
NL2Viz: Natural Language to Visualization via Constrained
Syntax-Guided Synthesis

Zhengkai Wu
University of Illinois at
Urbana-Champaign

USA

Vu Le
Microsoft

USA

Ashish Tiwari
Microsoft

USA

Sumit Gulwani
Microsoft

USA

Arjun Radhakrishna
Microsoft

USA

Ivan Radiček
Microsoft

USA

Gustavo Soares
Microsoft

USA

Xinyu Wang
University of Michigan, Ann Arbor

USA

Zhenwen Li
Peking University

China

Tao Xie
Peking University

China

ABSTRACT

Recent development in NL2Code (Natural Language to Code) re-
search allows end-users, especially novice programmers to create a
concrete implementation of their ideas such as data visualization by
providing natural language (NL) instructions. An NL2Code system
often fails to achieve its goal due to three major challenges: the
user’s words have contextual semantics, the user may not include
all details needed for code generation, and the system results are
imperfect and require further refinement. To address the aforemen-
tioned three challenges for NL to Visualization, we propose a new
approach named NL2Viz with three salient features: (1) leveraging
not only the user’s NL input but also the data and code context
that the NL query is upon, (2) using hard/soft constraints to reflect
different confidence in the constraints retrieved from the user input
and data/code context, and (3) providing support for result refine-
ment and reuse. We implement a tool for NL2Viz in the Jupyter
Notebook environment and evaluate NL2Viz on a real-world visu-
alization benchmark and a public dataset to show the effectiveness
of NL2Viz. We also conduct a user study involving 6 data scientist
professionals to demonstrate the usability of NL2Viz, the readabil-
ity of the generated code, and NL2Viz’s effectiveness in helping
users generate desired visualizations effectively and efficiently.

CCS CONCEPTS

• Software and its engineering→ Visual languages; Automatic

programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549140

KEYWORDS

program synthesis, natural language to code, constraint

ACM Reference Format:

Zhengkai Wu, Vu Le, Ashish Tiwari, Sumit Gulwani, Arjun Radhakrishna,
Ivan Radiček, Gustavo Soares, Xinyu Wang, Zhenwen Li, and Tao Xie. 2022.
NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided
Synthesis. In Proceedings of the 30th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549140

1 INTRODUCTION

Recent development in Natural Language to Code (NL2Code) re-
search allows end-users, especially novice programmers to cre-
ate a concrete implementation of their ideas by providing natural
language (NL) instructions. While code generation for general-
purpose languages such as Python is still challenging [36],NL2Code
for a domain-specific language (DSL) such as SQL [16, 37, 39] or
NL2Code in a specific application domain such as competitive
programming [18] has witnessed major advances. Given that data
science has seen tremendous growth in recent years, data visual-
ization has become a great application domain of NL2Code. The
main reason is that data scientists need to frequently produce vi-
sualization to help them perform exploratory data analysis (EDA)
to discover useful information from data and draw insights to sup-
port decision making. Yet it is quite a burden on data scientists as
they have to memorize names of data visualization APIs and their
many parameters [10]. Indeed, in our user study (Section 4.4), data
scientists confirm that they could not memorize all the API options
and have to look into API documentation frequently.

It is difficult for an NL2Code tool to achieve its goal due to three
major challenges. First, in the stated NL instruction, users may use
words whose semantics can be determined only in the context. For
example, different NL2Sql approaches include different strategies
to handle schema encoding to create a mapping from the user input

https://doi.org/10.1145/3540250.3549140
https://doi.org/10.1145/3540250.3549140

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zhengkai and Vu, et al.

to the entities in the database, while few approaches have achieved
good adaptability [16]. In visualization, it gets more complicated
as users may already write some code to process the data and then
use the Natural Language to Visualization (NL2Visualization)
tool. So the tool also needs to understand the code context. Second,
users may not include all details (needed for code generation) in
the NL instruction. For example, when trying to produce a line
plot, a user may not specify the name of the data column used for
the x-axis especially when there is a data column with index or
time value. Third, the results of NL2Code are often imperfect and
thus require users’ further interaction or update to fix issues in
the results. Especially in data analysis, data scientists often need to
make quick changes to visualization as data analysis is a data-driven
process. The first two challenges on the user input may make the
users’ further interaction even more necessary.

To address the aforementioned three challenges, in this paper,
we propose a new approach and its supporting tool named NL2Viz
in the domain of NL2Visualization with three salient features.
First, we leverage not only a user’s NL input but also the contextual
input, i.e., data and code context that the underlying query is upon.
The data context includes the data tables that the user is working on
and also the intermediate data vectors that the user has produced.
The code context includes the previous code and existing plots that
the user has produced (including the previous instruction-plot pairs
produced by our NL2Viz tool). For example, when the user creates
her own filtering function and refers to the function name in her
instruction, we would be able to understand and use that in the
generated plotting code by leveraging the code context. Second,
to better fill the missing or ambiguous details in the NL input, we
differentiate between hard constraints and soft constraints retrieved
from the NL input and contextual input. The hard constraints are
the ones that we have high confidence and could be explicitly
specified by the user. For example, the user states that she wants a
scatterplot, and then the plot type to be scatterplot would be a hard
constraint. Meanwhile the soft constraints are the ones that we do
not have high confidence and could be inferred from the context.
For example, the user does not mention the data column for the
x-axis but the column with time information would be the likely
x-axis data. Third, we provide the user interface to allow iterative
refinement for the user to further fix or change the results. We
allow the user to give additional NL instructions to make changes
to the visualization. Moreover, we are not only having the plot as
the output but also the working code snippet that produces the plot.
The user can also directly make changes on the code snippet; data
scientists find making code changes convenient as shown in our
user study (Section 4.4).

To better facilitate a user’s requirements, we implement our
approach as a tool named NL2Viz in the Jupyter Notebook envi-
ronment [13]. NL2Viz is directly embedded into the user’s daily
workflow without the burden to switch between different environ-
ments. At a high level, NL2Viz first parses the NL instruction (given
by the user) using semantic parsing [4, 5] into symbolic constraints

that the target visualization program needs to satisfy. NL2Viz also
generates such constraints after retrieving the data, program, and
existing chart context in the current notebook. Next, NL2Viz uses
a novel syntax-guided program synthesis algorithm to generate a
complete visualization program from these hard/soft constraints.

During this process, NL2Viz keeps multiple candidates at each
synthesis state and assigns a heuristic fitness score to help prior-
itize the most likely structure. Finally, NL2Viz can take a further
refinement NL instruction to change the generated visualization
program or the user can choose to directly use or apply changes to
the generated program.

We assess NL2Viz using four evaluations. First, we assess the
synthesis accuracy in a one-shot scenario. Our benchmark contains
295 NL instructions that are collected from data scientists and on-
line homework assignments. Overall, NL2Viz is able to achieve an
overall accuracy of 74.6%. Second, we assess NL2Viz’s accuracy in
interactive scenarios. Given an initial plot and an instruction for
describing a small change, NL2Viz achieves 62.5% accuracy in 40
scenarios. Third, we also assess NL2Viz in a public dataset [20].
NL2Viz outperforms the state of the art approach in easy to medium
categories while achieving comparable overall accuracy of 55.0%.
Last, we assess the usability of NL2Viz via a user study, where we
ask 6 data scientist professionals to use NL2Viz to complete 5 visu-
alization tasks. The participants are able to successfully complete
4.17 out of the 5 tasks on average. Most participants like NL2Viz
and are willing to use it before writing actual visualization code.

This paper makes the following main contributions:
• We propose a novel NL2Code approach that aims to ad-
dress challenges on the user input and interactions in the
application domain of NL2Visualization by leveraging the
data/code context, retrieving hard/soft constraints, and pro-
viding interactive refinement support.
• We present NL2Viz, an end-to-end synthesis tool imple-
mented in the Jupyter Notebook environment for helping
data scientists visualize their data using an NL interface.
NL2Viz shows both the chart and the readable code snippet
for generating that chart, allowing users to modify, extend,
and reuse the code snippet.
• We evaluate our approach on a real-world visualization
benchmark and a public dataset to show its applicability.
We also conduct a user study with data scientist profession-
als on real world scenarios, finding thatNL2Viz is easy to use
and helpful for generating not only plots, but also readable
code that could be extended and reused.

