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ABSTRACT
Relational cloudDatabase-as-a-Service offerings run onmulti-tenant

infrastructure consisting of clusters of nodes, with each node host-

ing multiple tenant databases. Such clusters may be over-subscribed

to increase resource utilization and improve operational efficiency.

When resources are over-subscribed, it is possible that a node has in-

sufficient resources to satisfy the resource demands of all databases

on it, making it necessary to move databases to other nodes. Such

moves can significantly impact database performance and avail-

ability. Therefore, it is important to reduce the likelihood of such

resource shortages through judicious placement of databases in

the cluster. We propose a novel tenant placement approach that

leverages historical traces of tenant resource demands to estimate

the probability of resource shortages and leverages these estimates

in placement. We have prototyped our techniques in the Service Fab-
ric cluster manager. Experiments using production resource traces

from Azure SQL DB and an evaluation on a real cluster deployment

show significant improvements over the state-of-the-art.
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1 INTRODUCTION
In Database-as-a-Service (DBaaS) settings, the service provider is re-

sponsible for maintaining the database software, resource manage-

ment and high availability of the service [27]. The service provider

hosts the database tenants on sets of nodes called clusters. On a

node, one or more database processes, each assigned to a database

tenant, execute within one or more virtual machines; the resources

of the node are shared between these processes.
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To ensure very high availability, multiple replicas of the same

database tenant can be hosted in the cluster; these typically consist

of one primary replica, which serves both read and write opera-

tions, as well as secondary replicas, which provide scale-out for

read operations and high availability (see e.g., [4] for details). The

orchestration of the various services underlying a DBaaS system is

managed by a cluster manager such as Kubernetes [23] or Service
Fabric [20]. In particular, the cluster manager is responsible for the

placement of replicas within the cluster.

Cluster Resources can be over-subscribed, i.e., the sum of re-

sources promised to databases on a node may exceed the node’s

capacity. There are multiple reasons for over-subscription: First, if

tenants use only a fraction of the promised resources, reserving

the maximum resources promised means a large fraction of cluster

capacity is idle. Careful over-subscription can lead to better cluster

utilization while still providing tenants with the resources needed.

A second reason for over-subscription is to handle capacity short-

ages (which can be due to node failures, hardware unavailability,

or when nodes reboot during a cluster upgrade). Here, temporary

over-subscription protects availability, as tenants from unavailable

nodes can still be placed in the cluster, even if the sum of resources

promised exceeds the available node capacities.

When a cluster is over-subscribed, it is possible that the ag-

gregate resource demand on a node exceeds the node’s capacity.

Therefore, if the aggregate resource demand on a node exceeds a

certain threshold, we consider this to be a resource violation. If a
resource violation persists, it becomes necessary to move tenant

replicas to other nodes in the cluster to alleviate the violation. We

refer to such a move as a failover. Note that failovers can also occur

for other reasons, e.g., load balancing, node upgrades, etc.

Resource violations are a significant issue as the resulting failovers

can significantly impact performance and tenant availability. Specif-

ically, (a) the tenant failed over may become unavailable, (b) queries

executing on the failed-over database may be canceled, (c) the state

in the database caches may be lost during failovers, and (d) for

databases using local storage, the on-disk state has to be copied to

the new node. Thus, minimizing the number of violations is crucial.

For this, the key decision becomes on which node to place each

tenant replica, which is the problem we study in this paper.
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Tenant placement has been widely studied, both in research as

well as industrial practice. Unfortunately, the existing techniques

are not well-suited to address the problem described above. Many

existing techniques make placement decisions based on a static

snapshot of the resource demands in a cluster. However, tenant

resource demands can change rapidly. Such changes in demand can

be challenging to anticipate, in particular for new tenants, because

little is known about tenants before they are placed. As a result,

existing placement techniques may result in excessive failovers.

Some approaches solve different optimization tasks, such as

maximizing tenant density (leading to additional violations), or

minimizing the effect of violations on tenant performance without
actually resolving the violations, making them non-applicable for

our scenario.

We propose a different approach to tenant placement, which uses

the historical resource usage data that DBaaS providers collect. This

data allows us to characterize the distributions of resource demands

(over time) and tenant lifetimes. Based on these distributions, we

estimate the probability of a future resource violation for a set of

tenants sharing a node. This probability and its computation is the

key contribution of this paper; we will show how to integrate it

into tenant placement algorithms to achieve a significant reduction

in resource violations compared to the state-of-the-art.

Properties of the approach: The probability of violation estimates

are computed usingMonte Carlo (MC) simulations, which driven by

historical demand traces. The use of Monte Carlo techniques has

a number of advantages: (1) They are able to account for dynamic

changes in resource demand over time. (2) There is no requirement

to have precise predictions of future resource usage. Instead, the

simulation implicitly models the uncertainty in future resource

demand and combines the uncertain estimates for different tenants

in a principled way. (3) Because historical traces are replayed for

all resources in lock-step, the approach automatically captures

correlations in demand across different resources.

Evaluation: We compare our approach to state-of-the-art place-

ment algorithms from research, including Virtual Machine place-
ment [28], cluster scheduling [17] and theoretical work on on-line
vector (re-)packing [31]. In addition, we compare to the placement

logic of Service Fabric [20], and placement heuristics used in Kuber-
netes [23]. We integrated our technique into a prototype of Service
Fabric and use a deployment on a real cluster as part of the evalua-

tion. Overall, the proposed approach performs consistently better

than the state-of-the-art, with even the best-performing alternatives
resulting in at least 2.1x as many violations as our approach.

While the proposed approach is also applicable to other services

with varying resource demands hosted in over-subscribed clusters,

we limit the scope of this paper to relational database systems.

2 RELATEDWORK
Industrial Cluster Managers: A common approach used in in-

dustrial practice is to base placement decisions on a snapshot of
the resource demands of existing tenants, and an estimate of the

resource demands of new tenants, and then use heuristics such as

WorstFit [39], BestFit [39], etc. to make placement decisions. How-

ever, the demand snapshots fail to account for changes in resource

demands over time, including tenant departures.

Other cluster managers have studied different optimization tasks:
[32] models placement as a minimization problem, where the num-

ber of concurrently used servers is minimized subject to constraints

on service-level objectives and node load. In contrast, in our sce-

nario, cluster sizes are fixed and incidence of violations is the op-

timization criterion. [12] manages resources based on the impact

shortages have on workloads; the allocation mechanism allocates

the minimum resources needed to satisfy a performance target. This
differs from our scenario, where violations must be resolved, re-

gardless of their performance impact.

Online Packing Techniques: The task of placing tenants on nodes
is highly related to the well-known bin-packing problem. While

offline and static instances of bin-packing for a single resource

admit efficient solutions [15], DBaaS tenant placement is more

challenging due to (1) there being multiple resources, (2) tenants

arriving and departing dynamically, and (3) tenant’s resource re-

quirements changing over time. Packing algorithms that account for

dynamic arrivals/departures and changes in resource demand have

been developed in the theory community. These use online (vector)
bin-packing techniques [8, 9, 14, 28] to maintain tenant packings

competitive with optimal offline bin-packing schemes, while pro-

viding worst-case bounds on failovers required for different events
(such as a new placement). Because the approaches prioritize the
packing density, the bounds on failovers are too loose to be practical
for our setting. For example, [31] may require up to 10 failovers for

a single change in demand.

Tenant Consolidation: These techniques (e.g., [10, 37]) initially
observe the demand of each tenant for a minimum time period,

use these observations to predict future usage and subsequently

consolidate tenants on a smaller set of nodes. The challenge here

is that the consolidation itself requires failing over new tenants at

least once, making the approach impractical, as we seek to avoid

failovers altogether for most tenants.

Cluster Scheduling: The tenant placement problem is also related

to the task of cluster scheduling (e.g., [19, 38]). However, the tech-

niques proposed in this context differ from our scenario in a number

of respects: first, in many of these approaches, resources for a ser-

vice are reserved statically and remain assigned independently of

whether they are used (e.g., see [38], Section 2.4). Moreover, the key

metrics optimized in scheduling (e.g., job completion times, fairness)
are very different from minimizing violations.

