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Abstract

Large-scale cloud providers rely on cluster managers for
container allocation and load balancing (e.g., Kubernetes),
VM provisioning (e.g., Protean), and other management tasks.
These cluster managers use algorithms or heuristics whose
behavior depends upon multiple configuration parameters.
Currently, operators manually set these parameters using a
combination of domain knowledge and limited testing. In very
large-scale and dynamic environments, these manually-set pa-
rameters may lead to sub-optimal cluster states, adversely
affecting important metrics such as latency and throughput.

In this paper we describe SelfTune, a framework that au-
tomatically tunes such parameters in deployment. SelfTune
piggybacks on the iterative nature of cluster managers which,
through multiple iterations, drives a cluster to a desired state.
Using a simple interface, developers integrate SelfTune into
the cluster manager code, which then uses a principled rein-
forcement learning algorithm to tune important parameters
over time. We have deployed SelfTune on tens of thousands
of machines that run a large-scale background task sched-
uler at Microsoft. SelfTune has improved throughput by as
much as 20% in this deployment by continuously tuning a
key configuration parameter that determines the number of
jobs concurrently accessing CPU and disk on every machine.
We also evaluate SelfTune with two Azure FaaS workloads,
the Kubernetes Vertical Pod Autoscaler, and the DeathStar
microservice benchmark. In all cases, SelfTune significantly
improves cluster performance.

1 Introduction

Large cloud services depend upon cluster managers such
as Protean [37], Borg [65], Twine [61], and Kubernetes [6]
for job scheduling [32, 33, 39, 47, 53], virtual machine pre-
provisioning [43], and resource autoscaling [42, 50, 51]. Clus-
ter managers employ algorithms or heuristics to improve
metrics such as throughput, latency, and resource utiliza-
tion. Often, these algorithms rely on multiple configuration

parameters that critically influence their behavior, that we
call cluster manager parameters. For instance, Kubernetes
exposes parameters cpu-histogram-decay-half-life
and recommender-interval to help the autoscaler [8] re-
act promptly to changes in cluster utilization without reacting
to extremely ephemeral changes in utilization.

Every cluster manager relies on developers1 to manually
set these configuration management parameters to “suitable”
values. Table 1 gives examples of such parameters (not ex-
haustive) for different cluster managers. Typically, developers
set these values using a combination of domain-knowledge
and a limited set of manually-run tests or canaries [38,60,62].
While using domain knowledge is a step in the right direc-
tion, limited testing has many disadvantages. First, the tests
may not widely explore different values of these parame-
ters in different environments. Second, the search space of
feasible values explodes exponentially when multiple inter-
dependent parameters can be tweaked simultaneously. Third,
cluster usage can change with time, and the best parame-
ter values would therefore change with time as well. Con-
sequently, clusters with manually tuned parameter values
may result in reduced throughput, high request latencies or
low resource utilization. For instance, we find that using the
default values for cpu-histogram-decay-half-life and
pod-recommendation-min-cpu parameters of the Kuber-
netes autoscaler drops the system throughput to nearly 50%
when the workloads arrive in short, heavy bursts (Section 7).

To address this problem, we observe an interesting simi-
larity between cluster manager algorithms and reinforcement
learning (RL) algorithms. Cluster managers (Table 1) often
use state reconciliation: periodically, they observe the current
state of a cluster in terms of health and utilization metrics,
compare it to a desired state, and take action to move the
observed state closer to the desired state [27]. For instance,
the Kubernetes autoscaler [8] continuously determines how to
update container sizes, by maintaining a histogram of recent
resource utilization values. RL algorithms are also iterative

1For brevity, we refer to anyone developing, deploying or monitoring
cluster managers – developers, operators, service engineers – as “developers”.



Cluster manager Parameter Description Default

cpu-histogram-decay-half-life How long to wait before halving the weights of past CPU measurements 24 hours
recommendation-margin-fraction Fraction of usage added as the safety margin to the recommended request 0.15

Kubernetes pod-recommendation-min-cpu Minimum CPU recommendation for a pod 25 millicores
(Vertical Pod history-length Window length for CPU utilization histogram 24 hours
Autoscaler) pod-recommendation-min-memory Minimum memory recommendation for a pod 250 MB

memory-histogram-decay-half-life How long to wait before halving the weights of past memory measurements 24 hours
memory-aggregation-interval Window length for memory utilization histogram 24 hours
recommender-interval How often the resource utilization metrics should be fetched 1 minute

Azure FaaS prewarm Time to wait before pre-loading function code 5
(App manager) keepalive Time to wait before retiring the loaded VM 99

Azure Protean num-aa Number of rule-based VM allocation agents
(VM allocator) k k-highest quality clusters for VM placement [8,16]

Table 1: Key numerical configuration parameters of popular cluster management frameworks.

in nature, and use “rewards” to periodically improve and con-
verge a system to an optimal state. Hence we observe that
cluster managers are naturally amenable to RL techniques for
tuning configuration parameters.

In this paper, we propose SelfTune, a framework that au-
tomatically tunes such configuration parameters in deploy-
ment, rather than through testing. Three key aspects of our
framework are: (i) SelfTune piggybacks solely on cluster man-
ager’s periodic metric measurements, to help tune the cluster
manager parameters, so that both tuning and the cluster state
reconciliation can occur simultaneously with the same goal
of moving the cluster continuously towards optimal state; (ii)
SelfTune provides a light-weight API for the developers to
augment the cluster manager code specifying which parame-
ters to tune (as we illustrate with an example in Section 3), and
an objective, e.g., average CPU utilization should be ≥ 60%
but ≤ 90%; and (iii) SelfTune uses a principled algorithm
called Bluefin, based on theoretically-founded ideas for time-
varying rewards [35, 52], to optimize the developer-specified
objective; it gradually explores choices for the cluster man-
ager parameters, observes the cluster state, and iteratively
tunes the parameters to achieve the objective (Section 4).