In the rest of the paper, Section 2 illustrates our overall approach
using a motivating example. Section 3 discusses the implementation
of NL2Viz. Section 4 presents our evaluation results. Section 5
discusses related work and Section 6 concludes.

2 OVERVIEW

This section provides a high-level overview of NL2Viz via a moti-
vating example. In this example, a data scientist named Alice wants
to study the trend of COVID-19 infection in Europe. She opens
Jupyter Notebook [13], a popular platform among data scientists, to
load a COVID-19 dataset1 (Figure 1). Each row in the dataset reports
the numbers of daily confirmed cases and deaths for a country in a
certain day. It also includes the accumulated numbers of confirmed
cases and deaths until that date.

Alice first wants to see the trend of confirmed cases for all coun-
tries in Europe. Alice understands that she needs to restrict the
1https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 1: The “COVID-19” dataset (sampled 10 rows).

continent column to “Europe”. Because there are multiple coun-
tries in Europe, Alice also needs to group data by country before
she can iterate and plot a line chart for each country. In the chart,
the x-axis is the date sorted chronologically and the y-axis is the
confirmed cases for that date. Figure 2a shows the desired chart
and code.

The plotting code is non-trivial. Alice not only has to pick the
right functions in matplotlib (e.g., plot), but also needs to process
the data and construct the desired parameters for these functions.
In our user study (Section 4.4), data scientists usually could not
remember the usage of plotting functions and have to look up
their documentation or search for similar code in help forums.
This context switching breaks the data scientists’ workflow and
negatively affects their productivity.

In contrast, Alice can perform the same task in NL2Viz by typ-
ing “%plot line showing total confirmed cases for countries in Europe”

(%plot is our magic command to invoke NL2Viz in Jupyter Note-
book). Because our target audience is data scientists who have
sufficient coding skills, NL2Viz shows both the chart and the code
to produce it (Figure 2a). Having access to the code allows Alice to
tune the chart if she wants. For instance, she can modify the code
to change the x-axis tick labels from every 5 days to a different
number. Alice can also reuse the code. For example, Alice can easily
wrap the synthesized code inside a function that plots the total
number of confirmed cases in any given continent, and then loops
over the function to create plots for all continents.

Alice also has an option to interactively change the existing
charts using NL. For instance, she may type %plot change y label to

“Total confirmed cases” to update the y-axis label, or “%plot change to
Asia” to change the chart to countries in Asia (Figure 2b). Doing so
is feasible because NL2Viz also uses knowledge of existing charts
when synthesizing plots from text.

Our approach.We next explain how our NL2Viz approach synthe-
sizes the desired visualization program from the three modalities
of specifications as shown below for the example from Figure 2:

• The program/data context, which includes the “COVID-19”
dataset, as shown in Figure 1.
• The visualization context, which includes existing charts and
their instructions.
• An NL instruction that describes the desired visualization
task, “%plot line showing total confirmed cases for countries in

Europe” provided by Alice as the instruction.

Given these inputs, NL2Viz synthesizes the desired program in two
steps, as shown schematically in Figure 3. In the first semantic pars-

ing phase, NL2Viz parses the three inputs into symbolic constraints.
Then, in the second program synthesis phase, NL2Viz synthesizes a
complete program that satisfies these constraints.

More specifically, given an NL instruction and the current data
and program context, NL2Viz uses semantic parsing techniques [5]
to generate a ranked list 𝐿 of tuples, each of which 𝑇 consists of
two sets of constraints: a set R𝑚𝑢𝑠𝑡 of hard constraints and a set
R𝑚𝑎𝑦 of soft constraints (Figure 4 shows a simplified version of
our grammar for the semantic parser). The set R𝑚𝑢𝑠𝑡 includes
hard constraints that must be satisfied by the desired program
𝑃 , whereas constraints in set R𝑚𝑎𝑦 are soft, indicating that they
may be satisfied by 𝑃 . In NL2Viz, the constraints take the form
of (a subset of) rules (of the grammar) used to generate plotting
programs. For instance, our semantic parser generates the following
tuple (R𝑚𝑢𝑠𝑡 ,R𝑚𝑎𝑦) (among possibly others) for the example from
Figure 2. Note that although the NL instruction does not mention
continent, the parser is able to include that column because it
could derive a relationship between “Europe" and continent from
the data context.
R𝑚𝑢𝑠𝑡 = { PlotType → “LinePlot”,

YAxis → “total_confirmed”,
FilterColumn → “continent”,
GroupColumn → “country”,
FilterValue → “Europe” }

R𝑚𝑎𝑦 = { XAxis → “date”,
DataFrame → “df” }

Here, the first rule PlotType → “LinePlot” in R𝑚𝑢𝑠𝑡 is a hard
constraint: when we synthesize the plotting program using the
visualization domain-specific language’s (DSL’s) context-free gram-
mar (CFG), the derivation in the synthesize process should use the
rule PlotType → “LinePlot”. The hard constraints in R𝑚𝑢𝑠𝑡 are
extracted from the English instruction that directly corresponds to
the user’s intent. In contrast, the second constraint XAxis→ “date”
in R𝑚𝑎𝑦 is soft, indicating that the program may use the “date”
column as the x-axis. These constraints in R𝑚𝑎𝑦 are generated
from analyzing the data/program context and existing charts. Since
these inputs provide only contextual hints that may be useful for
deriving the complete program, we treat R𝑚𝑎𝑦 as soft constraints.

Once NL2Viz finishes generating hard and soft constraints from
specifications, our second program synthesis phase synthesizes
a complete visualization program from these constraints. NL2Viz
synthesizes a program from the visualization CFG that uses all rules
in R𝑚𝑢𝑠𝑡 and avoids, as much as possible, using rules outside of
R𝑚𝑎𝑦 . In a final step, NL2Viz translates the program in the DSL
to the target language (Python). For instance, given the preceding
tuple (R𝑚𝑢𝑠𝑡 ,R𝑚𝑎𝑦), our synthesizer is able to generate the desired
program 𝑃 in Figure 2a. Our synthesizer generates one program 𝑃𝑖
for each tuple 𝑇𝑖 in 𝐿 and finally returns a program 𝑃 that has the
smallest cost among all 𝑃𝑖 ’s.

Given theNL instruction in Figure 2b, the semantic parser returns
the hard constraint set R𝑚𝑢𝑠𝑡 = {FilterValue→ “Asia”,
FilterColumn→ “continent”}. The soft constraint set R𝑚𝑎𝑦 now
also includes the constraints of the previous chart. Given these
constraints, NL2Viz is able to adapt the chart in Figure 2a to the
chart in Figure 2b with minimal guidance.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zhengkai and Vu, et al.

(a) The user invokes NL2Viz to obtain a plot with code. (b) The user creates another plot by adapting the existing one.

Figure 2: The screenshots of NL2Viz in Jupyter Notebook while working with the motivating example.

Natural

Language
Semantic

Parser

Visualization
Synthesizer

Visualization
Encoding

Data/Program

Context

NL2Viz

Context
Encoder

Production
Rules

Existing
Charts

Figure 3: The workflow of NL2Viz

We next discuss the design and the implementation of NL2Viz.

3 NL2VIZ: NATURAL LANGUAGE TO

VISUALIZATION

Figure 3 depicts our overall workflow for converting the given NL
instruction to visualization code. First, we use a semantic parser to
extract R𝑚𝑢𝑠𝑡 , the set of constraints that must be used, from the
user-provided NL instruction. We then analyze the program and
data context to extract a set of constraints that may be used (i.e.,
R𝑚𝑎𝑦). Finally, our synthesis algorithm synthesizes the program
in our visualization domain-specific language from the extracted
constraints, and translates the program into Python.

3.1 Parsing NL Instruction to Constraints

Figure 4 shows a partial simplified version of our attribute grammar
(NL grammar) used to parse an NL instruction to constraints. We
design this grammar by analyzing online tutorials, visualization
courses, and Jupyter Notebooks with high upvotes in Kaggle com-
petitions [14]. We attach semantic rules in the form of S-attributes
to the grammar. Each nonterminal in the NL grammar is associ-
ated with a list of attribute-value pairs, which corresponds to the
semantics of this nonterminal. Given an NL instruction, we use a

Root ::= PlotElems

PlotElems ::= PlotElem PlotElems?
PlotElem ::= HistoElems | · · · | FilterElem | GroupElem

HistoElems ::= HistoElem HistoElems?
HistoElem ::= HistoType | Column | Bins | Stack | Log | Density

· · ·
GroupElem ::= GroupType | GroupColumns | GroupOperator

Figure 4: Simplified version of the NL grammar.