Database Migration: How to migrate database replicas within a

cluster to alleviate resource contention has been an active area of

research as well [7, 11, 13, 26]. [26] studies swap-removable resource
contention scenarios, which can be resolved by swapping primary

and secondary replicas. This approach is applicable to CPU over-

subscription, it fails for other resources (e.g., disk space violations,

as swaps do not necessarily reduce the disk footprint); moreover, it

is not applicable to non-replicated tenants.

[7] proposes SWAT , an end-to-end tenant migration framework.

Here, the primary focus is on how tominimize tenant downtime dur-
ing the migration, as well as minimizing the impact of the migration

operations on workload throughput. However, how to place tenants

to minimize disruption is not studied. Thus, [7] complements the

approach of this paper. The same holds for [11, 13], which study

live migration of database replicas within a cluster.
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Figure 1: Database tenants are hosted in clusters of nodes

3 BACKGROUND
We study database tenant placement in over-subscribed DBaaS

clusters (Figure 1). Sets of clusters are organized into larger groups

(e.g., different geographical regions). Each cluster is managed by

a cluster manager (e.g., Service Fabric [20] or Kubernetes [23]),

which handles tenant placement, state replication, reconfiguration

of replicas on node failure, and resource load balancing.

A node-level resource manager manages the distribution of re-

sources across tenant databases on the node, which share the node’s

resources. Thus, the key issue for resource management becomes

which databases are placed together on a node, as this implicitly

determines whether their aggregate demand can be satisfied. Each

tenant is assigned a tenant class, which is a partitioning of tenants

into groups of tenants with similar resource demands, based on

information available before a tenant is placed. Different ways to
assign these classes are possible; in this paper we assign the tenant

classes based on 4 factors: (a) the maximum resources available to

each tenant, (b) the location of the data itself (local SSD vs. remote

storage), and (c) the billing model used (e.g., Serverless) and (d) the

number of replicas. Any tenants that agree on all of these factors

are assigned to the same tenant class.

Resource violations: A node is in resource violation if the aggre-

gate demand for a resource exceeds a threshold (e.g., 95% of the

resource capacity), in which case replicas need to be moved to other

nodes in the cluster until the demand is below the threshold again.

These moves are not instantaneous, which is why the violation

thresholds are set lower than the node’s capacity – triggering a

violation at the lower threshold allows for sufficient time for the

move to complete before the resource is physically exhausted.

3.1 Characteristics of Resource Demands
In this section, we describe the relevant characteristics of the re-

source demand curves seen in real DBaaS tenants. Our observations

are based on tenant traces collected in Azure SQL Database [34].

The shape of resource demand curves:When a new tenant is

placed in a DBaaS cluster, the underlying databases are typically

initialized (e.g., from a backup). As a result, the disk demand for

new tenants often grows rapidly, followed by a period of only

small increases (see Figure 2 for an example). A smaller fraction

of tenants continues to grow throughout their lifetime, as data is
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Figure 2: Real-life Example of Disk Demand in Azure SQL
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Figure 3: Real-life Example of Disk Demand in Azure SQL

continuously added (see Figure 3). In both cases, disk demand very

rarely sees substantial decreases, with occasional small decreases

due to changes in temporary workspaces (e.g., a disk spill). Similar

observations have been made in [25] (see Section 4.2).

We have observed similar patterns in the typical memory de-

mand curves of newly arriving tenants, which grow rapidly in the

beginning of their lifetime, as caches are populated with the work-

ing set of the application. Unlike disk demand, noticeable reductions

in the memory footprint are more common, especially in Serverless
tenants which may reclaim memory aggressively (see e.g., [35]).

To quantify these observations, we analyzed demand traces of

10K random tenants from 4 different geographical regions: For

memory and disk demand, over 90% of tenants reach 95% of their

maximum disk/memory demand within (depending on the region)

2%-5% of their lifetime. After they have reached 95% of their maxi-

mum disk demand, disk demand rarely drops back below 90% of

the maximum – less than 1% of tenants show this pattern. Drops in

memory demand are more common, but still atypical: once tenants

have reached 95% of their max. memory demand, less than 7% of

tenants ever drop below 80% of the maximum.

We will use these observations in Section 5.3 to propose a com-

pressed representation of demand curves for these resources.

3.2 Notation
We consider a cluster of 𝐻 nodes 𝑁𝑜𝑑𝑒𝑠 = {𝑁1, . . . 𝑁𝐻 }, each of

which offers resources R = {𝑟1, . . . 𝑟𝑣}. For a resource 𝑟 , every node
has a capacity 𝑐𝑟 .
Database tenants:we consider a set of𝑊 database tenants𝑇𝑒𝑛𝑎𝑛𝑡𝑠 =

{𝑇1, . . .𝑇𝑊 }; each tenant has 1 or more replicas. The set of all repli-

cas is denoted as DB; each replica 𝑑𝑏 ∈ DB has a lifetime denoted



by 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑑𝑏) which is the time between replica creation and it

being removed from the cluster, and a 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏), which
corresponds to the time when 𝑑𝑏 was initially placed in the cluster.

We denote the resource demand for a replica 𝑑𝑏 and a resource 𝑟

at 𝛿 units of time after 𝑑𝑏’s creation time by 𝑢𝑠𝑎𝑔𝑒𝑟
𝑑𝑏,𝛿

. We refer to

the sequence of a tenant’s resource demands for a resource 𝑟〈
𝑢𝑠𝑎𝑔𝑒𝑟

𝑑𝑏,0
, . . . , 𝑢𝑠𝑎𝑔𝑒𝑟

𝑑𝑏,𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑑𝑏)−1
〉

as the tenant’s demand curve. Each tenant replica resides on one of

the nodes at any point of its lifetime; we denote the replicas placed

on a node 𝑁𝑖 at time 𝑡 by 𝑡𝑒𝑛𝑎𝑛𝑡𝑠 (𝑁𝑖 , 𝑡). For ease of exposition, we
use the terms replica and database interchangeably throughout the

paper. We divide time into discrete intervals (e.g., 1 minute), and

use the time “𝑛𝑜𝑤” to specify the current time. Using this, we can

specify the aggregate demand on a node 𝑁𝑖 at time 𝑡 as:

𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑟𝑖,𝑡 :=
∑︁

𝑑𝑏∈𝑡𝑒𝑛𝑎𝑛𝑡𝑠 (𝑁𝑖 ,𝑡 )
𝑢𝑠𝑎𝑔𝑒𝑟

𝑑𝑏,𝑡−𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏)

In addition to the actual resource demand, each tenant replica

has a maximum demand 𝑀𝑎𝑥𝑈𝑠𝑎𝑔𝑒𝑟
𝑑𝑏
, which is an upper bound

on how much of resource 𝑟 database 𝑑𝑏 can use. Using this max.

usage, we capture the degree a resource is over-subscribed via the

oversubscription-ratio of a node 𝑁𝑖 for a resource 𝑟 as

𝑂𝑅𝑟𝑖 :=

( ∑︁
𝑑𝑏∈𝑡𝑒𝑛𝑎𝑛𝑡𝑠 (𝑁𝑖 ,𝑡 )

𝑀𝑎𝑥𝑈𝑠𝑎𝑔𝑒𝑟
𝑑𝑏

)
/𝑐𝑟

and for the cluster 𝑂𝑅𝑟 as the average of the 𝑂𝑅𝑟
𝑖
over all nodes.

Resource violations: we consider a node to be in violation for a

resource 𝑟 if the aggregate demand on the node is at least as large

as a threshold 𝑓𝑟 · 𝑐𝑟 , where 0 < 𝑓𝑟 ≤ 1.

