphics, 17(12):2301–2309,
2011.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the Conference of the North American Chapter of the
Association for Computational Linguistics, NAACL’19, pp. 4171–4186.
ACL, 2019.

[14] K. Dhamdhere, K. S. McCurley, R. Nahmias, M. Sundararajan, and Q. Yan.
Analyza: Exploring data with conversation. In Proceedings of the 22nd
International Conference on Intelligent User Interfaces, pp. 493–504.
ACM, 2017.

[15] A. Diehl, M. Kraus, A. Abdul-Rahman, M. El-Assady, B. Bach, R. S.
Laramee, D. Keim, and M. Chen. Studying Visualization Guidelines
According to Grounded Theory. arxiv, oct 2020.

[16] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein. Iris: A
conversational agent for complex tasks. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pp. 1–12, 2018.

[17] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. Datatone:
Managing ambiguity in natural language interfaces for data visualization.
In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, pp. 489–500, 2015.

[18] D. Guo, G. Tur, W.-t. Yih, and G. Zweig. Joint semantic utterance clas-
sification and slot filling with recursive neural networks. In 2014 IEEE
Spoken Language Technology Workshop (SLT), pp. 554–559. IEEE, 2014.

[19] M. Hearst, M. Tory, and V. Setlur. Toward interface defaults for vague
modifiers in natural language interfaces for visual analysis. In 2019 IEEE
Visualization Conference (VIS), pp. 21–25. IEEE, 2019.

[20] E. Hoque, V. Setlur, M. Tory, and I. Dykeman. Applying pragmatics
principles for interaction with visual analytics. IEEE transactions on
visualization and computer graphics, 24(1):309–318, 2017.

[21] M. Iyyer, J. Wieting, K. Gimpel, and L. Zettlemoyer. Adversarial exam-
ple generation with syntactically controlled paraphrase networks. arXiv
preprint arXiv:1804.06059, 2018.

[22] E. Kandogan and H. Lee. A Grounded Theory Study on the Language
of Data Visualization Principles and Guidelines. Electronic Imaging,
28(16):1–9, feb 2016. doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-132

[23] D. H. Kim, E. Hoque, and M. Agrawala. Answering Questions about
Charts and Generating Visual Explanations. In Proceedings of the 38rd
Annual ACM Conference on Human Factors in Computing Systems, pp.

1–13. ACM, 2020.
[24] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,

and H. Pfister. Data-driven guides: Supporting expressive design for
information graphics. IEEE Transactions on Visualization and Computer
Graphics, 23(1):491–500, Jan 2017. doi: 10.1109/TVCG.2016.2598620

[25] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. 2001.

[26] C. Lai, Z. Lin, R. Jiang, Y. Han, C. Liu, and X. Yuan. Automatic An-
notation Synchronizing with Textual Description for Visualization. In
Proceedings of the 38rd Annual Conference on Human Factors in Com-
puting Systems, CHI’20, pp. 1–13. ACM, 2020.

[27] G. P. Laput, M. Dontcheva, G. Wilensky, W. Chang, A. Agarwala, J. Linder,
and E. Adar. Pixeltone: A multimodal interface for image editing. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 2185–2194, 2013.

[28] Y. Li, H. Yang, and H. Jagadish. Nalix: A generic natural language
search environment for xml data. ACM Transactions on database systems
(TODS), 32(4):30–es, 2007.

[29] R. Likert. A technique for the measurement of attitudes. Archives of
psychology, 1932.

[30] B. Liu and I. Lane. Attention-based recurrent neural network models for
joint intent detection and slot filling. arXiv preprint arXiv:1609.01454,
2016.

[31] C. Liu, Y. Han, R. Jiang, and X. Yuan. ADVISor: Automatic Visualization
Answer for Natural-Language Question on Tabular Data. In Proceedings
of the 14th Pacific Visualization Symposium, pp. 11–20. IEEE, 2021.

[32] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data illustrator: Augmenting vector design tools
with lazy data binding for expressive visualization authoring. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI ’18, pp. 123:1–123:13. ACM, New York, NY, USA, 2018.
doi: 10.1145/3173574.3173697

[33] Y. Luo, N. Tang, G. Li, C. Chai, W. Li, and X. Qin. Synthesizing Nat-
ural Language to Visualization (NL2VIS) Benchmarks from NL2SQL
Benchmarks. In Proceedings of the 2021 International Conference on
Management of Data, pp. 1235–1247. ACM, 2021.

[34] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin. Natural Language
to Visualization by Neural Machine Translation. IEEE Transactions on
Visualization and Computer Graphics, 28(1):217–226, 2022.