We have deployed SelfTune on WLM, a scheduler which
manages background job scheduling for many Microsoft
M365 services including Exchange Online. WLM runs on
hundreds of thousands of machines, of which about a third cur-
rently use SelfTune’s parameter tuning. Our deployment has
been running for the last six months. We find that SelfTune
has improved cluster throughput by 15%–20% in multiple
clusters, while simultaneously improving the resource health
in some cases. Based on this, operators are in the process of
rolling out SelfTune on the entire fleet of machines.

Despite the simplicity of the Bluefin algorithm, SelfTune
is successful and has low sample complexity (i.e., number
of iterations to converge to the desired cluster state) across
applications (Sections 5, 6, 7). This stems primarily from the
fact that SelfTune does not learn a single complex model or
“policy” for the various scenarios (e.g., high/low workloads)
and states (e.g., resource utilization levels, failures) of the de-
ployment environment, unlike standard RL techniques used in

systems [45], to tune parameters. Instead, SelfTune relies on
pre-determined “scoping” of scenarios (by developers, which
is easy in practice) to learn optimal parameters per scope
(e.g., one model per machine in our WLM deployment). This
scoping, along with light-weight parameter updates (Bluefin)
within each scope, makes our solution sample efficient, requir-
ing only about 20 iterations to converge in all our case-studies.

This paper makes the following contributions.
(1) We present SelfTune, a framework that developers can
use to automate parameter search for their cluster manager
via a minimal interface (Section 3).
(2) We use a novel algorithm, Bluefin, based on rigorously-
studied ideas in online learning [35, 52], which allows
multiple parameters to be tuned quickly and jointly (Sec-
tion 4). SelfTune, with Bluefin, enables systems to converge
to their objective, i.e., their most desired state faster than
previous systems that use Bayesian Optimization [55] and
standard RL algorithms [26] (Sections 2.1, 7). We have open-
sourced an implementation of SelfTune with Bluefin [14].
(3) We describe our deployment of SelfTune on WLM and
show results from multiple clusters where SelfTune achieves
up to 15%–20% improvement in the throughput (Section 5).
(4) To the best of our knowledge, ours is the first developer-
centric framework for automated tuning of parameters of
online systems, not just cluster managers, with large-scale
deployments. We show SelfTune’s generality in the contexts
of (a) resource management for Azure FaaS with production
workloads [54] (Section 6) yielding significant improvement
in resource efficiency and (b) container rightsizing with Ku-
bernetes and DeathStar benchmark [36] (Section 7), yielding
significant improvements in tail latency and throughput.

2 Related Work

Optimally configuring systems is a long-studied research
problem in both systems and machine learning [34, 40, 44, 63,
64, 68]. In this section, we describe how SelfTune improves
upon previous work, in terms of both the core algorithm it
uses, and the framework it provides to the developer.



2.1 Algorithm

Commonly-used techniques for tuning or learning system
parameters are variants of Bayesian Optimization [25, 55],
reinforcement learning [20, 67], and heuristic search [30].
Bayesian Optimization (BO): CherryPick [23] uses BO
to pick the best cloud configuration for big data analytics
while Metis [40] uses it to improve performance metrics like
tail latency by tuning key system parameters. BO is meant
for settings where one seeks global optima of a fixed reward
function, and requires users to specify a model for the function.
For example, CherryPick and Metis use Gaussian Processes
to model the prior function. In contrast, Bluefin focuses on
online settings where the reward function may change with
time, and so does the optimal solution. Also, BO algorithms
have high sample complexity, i.e., the number of parameter
deployments needed to converge to an optimal solution is
large, especially when the number of parameters is also large.
Thus BO is not ideal for tuning parameters in deployment or
online. Our evaluation in Section 7 confirms this.
Reinforcement learning (RL): RL solutions for tuning
database systems [67] or learning scheduling algorithms [45]
support continuous parameters but require the system to ex-
plicitly provide state information in addition to reward values.
For instance, Decima [45] needs every node to specify state
in terms of a feature vector consisting of average task dura-
tion, number of servers assigned to a node, etc. Defining and
implementing states needs domain expertise and engineering
effort which is hard to scale across diverse systems. In con-
trast, Bluefin works with just the reward values and does not
need the system to explicitly define such state.
Heuristic search: Using branch-and-bound [30] based tech-
niques for large combinatorial spaces, or domain-specific de-
ductive search for high-dimensional spaces [68] are primarily
meant for systems where the goal is to obtain the best config-
uration parameters for a fixed reward function, and a fixed set
of workloads. Often, these techniques do not apply to online
settings for the same reason as BO (discussed above); also,
heuristic search space modeling lacks the generality of RL
techniques like contextual bandits [20, 26] and Bluefin.

SelfTune’s Bluefin algorithm addresses the concerns in
both BO and state-of-the-art RL techniques. It is a princi-
pled gradient-descent based algorithm which (a) needs no
modeling, ML expertise, or non-trivial engineering effort, (b)
works seamlessly with large real-valued and discrete parame-
ter spaces, and (c) converges to local (or global) optima, with
fewer samples than previous approaches.

2.2 Framework

MLOS [31] is a framework to automatically tune configura-
tion parameters using BO; thus, its applicability is limited as
discussed above. OpenTuner [24] provides a meta-framework
using which domain-specific tuners can in turn be built. CG-

PTuner [29] considers contextual data, e.g., workload infor-
mation, for DBMS tasks and uses BO to guide tuning. Best-
Config [24] finds good configuration settings using heuristic
search and sampling techniques. As discussed in Section 2.1,
these techniques do not generalize to dynamic environments
unlike SelfTune, where the rewards observed change with
time, and in turn the optimal configurations themselves.

OtterTune [64, 66] is a framework for tuning DBMS con-
figuration parameters. Though it also uses a variant of BO for
tuning, it incorporates a novel technique to mitigate the risk
of using stale configurations for new workloads. It builds ML
models for selecting an appropriate workload (from a work-
load repository) that best represents the current workload, and
uses the selected workload to estimate the effect of parame-
ters on the current workload. In contrast, our online setting
is much more dynamic, where it is extremely challenging to
characterize and maintain such repositories.

AutoPilot [51] reduces resource wastage for containerized
workloads using ML techniques for setting job-specific re-
source limits based on resource utilization. SelfTune is orthog-
onal to such cluster management frameworks and solutions —
in fact, we show how SelfTune helps tune the key parameters
of the open-source version of AutoPilot, called Vertical Pod
Autoscaler [8], that is part of Kubernetes, in Section 7.