Plot ::= plt (Data, Mappings, PlotType, Legends)
Data ::= DataSet | process (Data, Processor)

Processor ::= filter (...) | groupBy (...) | orderBy (...)
Mappings ::= nil | list (Mapping, Mappings)
Mapping ::= xaxis (XAxis, Scaling?, Options?) | yaxis (...) | ...
Scaling ::= range (Float, Float) | log (Scaling) |

step (Scaling, Float) | ...
Options ::= stacking (Options) | transparent (Options) | ...)
PlotType ::= ”Histogram” | ”Scatter” | ”Lineplot” | ...
Legends ::= legend (Title : String, Labels, ...)
Labels ::= label (XAxisLabel : String, YAxisLabel : String, ...)

Figure 5: Simplified visualization DSL

semantic parser [5] (which uses an enhanced CYK algorithm [15])
to parse the instruction into a list of attribute-value pairs. These
pairs form our R𝑚𝑢𝑠𝑡 set.

Figure 6 shows a simplified parse structure for the example in
Section 2. We obtain the parse structure by making the following
enhancements to the CYK algorithm.
Setting attribute values for terminals. We use annotators to ini-
tialize the attribute values. For example, for the nonterminal Column,

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Root

Plot Elements

LinePlot
Elem

Column
Lineplot

Type

line total confirmed countries

Property:
PlotType: Line

Score=1.0

in

Property:
PlotType: Line
Column_To_Plot: total_confirmed
Filter_Column: continent
Filter_Value: Europe
Group_Column: country

Score=0.415

Europecases for

Property:
Column:
total_confirmed

Score=0.6

Column

LinePlot
Element

Group
Element

Column_
Value

Property:
Column: continent
Column_Value:
Europe

Score=1.0

Filter
Element

Property:
Column_To_Plot:
total_confirmed

Score=0.6

Property:
Column: country

Score=0.875

Property:
Filter_Column:
continent
Filter_Value:
Europe

Score=1.0

Property:
Group_Column:
country

Score=0.875

showing

Figure 6: The parse structure for the motivating example.

we have an annotator ColumnValue that parses the token “europe”
into a ColumnValue nonterminal symbol. The ColumnValue anno-
tator maps one or multiple consecutive tokens to a value in some
column in the given dataset. By using annotators, the semantic
parser is able to parse tokens in a data-context-sensitive manner
(e.g., parsing “Europe” as a ColumnValue and inferring “continent”
as its ColumnName) and program-context-sensitive manner (e.g.,
parsing “foo” as a function name if a function of that name appears
in the Jupyter Notebook code cell).

Setting attribute values for rule 𝑁 ::= 𝑁1𝑁2. The attributes
are propagated from children to parent following the semantic
rules. Most semantic rules just propagate the lists of attributes from
children to parent without change. However, in some cases, the
semantic rules can change the attribute name in children’s list. For
example, in the FilterElem symbol, the two attribute-value pairs
in the attribute of the child, ColumnValue, change their attribute
name (e.g., ColumnValue becomes FilterValue).
Fitness score. Each nonterminal also has a fitness score in the range
of [0, 1] to represent the probability of producing that parse struc-
ture. For instance, the token “countries” does not exactly match the
column name “country” in the dataset, hence its symbol “Column”
is given a score of 0.87 based on the edit distance of the two strings.
The score of the parent symbol is simply the product of the scores
of its children.

Note that our NL grammar is inherently ambiguous to capture
different interpretations of an NL instruction. From an NL instruc-
tion, our semantic parser produces multiple parse structures, each
of which has a R𝑚𝑢𝑠𝑡 set and a fitness score.

3.2 Using Program and Data Context to

Construct May-use Constraints

Because the instruction usually does not contain all information
necessary to synthesize the visualization (i.e., R𝑚𝑢𝑠𝑡 is not com-
plete),NL2Viz uses multiple heuristics to infer the potential omitted
information (i.e., R𝑚𝑎𝑦) from the program and data context . For ex-
ample, when plotting a scatter plot, if the mapping of data columns

to axes is not evident from the user’s NL instruction, our NL2Viz
approach prefers a categorical column to be on the x-axis.

Our heuristics in NL2Viz also capture popular data preprocessing
patterns. For example, if the user wants to plot a line plot, but we
find that there are multiple points on the same x-axis coordinate
in the dataset, then it is likely that there is an inherent grouping
step by the column on the x-axis before plotting. NL2Viz analyzes
each column to determine (a) the type of values in that column, (b)
whether the column is categorical, and (c) all the distinct values in
that column. We use this information to create R𝑚𝑎𝑦 . For example,
even if the instruction in Figure 2 does not mention “continent”
in the text, NL2Viz infers that AuxColumn → “continent” in the
FilterElem rule based on data insights, and adds it to R𝑚𝑎𝑦 .

3.3 Designing the Visualization

Domain-Specific Language

Given the sets of R𝑚𝑢𝑠𝑡 and R𝑚𝑎𝑦 , our synthesis algorithm syn-
thesizes a visualization program in a domain-specific language
(DSL). Figure 5 shows a simplified version of this visualization DSL
(nonterminals start with uppercase, function symbols start with
lowercase letters, and terminals are within quotes). Programs in
this DSL are then translated to a target visualization library (such
as matplotlib or seaborn) in the final translation step.

To design this DSL, we first perform a preliminary study on the
Jupyter Notebook dataset released by Felipe et al. [25]. Based on the
stats of different plots used in the dataset and the documentation of
popular visualization libraries, such as mathplotlib, seaborn, and
ggplot2, we include the frequently-used plot types and parameters
including the column to be plotted and the size/color/style of the
visualization element. Additional grammar rules in R link these
parameters with the corresponding plot type.

Based on the analysis of the plotting code fragments collected
from the Jupyter Notebook dataset, we also include rules (in R)
that perform data preprocessing operations. For example, we observe
that three commonly used typical patterns of data preprocessing
are filtering, grouping and ordering; hence, we extend the grammar
rules R to include rules that perform these steps.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zhengkai and Vu, et al.

3.4 Constrained Syntax-Guided Synthesis

Having defined the NL grammar and the visualization DSL, we
next illustrate our main synthesis algorithm (Algorithm 1). The
algorithms takes a grammar G = (terminal set T ,
nonterminal set N , production rules R, start symbol Plot), and a
pair (R𝑚𝑢𝑠𝑡 ,R𝑚𝑎𝑦) of must-use and may-use constraints (used
for constraining derivations) as input; informally a derivation is ap-
plication of a grammar rule toward generating the target program.
It returns a program (generated by G), generating which undergoes
a derivation that satisfies R𝑚𝑢𝑠𝑡 and minimizes the cost function.

In the visualization DSL, we begin with the start symbol Plot
and perform a series of derivations to further extend to a complete
program. More formally, a derivation is a sequence of terms that
start with the start symbol Plot and each subsequent term is ob-
tained from the previous term by applying a production rule in G. If
we use 𝑃1 →𝑟1 𝑃2 to denote that 𝑃2 is derived from 𝑃1 by applying
𝑟1, then a derivation of 𝑃 , denoted by 𝑑 , can be written as

Plot→𝑟0 𝑃1 →𝑟1 𝑃2 →𝑟2 · · 𝑃𝑘 →𝑟𝑘 𝑃

A program is incomplete if it contains a non-terminal symbol. A
complete program contains only functions and terminal symbols.