3.3 Problem Formulation
Problem definition: Given an (initially empty) cluster of 𝐻 nodes

and an input sequence WL of operations, with each operation

being associated with a timestamp 𝑡 and being one of (a) a new

tenant being placed in the cluster, (b) a tenant departing the cluster

and (c) a change in a replica’s resource demand, compute – for each

timestamp 𝑡 – the placement of tenants such that

• every replica 𝑑𝑏 active at 𝑡 (i.e., 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏) < 𝑡 and

𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏) + 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑑𝑏) ≥ 𝑡 ) is placed on a node,

• no node is in violation (i.e., ∀𝑖, 𝑟 : 𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑟
𝑖,𝑡

< 𝑓𝑟 · 𝑐𝑟 ),
• and the placement of a replica 𝑑𝑏 can be (re-)assigned only

(i) when 𝑑𝑏 is admitted to a cluster, (ii) if a new replica can-

not be placed due to resource fragmentation, which can be

resolved by moving 𝑑𝑏, or (iii) if there would be a resource

violation if the placement for timestamp 𝑡 −1were in effect,

i.e., ∑
𝑑𝑏∈𝑡𝑒𝑛𝑎𝑛𝑡𝑠 (𝑁𝑖 ,𝑡−1)

𝑢𝑠𝑎𝑔𝑒𝑟
𝑑𝑏,𝑡−𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏) ≥ 𝑓𝑟 · 𝑐𝑟 (we

record a resource violation at 𝑡 for every node for which

we (re-)move tenants due to (iii))

and the total number of resource violations is minimized. This is

an online problem, meaning at any time 𝑡 , nothing is known about

the future tenant demands.

Resource Fragmentation: Even if 𝑂𝑅𝑟 < 1 for all resources 𝑟 ,

there can still be violations, due to resource fragmentation. Consider
the example of two classes of tenants; class A, which consumes

Tenant Placement Module 

Replica Resource Usage

Probability of  
Violation 

Estimation

Configuration 
Scoring

Current Cluster Configuration

Candidate
Configuration

Configuration 
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Target Cluster Configuration

(Set of) tenant
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Figure 4: Components of the Tenant Placement Module

25% of a node’s capacity, whereas class B consumes 80% of a node’s

capacity. Now, in a cluster of 𝐻 nodes, if at least 𝐻 tenants of class

A have been placed using e.g., the WorstFit heuristic, then any

incoming tenant of class B will trigger a violation (or a placement

failure), even though up to 75% of the cluster’s capacity is unused.

4 SOLUTION OVERVIEW
The key challenge in tenant placement are dynamic changes in ten-

ant resource demands, as well as tenant departures, both of which

are difficult to predict (e.g., see [29]), particularly for new tenants.

As a result, our approach does not rely on precise predictions of

node-level demand. Instead, we try to capture both (i) changes in

demand over time, as well as (ii) the underlying uncertainty in the

demand estimates. To do so, we utilize fastMonte Carlo simulations,

which leverage previously observed demand curves, and are used

to estimate – for a given set of tenants co-located on a node – a

probability distribution for the aggregate resource demand on that

node. Based on these, we estimate the probability of a future resource
violation for co-located databases (see Section 5), and then use these

probabilities in placement (see Section 6).

Interface to the Cluster Manager: We assume that the cluster

manager provides a tenant placement module (Figure 4), which

has interfaces that take as input (a) the current cluster configu-
ration, (b) the current resource usage per replica and (c) tenant

arrivals/departures. Based on these inputs, the placement module

enumerates candidate configurations, which are passed to a scoring

module. Finally, the configuration with the best score is imple-

mented. In practice, a valid configuration has to satisfy additional

constraints (e.g., minimum replica counts, affinity constraints, etc.).

5 MODELING VIOLATION PROBABILITIES
As discussed in Section 2, the issue with using snapshots of resource

demands in placement is that demands may vary significantly over

time. This is especially true directly after a new tenant has been

placed, as data is imported, and memory caches are populated. Thus,

a node on which a tenant has recently been placed, typically has a

higher risk of a future violation than a node with similar current

resource demand, but no new tenants.

To capture the distribution of changes in demand over time, our

approach uses demand traces collected from previous tenants in

Monte Carlo (MC) simulations. These simulations “replay” demand

curves for replicas that are similar to the replicas we are considering



to co-locate on a node. By summing these demand curves, we obtain

the estimated distribution of node-level demand over time.

5.1 Estimation of Resource Demand
Demand traces:We use a set of demand curvesD = {𝑑𝑒𝑚𝑎𝑛𝑑1, . . .

, 𝑑𝑒𝑚𝑎𝑛𝑑𝑔} we have collected for tenants observed previously. A

single element 𝑑𝑒𝑚𝑎𝑛𝑑𝑖 ∈ D encodes a sequence of resource de-

mands for all resources 𝑟 ∈ R over the full lifetime of the ten-

ant, i.e., it contains |R | sequences (one for each resource) of the

form

〈
𝑢𝑠𝑎𝑔𝑒𝑟

𝑑𝑏,0
, . . . , 𝑢𝑠𝑎𝑔𝑒𝑟

𝑑𝑏,𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑑𝑏)−1
〉
. We use the notation

𝑑𝑒𝑚𝑎𝑛𝑑𝑟
𝑖,𝛿

to denote the demand for resource 𝑟 at time 𝛿 (for 𝑟 ∈ R
and 1 ≤ 𝑖 ≤ 𝑘); again, 𝛿 refers to a time offset relative to when the

tenant had been placed.

We use D to simulate the future resource demands for a set

S = {𝑑𝑏1, . . . 𝑑𝑏𝑙 } of databases co-located on a node 𝑁 . First, to

illustrate the idea, we will describe simple approach, which ignores

similarity between traces and the current databases they are used

to simulate. Initially, for each tenant 𝑑𝑏 𝑗 we draw the traces from

D at random to simulate a possible resource demand curve for

𝑁 ; here, the index of the trace used to simulate database 𝑑𝑏 𝑗 is

denoted by 𝑜𝑗 and drawn from [|D|] := {1, . . . , |D|}. Subsequently,
we introduce constraints on the set D used to simulate a concrete

replica 𝑑𝑏, referring to the resulting subset of D as D(𝑑𝑏). Based
on these indices (𝑜1, . . . , 𝑜𝑙 ), the (estimated) aggregate demand on

node 𝑁 for a resource 𝑟 at time 𝑡 can be written as:

𝑙∑︁
𝑗=1

𝑑𝑒𝑚𝑎𝑛𝑑𝑟
𝑜𝑗 ,𝑡−𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏 𝑗 ) .

Now, by repeating this process of drawing offsets for all possi-

ble combinations of indices (𝑜1, . . . , 𝑜𝑙 ), with each 𝑜𝑗 ∈ [|D|], we
obtain an estimated distribution of node load on node 𝑁 over time.

Based on this distribution, we can estimate the likelihood for a re-

source violation as the fraction of such index-vectors that result in

a violation at some time-point 𝑡 (see Equation 1 on the next page).

Monte Carlo Simulation: Evaluating all possible (𝑜1, . . . , 𝑜 |S |)
in Equation 1 for violations has prohibitive overhead. Instead (see

Algorithm 1), we perform Monte Carlo simulations during which

we repeatedly sample an (uniformly) random assignment of offsets

(line 5) and evaluate whether it results in a violation (see line 7); the

fraction of such assignments (see line 11) is an unbiased estimate

of the probability of violation as defined in Equation 1 (if the set of

of eligible traces is constrained to (𝐷) (𝑑𝑏𝑘 )).
Using traces similar to existing tenants: To improve the accu-

racy of the MC simulation, we further restrict the set of demand

curves from D used to simulate a database 𝑑𝑏𝑘 to curves from

databases that are similar to 𝑑𝑏𝑘 , in the sense that they share a

set of common features. Concretely, we restrict the traces used to

simulate 𝑑𝑏𝑘 to traces of databases of the same tenant class, further
differentiating between primary and secondary replicas.