State-of-the-art RL frameworks, e.g., Microsoft’s Decision
Service [21] are suited for settings where the parameter (“ac-
tion”) space is discrete or categorical, as they rely on “multi-
arm bandit” formulations [20]. Extending these techniques
to multiple numerical parameters results in very large action
spaces which makes it much more challenging to learn (as
we see in Section 7). RL frameworks like SmartChoices [28]
naturally support numerical parameters, but rely on providing
explicit reward separately for each parameter. We, on the other
hand, do not require such disambiguation — our problem for-
mulation, and Bluefin, work with a single reward value (i.e.,
the desired system state objective) for tuning several, possibly
inter-dependent, parameters together.

3 SelfTune Overview

We provide an overview of SelfTune and, using a simple
example, explain how a developer uses it. Then we describe
SelfTune’s main system components and their functions.

3.1 SelfTune Interface
To use SelfTune, a developer augments their cluster man-
ager code in four ways. First, they specify the set of param-
eters SelfTune should tune. Second, they either initialize a
fresh SelfTune instance or connect to an existing one. Third,
they specify at what point in the code and at what frequency
SelfTune should update the values of these parameters. Fi-
nally, they use the current state of the cluster to determine a
reward, which captures the difference between the desired



state and the current state of the cluster. SelfTune’s algorithm
(in our implementation this is Bluefin) uses this reward to
set the parameter values in the next iteration. One of the
main insights of this work is that the cluster manager already
computes the current state of the cluster, and already has a
notion of the desired state of the cluster. Hence SelfTune
simply piggybacks on existing code to determine the reward,
which is essential for any reinforcement learning platform.
The example in Figure 1 shows how a simple token-based
job scheduler uses SelfTune to tune the frequency with which
it makes scheduling decisions. Using this example, we now
describe the SelfTune-specific additions to code in detail.

1: public const double optLoad = 0.80;
2: // UpdateCycle = new TimeDelta("00:00:05");

3: Config UpdateCycle = new Config("UpdateCycle",

4: 1 Specification "TimeDelta",

5: "00:00:01-00:00:30",

6: "00:00:05");

7: SelfTune st = new SelfTune.Create(UpdateCycle);

8: st.Connect(); 2 Creation

9: // This is the scheduler loop
10: var currentLoad = 0.0;
11: while(1)
12: {
13: if (currentLoad < optLoad)
14: {
15: int numTokens = GenerateTokens(currentLoad);
16: GrantTokensToJobs(numTokens);
17: }

18: Guid callId; 3 Prediction

19: UpdateCycle = st.Predict(callId, "UpdateCycle");

20: sleep(UpdateCycle);

21: currentLoad = CalculateLoad(); 4 Feedback

22: st.SetReward(callId, currentLoad - optLoad);

23: }

Figure 1: Token-based scheduler augmented with SelfTune to
tune the frequency with which its main algorithm runs — the
highlighted lines show the three basic additions for SelfTune.

Specify Tunable Parameters: For each parameter, the de-
veloper specifies its data type, and optionally, initial value, a
range of permissible values, and step-size (e.g., TimeDelta
data type with values in multiples of 5 seconds). Line 3 in
Figure 1 says that SelfTune should tune the UpdateCycle
parameter, which determines the time between consecutive
iterations of the main scheduler loop. Here, the developer has
specified that this parameter can lie between 1 second and 30
seconds. They also specify 5 seconds as its initial value.

The developer has determined that UpdateCycle should
be tuned because if the scheduler waits too long between
iterations, it will not react fast enough to changes in cluster
state, hence causing the cluster resources to be used sub-
optimally. If, on the other hand, the scheduler iterations run

very frequently, the scheduler may react prematurely to ex-
tremely transient changes to system state, thereby causing
sub-optimal resource usage. Note that though this example
shows SelfTune tuning only one parameter, one instance of
SelfTune can tune any number of parameters simultaneously.
Initialize and Connect to SelfTune Instance: Line 7 in Fig-
ure 1 starts a new SelfTune instance. In a cluster-wide deploy-
ment, the developer decides how many instances of SelfTune
to set up. In our WLM deployment, each machine initializes a
separate SelfTune instance. However, if needed, cluster man-
agers can reuse the same instance of SelfTune across various
machines, simply by connecting to an existing SelfTune in-
stance (Line 8).
Get Parameter Values: Lines 11 to 23 show the main sched-
uler loop. Lines 13 to 17 capture the main algorithm of the
scheduler. The developer measures the current cluster state as
currentLoad (set to 0 in Line 10 and updated by the function
CalculateLoad() in Line 21). The developer states the de-
sired cluster state, i.e. optLoad, in Line 1. If the current load
of the system currentLoad is less than the specified optimal
load optLoad, it generates a number of tokens proportional to
the difference between the optimal load and the current load.

After this, in Line 19, the scheduler invokes SelfTune’s
Predict function to determine the value of UpdateCycle,
and sleeps for UpdateCycle seconds. Without SelfTune, the
scheduler loop would have slept for a fixed value of 5 seconds,
as the commented Line 2 shows.
Set Reward Function: SelfTune needs the developer to spec-
ify a domain-specific function to determine the outcome of
tuning the specified parameters. Note that the developer’s
code already defined both optLoad and currentLoad since
the core scheduling algorithm uses them both. The developer
reuses this pre-existing code: in Line 22, the developer in-
puts the difference between currentLoad and optLoad to
SelfTune’s SetReward function as the reward value.

Every reward is a result of a certain set of parameter
values. So, the code associates the calls to Predict and
SetReward using the same callId. The Data Collector
stores this information for later use (details in Section 3.2).

3.2 SelfTune Components
We now describe the different components SelfTune needs
to support the functions in Section 3.1. Figure 2 depicts the
four main components: the Client API (which supports the
Predict and SetReward functions), the Learning Engine,
the Data Collector, and the Reward Tracker. Appendix A
discusses the specifics of the client API. We describe the rest
of the components here.
Learning Engine: The learning engine implements the neces-
sary optimization algorithms such as Bluefin. While SelfTune
primarily uses Bluefin, the framework itself is generic and
can therefore include other algorithms, e.g., Azure Decision
Service’s Contextual Bandits.