[35] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presenta-
tion for visual analysis. IEEE transactions on visualization and computer
graphics, 13(6):1137–1144, 2007.

[36] N. Malandrakis, M. Shen, A. Goyal, S. Gao, A. Sethi, and A. Metallinou.
Controlled text generation for data augmentation in intelligent artificial
agents. arXiv preprint arXiv:1910.03487, 2019.

[37] M. Mauri, T. Elli, G. Caviglia, G. Uboldi, and M. Azzi. RAWGraphs: A
visualisation platform to create open outputs. In Proceedings of the 12th
Biannual Conference on Italian SIGCHI Chapter, pp. 1–5. ACM, Cagliari,
Italy, 2017.

[38] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints: Ac-
tionable and extensible models in draco. IEEE transactions on visualiza-
tion and computer graphics, 25(1):438–448, 2018.

[39] A. Narechania, A. Srinivasan, and J. Stasko. Nl4dv: A toolkit for gener-
ating analytic specifications for data visualization from natural language
queries. IEEE Transactions on Visualization and Computer Graphics,
2020.

[40] S. Oviatt. Mulitmodal interactive maps: Designing for human performance.
Human–Computer Interaction, 12(1-2):93–129, 1997.

[41] L. A. Ramshaw and M. P. Marcus. Text chunking using transformation-
based learning. In Natural language processing using very large corpora,
pp. 157–176. Springer, 1999.

[42] D. Ren, M. Brehmer, B. Lee, T. Höllerer, and E. K. Choe. Chartaccent:
Annotation for data-driven storytelling. In 2017 IEEE Pacific Visualization
Symposium (PacificVis), pp. 230–239. IEEE, 2017.

[43] D. Ren, T. Höllerer, and X. Yuan. ivisdesigner: Expressive interactive
design of information visualizations. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2092–2101, Dec 2014. doi: 10.1109/
TVCG.2014.2346291

[44] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive construction of
bespoke chart layouts. IEEE Transactions on Visualization and Computer
Graphics, 25(1):789–799, Jan 2019. doi: 10.1109/TVCG.2018.2865158

[45] G. Riccardi and D. Hakkani-Tur. Active learning: Theory and applications

https://docs.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview
https://docs.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview
https://docs.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview
http://www.ibm.com/analytics/watson-analytics/
http://www.ibm.com/analytics/watson-analytics/
https://docs.microsoft.com/en-us/power-bi/natural-language/q-and-a-tooling-intro
https://docs.microsoft.com/en-us/power-bi/natural-language/q-and-a-tooling-intro
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://www.tableau.com/
https://www.tableau.com/

to automatic speech recognition. IEEE transactions on speech and audio
processing, 13(4):504–511, 2005.

[46] A. Saktheeswaran, A. Srinivasan, and J. Stasko. Touch? Speech? or Touch
and Speech? Investigating Multimodal Interaction for Visual Network Ex-
ploration and Analysis. IEEE Transactions on Visualization and Computer
Graphics, 26(6):2168–2179, 2020.

[47] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. In Computer Graphics Forum, vol. 33, pp. 351–360. Wiley
Online Library, 2014.

[48] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical reflections on visualization author-
ing systems. IEEE transactions on visualization and computer graphics,
26(1):461–471, 2019.

[49] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE transactions on visualization
and computer graphics, 23(1):341–350, 2016.

[50] J. Sawicki and M. Burdukiewicz. VisQualdex – the comprehensive guide
to good data visualization. arxiv, jan 2022.

[51] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang. Eviza:
A natural language interface for visual analysis. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology, pp.
365–377, 2016.

[52] V. Setlur, M. Tory, and A. Djalali. Inferencing underspecified natural
language utterances in visual analysis. In Proceedings of the 24th Interna-
tional Conference on Intelligent User Interfaces, pp. 40–51, 2019.

[53] L. Shen, E. Shen, Y. Luo, X. Yang, X. Hu, X. Zhang, Z. Tai, and J. Wang.
Towards Natural Language Interfaces for Data Visualization: A Survey.
IEEE Transactions on Visualization and Computer Graphics, pp. 1–20,
2022.

[54] L. Shen, E. Shen, Z. Tai, Y. Song, and J. Wang. TaskVis: Task-oriented
Visualization Recommendation. In Proceedings of the 23th Eurograph-
ics Conference on Visualization (Short Papers), EuroVis’21, pp. 91–95.
Eurographics, 2021. doi: 10.2312/evs.20211061

[55] S. Srinivasa Ragavan, Z. Hou, Y. Wang, A. D. Gordon, H. Zhang, and
D. Zhang. GridBook: Natural Language Formulas for the Spreadsheet
Grid. In Proceedings of the 27th International Conference on Intelligent
User Interfaces, pp. 345–368. ACM, 2022.