Furthermore, for a database 𝑑𝑏𝑘 which has been placed on the

cluster already, we are able to observe (a prefix of) the demand

curve and (a lower bound on) lifetime. So, when simulating such a

database 𝑑𝑏𝑘 , which was placed in the cluster 𝐿 units of time ago,

we only use traces of past tenants whose lifetime was at least 𝐿. This

allows us to obtain more accurate estimates of resource load when

estimating the probability of violations, as the different properties

Algorithm 1 Estimating the Probability of a Violation

1: procedure ProbViolation(S) // Input set of tenants on 𝑁

2: 𝑁𝑢𝑚𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 := 0

3: for 𝑙 ∈ {1, . . . , 𝑁𝑢𝑚𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 } do // Main Monte Carlo loop

4: for 𝑘 ∈ {1, . . . , |S |} do //

5: 𝑜𝑘 = random offset of trace in D(𝑑𝑏𝑘 )
6: end for

7: if ∃𝑟, 𝑡 :
( |S|∑
𝑗=1

𝑑𝑒𝑚𝑎𝑛𝑑𝑟
𝑜 𝑗 ,𝑡−𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏 𝑗 )

)
≥ 𝑓𝑟 · 𝑐𝑟 then

8: 𝑁𝑢𝑚𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑁𝑢𝑚𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 + 1

9: end if
10: end for
11: Return (𝑁𝑢𝑚𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛/𝑁𝑢𝑚𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠)
12: end procedure

of demand curves are correlated: for example, longer-lived tenants

are more likely to have higher resource demands.

We extend this idea to other resources: for a database 𝑑𝑏𝑘 in

the cluster, we track, for each resource 𝑟 , the maximum demand

𝐿𝐵𝑀𝑎𝑥𝑟 observed so far. Then, when simulating 𝑑𝑏𝑘 , we only use

traces for which, at some time, demand for 𝑟 is at least 𝐿𝐵𝑀𝑎𝑥𝑟 . We

use the notation D(𝑑𝑏𝑘 ) to describe the subset of D that satisfies

the constraints derived from 𝑑𝑏𝑘 ’s observed demand curve.

5.2 Reducing the Computational Overhead
Because the computation of 𝑃𝑟𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S) is part of the inner loop
executed when enumerating candidate configurations (see Figure 4),

it needs to have low computational and memory overhead. As a

result, we introduce two optimizations to this process.

First, storing D may require significant memory, as a trace can

contain large numbers of data points. Thus, we compress D by

storing, instead of each demand curve, a compact model of it. Us-

ing these models has little effect on the estimated probability of

violation, but reduces the required memory footprint significantly.

Second, evaluating whether a sample of traces (𝑜1, . . . , 𝑜 |S |)
results in a violation requires computing the sum of tenant demands

for all time points where multiple databases are active on a node,

which can be computationally expensive. To reduce this overhead,

we leverage properties of the compressed models, which allow us

to evaluate if a violation occurs by evaluating only |S| time points.

5.3 Trace Compression
Based on the observations made in Section 3.1 on the typical shapes

of demand curves, we now formulate a simple compressed represen-

tation of them. Concretely, we use three different representations,

one each for the three relevant resource types – disk space, mem-

ory and CPU. Obviously, these representations may be significantly

different than the original trace at individual time points. However,

the purpose of these compressed traces is not to accurately replay

the individual demand of a specific tenant, but to capture the ag-

gregate tenant demand distribution across many traces sufficiently

well to accurately estimate the probability of a violation.

Modeling disk demand: The disk model is based on the obser-

vation that most tenants grow to (or close to) their maximum disk

demand and subsequently retain a disk demand at close to this

level. Consequently, we model the disk demand using 3 parameters:



𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S) =
��{(𝑜1, . . . , 𝑜 |S |) ∈ [|D|] × . . . × [|D|] | (𝑜1, . . . , 𝑜 |S |) results in violation

}��
|D| |S |

=

���{(𝑜1, . . . , 𝑜 |S |) ∈ [|D|] × . . . × [|D|] | ∃𝑟 ∈ R, 𝑡 ∈ T :

( |S |∑
𝑗=1

𝑑𝑒𝑚𝑎𝑛𝑑𝑟
𝑜 𝑗 ,𝑡−𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏 𝑗 )

)
≥ 𝑓𝑟 · 𝑐𝑟

}���
|D| |S |

(1)
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Figure 5: Compressing the Disk Demand curve of Figure 2
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Figure 6: Compressing the Disk Demand curve of Figure 3

(1) The duration 𝐺𝑑𝑖𝑠𝑘 of the growth phase of the tenant, (2) the

maximum size𝑀𝑑𝑖𝑠𝑘 which the tenant grows to, and (3) the initial

disk demand 𝐼𝑑𝑖𝑠𝑘 first reported for the tenant. Note that these three

parameters are chosen individually for every trace in D that we

represent in this compressed form. Based on these parameters, we

then model the disk demand of a tenant 𝑑𝑏 at a time-point 𝛿 as

𝑑𝑒𝑚𝑎𝑛𝑑𝑑𝑖𝑠𝑘
𝑑𝑏,𝛿

=

{
𝐼𝑟
𝑑𝑖𝑠𝑘

+ 𝛿
𝐺𝑑𝑖𝑠𝑘

·𝑀𝑑𝑖𝑠𝑘 , 𝛿 ≤ 𝐺𝑑𝑖𝑠𝑘

𝑀𝑑𝑖𝑠𝑘 , otherwise.

(2)

To illustrate the effect of compressing the real-life demand curves

shown in Figures 2 end 3, we plotted them with their compressed

representations in Figures 5 and 6; for these examples, the com-

pressed representation matches the real demand curve quite well.

Modeling memory demand: Because memory demand curves

follow a similar overall pattern as disk demand, we use the same

representation for memory demand as we use for disk, again fitting

3 parameters 𝐺𝑚𝑒𝑚 , 𝑀𝑚𝑒𝑚 and 𝐼𝑚𝑒𝑚 ; however, as discussed in

Section 3.1, the distributions of the parameters are considerably

different – for example, tenants often reach their 95% of their peak

memory demand at a much later time than 95% of their disk demand.
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Figure 7: Evaluation of Compressed Models

Modeling CPU demand:We found that CPU demand typically

does not follow a simple pattern, but changes rapidly and often

unpredictably (e.g., see [30]). Thus, we do not model any long-term

trends for CPU, but use the 90th percentile of the observed CPU

usage𝑈 90𝑐𝑝𝑢 . We selected a relatively high percentile to err on the

side of over-estimating the likelihood of a violation. In addition to

the compressed representations, we also retain the lifetime 𝐿 of the

tenant in question. We can now represent the demand curves for a

replica using 8 parameters:𝑀𝑑𝑖𝑠𝑘 ,𝐺𝑑𝑖𝑠𝑘 , 𝐼𝑑𝑖𝑠𝑘 ,𝑀𝑚𝑒𝑚 𝐺𝑚𝑒𝑚 , 𝐼𝑚𝑒𝑚 ,

𝑈 90𝑐𝑝𝑢 and 𝐿, so D becomes a set of 8-tuples.

Effect of Compression: The key metrics for this representation

are (a) the resulting reduction in storage space required to represent

D, and (b) the effect on the estimated probability of violation (Equa-

tion 1). To evaluate the latter, we set up an experiment where we

placed 𝑒 tenants (with 𝑒 ranging from 10 to 200), chosen at random

from D, on a single node. The creation times for the tenants are

staggered, such that a new tenant is placed every 10 minutes. We

replay the corresponding traces (using the real-life tenant traces,

which we will describe in more detail in Section 8) and check for

violations, repeating the experiment with 10000 different 𝑒-tenant

samples from D (for each value of 𝑒) to estimate the probability of

violation. We then repeat this experiment, using the compressed

representations instead of the full traces. Figure 7 shows the result-

ing probability of a violation based on the full traces (on the X-axis)

and the compressed traces (on the Y-axis), with every individual

point corresponding to a different value of 𝑒 . There is an almost ex-

act correspondence between the estimates; only for large numbers

of tenants we see a very slight increase in the estimated probability.

Reducing Computational Overhead: As described in Section 5.2,

evaluating if an assignment of trace offsets (𝑜1, . . . , 𝑜 |S |) results in
a violation requires computing the aggregate demand for all time

points 𝑡 for which multiple tenants are present on a node 𝑁 .