Example 1. The derivation for the first program shown in Section 2

is shown in parts below with some simplification:

Plot→ plt (Data, Mappings, PlotType, Legends)
Data→3

process (process (DataSet, Processor), Processor)
DataSet→ ”df”
Processor→ filter(FilterColumn, FilterValue)
→2 [filter(”continent”, ”Europe”), group(”country”)]

Processor→ group(GroupColumn) → group(”country”)
Mappings→2

list (Mapping, list (Mapping, nil))
Mapping→ xaxis(XAxis) → x(”date”)
Mapping→ yxis(YAxis) → y(”total_confirmed”)
PlotType→ ”Lineplot”
Legends→ Labels→ labels(XAxisLabel, YAxisLabel)
→2 labels(”date”, ”total_confirmed”)6

The algorithm works by maintaining a worklist that consists
of tuples (𝑃,𝑑, 𝑐), where 𝑃 is a (potentially incomplete) program
generated by derivation 𝑑 whose cost is 𝑐 . In each iteration, the
algorithm works by picking an element (𝑃,𝑑, 𝑐) from the worklist.
If the program 𝑃 cannot be completed to a program that satisfies
R𝑚𝑢𝑠𝑡 (determined using a subroutine feas) or the current cost 𝑐
is already more than the best cost found so far, we just prune this
search branch and continue with the next iteration (Line 7). If not,
then we further process this tuple (𝑃,𝑑, 𝑐). We first check whether
𝑃 is already a complete program (Line 9), and if so, we update
the best solution found so far and continue to the next iteration
(Lines 10-12). If 𝑃 is not complete, we apply all possible single-step
rewrites to 𝑃 and add new items to our worklist (Lines 15-17).

We next describe the subroutine feas(𝑑,R𝑚𝑢𝑠𝑡) that checks
whether derivation 𝑑 satisfies the constraint R𝑚𝑢𝑠𝑡 . If 𝑑 is a com-
plete derivation (generating a complete program), then
feas(𝑑,R𝑚𝑢𝑠𝑡) returns “true” iff all rules in R𝑚𝑢𝑠𝑡 are included in
derivation 𝑑 .

Since we aim to satisfy all constraints in R𝑚𝑢𝑠𝑡 and as many
constraints in R𝑚𝑎𝑦 as possible, for each derivation we define its
cost to be equal to the number of the production rules (used in this
derivation) that do not belong to the set R𝑚𝑎𝑦 . In the definition

Algorithm 1: Branch-and-bound for cSyGuS.
Inputs :A CFG G := (N, T, R, 𝑆) , a pair (R𝑚𝑢𝑠𝑡 , R𝑚𝑎𝑦) of

constraints on G
Output :A program 𝑃 whose derivation 𝑑 in G satisfies R𝑚𝑢𝑠𝑡 and

has minimum cost under cost(𝑑, R𝑚𝑎𝑦)
1 𝑃∗ ← Null ; // best program found so far

2 𝑐∗ ←∞ ; // cost of the best program found so far

3 𝑄 ← {(𝑆, ⟨𝑆 ⟩, 0) } ; // worklist queue

4 while𝑄 ≠ {} do
5 (𝑃,𝑑, 𝑐) ← Remove an element from𝑄 ;
6 if feas(𝑑, R𝑚𝑢𝑠𝑡) is false or 𝑐 > 𝑐∗ then
7 continue
8 end

9 if 𝑃 has no nonterminals then

10 𝑃∗ ← 𝑃 ;
11 𝑐∗ ← 𝑐 ;
12 continue
13 end

14 𝑅 ← all rules in R applicable on 𝑃 ;
15 foreach 𝑟 ∈ 𝑅 do

16 add (𝑃 ′, ⟨𝑑, 𝑟, 𝑃 ′⟩, 𝑐′) to𝑄 where 𝑃 →𝑟 𝑃 ′ and
𝑐′ = 𝑐 + cost𝑒 (𝑟 |𝑑, R𝑚𝑎𝑦)

17 end

18 end

19 return 𝑃∗

of the cost function below, we use the notation 𝑑 |𝑖 to denote the
subderivation (𝑆, 𝑟0, 𝑃1, ··, 𝑟𝑖−1, 𝑃𝑖) of the derivation 𝑑 consisting of
the first 𝑖 rule applications. If 𝑑 has 𝑘 rule applications, 𝑑 |𝑘 = 𝑑 .
Given the may-use constraint R𝑚𝑎𝑦 , the cost of a derivation 𝑑 is
defined as follows:

cost(𝑑,R𝑚𝑎𝑦) =

𝑘∑︁
𝑖=1

cost𝑒 (𝑟𝑖 | 𝑑 |𝑖 ,R𝑚𝑎𝑦) (1)

where the elementary cost function cost𝑒 is defined as

cost𝑒 (𝑟 | 𝑑,R𝑚𝑎𝑦) =

{
0 if 𝑟 ∈ R𝑚𝑎𝑦

1 otherwise (2)

The cost of a derivation is simply the number of rules (in the
derivation) that are not included in R𝑚𝑎𝑦 . Note that
cost(𝑑,R𝑚𝑎𝑦) = 0 iff every production used in 𝑑 lies in R𝑚𝑎𝑦 .

3.5 Extension to An Interactive System

We have implemented our NL2Viz approach with a supporting
interactive tool. After NL2Viz synthesizes the first Python program
and shows the generated plot, if the user is not satisfied with it, then
the user can give another NL instruction to refine the plot. In the
subsequent re-synthesis runs, NL2Viz uses additional information
from the program context – the production rules used to generate
the previous programs are included in the set R𝑚𝑎𝑦 (as may-use
production rules) to help the synthesizer prefer programs that are
similar to the previously generated programs.

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 7: The “Auto-MPG” dataset (sampled 10 rows)

4 EVALUATION

We implement NL2Viz as a Python package that registers a magic

ipython command [12] plot in the popular Jupyter Notebook en-
vironment [13]. Hence, a user can input “plot a histogram of
cylinders” to obtain an appropriate plot (see Figure 2). The Jupyter
interface for NL2Viz also supports rudimentary auto-complete,
suggesting column names, keywords, and pre-processing function
names. The data for plotting is assumed to be in the form of a
dataframe object from the widely used Pandas library [24]. We
choose Matplotlib and Seaborn as the target plotting libraries for
the generated code.

Our evaluation aims to answer four specific research questions:
• RQ1: One-shot accuracy. How accurately can NL2Viz pro-
duce the target plot from a single NL instruction? How ef-
fectively can the data/program context help NL2Viz resolve
ambiguities in the user’s NL instruction?
• RQ2: Plot-and-change accuracy. How accurately can
NL2Viz create a new chart from an NL change instruction?
Howmuch does the user benefit fromNL2Viz in this scenario
in terms of the instruction length reduction?
• RQ3: Comparison with the state of the art. How does
NL2Viz compare with other related state-of-the-art tools for
visualization synthesis?
• RQ4: Usability. How usable and accurate is NL2Viz in a
real setting?

Benchmark. We collect 303 NL instructions for 54 plots from two
sources. Auto-MPG plot descriptions. In this source, there are
267 manually written NL instructions for 18 plots selected from
online tutorials that use the “Auto-MPG” dataset2, which contains
technical specifications of 398 cars as shown in Figure 7. These
NL instructions are provided by 15 professionals with experiences
in data science. Homework and COVID-19 assignments. We
also collect 36 scenarios from homework assignments and Jupyter
Notebooks that use COVID-19 datasets in Github. In these scenarios,
we use the problem statements as the NL instructions and the
plots as the expected results. We exclude 5 instructions from these
scenarios in which the plot types are not supported by NL2Viz.

NL2VIS dataset. Luo et al. [20] publish a NL2Visuaization dataset
named NL2VIS. The NL2VIS dataset is generated by applying a
neural network NL2SQL-to-NL2VIS model on a popular NL2SQL

2https://www.kaggle.com/uciml/autompg-dataset

dataset named Spider [38]. Although the NL2VIS dataset has an im-
pressive number of 25,750 (NL, VIS) pairs, we find that the dataset
mainly focuses on the data preprocessing steps as most visualiza-
tions in the dataset are a direct presentation of the output by the
SQL query from the Spider dataset without the plot options such
as formats and legends. So we evaluate NL2Viz on the NL2VIS
dataset in only RQ3 to compare with the results reported in their
paper [20].