Figure 2: SelfTune architecture. The cluster manager interacts
with the SelfTune server via client API. The learning happens
on the server side, and it is transparent to the cluster manager.

Section 4 describes Bluefin algorithm that uses a variant of
gradient descent. It determines the next value of the parameter
based on how the cluster reacted to past parameter choices.
For instance, in the example explained in Figure 1, Bluefin
observes past values of UpdateCycle and the corresponding
reward, and then determines the next value with the objective
of getting the load as close as possible to optLoad.

Data Collector: The data collector is a background service
that maintains the history of all parameter values and the
corresponding reward for each SelfTune instance. In the ex-
ample of Figure 1, whenever the client code makes a call to
Predict and a subsequent call to SetReward, the data
collector associates the parameter values and reward using
the callId and stores this as the tuple (callId,a,r) where a
is the value for UpdateCycle that the client code obtained by
calling Predict() and r is the resulting reward. The learn-
ing engine uses this data to set future parameter values as
described in Section 4. The data collector also stores refer-
ences to each SelfTune instance so that cluster managers can
lookup existing SelfTune instances and connect to them. In
our SelfTune implementation, since we use the Bluefin algo-
rithm (Algorithm 1), the space requirement for Data Collector
is negligible — it needs to persist only one (callId,a,r)
tuple (the most recent), per SelfTune instance (see Section 5).

Reward Tracker: In practical settings, the reward computa-
tion may have to happen asynchronously off the critical path;
there may not be a natural place in the main control flow to
call SetReward, unlike in the example of Figure 1. In fact,
the actual implementation of WLM discussed in Section 5 is
such a setting. To facilitate this scenario, SelfTune supports
another background service, called the Reward Tracker, which
computes rewards periodically, at a frequency determined by
the developer, and pushes the values to the data collector.

4 The Bluefin Algorithm

This section describes the Bluefin algorithm used by
SelfTune’s learning engine. We first define a “round”, that is
essential to explaining the algorithm. Next, we describe two
characteristics essential for making SelfTune generic as well
as lightweight. Finally, we describe the algorithm in detail
and explain how it achieves both the essential characteristics.

Definition of a round: Standard reinforcement learning
(RL) proceeds sequentially in “rounds” between the learning
engine and the system whose parameters are tuned. We define
a round in the context of tuning deployed systems as the du-
ration for which the system executes with a particular set of
parameter values as returned by the calls to Predict. The
client code terminates a round when it calls SetReward.
In Figure 1’s example, the developer may introduce an if
statement around Line 22, checking the last time the reward
was set, and setting the reward only if more than a day has
passed since. In this case, each day constitutes a round. Alter-
natively, the developer may share the same SelfTune instance
across multiple machines and call SetReward only after all
machines have had a chance to call Predict; here, a round
completes only when all machines have called Predict.

Characteristic 1: Bluefin uses One-point Feedback. Clus-
ter state is the result of a complex combination of parameter
values and external factors such as sudden bursts in work-
loads and time-of-day effects. Therefore, the reward, which is
a function of the cluster state, also changes with time. Model-
ing this behavior using a fixed function is extremely difficult,
if not impossible.

Bluefin (like any other RL approach) uses rewards only
at the parameter values that the cluster manager obtains by
calling Predict. It does not assume any other information
about the inherent, unknown function that determines the re-
ward. In other words, following standard practice in RL litera-
ture [21,56], Bluefin assumes only bandit-feedback or zeroth-
order access to the reward function. This constraint is referred
to as “one-point feedback” [35], as against multi-point feed-
back [22] in learning theory. Techniques such as Bayesian
Optimization, branch-and-bound heuristics [30], and genetic
algorithms [46, Chapter 1.6] need to compute the reward for
multiple parameter values that may not have been deployed
in the system. Hence they need a model to represent the po-
tentially complex and unknown reward function. Thus, these
techniques are much more suited to offline tuning than to
our setting of tuning in deployment to optimize cumulative
time-varying rewards.

Characteristic 2: Bluefin has Low Sample Complexity and
Low Engineering Overhead. Our goal is to reach the op-
timal parameters that maximize the cumulative reward over



time. The metric of efficiency is sample complexity, i.e., the
number of rounds it takes to converge to the optimal values.
Each round can be very resource-intensive (as we discovered
in SelfTune’s deployment on WLM, explained in Section 5),
so the fewer the number of rounds the less the overhead of the
parameter tuning framework itself. SelfTune reduces the en-
gineering overhead and makes tuning highly sample efficient
by letting developers statically identify suitable “scopes” for
tuning. That is, rather than learning a single global model to
account for all the complex behaviors of the underlying sys-
tem being tuned, it allows developers to instantiate a SelfTune
instance per scope (e.g., WLM uses machine as the scope, in
Section 5). Each instance executes Bluefin to learn optimal
parameters within its scope, thereby solving a relatively eas-
ier problem. Second, Bluefin algorithm (in each SelfTune
instance) can be thought of as learning a model of size equal
to the number of parameters tuned, unlike standard RL tech-
niques that use sophisticated models with orders of magnitude
more parameters to capture system states and behaviors. Thus,
both the sample and the engineering complexities of Bluefin
is much lower than the standard RL approaches.

Algorithm: We first define a few terms used to explain the
algorithm. Say the developer wants to tune m parameters. In
each round, the cluster manager receives an m-dimensional
vector a(t) when it calls Predict, and as a result of setting
these values, it measures cluster state and reports back a re-
ward value rt(.) : a(t) 7→ R. SelfTune then uses this reward to
update the parameter values.

Algorithm 1 presents the core function of Bluefin, which
leverages ideas from the rigorously-studied derivative-free
online optimization [35, 52] in the machine learning theory
community. There are two key challenges in our tuning setting.
First, if we know the exact reward function, rt , then we can
apply the standard online gradient descent techniques [69].
However, in a deployed cluster, we do not have any infor-
mation on rt other than the one-point black-box access to
it. Second, standard gradient-descent style updates are de-
rived for real-valued parameters. However, cluster manager
parameters can be discrete as well as real-valued.