We reduce the overhead of this step by leveraging the mono-

tonicity of the compressed demand curves. Concretely, for a set



S = {𝑑𝑏1, . . . , 𝑑𝑏𝑙 } of databases co-located on node 𝑁 , we only

need to consider |S| points in time. To define these points, we use

the notation 𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑜 𝑗 ) to denote the lifetime of the past

replica whose trace is referred to by offset 𝑜 𝑗 (we use this notation

to differentiate from 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑑𝑏 𝑗 ), which are unknown). Now, we

define this set of time points as

T ′
:=

{
𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏 𝑗 ) + 𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑜 𝑗 ) | 𝑗 ∈ {1, . . . , 𝑙}

}
.

Obviously, T ′ ⊆ T . Now, we will show that for a given sample

(𝑜1, . . . , 𝑜𝑙 ) of offsets into D(𝑑𝑏1) × . . . × D(𝑑𝑏𝑙 ) that if there is
a time 𝑡 ∈ T such that there is a violation at time 𝑡 , then there

exists a time 𝑡 ′ ∈ T ′
such that there is a violation at time 𝑡 ′ as

well. Showing the implication in the opposite direction is trivial,

as T ′ ⊆ T . Combined, these two implications mean that we only

need to consider all 𝑡 ′ ∈ T ′
when testing for violations.

Proof: Let 𝑟 be the resource for which there is a violation at time

𝑡 . Let S′
:= 𝑡𝑒𝑛𝑎𝑛𝑡 (𝑁, 𝑡) be the set of active tenants on 𝑁 at time

𝑡 . Then define 𝑡 ′ := min

𝑑𝑏∈S′
𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 (𝑑𝑏 𝑗 ) + 𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 (𝑜 𝑗 );

intuitively, this time is the latest time that all tenants in S′
are

active on 𝑁 . This means that 𝑡𝑒𝑛𝑎𝑛𝑡 (𝑁, 𝑡) ⊆ 𝑡𝑒𝑛𝑎𝑛𝑡 (𝑁, 𝑡 ′). Now,
we know that – because of the way we defined the compressed

demand models in Equation 2 – that the resulting demand curves

for each resource 𝑟 are monotonically increasing (note that, because

we do not require strict monotonicity, this also holds for the CPU

representation). Therefore, based on the compressed models, the

demand for resource 𝑟 on the node at time 𝑡 ′ must be at least as

large as the demand at time 𝑡 . □

6 NEW PLACEMENT ALGORITHMS
In this section, we describe new placement algorithms, which use

the estimated probability of violation to reduce the expected number

of violations directly. For this, we estimate the expected number

of violations as the sum of the probabilities of violation over all

nodes, under the simplifying assumption that resource demands

are independent across nodes.

Secondary placement criteria: Because probability of violation

estimates on not over-subscribed nodes will be 0, potentially result-

ing in multiple placements having identical expected violations, we

combine the estimates with a secondary heuristic to select the best

configuration. It is known that simple heuristics, such asWorstFit
perform well when resource demands do not change dynamically

(e.g., [17, 18]). So, intuitively, we use the simpler heuristics for

placement among not (highly) overbooked nodes, while probability

of violation estimates are utilized when tenants are packed more

densely. Concretely, we propose two algorithms: The first approach

combines probability of violation estimates with the BestFit heuris-
tic, the 2nd algorithm with theWorstFit heuristic.
Space of Configurations: For ease of exposition, we assume that a

single replica 𝑑𝑏 is placed at a time. The configuration-space there-

fore corresponds to all nodes that can accommodate the (estimated)

initial demand of 𝑑𝑏. In Section 7, we then describe the integration

of our approach with the Service Fabric cluster manager, which

allows for multiple replicas to be placed/moved in parallel.

6.1 Probability of Violation + BestFit
The first algorithm we propose (see Algorithm 2) uses the BestFit
heuristic as the secondary criterion. BestFit places 𝑑𝑏 on the node

that has the smallest amount of resource capacity remaining after

placing 𝑑𝑏. BestFit concentrates tenants on a small(er) number

of nodes. This reduces resource fragmentation, but may increase

capacity violations when tenant demands increase.

Therefore, this algorithm uses the probability of violation esti-

mates to rule out nodes that are packed “too densely” for a new

tenant 𝑑𝑏: if there exist nodes for which the estimated probability

of violation (after placing 𝑑𝑏) is below a threshold \ (see line 10),

only these are considered as destinations for 𝑑𝑏 (see the variable

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠); if multiple such nodes exist, BestFit is used to select

among them (line 14). Otherwise, 𝑑𝑏 is placed such that the expected
number of violations is minimized (see line 16).

Weighting Functions: One remaining question is how to de-

fine the “best fit” when there is a vector of resource demands

𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑖 :=
(
𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑟1
𝑖
, . . . , 𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑟𝑣
𝑖

)
, as opposed to a single

value. For this purpose, different weighting functions have been

proposed (see e.g., [28]), which combine these to a single scalar. We

have experimented with different weighting functions, and found

two functions to perform best
1
: the first is the FFDSum heuristic [28]

(also used in [17]), which is defined as

𝑊𝑆𝑢𝑚 (𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑖 ) =
∑︁

𝑗=1,...,𝑣

𝑤 𝑗 · 𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑
𝑟 𝑗
𝑖
, (3)

where𝑤 𝑗 =
1

|DB |·𝑐 𝑗
∑

𝑑𝑏∈DB
𝑢𝑠𝑎𝑔𝑒

𝑟 𝑗

𝑑𝑏,𝑛𝑜𝑤
. Intuitively, this function

assigns a weight to each resource, which corresponds to the aggre-

gate resource demand within the entire cluster. The other weighting

function we use is

𝑊𝑀𝑎𝑥 (𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑖 ) = max

𝑗=1,...,𝑣
𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑟 𝑗
𝑖
/𝑐𝑟 𝑗 , (4)

which uses the maximum demand (relative to capacity) across all

resources. When describing the algorithms, we simply use the no-

tation𝑊 () for the weighting function; each algorithm can be in-

stantiated with a different weighting function.

Initial demands: When placing a new tenant, the initial resource

demand is unknown, meaning we need to use an estimate. We use

the notation 𝑢𝑠𝑎𝑔𝑒𝑟
𝑑𝑏,𝛿

to differentiate the estimated demand from

the actual one. We will refer to this algorithm as PrV-BestFit.

6.2 Probability of Violation + WorstFit
The 2nd algorithm we propose (Algorithm 3) uses the WorstFit
heuristic as a secondary criterion. The WorstFit heuristic is the

“opposite” of BestFit in that it places a replica 𝑑𝑏 on the node with

the largest resource capacity remaining.

Thus, WorstFit spreads aggregate resource demand evenly across

the cluster, making it an efficient heuristic for cases where multiple

nodes have a small probability of violation if 𝑑𝑏 is placed on them;

however, this may cause resource fragmentation (see Section 3.3).

1
We also evaluated (1) the unweighted average over all resources and (2)

using only the resource that is the biggest bottleneck in the cluster. Both

perform worse with respect to the total number of violations observed.



Algorithm 2 Combining the Probability of Violation with BestFit

1: procedure PlaceTenantPrVBF(Tenant 𝑑𝑏)
2: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 := ∅
3: for all 𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠 do
4: S𝑛 := { All databases currently placed on node 𝑛}.
5: if 𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S𝑛 ∪ {𝑑𝑏 }) < \ then
6: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 := 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ {𝑛}
7: else 𝐷𝑒𝑙𝑡𝑎𝑛 := 𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S𝑛 ∪ {𝑑𝑏 }) − 𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S𝑛)
8: end if
9: end for
10: if 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ≠ ∅ OR min𝑛∈𝑁𝑜𝑑𝑒𝑠 𝐷𝑒𝑙𝑡𝑎𝑛 = 1 then
11: for all 𝑛 ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do
12: 𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑛 :=

(
𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑟1
𝑛 +𝑢𝑠𝑎𝑔𝑒𝑟1

𝑑𝑏,0
, . . . , 𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑟𝑣
𝑛 +

𝑢𝑠𝑎𝑔𝑒
𝑟𝑣
𝑑𝑏,0

)
13: end for
14: 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 := argmax

𝑖∈𝐶𝑎𝑛𝑑𝑖𝑎𝑡𝑒𝑠

𝑊 (𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑖 )

15: else
16: 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 := argmin

𝑖∈𝑁𝑜𝑑𝑒𝑠

𝐷𝑒𝑙𝑡𝑎𝑖

17: end if
18: Return 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒

19: end procedure

Therefore, our algorithm “holds out”𝑀 nodes, only allowing place-

ment on them if the probability of violation is always larger than \

when placing on a node not held out (see line 17-18).