4.1 RQ1 Results: One-Shot Accuracy

Correctness. We categorize the output plots of NL2Viz into 4
separate categories based on how well it matches the ground truth:

• Exact Match. In this category, the output of NL2Viz exactly
matches the ground truth.
• Functionally Equivalent. In this case, the output plot is
functionally equivalent to the ground truth plot, but differs
in a minor, often visual, detail. For example, if the instruc-
tion does not specify that a histogram should have normal-
ized frequency on the y-axis, but the ground truth does use
frequencies, NL2Viz produces a histogram using counts in-
stead of frequencies. However, the two plots are functionally
equivalent for most purposes. Therefore, we also consider
this category to be correct.
• Functionally Different. In this case, the output plot differs
from the ground truth in significant details. For example, the
output plot has an axis plotted using a linear scale, while the
ground truth uses a logarithmic scale.
• No match. Here, the produced plot is completely different
from the ground truth. We differentiate “functionally differ-
ent” from “no match” because in a “no match” case, often
the time the semantic parser is not able to capture the in-
tention from the NL instruction, while in a “functionally
different” case, usually the synthesizer is unable to synthe-
size a reasonable program indicating that we should extract
more may-use constraints with higher accuracy.

For the accuracy numbers, we consider the exact match and func-
tionally equivalent categories to be correct, and functionally differ-
ent and no match to be incorrect.

Results. The results of the evaluation are summarized in Table 1.
Overall, NL2Viz is able to produce the correct output in 74.6% of
the cases (with 58.6% being an exact match, and 15.9% of the cases
being functionally equivalent). Of the remaining, 12.5% of the cases
are functionally different.

To further analyze the results, we separate the Auto-MPG in-
stances into two categories, hard and easy, based on whether the
plot requires or not additional data preprocessing steps and ad-
ditional parameters not in the input or dataframe. The idea to
differentiate hard and easy plots is due to the observation that in
an easy scenario, the synthesizer should be able to generate the
correct program using only or mostly must-use constraints; while
in a hard scenario, some information of the plot is often missing
or vague in the NL instruction such that the synthesizer requires
enough may-use constraints to generate the correct program. Of
the 18 plots, 8 are categorized as easy and 10 as hard. As can be
seen from the table, the system achieves an accuracy of 85.7% and

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zhengkai and Vu, et al.

Category # Correct Incorrect
em fe Tot. fd nm Tot.

Total 295 173 47 220 37 38 75
Homework 31 19 2 21 5 5 10
Auto-MPG Total 264 154 45 199 32 33 65
Auto-MPG - Easy 119 86 16 102 15 2 17
Auto-MPG - Hard 145 68 29 97 17 31 48

Table 1: Accuracy of NL2Viz. The columns em, fe, fd, and nm

denote exact match, functionally equivalent, functionally

different, and no match, respectively.

Category # Correct Incorrect
em fe Tot. fd nm Tot.

Total 295 84 21 105 50 140 190
Homework 31 7 2 9 12 10 22
Auto-MPG Total 264 77 19 96 38 130 168
Auto-MPG - Easy 119 77 16 93 21 5 26
Auto-MPG - Hard 145 0 3 3 17 125 142

Table 2: Accuracy of the baseline approach (NL2Viz without

context and data understanding)

70% in the easy and hard cases, respectively. We discuss the failure
cases below.

Analysis of Failure Cases. For the Homework category, the main
reason for failures is missing context – the homework assignments
often contain relevant data in previous discussions or problems. In
the two “no match” cases in the “Auto-MPG - Easy” category, the
semantic parser interpretes the parameter representing point sizes
with a group by column. For example, for the input “scatter plot of
mpg and acceleration with point size by cylinder", the semantic parser
interprets cylinder as a group by column instead of a parameter
for the point size. Most “functionally different” cases in both the
“Auto-MPG-Easy” and “Auto-MPG-Hard” categories involve bin
sizes in histograms. For example, for the input “plot a bar graph

that shows me the number of rows with MPG in range 5 to 10, 10 to

15, and so on", NL2Viz is unable to identify the bin sizes due to the
limitations of its DSL grammar.

For the “Auto-MPG-Hard” category, the limitation of NL2Viz
is in the parsing of the filtering or group by clauses. For exam-
ple, the input fragment yearly or annual represents the “group by
model_year” clause in the “Auto-MPG” dataset. However, NL2Viz
is unable to do these translations in a fraction of the cases. As
mentioned in Section 3.1, we choose to use a context free gram-
mar to represent the NL instruction because the grammar would
cover most cases. However, for words such as yearly or annual
that are functionally equivalent to the column name model_year,
we are unable to enumerate and cover all equivalent words in the
grammar. Recent developments in the field of detecting equiva-
lence via extrapolation [21] present a potential solution, and we
believe that these scenarios can be correctly handled with better
NL understanding.

Effect of Context and Data Understanding. We also run a baseline
synthesizer whose results can be seen in Table 2. The baseline uses
only NL information (extracted using the semantic parser described

in Section 3.1), and does not use the data and program context. As
expected, the code generated by the baseline approach in certain
cases is incomplete. For example, in the instruction “plot scatter

average mpg by cylinder”, there is an inherent group operator since
it is required to calculate the aggregation function average for
the “mpg” column. However, the “cylinder” column cannot both
function as the column for the x-axis and group column, resulting
in a missing group operation. Tables 1 and 2 show that using the
data/program context substantially improves the results, especially
in the “Auto-MPG-Hard” category. In particular, no cases of the
“Auto-MPG-Hard” category can get exact match results because all
the plots in this category require information from the data context.

Performance. We measure the performance of NL2Viz by the
execution time. It turns out that NL2Viz is quite efficient, and we
set a timeout bound to be 30 seconds. The average execution time
for an instruction is around 3 seconds, and 95% of the instructions
finish within 5 seconds. There are 3 instructions causing timeout,
all of which are in the “Auto-MPG-Hard” category. They all have a
length of more than 150 characters with the longest one being 340
characters, resulting in timeout in the semantic parsing phase.

4.2 RQ2 Results: Plot-and-Change Accuracy

This section evaluates NL2Viz with respect to RQ2, i.e., in the
setting where NL2Viz is provided with an already existing plot and
a change instruction. For example, the initial plot could have been
generated by the instruction “scatter plot of mpg and acceleration

grouped by cylinders” and the change instruction can be “change
to average mpg and accleration”. The initial instruction generates
an initial plot where each car is a single point colored based on
the number of cylinders. The change instruction should generate a
plot where each point corresponds to a group of cars with the same
number of cylinders, with the coordinates given by average mpg
and average acceleration.

Table 3 shows the information about the 40 tests. We separate the
plots into “Easy” and “Hard” group based on whether it is needed
contextual information to generate the plot. Further, we group the
change instructions into Replace andAdd categories: Replace change
instructions replace the value of some plot aspect with another,
while Add change instructions add a new aspect to a plot. We do
not consider the delete category: in most practical scenarios, users
start with a simple plot and add more complexity over time.

Accuracy Results. Table 3 shows the performance of NL2Viz
on the change experiments. We find that NL2Viz performs well
in general, achieving 67.5% accuracy (25 correct out of 40 total).
Our tool is more effective in processing Add change instructions
than Replace instructions. Replace instructions change an existing,
correct aspect in the plot. Hence, NL2Viz needs to both locate the
aspect to be replaced and parse the new aspect correctly. While in
Add instructions, because the new aspect usually does not interfere
with existing rules, NL2Viz just needs to add new aspect.

Instruction length results. We also evaluate how much instruc-
tion length is saved by the change instruction. For each initial
instruction and change instruction pair, we also generate a com-

bined instruction from which NL2Viz can produce the intended
plot in one attempt. In terms of absolute numbers, we can see that

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Plot Type Change Type Total Correct Avg. InitLen. Avg. ChgLen. Avg. FinLen. Avg. Red.

Easy Add 5 5 37.2 13.6 46.4 68%
Replace 5 3 36.4 16.4 38.2 57%

Hard
Add 10 8 55.6 22.5 73.0 64%
Replace 10 5 54.3 29.1 61.7 54%
Add+Replace 10 4 57.2 37.0 69.9 49%

Table 3: Results of change experiments. The columns Avg. InitLen., Avg. ChgLen., Avg. FinLen. and Avg. Red. stand for Average

Initial Instruction Length, Average Change Instruction Length, Average Final Instruction Length and Average Instruction

Length Reduction in Correct cases respectively. Instruction length is in number of characters

the average length of Replace instruction is higher than Add, due to
need of specifying both the component to replace and the replace-
ment. On the other hand, the average combined instruction length
is higher for Add instructions, due to the additional information
added by the instruction.