To tackle the two challenges, we leverage the derivative-
free optimization ideas studied in learning theory [35, 52].
They showed that we can reliably estimate the gradient of
the black-box reward function by randomly perturbing the
parameters once, albeit under some assumptions on the func-
tion. In particular, the theory requires that the problem be
continuous, i.e., parameters are all real-valued. In practice,
we often have to tune discrete-valued parameters. To this end,
Bluefin introduces a function g, which it appropriately defines
during the Create call, to map the real-valued parameters
and the generic data-types that can be deployed in the sys-
tem. In other words, Bluefin executes the well-studied online
gradient descent updates in a suitably transformed parameter
space. We discuss the details next.

Algorithm 1 Online tuning of parameters in SelfTune

1: procedure Bluefin (radius δ > 0, learning rate η > 0)
2: Initialize the parameters w(0) ∈ Rm // Create
3: Initialize g(·) // Create
4: for t = 0,1,2, . . . do
5: Uniformly sample u ∈ Rm from {u : ∥u∥2 = 1}.
6: Compute perturbed parameters w̃(t) := w(t)+δu
7: Client receives perturbed decisions a(t) := g(w̃(t))

// Predict calls
8: Receive feedback r(t) := rt(a(t)) ∈ R //
SetReward

9: Do “one-point” gradient-ascent update (to maxi-
mize the reward): w(t+1)← w(t)+ 1

δ
·η · r(t) ·u

Initialization (Line 2). The algorithm works with a real-
valued parameter vector w ∈Rm, where m is the total number
of parameters to tune. If the developer does not give an initial
value for parameter i, the algorithm samples wi uniformly at
random from the specified range (suitably scaled, see below).
If the developer has not provided a range, it initializes wi to 0.

Defining g (Line 3). If the developer specified a step-size,
g appropriately scales the corresponding components of w.
For instance, if the developer specifies that the ith param-
eter is an integer that needs to have a step-size of 5, then
g(wi) = 5 ∗ round(wi), where wi is the real value that the
algorithm manipulates, and round is the round-to-the-nearest-
integer function. Similarly, if the developer specified range
constraints on the parameter, then g appropriately projects wi
to lie within the specified bounds. Predict applies the g
function before returning the parameter values, as in Line 7
of the Algorithm.

Update parameters (Lines 5, 6, 9). To update w, we use the
technique of [35], where we estimate the gradient of rt with
respect to w(t) by a random perturbation of w(t). Line 6 effec-
tively samples a vector w̃(t) from the hyper-sphere centered at
w(t) with a radius δ (input to the algorithm, appropriately set
as discussed below). Line 9 computes a gradient-ascent style
update (to maximize the cumulative reward) in the direction of
the random vector u scaled appropriately by the learning rate
η, and the observed reward value rt at the perturbed vector.
In some cases, such as in simulation settings, one may be
able to perturb the vector more than once and make reward
measurements. It turns out that with just two-point feedback,
we can get a very accurate estimate of the gradient (in lieu of
Line 9) as noted in the following remark.

Remark 1 (“Two-point feedback”). The accuracy of gradient
estimation, and in turn the sample complexity of Algorithm 1,
can be further improved [57] in settings (e.g., simulations in
Section 6) where it is possible to obtain reward rt(·) at two



different a values. In that case, the gradient estimator in Line
9 of Algorithm 1 can be replaced with:

w(t+1)← w(t)+η
1
2δ

(
r(g(w(t)+δu))− r(g(w(t)−δu))

)
u

Setting radius δ, learning rate η. In general, choosing a
single real number δ can be tricky especially when the pa-
rameters have different scales. But, decoupling the deployed
parameters a (that may have very different scales) from the
weights w (that are in a normalized scale) via g(·) mitigates
this issue in practice. Given ∥w(t)∥2 = O(1) and ∥u∥2 = 1, we
set δ = O(1) and η = O(δ2), so that w(t+1) retains the scale
after the update in Line 9 of Algorithm 1.

5 Large-scale Workload Scheduling System

In this section, we describe our experiences deploying
SelfTune with WLM (short for “workload manager”), the
background task scheduler for Substrate, a large data man-
agement engine used by many of Microsoft’s services. We
first describe Substrate and WLM, and then the deployment
of SelfTune with WLM, and finally present evaluation.

5.1 Substrate

Substrate is a large-scale data management engine at Mi-
crosoft which hosts data for several of Microsoft’s enterprise
services such as Exchange Online, an enterprise email service,
and SharePoint, an online collaboration platform. Substrate
stores data in a local database on each machine. Substrate
runs upon hundreds of thousands of machines worldwide and
hosts billions of data items.

In Substrate, compute and storage are tightly coupled. Each
machine runs many user-facing tasks, such as reading emails,
writing documents, and searching through data. These tasks
are latency-sensitive and need to complete within a few mil-
liseconds. Simultaneously, Substrate runs a vast range of
background tasks on the same machines such as data index-
ing, data analytics, machine learning, and data defragmenta-
tion. More than 70% of all tasks that run on Substrate are
background tasks. An example background task analyses a
customer’s mailbox to provide daily to-do lists [10]. Most
tasks are defined to finish very quickly (e.g., process one
mailbox and return), in the order of a few seconds.

5.2 WLM

To ensure that background tasks do not interfere with user-
facing tasks, Substrate uses a background task scheduler
called WLM which regulates these tasks’ access to disk,2

CPU, memory, and network on that machine. WLM contin-
uously polls the background task queues, granting the tasks

2majority of Substrate data is hosted on cost-effective HDD media

Figure 3: WLM service architecture.

access to resources when permissible (to ensure high through-
put), while trying to keep resource utilization on the machine
within a specified range (to ensure room for user-facing tasks).

Figure 3 depicts WLM’s scheduling algorithm. WLM’s
resource monitor continuously tracks CPU, disk, network,
and memory usage (IO latency for disk, utilization % for
CPU and memory, and a function of bandwidth utilization
and ping losses for network). For each resource, developers
specify a lower and a higher usage threshold. If the resource’s
utilization is under the lower threshold, the resource is said to
be under-utilized. Similarly, if the resource’s utilization is over
the higher threshold, WLM considers it to be over-utilized.