Similar to PrV-BestFit, this scheme selects the configuration that

minimizes the expected number of violations when placing a tenant

𝑑𝑏 on any node will result in an estimated violation probability over

\ for that node (line 22). We refer to this algorithm as PrV-WorstFit.

6.3 Algorithmic Complexity
Both PrV-BestFit andPrV-WorstFit have two loops, the first of which

iterates over all nodes in the cluster and the 2nd one over a subset

of them, meaning they are invoked 𝑂 ( |𝑁𝑜𝑑𝑒𝑠 |) times. The main

overhead in either algorithm is the first loop, which – for each node

– computes the estimated probability of violation. With the opti-

mizations introduced in Section 5.3, computation of 𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S)
requires up to 𝑂 ( |S|2 · 𝑁𝑢𝑚𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 · |R |) operations: for each
Monte Carlo iteration, we need to test if there is a violation for each

resource 𝑟 ∈ R. This means to compute, for each resource, the ag-

gregate demand (which involves adding up |S| tenant demands) at

up to |S| distinct points in time. Note that 𝐷𝑒𝑙𝑡𝑎𝑛 can be computed

as a side-effect of computing 𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S𝑛 ∪ {𝑑𝑏})), and therefore
does not introduce additional overhead. So the overall complexity

of either algorithm is 𝑂 ( |𝑁𝑜𝑑𝑒𝑠 | · |S|2 · 𝑁𝑢𝑚𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 · |R |).

7 INTEGRATIONWITH SERVICE FABRIC
Next, we will describe how to integrate probability of violation

estimates into an industrial-strength cluster manager, Service Fabric.
The SF codebase is available as open source [16]. Concretely, we

describe a modification of its Placement-and-Load-Balancing (PLB)
component (also called Cluster Resource Manager). PLB has the

ability to place/move multiple replicas at the same time, with the

space of valid configurations defined by complex constraints (e.g.,

service affinity [1], max. replicas per fault/upgrade domain [2], etc.).

Algorithm 3 Combining the Probability of Violation with WorstFit

1: procedure PlaceTenantPrVWF(Tenant 𝑑𝑏)

2: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 := ∅;𝐻𝑒𝑙𝑑𝑂𝑢𝑡_𝐶𝑎𝑛𝑑 := ∅
3: 𝐻𝑒𝑙𝑑𝑂𝑢𝑡_𝑁𝑜𝑑𝑒𝑠 := argmin

H⊆𝑁𝑜𝑑𝑒𝑠,|H|=𝑀

∑
𝑖∈H

𝑊 (𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑖 )

4: for all 𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠 do
5: S𝑛 := { All databases currently placed on node 𝑛}.
6: if 𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S𝑛 ∪ {𝑑𝑏 }) < \ then
7: if 𝑛 ∈ 𝐻𝑒𝑙𝑑𝑂𝑢𝑡_𝑁𝑜𝑑𝑒𝑠 then
8: 𝐻𝑒𝑙𝑑𝑂𝑢𝑡_𝐶𝑎𝑛𝑑 := 𝐻𝑒𝑙𝑑𝑂𝑢𝑡_𝐶𝑎𝑛𝑑 ∪ {𝑛}
9: else𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 := 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ {𝑛}
10: end if
11: else 𝐷𝑒𝑙𝑡𝑎𝑛 := 𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S𝑛 ∪ {𝑑𝑏 }) − 𝑃𝑟𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (S𝑛)
12: end if
13: end for
14: for all 𝑛 ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪𝐻𝑒𝑙𝑑𝑂𝑢𝑡_𝑁𝑜𝑑𝑒𝑠 do
15: 𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑛 :=

(
𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑

𝑟1
𝑛 + 𝑢𝑠𝑎𝑔𝑒

𝑟1
𝑑𝑏,0

, . . . , 𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑
𝑟𝑣
𝑛 +

𝑢𝑠𝑎𝑔𝑒
𝑟𝑣
𝑑𝑏,0

)
16: end for
17: if 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = ∅ then
18: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 := 𝐻𝑒𝑙𝑑𝑂𝑢𝑡_𝑁𝑜𝑑𝑒𝑠

19: end if
20: if 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ≠ ∅ OR min𝑛∈𝑁𝑜𝑑𝑒𝑠 𝐷𝑒𝑙𝑡𝑎𝑛 = 1 then
21: 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 := argmin

𝑖∈𝐶𝑎𝑛𝑑𝑖𝑎𝑡𝑒𝑠

𝑊 (𝑛𝑜𝑑𝑒𝑙𝑜𝑎𝑑𝑖 )

22: else 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 := argmin

𝑖∈𝑁𝑜𝑑𝑒𝑠

𝐷𝑒𝑙𝑡𝑎𝑖

23: end if
24: Return 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒

25: end procedure

To navigate this large space with low overhead, the configuration

enumeration component is based on Simulated Annealing [21] (SA).

Any cluster configuration is associated with an energy function,
which assigns it a score, with low scores beingmore desirable.When

exploring the state space, the SA algorithm generates a random

move
2
(e.g., moving a replica) and computes the energy function for

the resulting configuration. Depending the new energy value, the

new configuration is adopted with a certain probability (see [20],

Section 5.3) and used for further exploration.

Since the energy function determines which configuration is

chosen, any change to placement behavior requires modifying it.

The two challenges to address here are (a) how to modify the energy

function to use the probability of violation estimates and (b) to

ensure that configuration scoring continues to be highly scalable.

Modifying the energy function: The energy function in PLB [16]

has 3 components, which are combined into a single score:

(1) The number of failovers needed to reach a configuration.

(2) An imbalance penalty that quantifies how imbalanced re-

source demand is within a cluster. For this, PLB uses the

(weighted) average of the standard deviations of node-level

resource usage across all nodes in the cluster.

(3) A fragmentation penalty assigned when resource demand is

placed on a held-out node, to avoid resource fragmentation.

The modification we make is to add the expected number of future
failovers for the candidate configuration to the 1st component of the

energy function (multiplied by a weight𝑤 𝑓 𝑎𝑖𝑙𝑜𝑣𝑒𝑟𝑠 ). The expected

2
With additional logic used to correct any resulting constraint violations.



number of future failovers is computed using the expected number

of violations (see Section 6).

Fast energy computation: Computing the original PLB energy

function requires computing its three components: here, the number
of failovers needed for a target configuration is tracked during the

generation of new configurations, and the fragmentation penalty is

straight-forward to compute. To speed up the computation of the

imbalance penalty, PLB uses a special accumulator data structure.
Each accumulator maintains aggregates over the reported tenant

demands for a specific resource. When a new configuration is gen-

erated by moving a replica, the accumulators compute the new

energy function in𝑂 (R) operations, using the incremental method

of computing the standard deviation.

We use these accumulator structures to compute the violation

probabilities as well, maintaining separate accumulators for ev-

ery Monte Carlo iteration in Algorithm 1. For further scalabil-

ity, we do not compute the demand for all time points in T (see

Section 5.2), but instead report, for a database 𝑑𝑏 𝑗 , the values of

max𝑡 (𝑑𝑒𝑚𝑎𝑛𝑑𝑟𝑜 𝑗 ,𝑡
) to PLB, which are then used by the accumulators.