We also measure the average instruction length reduction, given
by 1 − 𝐿𝑒𝑛𝑔𝑡ℎ (𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛)

𝐿𝑒𝑛𝑔𝑡ℎ (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) . We evaluate the setting where
the user has already used the initial instruction to create a plot, and
later wants to update it: either by using the change instruction, or
directly using the combined instruction. We find that in general we
achieve 58% instruction length reduction via the interaction enabled
by the change instructions. We achieve higher reduction in Add

category changes since the combined instruction text has to specify
both the old and the new aspects, while the change instruction has
to specify only the new aspects.

Analysis of Failure Cases. We note that Add change has a higher
accuracy than Replace change due to that the aspect user wants to
replace is often implicit in the change instruction. In the example
in Section 2, the change instruction is “change to Asia”. In this
instruction, by the help of data context it is easy to infer that the
aspect needs to be replaced is “Europe”. However, in some cases, it’s
unclear whether the instruction is to change existing aspect or to
add a new aspect. For example, when the initial instruction is “plot
scatter of mpg versus model year”, which would produce a scatter
plot with each point representing a car and its mpg (y-axis) versus
model year (x-axis). The change instruction is “change to average
mpg for all cylinders”. The idea of this change is to produce a final
instruction which is “plot scatter of average mpg for all cylinders".
The final plot is a scatter plot which x-axis represents cylinder
number and y-axis represents average mpg. In this case, the “for
all cylinders” in the instruction text represents a Replace change.
However it can also be the case that the final instruction is “plot
scatter of average mpg versus model year group by cylinders". In
this case, the final plot a scatter plot which x-axis represents model
year and y-axis represents average mpg with different cylinders
have points with different colors on the plot.

4.3 RQ3 Results: Comparison with the State of

the Art

Luo et al. [20] reports the accuracy of their neural-translation-
model-based tool SEQ2VIS along with two other rule-based and
semantic-parser-based tools DeepEye [19] and NL4DV [23] on a
test set containing 3990 (NL, VIS) pairs from their NL2VIS dataset.

DeepEye NL4DV SEQ2VIS NL2VIZ
Easy 9.5% 11.5% 67.4% 83.9%
Medium 15.4% 22.5% 69.6% 74.2%
Hard 1.4% 7.6% 60.5% 41.5%
Extra Hard 6.1% 4.1% 61.8% 13.3%
Overall 9.1% 13.7% 65.7% 58.8%

Table 4: Comparison with the state of the art.

Due to the different target libraries of NL2Viz and NL2VIS
dataset (Matplotlib vs. Vega-Lite), though it is possible to trans-
late one to another, we find it not reasonable to directly compare
the visualization program as different programs may lead to same
or essentially same plots. Also we notice that in Luo’s paper, they
measure the “tree matching accuracy” to compare with other tools.
The “tree matching accuracy” measures whether the flow of data
transformation for each data column and its corresponding data
shown on the axis is correst. Therefore for each test case, we need to
manually examine whether our synthesized visualization program
is equivalent to their program which is the labeled output. We are
able to manually verify the 500 (NL, VIS) pairs sampled from their
3990-pairs test set. We treat our output to be correct if it’s an Exact
Match or Functionally Equivalent as defined in Section 4.1.

Table 4 shows our accuracy against other state of the art tools
on the NL2VIS dataset. Out of the 500 pairs sampled, there are 32
visualizations that are currently not supported by NL2Viz. First we
can see that NL2Viz outperforms two other rule-based tools by a
large margin in all difficulty groups. The reason is that our tool
supports the synthesis of data preprocessing steps while the other
two tools don’t or only have a very limited support.When compared
to the neural-translation-model-based approach SEQ2VIS. We find
that in the “Easy” and “Medium” category, our tool outperforms
SEQ2VIS. The possible reason is that the “Easy” cases here are
similar to the “Easy” cases in Section 4.1 and the “Medium” cases
here are similar to the “Hard” cases, for both categories we see
similar accuracy as in Section 4.1, which are 83.9% vs. 85.1%, 74.2%
vs. 70%. In these two categories, our NL grammar and Visualization
DSL can cover the target visualization program, therefore we are
able to achieve higher accuracy than a learning-based approach
by using a constrained syntax-guided synthesis. However, in the
“Hard” and “Extra Hard” cases, the accuracy of NL2Viz declines
drastically. The reason is that the NL instructions in these two
categories are usually generated from nested SQL queries especially
for the “Extra Hard” category. Our grammar and DSL don’t cover

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zhengkai and Vu, et al.

2 2.5 3 3.5 4 4.5 5

Question 4

Question 3

Question 2

Question 1

Tasks succeeded

Figure 8: The distribution of succeeded tasks and scores

among 6 participants.

such data processing steps, therefore it’s impossible for NL2Viz to
produce the correct visualization.

Overall, NL2Viz achieve lower but comparable accuracy com-
pared with the SEQ2VIS tool while being able to achieve higher
accuracy in “Easy” to “Medium” cases without the need for training
data. NL2Viz also outperforms existing rule-based approaches by a
large margin by leveraging the data/program context.

4.4 RQ4 Results: Usability and Interaction

To evaluate the usability of the system, we ask volunteers to com-
plete 5 plotting tasks using NL2Viz, with an average of 7.4 years of
experience in data science. Among the 5 plots in the tasks, there
are 2 histogram/bar chart, 1 scatter plot and 2 line plots. Each par-
ticipant is first asked multiple background questions, and is then
given an explanation of the “Auto-mpg” dataset. Next we ask the
participants to complete the 5 tasks in order until they are satisfied
or are not willing to try NL2Viz any more. Each participant is given
20 minutes to finish all 5 tasks. Then, the participants are asked to
rate NL2Viz on a scale of 1 (least positive) to 5 (most positive) on
the following aspects:
• Question 1 Do you find NL2Viz easy to use?
• Question 2 Do you find it easy to interpret the code gener-
ated by NL2Viz and change for future usage?
• Question 3 Do you want to use NL2Viz before you do visu-
alization in future?
• Question 4 Is NL2Viz able to understand your input?

On average, the participants successfully complete 4.13 out of 5
tasks. Figure 8 shows that the participants are generally in favour of
NL2Viz, with an average of 4 for all questions. The high variance for
question 3 is due to participants with higher expertise who are very
familiar with writing visualization code strongly not preferring to
use NL2Viz.

Suggestions from the participants highlight two major issues.
Three participants (S2, S4, S6) suggest that NL2Viz should have
built-in “highlighting” to show which part of their natural language
corresponds to which part of the generated code. This would help
users change their input when NL2Viz misinterprets their inten-
tion. Another suggestion is to modify NL2Viz to produce multiple
candidate plots for the same input (S1, S2, S3). It is fairly straight-
forward to modify our semantic parser and synthesizer to produce
multiple candidate, and we intend to make this modification. Other
suggestions include allowing for click selecting columns as an input

modality (S3), displaying a confidence score for the generated plot
(S6), and a separate cleaning step before visualization (S5).

5 RELATEDWORK

Natural Language to Visualization The idea of using natural lan-
guage (NL) as a query interface for visualization is getting popular
as the development in NL2Code.

Tong et al. [9] presents, DataTone, a mixed-initiative approach
to address the ambiguity problem in NL interfaces for visualiza-
tion. Unfortunately, becauseDataTone is not publicly available, we
could not perform a direct comparison with NL2Viz. Zhang et al [7]
proposes Text-to-Viz. The usage scenario of Text-to-Viz is quite
different from ours. Text-to-Viz is a visualization recommendation
tool that focuses on data exploration. It does not support precise
NL instructions to a specific visualization. Instead, the user’s input
works as a guide to explore charting options on certain columns
or combination of columns. We find it not fair to compare Text-
to-Viz’s accuracy on our dataset as it is not designed to produce
visualization with the NL instruction provided. Similarly, Sun et
al. [32] proposesArticulate, a two-step process to generate visual-
ization from NL instructions. First, it parses the NL instruction into
commands using supervised learning. It then generates visualiza-
tions for the commands using heuristics. Articulate is also focused
on data exploration instead of synthesizing precise visualization
according to the NL instruction input.