Configuring WLM: Every few seconds, determined by a
configuration parameter called RefreshCycle,WLM updates
a state variable called MaxConcurrency. MaxConcurrency
determines the maximum number of background tasks that
can run on a machine simultaneously. WLM operates an
Additive Increase, Multiplicative Decrease (AIMD) algo-
rithm to determine MaxConcurrency: every RefreshCycle
seconds, it determines resource usage. If all four resources
are under-utilized, WLM increments MaxConcurrency by 1.
Even if even one of the resources is over-utilized, WLM cuts
MaxConcurrency to half its current value. For instance, the
developer may set the higher threshold for CPU usage to
60%, the idea being to reserve 40% for the more important
user-facing tasks. If WLM observes that background tasks are
using more than 60% CPU, it decreases MaxConcurrency to
half the current value, thereby going into a mode of rejecting
tasks until the usage comes down sufficiently. WLM thus grad-
ually schedules more tasks and increases resource utilization,
while also checking that no resource is over-utilized.

The ideal value of RefreshCycle depends on machine
type and workload characteristics. A less powerful ma-
chine might benefit from a larger RefreshCycle. A smaller
value of RefreshCycle may help machines with vari-
able workloads. In the absence of an automated tun-
ing framework, WLM’s developers have set up different
versions of this parameter such as CPU-RefreshCycle,
machine-type-A-RefreshCycle, etc. to control it in dif-



ferent contexts. This approach increases the number of con-
figuration parameters, hence management overhead, as well
as the developer burden to continuously check cluster state in
these various contexts and manually tweak parameters.

Our deployment of SelfTune automatically and con-
tinuously tunes only one configuration parameter –
RefreshCycle – for every machine independently, which
is the scope identified by the domain experts. Developers
can now stop using the context-specific RefreshCycle
parameters, and also stop the continuous manual monitoring
of the parameter value and its effect on cluster state.

Performance metrics: WLM measures its performance us-
ing two metrics, and hence SelfTune uses either one of these
as its reward metric. The first, called a resource’s Healthy
Utilization Percent (HUP), measures the fraction of time the
resource is neither over-utilized nor under-utilized. The ideal
value of HUP is 1. WLM usually calculates HUP for every
hour and for every resource.

The second metric, grant ratio (GR), measures the ratio
of the total number of tasks that WLM runs in a given time-
period to the total number of tasks that were submitted to it
in the same time-period. A grant-ratio of 1 implies that WLM
did not reject any task. Thus ideally, WLM needs to drive the
cluster to have HUP=1 and GR=1. We use the same metrics,
aggregated over a day, as the reward function for SelfTune in
our deployments.

While these are the two primary metrics that WLM directly
exerts influence over, there are other workload-specific met-
rics, that are outside the scope of WLM, instrumented by the
teams who rely on the scheduler. For instance, background
task developers use a higher-level metric, i.e., background
task throughput, to determine how promptly WLM schedules
their tasks. This is measured as the total number of back-
ground tasks successfully completed within one day. While
SelfTune does not use this as a reward metric, we use this
metric to determine if SelfTune does indeed help improve the
efficiency of the system (Section 5.3).

Integrating SelfTune: We integrate SelfTune with WLM
to tune RefreshCycle separately for every machine. While
the WLM code-base consists of tens of thousands of lines
of code, we required less than 50 lines of code to inte-
grate SelfTune, most of which is replacing parameter usage
with Predict, and setting up the Reward Tracker service
(to invoke SetReward asynchronously, as discussed in Sec-
tion 3.2) with the appropriate reward function.

We look at aggregate metrics over a subset of machines for
a month to set the scale of δ (which helps exploration) and η

appropriately. We find that a single, fixed choice of δ and η

works across clusters; we do not shrink these parameters to
0 with increasing iterations, which is needed in theory. This
helps prevent stagnation when tuning in deployment.

Minimal overhead of running SelfTune: Each Substrate
machine runs its own local SelfTune (i.e., its component ser-
vices) instance; so Predict calls (executing Steps 5 and
6 of Bluefin) are just like any other local function calls in
the WLM code-base. Parameter updates (Step 9 of Bluefin)
are extremely light (at most 5 FLOPS) and are made once
a day when the reward arrives. To enable debugging, the
Data Collector (introduced in Section 3) persists a history
of (callId,a,r) tuples from the previous 30 days; this takes
at most a few hundred KBs space per instance in produc-
tion. Overall, there is minimal overhead to operationalizing
SelfTune in production, in terms of both compute and space.

We enable parameter tuning with SelfTune on individual
production servers via flights, a mechanism used for gradually
deploying any code change in production. Deployment starts
with a few hundred servers, and then slowly expands to more
servers. This helps us perform controlled experiments.

5.3 Evaluation
In this section, we first describe our evaluation methodology.
Then, we describe our experiments and results.

Evaluation Methodology: A significant challenge we
faced while evaluating SelfTune is that resource HUP varies
widely week over week in Substrate. Figure 4 shows the disk
HUP over six weeks in Aug-Sep 2021 for two randomly cho-
sen machine sets in a representative cluster in South America
consisting of 450 servers. The sets contained 225 machines
each, and were completely disjoint. The figure shows that, for
the same machine set, utilization changes significantly from
one week to the next. Hence we cannot evaluate the efficacy
of SelfTune simply by observing HUP on the machine set
before deploying SelfTune, and comparing it to HUP after
deploying SelfTune. However, we also observe that the distri-
butions of disk HUP computed on the two disjoint machine
sets are very similar (e.g., relative difference between HUP
P50 percentiles of the two sets was ≤ 0.5% for all weeks).
Therefore, to evaluate SelfTune, we deploy it on one machine
set, called the Treatment Group, and compare this machine
set’s HUP values after deployment to the HUP values on the
other machine set within the same cluster, which is the Con-
trol Group. Similarly, we evaluate grant ratios across the two
groups (for the same duration, the relative difference between
GR P50 percentiles of the two sets was ≤ 3.0%).