Implicitly, this makes the assumption that the lifetimes of all tenants

on a node are sufficiently large for each tenant’s resource demand

to reach their maximum before the first tenant departure. This sim-

plification may overestimate violation probability, but reduces the

overhead of the score computation by a factor of |T |, allowing us
to compute the new energy function in 𝑂 ( |R| · 𝑁𝑢𝑚𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠)
operations. We evaluate the resulting overhead in Section 8.5.

8 EXPERIMENTAL EVALUATION
In this section, we compare the algorithms from Sections 6 and 7 to

approaches from research and industrial practice. We evaluate three

aspects: (a) the quality of tenant placement, (b) the overhead of the

probability of violation computation and (c) the robustness of the

new techniques, which we evaluate by varying several parameters,

such as the set of resource demands, the cluster hardware, etc.

We further study if the violation probability estimates are essen-

tial to the observed improvements. For this purpose, we evaluate

if other modifications to existing algorithms can yield comparable

gains. Concretely, we study the effect of (a) varying the initial re-

source demand estimates for new tenants and (b) using techniques

that predict future tenant demand.

8.1 Experimental Methodology
Our experiments use a mix of simulations (to capture effects over

long time periods and at scale), which we describe in Sections 8.2

and 8.3, as well as a real cluster deployment, described in Section 8.4.

For the experiments, we use resource usage traces of real customers

in the simulation loop, allowing us to generate realistic resource

demand curves without executing the underlying SQL workloads.

Simulation Details: To simulate clusters for the algorithms using

Service Fabric’s Placement-and-Load-Balancing (PLB) component

(see Section 7), we use an industrial-strength cluster simulator orig-

inally developed to debug Service Fabric placement decisions. It

uses existing PLB interfaces to report resource demand and ten-

ant arrivals/departures, and invokes PLB’s algorithm for tenant

placement and violation resolution.

Because the simulation covers all relevant input interfaces to

PLB (including SF configuration parameters), and we intercept and

implement the PLB output in the simulated cluster, these simula-

tions are faithful to the PLB behavior in real clusters. The simulator

also implements all placement constraints used in production.

Since this simulator requires PLB in the simulation loop, other

algorithms we want to evaluate with this simulator need to be

implemented inside PLB. This is challenging for some algorithms,

e.g., [31], which cannot easily be realized as part of the central

PLB loop. Therefore, to compare the algorithms of Section 6 to

the techniques proposed in [31], [17], [28], or heuristics such as

WorstFit, we use a 2nd simulator without the PLB component, which

uses the same cluster representation and interfaces.

Resolving Violations: For the PLB-based algorithms, we re-use

PLB’s internal logic to decide which tenants to fail over after a

violation. However, most placement algorithms we compare to do

not specify which tenants to fail over. Therefore, when evaluating

non-PLB based placement techniques, we need to specify how to

select tenants for failovers. The logic we use is inspired by indus-

trial cluster managers, which use a (partial) ordering of tenants

to determine which tenants are evicted/preempted: for example,

Kubernetes uses a combination of priorities assigned to a POD in

combination with their resource usage [22]. In Service Fabric, “Move
Costs” [6] are assigned to tenants, with tenants of lower move costs

(everything else being equal) being failed over first.

Concretely, we order tenants by aggregate resource usage, with

smaller tenants being moved first. The reasons for this ordering are

that (a) tenants with smaller resource usage typically correspond

to less expensive tenant classes (i.e., higher-paying customers are

moved less) and (b) “smaller” tenants can be placed more easily.

Compared Techniques: We compare our approach to state-of-

the-art placement algorithms from research, namely techniques

used for Virtual Machine placement [28], cluster scheduling [17]

and placement using on-line vector (re-)packing [31]. In addition,

we compare to techniques used in industry, such as the placement

logic used in Service Fabric, as well as different placement heuristics

(concretely, BestFit [39] andWorstFit [39]) used in Kubernetes [23].
Experimental setup: To assess the effect of different levels of

over-subscription, we vary how densely tenants are packed: ini-

tially, each cluster is filled with tenants until a target tenant density
is reached. This tenant density is defined as the cluster-level over-

subscription ratio𝑂𝑅𝑟 with the resource 𝑟 being CPU cores. During

experiments, we maintain this tenant density by, after tenant de-

partures, admitting new tenants until the target tenant density is

reached again. New tenants are chosen uniformly at random, with

each compared algorithm placing the same sequence of tenants.

To set the hardware specs used in the simulations, we assume

that the node capacities for industrial DBaaS providers correspond

to the documented resource-limits for single DB instances (e.g.,

see [33, 36]): based on this, a node in our simulated cluster has 80

CPU vCores, 5.1 GB of memory per vCore and 5TB of local disk.

Demand traces: We use 4 different sets of demand traces, each

collected from a different geographical regions, containing several

million distinct tenants. Each trace contains the resource usage

at 10-minute granularity, for 3 resources: CPU, main memory and

local disk usage. The regions differ significantly in the distribution

of tenant classes and the resource usage per tenant. We use 115K



traces (sampled at random) to populate D, requiring 7.19 MB of

storage after trace compression. The remaining traces are used to

simulate tenants in our experiments. Estimating the probability of

violation uses 𝑁𝑢𝑚𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 100MC iterations; as discussed

in Section 6.3, the computational overhead of tenant placement de-

pends on the value of 𝑁𝑢𝑚𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 – we found experimentally

that the choice of 100 repetitions to give a good trade-off between

placement quality and overhead, as larger values did not result in

substantial reduction in the number of violations.

8.2 Evaluation: Modified PLB energy function
In these experiments, we compare the original Service Fabric PLB

component with the modified version described in Section 7. Here,

the simulated clusters contain 40 nodes, divided into 10 upgrade

domains and 5 fault domains (using the logic described in [2]). For

each resource, we create a custom metric [5] in SF, which is used to

report resource usage to PLB; we assign identical metric weights to
each resource. In the modified scoring function, we use𝑤 𝑓 𝑎𝑖𝑙𝑜𝑣𝑒𝑟𝑠 =

0.10.3 Each experiment spans 10 days of simulated time, and is

repeated 3x, with the average number of violations being reported.

When comparing algorithms across different experimental setups,

we average the ratio of the numbers of violations between the

different algorithms over all experiments; we compute the averages

in this way, so that the experiments with high tenant density and

many violations do not dominate the comparison.

Results: Figure 8 shows the violations seen for different tenant

trace regions and tenant densities. As we can see, the modified PLB

component consistently outperforms the original PLB, performing

better in 15 of the 16 experiments (where each pair of bars in Figure 8

corresponds to one experiment), and being tied once. Averaging

the violations ratios, the original PLB energy function results in

2.6x as many violations as the modified one on average.

Importance of the Probability of Violation Estimates: To eval-
uate if the probability of violation estimates are necessary for the

observed improvements, we conducted two experiments that test

if similar gains are possible using simpler changes to PLB:

Varying the initial demand:As the resource demands for new tenants

are unknown at placement time, a key decision is which demand

estimate to use for them. Thus, we evaluated the effect of vary-

ing this initial estimate. For this, we computed the distribution of

resource demands for different tenant classes and resources, and

evaluated using different percentiles of these distributions as the

initial demand estimate reported to PLB; concretely, we use the

50th, 80th, 90th, 95th and 99th percentile, in separate experiments.

Repeating the earlier setup, we found that the new initial de-

mands can reduce violations; however, the use of probability of

violation still results in larger improvements. Overall, the best-

performing initial demand estimates combined with the original

PLB resulted in 1.5x as many violations as the modified PLB.

Prediction of future demand: Some recent approaches (e.g., [24, 30]),

have used (time series) prediction techniques to estimate future

tenant demand. Therefore, we compare our approach to algorithms

that have access to such predictions. A large number of prediction

3
This value was determined experimentally with𝑤𝑓 𝑎𝑖𝑙𝑜𝑣𝑒𝑟𝑠 varied between

1.0 and 0.1; 𝑤𝑓 𝑎𝑖𝑙𝑜𝑣𝑒𝑟𝑠 = 0.1 resulted in the best performance in terms of

violations observed.

techniques exist, so we – instead of evaluating all of them – use an

oracle instead, which provides exact predictions of resource demand

for up to 24 hours into the future; the goal is to study an upper

bound on the impact of point predictions on simpler algorithms.