Narechania et al. [23] proposes NL4DV, which has similar func-
tionality as NL2Viz. It is alsointegrated into the Jupyter Notebook
environment while producing the results in Vega-Lite format [28].
However, NL4DV relies only on the NL instruction to generate
the visualization. It only checks the data to identify the database
entities in the NL instruction without leveraging other contextual
information from data/program. Similarly, it also lacks the ability
to create the necessary data preprocessing steps. Luo et al. [20]
publishs a public dataset NL2VIS consisting of 25750 (NL, VIS) pairs.
They propose aNL2SQL-to-NL2VISmodel to translate the (NL, SQL)
pairs in the popular spider [38] dataset to the (NL, VIS) pairs. In this
paper, they also propose a learning-based approach SEQ2VIS based
on SEQ2SEQmodel [33] used in NL2SQL tasks. They evaluate their
approach on the dataset comparing with the other two approaches
NL4DV and DeepEye [19], which is a keyword-based approach
previously proposed by them too. They find their approach largely
outperforms the other two approaches. However, since the spider
dataset is a NL2SQL dataset. It only focuses on how the output is
calculated using the data transformations defined in the SQL query.
The NL instructions in NL2VIS dataset completely ignore impor-
tant options of visualizations like formats and legends. Despite the
limitations, we also evaluate NL2Viz on this dataset in Section 4.3.

It’s worth noting that unlike NL2Viz, the above systems don’t
support further refinement on the result, which limits the ability of
users to further modify or reuse the results later in other tasks.

Rong et al. [27] proposes CodeMend, which uses neural net-
work to infer the correspondence between NL query and func-
tion/parameter in visualization program. Similarly, Setlur et al. [29]
proposes Evizaswhich allows users to refine existing visualizations
by asking questions or direct manipulation. However, both tools
lack the ability to generate complete visualization code and also

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

cannot generate the necessary data preprocessing steps. They can
be seen as complementary with NL2Viz. Their approaches can be
combined with the interactive approach used by NL2Viz to provide
better user experience after the first-shot query.
Visualization Recommendation Visualization recommendation
focuses on producing the recommended visualization encoding
based on design domain knowledge [35].

Dominik et al. [22] presentsDraco, which represents a visualiza-
tion as a set of logical facts and thus converts visualization design
patterns into a set of constraints. It then uses constraint solving to
recommend the best visualization scheme based on the collection
of domain knowledge. Ding et al. [8] presentsQuickInsights to
discover interesting patterns from multi-dimensional datasets by
formalizing the notion of interesting pattern (insights) and present
them as visualizations. Siddiqui et al. [30, 31] proposes an inter-
active visual analytic platform Zenvisage to find desired visual
patterns from large datesets. It extends the previous work Vispedia
proposed by Chan et al. [6] which only performs a keyword-query
of collected graphs.

While the output of our tool is also a visualization, the focus
is different. Visualization recommendation tries to follow visual-
ization design patterns. We focus on eliminating the ambiguity in
natural language instructions by bringing insights from data. Our
approach is also extensible and can be integrated with existing
visualization recommendation tools.
Syntax Guided Synthesis The constrained syntax-guided synthe-
sis problem is an extension of the syntax-guided synthesis (SyGuS)
problem first introduced by Alur el al [1]. Our cSyGuS problem
asks for a program that is not only generated by a given gram-
mar, but also uses specific rules and non-terminals of the grammar.
Successful solution strategies for SyGuS are based on bottom-up
enumeration [2, 3, 34], model based quantifier instantiation [26],
and top-down search over the grammar [17]. Hu et al [11] considers
QSyGuS, a variant of the SyGuS problem where a cost model given
by a weighted tree automaton assigns costs to programs, and task
is to generate the minimal cost program that satisfies the seman-
tic constraint. The solution they used is however infeasible in our
setting due to the the presence of derivation constraints

6 CONCLUSION

In this paper, we have presented a novel NL2Visualization ap-
proach named NL2Viz and its supporting tool for automatically
synthesizing visualization programs from a user’s NL instruction.
The key idea underlying our approach is to leverage not only the NL
instruction, but also the other contexual information (namely data
context and program context) and then convert the different kinds
of specifications provided by the user into symbolic constraints,
which can be used to generate the desired visualization programs
using syntax-guided program synthesis. Moreover,NL2Viz includes
an interactive interface for allowing the user to further refine and
reuse the resulting visualization. We evaluate our approach on a
real-world visualization benchmark and a public dataset to show
the effectiveness of NL2Viz. We also perform a user study involv-
ing 6 data scientist professionals to demonstrate the usability of

NL2Viz, the readability of the generated code, and NL2Viz’s effec-
tiveness in helping users generate desired visualizations effectively
and efficiently.

ACKNOWLEDGMENTS

This work was partially supported by National Natural Science
Foundation of China under Grant No.: 62161146003.

REFERENCES

[1] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit
Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund
Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-guided synthesis.
https://doi.org/10.3233/978-1-61499-495-4-1

[2] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. 2015. Synthesis through
unification. In Proceedings the 27th International Conference on Computer Aided

Verification (San Francisco, CA, USA) (CAV ’15). Springer, Cham, 163–179. https:
//doi.org/10.1007/978-3-319-21668-3_10

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling enu-
merative program synthesis via divide and conquer. In Proceedings of the 23rd

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (Uppsala, Sweden) (TACAS ’17). 319–336. https://doi.org/10.1007/978-
3-662-54577-5_18

[4] Yoav Artzi. 2016. Cornell SPF: Cornell semantic parsing framework. https:
//doi.org/10.48550/arXiv.1311.3011 arXiv:arXiv:1311.3011

[5] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic
parsing on Freebase from question-Answer pairs. In Proceedings of the 2013

Conference on Empirical Methods in Natural Language Processing (Seattle, WA,
USA) (EMNLP ’13). ACL, 1533–1544. https://aclanthology.org/D13-1160

[6] Bryan Chan, Justin Talbot, Leslie Wu, Nathan Sakunkoo, Mike Cammarano, and
Pat Hanrahan. 2009. Vispedia: On-demand data integration for interactive visu-
alization and exploration. In Proceedings of the 2009 ACM SIGMOD International

Conference onManagement of Data (Providence, Rhode Island, USA) (SIGMOD ’09).
ACM, New York, NY, USA, 1139–1142. https://doi.org/10.1145/1559845.1560003

[7] Weiwei Cui, Xiaoyu Zhang, Yun Wang, He Huang, Bei Chen, Lei Fang, Haidong
Zhang, Jian-Guan Lou, and Dongmei Zhang. 2019. Text-to-Viz: Automatic gen-
eration of infographics from proportion-related natural language statements.
IEEE transactions on visualization and computer graphics 26, 1 (2019), 906–916.
https://doi.org/10.1109/tvcg.2019.2934785

[8] Rui Ding, Shi Han, Yong Xu, Haidong Zhang, and Dongmei Zhang. 2019. Quick-
Insights: Quick and automatic discovery of insights from multi-dimensional
data. In Proceedings of the 2019 International Conference on Management of Data

(Amsterdam, Netherlands) (SIGMOD ’19). ACM, New York, NY, USA, 317–332.
https://doi.org/10.1145/3299869.3314037

[9] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Karahalios.
2015. DataTone: Managing ambiguity in natural language interfaces for data
visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface

Software & Technology (Charlotte, NC, USA) (UIST ’15). ACM, New York, NY,
USA, 489–500. https://doi.org/10.1145/2807442.2807478

[10] Lars Grammel, Melanie Tory, and Margaret-Anne Storey. 2010. How information
visualization novices construct visualizations. IEEE transactions on visualization

and computer graphics 16, 6 (2010), 943–952. https://doi.org/10.1109/TVCG.2010.
164

[11] Qinheping Hu and Loris D’Antoni. 2018. Syntax-guided synthesis with quanti-
tative syntactic objectives. In Proceedings the 30th International Conference on

Computer Aided Verification (Oxford, UK) (CAV ’15). Springer, Cham, 386–403.
https://doi.org/10.1007/978-3-319-96145-3_21

[12] IPython. 2020. IPython magic commands. https://ipython.readthedocs.io/en/
stable/interactive/magics.html. Accessed: 2020-05-15.