[56] A. Srinivasan, M. Dontcheva, E. Adar, and S. Walker. Discovering natural
language commands in multimodal interfaces. In Proceedings of the 24th
International Conference on Intelligent User Interfaces, pp. 661–672,
2019.

[57] A. Srinivasan, B. Lee, N. Henry Riche, S. M. Drucker, and K. Hinckley.
Inchorus: Designing consistent multimodal interactions for data visual-
ization on tablet devices. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pp. 1–13, 2020.

[58] A. Srinivasan, B. Lee, and J. T. Stasko. Interweaving multimodal in-
teraction with flexible unit visualizations for data exploration. IEEE
Transactions on Visualization and Computer Graphics, 2020.

[59] A. Srinivasan, N. Nyapathy, B. Lee, S. M. Drucker, and J. Stasko. Col-
lecting and characterizing natural language utterances for specifying data
visualizations. 2021.

[60] A. Srinivasan and V. Setlur. Snowy:Recommending Utterances for Con-
versational Visual Analysis. In Proceedings of the 34th Annual ACM
Symposium on User Interface Software and Technology, pp. 1–17. ACM,
2021.

[61] A. Srinivasan and J. Stasko. Natural language interfaces for data analysis
with visualization: Considering what has and could be asked. In Proceed-
ings of the Eurographics/IEEE VGTC Conference on Visualization: Short
Papers, pp. 55–59. Eurographics Association, 2017.

[62] A. Srinivasan and J. Stasko. Orko: Facilitating multimodal interaction
for visual exploration and analysis of networks. IEEE transactions on
visualization and computer graphics, 24(1):511–521, 2017.

[63] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis and
visualization of multi-dimensional relational databases. In INFOVIS,
2000.

[64] ThoughtSpot. http://www.thoughtspot.com/, May 2020.
[65] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pp. 5998–6008, 2017.

[66] Y. Wang, H. Zhang, H. Huang, X. Chen, Q. Yin, Z. Hou, D. Zhang,
Q. Luo, and H. Qu. Infonice: Easy creation of information graphics. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI ’18, pp. 335:1–335:12. ACM, New York, NY, USA, 2018.

[67] Z. Wen, M. X. Zhou, and V. Aggarwal. An optimization-based approach to
dynamic visual context management. In IEEE Symposium on Information
Visualization, 2005. INFOVIS 2005., pp. 187–194. IEEE, 2005.

[68] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, pp. 2648–2659.
ACM, 2017.

[69] A. Wu, L. Xie, B. Lee, Y. Wang, W. Cui, and H. Qu. Learning to Automate
Chart Layout Configurations Using Crowdsourced Paired Comparison. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, CHI’21, pp. 1–13. ACM, 2021.

[70] H. Xia, N. Henry Riche, F. Chevalier, B. De Araujo, and D. Wigdor.
Dataink: Direct and creative data-oriented drawing. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, p. 223.
ACM, 2018.

[71] P. Xu and R. Sarikaya. Convolutional neural network based triangular
crf for joint intent detection and slot filling. In 2013 ieee workshop on
automatic speech recognition and understanding, pp. 78–83. IEEE, 2013.

[72] B. Yu and C. T. Silva. Flowsense: A natural language interface for
visual data exploration within a dataflow system. IEEE transactions on
visualization and computer graphics, 26(1):1–11, 2019.

[73] X. Zhang and H. Wang. A joint model of intent determination and slot
filling for spoken language understanding. In IJCAI, vol. 16, pp. 2993–
2999, 2016.

[74] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating structured
queries from natural language using reinforcement learning. arXiv preprint
arXiv:1709.00103, 2017.

[75] F. Őzcan, A. Quamar, J. Sen, C. Lei, and V. Efthymiou. State of the Art and
Open Challenges in Natural Language Interfaces to Data. In Proceedings
of the ACM SIGMOD International Conference on Management of Data,
SIGMOD’20, pp. 2629–2636. ACM, jun 2020.

http://www.thoughtspot.com/

	Introduction
	Related Work
	Visualization Creation Tools
	Natural Language Interfaces for Visualization

	Formative Study
	Procedure
	Results

	Editing Actions
	Editing Action Representation
	Operations
	Objects
	Parameters

	Example Utterances

	NL Interpreter
	Stage 1: In-context Data Entry Abstraction
	Stage 2: Information Extraction for the Editing Action
	Stage 3: Editing Action Synthesis
	Guideline for Reusing the Interpreter

	Example Applications
	Excel Chart Editor
	VisTalk
	Exploratory Study
	Participants
	Study Procedure
	Results

	Discussion
	Conclusion