In general, demand predictors require observing tenant demand

for some time before issuing predictions (e.g., to identify periodic

behavior); for example, in their experimental evaluation [30] re-

quires 3 days of history (see Section 5.3.1) to train models on DBMS

demand data. Thus, in our setup, the oracle provides predictions

only for tenants that have been placed on the cluster for 24 hours

already. These predictions are then integrated into PLB by report-

ing, instead of the current resource demand, the maximum resource

demand in the prediction interval to the placement component.

The results when the oracle is used are shown as part of Figure 8.

Interestingly, while the oracle predictions improve the performance

of the original PLB in 7 (of 16) experiments, they also performworse

in several of them. Overall, performance improves slightly when

using the oracle; still, compared to our approach, the combination

of PLB + oracle results in 2.5x as many violations. This gain is much

less than the improvement seen when varying the initial demand,

which supports our intuition that the largest source of uncertainty

is the initial growth after a tenant is placed.

8.3 Evaluating PrV-BestFit and PrV-WorstFit
Next, we compare the PrV-BestFit and PrV-WorstFit algorithms to

heuristics used in industrial cluster managers, namely BestFit [39],
WorstFit [39], and minimizing the sum of the standard deviations
of resource demands across all cluster nodes. We evaluate BestFit
andWorstFit for both weighting functions described in Section 6.

Furthermore, we evaluate techniques proposed in academia, namely

placement using the weighted inner product used in cluster sched-
uling [17] (Section 3.2) and in Virtual Machine placement [15], as

well as online vector packing with re-packing in [31].

Experimental setup: Each experiment spans 300 hours of sim-

ulated time, and is repeated 20x, with average number of viola-

tions being reported. In each experiment, we simulate a 40 node

cluster. For PrV-WorstFit, we use 𝑀 = 3 held out nodes; for both

PrV-WorstFit and PrV-BestFit, we use the𝑊𝑀𝑎𝑥 weighting function

and set \ = 0.01. Since the non-PLB simulator does not enforce

constraints on replicas per fault/upgrade domain, the resulting

placement problem becomes simpler, with fewer violations com-

pared to the experiments in Section 8.2. As a result, we consider

higher tenant densities in these experiments.

Furthermore, we evaluate a 2nd hardware spec, which has 128

CPU cores (corresponding to the maximum vCores available to DB

instances by one DBaaS provider [33]), and identical disk/memory

capacity. Because tenant density is defined via the number available

CPU cores, we limit these experiments to smaller tenant densities.

Results: The results are shown in Figure 9. Because of the large

number of approaches compared, we – for clarity – do not report

all results, but, for each setting, only report the number of viola-

tions from the best-performing algorithm not using probability of

violation estimates, and compare it to PrV-BestFit and PrV-WorstFit.
Hardware spec 1: Overall, PrV-WorstFit is either equal or better than
the best-performing approach that does not use probability of vi-

olation estimates (and no oracle) in 50 of the 52 experiments; on
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Figure 8: Evaluation: new PLB scoring function (compared to the original PLB and PLB + Oracle predictions)

average, the best results for techniques without probability of viola-

tion estimates show 2.57x as many violations as PrV-WorstFit. When

compared to algorithms using oracle predictions, PrV-WorstFit is
still equal or better than the best-performing algorithm in 49 of

the 52 experiments, with the best results for techniques without

probability of violation resulting in 2.27x as many violations.

In contrast, PrV-BestFit does not consistently outperform the

other algorithms, as it places tenants on fewer nodes than PrV-
WorstFit; this eliminates resource fragmentation, but increases the

risk of violations. Still, on average, the best-performing algorithms,

that do not use probability of violation estimates, show 2.6x as

many violations as PrV-BestFit, and 1.74x as many when the oracle

is used.

Hardware spec 2: Here, we observe PrV-WorstFit outperforming

all algorithms without probability of violation estimates in every

experiment. The average improvement ratio is 2.1x (no oracle), and

1.6x (with oracle predictions). PrV-BestFit outperforms the best-

performing algorithm without probability of violation in 14 of 16

experiments (no oracle), and 10 of 16 experiments (oracle). The

average improvement ratio is 2.0x (no oracle), and 1.4x (oracle).

Varying the Initial Demand: Similar to Section 8.2, we varied the

initial demand reported for a new tenant (on hardware spec 1

only), comparing the best-performing competing algorithm to PrV-
WorstFit. We did not see a significant change in the performance:

across the different percentiles, the average ratio at which PrV-
WorstFit outperformed the best-performing algorithmwithout prob-

ability of violation estimates varied between 2.42x and 2.57x.

8.4 Evaluation: Real Cluster Deployment
To assess if the observed gains continue to hold in a real SF cluster

deployment, we repeat a subset of the experiments of Section 8.2

on a real 40 node cluster (executing within Microsoft Azure) [3].

Experimental Setup: Each tenant is deployed as a separate ap-

plication (with the corresponding number of replicas). To obtain

realistic resource demand profiles without executing real customer

SQL workloads (which is not possible, due to customer IP), each

application reports to PLB resource usage corresponding to real

customer traces (see Section 8.1), selected at random. As we use

the same reporting interfaces used in production clusters, the de-

mand distributions observed by PLBs correspond to the ones in

actual production clusters. Because of the cost and time required,

we repeat the experimental setup of Section 8.2 for two of the four

regions (regions 1 and 4); each experiment covers a week of time.

Results: The overall reduction seen in the number of violations

is in line with the earlier, simulation-based experiments, with the

unmodified Service Fabric exhibiting, on average, 2.93x as many vi-

olations (as before, averaging the ratios of violations) as the variant

of PLB incorporating the probability of violation estimates.
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Figure 9: Evaluation of Violations (Hardware specs 1 & 2)

8.5 Evaluation: Overheads
In this section, we describe the overheads required for the algo-

rithms described in Sections 6 and 7. The experiments were con-

ducted on an Intel Xeon CPU E5-2660 v3 (2.60 GHz) wit 192 GB of

RAM, running Windows Server 2019 Datacenter.

Memory overhead: All proposed algorithms require a storing the

repository D of (compressed) traces described in Section 5.3 in

main memory (including the tenant class), requiring a total of 66

byte per trace. The memory overhead required by PLB to maintain

additional aggregates for evaluation of the new scoring function

is 𝐻 · 𝑁𝑢𝑚𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 · 8 bytes. For the experimental setup of

Sections 8.2 and 8.4, this corresponds to 32KB, which is negligible.

Computational overhead: For the modified PLB component, we

measured time to enumerate and score 1K configurations as part of

the simulated annealing (for the experiments of Section 8.2 and 8.4):

Here, the original PLB component requires about 432ms, whereas

the modified component required 890ms on average. However, this

increase in time is still a very small fraction of the overall time

required for the creation of a new tenant.

For the algorithms described in Section 6, we measured the aver-

age time required to place a single tenant (including the required

MC simulations, whose overhead vary with the tenant density) for

each individual experiment in Section 8.3. For PrV-WorstFit these

averages (depending on tenant density) were between 8.58 ms and

65.4 ms. For PrV-BestFit they range from 9.66 ms to 76.7 ms.

9 CONCLUSION
Over-subscribing resources can significantly increase resource uti-

lization in multi-tenant database clusters, but comes with the risk

of potentially disruptive resource violations. In this paper, we de-

scribe new tenant placement algorithms that significantly reduce

the incidence of such violations. The key insight is the use of a fast

estimator of the probability of a future violation, based on historical

usage data. We proposed three different algorithms that leverage

these estimates, and prototyped one of them in the Service Fabric
cluster manager. Experiments using production traces from Azure

SQL DB, including a cluster deployment of the modified Service

Fabric code, show that using the probability of violation estimates

results in a significant reduction in the incidence of violations,

compared to the current state of the art in tenant placement.
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