[13] Jupyter. 2020. Project Jupyter. https://jupyter.org/. Accessed: 2020-05-15.
[14] Kaggle. 2020. Kaggle competitions. https://www.kaggle.com/competitions. Ac-

cessed: 2020-05-15.
[15] Tadao Kasami. 1966. An efficient recognition and syntax-analysis algorithm for

context-free languages. Coordinated Science Laboratory Report no. R-257 (1966).
[16] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural

language to SQL: Where are we today? Proceedings of the Very Large Data Base

Endowment. 13, 10, 1737–1750. https://doi.org/10.14778/3401960.3401970
[17] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating

search-based program synthesis using learned probabilistic models. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Philadelphia, PA, USA) (PLDI ’18). ACM, New York, NY, USA,
436–449. https://doi.org/10.1145/3192366.3192410

[18] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,

https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.48550/arXiv.1311.3011
https://doi.org/10.48550/arXiv.1311.3011
https://arxiv.org/abs/arXiv:1311.3011
https://aclanthology.org/D13-1160
https://doi.org/10.1145/1559845.1560003
https://doi.org/10.1109/tvcg.2019.2934785
https://doi.org/10.1145/3299869.3314037
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1109/TVCG.2010.164
https://doi.org/10.1109/TVCG.2010.164
https://doi.org/10.1007/978-3-319-96145-3_21
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://jupyter.org/
https://www.kaggle.com/competitions
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.1145/3192366.3192410

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Zhengkai and Vu, et al.

et al. 2022. Competition-level code generation with alphacode. arXiv preprint
arXiv:2203.07814 (2022). https://doi.org/10.48550/arXiv.2203.07814

[19] Yuyu Luo, Xuedi Qin, Nan Tang, Guoliang Li, and Xinran Wang. 2018. DeepEye:
Creating good data visualizations by keyword search. In Proceedings of the 2018

International Conference on Management of Data (Houston, TX, USA) (SIGMOD

’18). ACM, New York, NY, USA, 1733–1736. https://doi.org/10.1145/3183713.
3193545

[20] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.
2021. Synthesizing natural language to visualization (NL2VIS) benchmarks
from NL2SQL benchmarks. In Proceedings of the 2021 International Conference on

Management of Data (Virtual Event, China) (SIGMOD ’21). ACM, New York, NY,
USA, 1235–1247. https://doi.org/10.1145/3448016.3457261

[21] Jeff Mitchell, Pontus Stenetorp, Pasquale Minervini, and Sebastian Riedel. 2018.
Extrapolation in NLP. In Proceedings of the Workshop on Generalization in the

Age of Deep Learning (New Orleans, LA, USA). ACL, 28–33. https://doi.org/10.
18653/v1/W18-1005

[22] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith,
Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge
as constraints: Actionable and extensible models in Draco. IEEE transactions on

visualization and computer graphics 25, 1 (2018), 438–448. https://doi.org/10.
1109/TVCG.2018.2865240

[23] Arpit Narechania, Arjun Srinivasan, and John Stasko. 2020. NL4DV: A toolkit for
generating analytic specifications for data visualization from natural language
queries. IEEE Transactions on Visualization and Computer Graphics 27, 2, 369–379.
https://doi.org/10.1109/tvcg.2020.3030378

[24] Pandas. 2019. pandas: Python data analysis library. https://pandas.pydata.org/.
Accessed: 2019-11-20.

[25] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A large-scale study about quality and reproducibility of jupyter notebooks.
In Proceedings of the 16th International Conference on Mining Software Repositories.
IEEE Press, 507–517. https://doi.org/10.1109/MSR.2019.00077

[26] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W.
Barrett. 2015. Counterexample-guided quantifier instantiation for synthesis
in SMT. In Proceedings the 27th International Conference on Computer Aided

Verification (San Francisco, CA, USA) (CAV ’15). Springer, Cham, 198–216. https:
//doi.org/10.1007/978-3-319-21668-3_12

[27] Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and Eytan Adar. 2016.
CodeMend: Assisting interactive programming with bimodal embedding. In
Proceedings of the 29th Annual Symposium on User Interface Software and Tech-

nology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA, 247–258. https:
//doi.org/10.1145/2984511.2984544

[28] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2016. Vega-lite: A grammar of interactive graphics. IEEE transactions on visual-

ization and computer graphics 23, 1 (2016), 341–350. https://doi.org/10.1109/tvcg.
2016.2599030

[29] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X.
Chang. 2016. Eviza: A natural language interface for visual analysis. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology (Tokyo,

Japan) (UIST ’16). ACM, New York, NY, USA, 365–377. https://doi.org/10.1145/
2984511.2984588

[30] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless data exploration with Zenvisage: An expressive
and interactive visual analytics system. Proceedings of the Very Large Data Base

Endowment. 10, 4, 457–468. https://doi.org/10.14778/3025111.3025126
[31] Tarique Siddiqui, John Lee, Albert Kim, Edward Xue, Xiaofo Yu, Sean Zou,

Lijin Guo, Changfeng Liu, Chaoran Wang, Karrie Karahalios, and Aditya G.
Parameswaran. 2017. Fast-forwarding to desired visualizations with zenvis-
age. In 8th Biennial Conference on Innovative Data Systems Research, 2017,

Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf

[32] Yiwen Sun, Jason Leigh, Andrew Johnson, and Sangyoon Lee. 2010. Articulate: A
semi-automated model for translating natural language queries into meaningful
visualizations. In Proceedings of the 10th International Conference on Smart Graph-

ics. Springer-Verlag, 184–195. https://doi.org/10.1007/978-3-642-13544-6_18
[33] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning

with neural networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS ’14). MIT
Press, Cambridge, MA, USA, 3104–3112. https://doi.org/10.5555/2969033.2969173

[34] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M.K. Martin, and Rajeev Alur. 2013. TRANSIT: Specifying protocols with
concolic snippets. In Proceedings of the 34th ACM SIGPLANConference on Program-

ming Language Design and Implementation (Seattle, Washington, USA) (PLDI ’13).
ACM, New York, NY, USA, 287–296. https://doi.org/10.1145/2491956.2462174

[35] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2016. Towards a general-purpose query language for
visualization recommendation. In Proceedings of the Workshop on Human-In-the-

Loop Data Analytics (San Francisco, California) (HILDA ’16). ACM, New York,
NY, USA, Article 4, 6 pages. https://doi.org/10.1145/2939502.2939506

[36] Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham
Neubig. 2020. Incorporating external knowledge through pre-training for natural
language to code generation. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics (Virtual Event) (ACL ’20). ACL. https:
//doi.org/10.18653/v1/2020.acl-main.538

[37] Navid Yaghmazadeh, YuepengWang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
Query synthesis from natural language. Proceedings of the ACM Programming

Language 1, OOPSLA, Article 63 (oct 2017), 26 pages. https://doi.org/10.1145/
3133887

[38] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.
2018. Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing (Brussels, Belgium) (EMNLP

’18). ACL. https://doi.org/10.18653/v1/d18-1425
[39] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating

structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017). https://doi.org/10.48550/arXiv.1709.00103

https://doi.org/10.48550/arXiv.2203.07814
https://doi.org/10.1145/3183713.3193545
https://doi.org/10.1145/3183713.3193545
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.18653/v1/W18-1005
https://doi.org/10.18653/v1/W18-1005
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/tvcg.2020.3030378
https://pandas.pydata.org/
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.14778/3025111.3025126
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
https://doi.org/10.1007/978-3-642-13544-6_18
https://doi.org/10.5555/2969033.2969173
https://doi.org/10.1145/2491956.2462174
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3133887
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.48550/arXiv.1709.00103

	Abstract
	1 Introduction
	2 Overview
	3 NL2Viz: Natural Language to Visualization
	3.1 Parsing NL Instruction to Constraints
	3.2 Using Program and Data Context to Construct May-use Constraints
	3.3 Designing the Visualization Domain-Specific Language
	3.4 Constrained Syntax-Guided Synthesis
	3.5 Extension to An Interactive System

	4 Evaluation
	4.1 RQ1 Results: One-Shot Accuracy
	4.2 RQ2 Results: Plot-and-Change Accuracy
	4.3 RQ3 Results: Comparison with the State of the Art
	4.4 RQ4 Results: Usability and Interaction

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