Results: We ran three large-scale experiments to evaluate
SelfTune. We chose three clusters with sub-optimal values
of resource HUP and GR: (1) We chose Cluster 1 because,
despite being under-utilized (and thus having low values of
HUP), it also had low GR. Developers were submitting back-
ground tasks to WLM but a significant fraction of them were
surprisingly getting rejected despite low resource utilization.
Developers thus reported a trouble-ticket for Cluster 1, and



Cluster Control Treatment Experiment Reward Metric Improvement RefreshCycle
Size Size Duration HUP GR Value (minutes)

P25 P50 P75 P25 P50 P75 P25 P50 P75

1 144 144 July 1–July 30 GR SI SI SI 214% 178% 169% 5.05 6.00 6.08
2 1000 1000 Aug 25–Oct 12 GR SI SI SI 34% 37% 25% 5.02 10.19 15.11
3 1950 1950 Oct 11–Nov 17 (CPU) HUP 2% 1% 3% 18% 18% 20% 0.016 0.043 0.071

Table 2: SelfTune experiment details, resulting performance improvement (SI=Statistically Insignificant) & RefreshCycle values.

Figure 4: Disk HUP for a cluster in South America (of 450
servers) during Aug-Sep 2021: The (normalized) percentiles
drift across weeks (1%− 32%) significantly; but they vary
much less (1%−2%) across the two disjoint server sets.

this made it a good candidate for SelfTune. (2) Cluster 2,
with predominantly disk-intensive workloads, faced heavy
disk throttling and consequently had poor GR. (3) Cluster 3,
with predominantly CPU-intensive workloads, had low CPU
HUP (CPUs were mostly in the over-utilized state), and conse-
quently, low GR (recall that the CPU MaxConcurrency will
quickly drop to 1, when it is in an over-utilized state for a
short amount of time).

Our objective was to see if SelfTune, by tuning
RefreshCycle on each machine in the cluster, could improve
GR for Cluster 1 and Cluster 2, and CPU HUP for Cluster 3.
Thus, in Cluster 1 and Cluster 2, we set up SelfTune with the
Grant Ratio (GR measured over a period of one day) as the re-
ward metric. For Cluster 3, we set up SelfTune with CPU HUP
as the reward. In Cluster 1, we initialized RefreshCycle to
20 minutes since it was the default value used for the cluster.
For Cluster 2 and Cluster 3, we initialized RefreshCycle to
the default value of 6 seconds that was already in use.

(1) SelfTune improves utilization metrics in all three clus-
ters significantly. Table 2 describes the duration of the experi-
ments, sizes of the control group and treatment group, and the
impact on the performance metrics using SelfTune. In particu-
lar, for each cluster, it shows the improvements in the resource
HUP and the GR metrics. Given confidentiality requirements,
we are unable to present absolute numbers, but present the
percentage improvements. Since SelfTune separately tunes
RefreshCycle on every machine, we present improvement
in utilization in terms of 25th%-ile (P25), 50%-ile and 75%-
ile of metric values across all machines in the treatment group
relative to the corresponding percentile values in the control

group (during the deployment period). For all the results, we
ensure statistical significance using the standard t-test, at a
p-value of 0.05.

From Table 2, we observe significant improvements in GR,
between 18% and 178% improvement in the median, across
all three clusters. We see drastic improvements in the GR met-
ric in Cluster 1, chiefly due to the sub-optimal and obsolete
choice of RefreshCycle value used in this cluster (reflected
in the Control Group). In Cluster 3, where SelfTune employed
CPU HUP as the reward, the improvement in the median CPU
HUP was around 2% (also see Figure 5 that shows relative
values for confidentiality reasons). Even though the improve-
ment in HUP is small (2%–3%), it is statistically significant;
importantly, even a 2% improvement in the median HUP im-
plies several minutes to an hour of better resource utilization
per machine per day for at least 50% of the machine-days in
the cluster. The actual impact is magnified manyfolds by the
number of machines in the cluster over weeks and months.
Furthermore, the small improvement in HUP led to significant
improvements (18%–20%) in the GR metric.

(2) SelfTune has to tune RefreshCycle separately and
continuously for each cluster. Table 2 gives the P25, P50 and
P75 values of RefreshCycle that SelfTune converged to in
each cluster. We find that Cluster 1’s RefreshCycle values
converged to a median value of about 6 minutes, Cluster 2’s
median value was about 10 minutes, whereas Cluster 3’s me-
dian value was much lower, i.e., 2.6 seconds. Additionally,
in some cases, there is a significant spread of converged val-
ues within a cluster, as the P25 and P75 values show. Such
differences in the ideal values of RefreshCycle are due to
various reasons, such as varying workload characteristics and
provisioned hardware even within the same cluster. Moreover,
these workload and hardware characteristics also change with
time, which means SelfTune should continuously run on every
cluster for WLM to be able to react appropriately and quickly
to such changes. Figures 11, 12, and 13 in Appendix B show
how RefreshCycle converges differently for the three clus-
ters over the course of deployment duration.

(3) SelfTune significantly improves background task
throughput. SelfTune uses either resource HUP or GR as
reward metrics since WLM already calculates these met-
rics. Ultimately, however, background task developers want a
high background task throughput. We therefore evaluate how
SelfTune improves this metric. Figure 6 shows the improve-
ment in the task throughput when SelfTune was enabled in the



Figure 5: Both HUP (CPU) and GR (weekly P50 values) are
significantly better after SelfTune was enabled in Cluster 3,
with a 1% to 3% relative improvement over the control set in
utilization and a 12% to 34% improvement in GR.

Figure 6: Background task throughput (normalized w.r.t. Jan
21st) clearly improved when SelfTune was enabled.

first week of Jan 2022, in a random half of a 750-machine clus-
ter in the Asia-Pacific region. Before we enabled SelfTune,
the throughput of both control and treatment groups were
similar. Once enabled, SelfTune improves the background
task throughput by as much as 17%. We disabled SelfTune
on Jan 21, and the treatment group’s throughput went back to
being the same as that of the control group. This shows that by
improving resource HUP and/or GR, SelfTune significantly
improves the background task throughput as well.

Since SelfTune has shown significant improvements in
multiple metrics in our experiments, starting January 2022,
we have enabled SelfTune in all Substrate clusters in North
America, consisting of tens of thousands of machines.

6 Serverless Scheduling in the Cloud

Customers are increasingly using serverless computing, or
“Functions as a Service” (FaaS), for deploying applications
on the cloud [1, 3–5]. Previous work has proposed informed
resource management strategies to use cluster resources ef-
ficiently for FaaS applications [54]. We evaluated SelfTune
with this work and observed significantly improved resource
usage with minimal to no performance loss. This section

describes the problem, experiments, and results.

6.1 FaaS Resource Usage
Cloud providers charge FaaS-based applications for the num-
ber of functions executed, and not for the resources that the
applications use. Hence, to maximize their benefit, providers
seek to offer good function performance to customers with
the least resources assigned to run the customers’ functions.

To achieve good function performance, the provider should
load the customer’s application into memory before the cus-
tomer invokes the function (warm start), as opposed to load-
ing it from persistent storage only after the customer invokes
the function (cold start). However, keeping all applications
in memory at all times is prohibitively expensive. Ideally,
the provider should pre-load the customer code just before
the function is invoked. This approach will minimize the re-
sources that the provider assigns to this application and yet
provide good performance.

To achieve this, Shahrad et al. [54] have proposed a pol-
icy that predicts two key parameters for a FaaS platform: 1)
prewarm: The time the policy waits, since the last execution,
before it loads the application image expecting the next func-
tion invocation. A large value of prewarm reduces resource
usage but may cause cold starts. 2) keepalive: The time
for which an application is kept in memory after it has been
loaded in memory. A larger keepalive can reduce cold starts
but will also waste resources. Therefore, the challenge is to
predict suitable values of prewarm and keepalive that will
provide good function performance and, at the same time,
reduce resources used.

To determine these parameters, Shahrad et al. maintain
a histogram of time between function invocations for each
application, called the Idle Time (IT) histogram. Based on
an empirical study, they suggest using keepalive = 99th
percentile3 and prewarm= 5th percentile of the IT values in
the histogram for all applications.

6.2 Evaluation Setup and Goals
We hypothesize that it may be sub-optimal to set prewarm and
keepalive to the same value for all applications. Moreover,
the IT histogram can change with time, and therefore these
parameters should be set not once, but periodically. In this
section, we seek answers to the following two questions:
1. Per-application Tuning: Can SelfTune set prewarm and
keepalive for each application (i.e., use application as the
scope for SelfTune instance) based on its invocation pat-
terns, to achieve a better performance trade-off for the cloud
provider? (Section 6.3)
2. Time-varying Tuning: Can SelfTune periodically tune
these parameters to improve the trade-off, as the invocation
patterns could change over time? (Section 6.4)

3henceforth, we write keepalive= 99, dropping the percentile



Simulation setup: We use the Python-based simulator used
in [54] which replays real function invocation traces (obtained
from Azure as described in Sections 6.3 and 6.4), and infers
if each invocation creates a warm or cold start. The simulator
also keeps track of when each application image is loaded in
order to aggregate the wasted memory time for the application
(i.e., the time the image is kept in memory without execut-
ing any functions). Following [54], we simulate (a) function
execution times equal to 0 to quantify the worst-case wasted
resource time, and (b) all applications use the same amount
of memory (as memory data is only partially available).
Performance metrics: We focus on two metrics, following
the analysis presented in [54]: (i) distribution (in particular,
P75) of percentage of cold start invocations per application
(i.e., what fraction of invocations of the app during the time
period were cold starts), and (ii) wasted memory time (as
defined above). We normalize (ii) w.r.t. a baseline policy of
using no prewarm and a fixed 10-minute keepalive (abso-
lute value, unlike the percentile values used throughout this
section). We use the same metrics as reward for SelfTune.

6.3 Per-application Tuning

Figure 7: Performance of the VM management policy [54]
on AzureFaaS data: (left) sweep of prewarm and keepalive,
fixed for all apps; circled dots are the choices recommended
in [54]; (right) with SelfTune for tuning the two parameters
for each app, and memory wastage as reward; the dots are the
starting points for SelfTune, and the corresponding crosses
indicate the performance at convergence.

To answer the first question, we use the AzureFaaS
dataset [2] consisting of 14 days of function invocation traces
for about 22,000 applications running on Azure Functions.

Optimal global parameters: We first obtain the pareto-
optimal trade-off frontier for the two parameters when they
are fixed to the same value for all applications. To obtain this
frontier, we did a simple grid-search with 7 keepalive values
(100, 99, 97, 95, 90, 85, 80) and 5 prewarm values (1, 5, 10,
15, 20), i.e., we ran 35 simulations which took under three
hours on a standard 64-core machine for this dataset (obviat-
ing the need for clever optimization/search algorithms). Fig-

ure 7 (left) plots normalized wasted memory time vs P75 app
cold start percent. We see that one metric improves at the ex-
pense of the other metric, for various choices of prewarm and
keepalive parameters. Our findings here align with [54], and
the choices circled in black are indeed their recommendations:
prewarm= 5, and keepalive= 99 that favors cold starts; or
keepalive= 95 that reduces memory wastage by 15% at a
small cost (< 9%) of cold starts, relative to keepalive= 99.

Optimal application-specific parameters: Doing a grid-
search to determine application-specific parameters is very
expensive since there are tens of thousands of applications.
So we leverage SelfTune to determine per-application val-
ues of keepalive and prewarm. On one week of data, every
time a function is invoked in the trace, we call Predict
to determine the values of keepalive and prewarm for the
application. The reward metric used is either wasted memory
time or number of cold starts. We then evaluate the converged
per-application parameter values on the second week of data.

Figure 7 (right) plots wasted memory time vs cold start
percent when using SelfTune. We first observe that SelfTune,
with memory wastage as the reward, reduces memory wastage
by nearly 10% relative to the fixed optimal global choices
(indicated in circled dots on both the right and left plots)
without worsening cold starts. Second, application-specific
tuning yields strictly better choices than the global frontier —
the crosses (corresponding to the converged parameters) lie
below the dots (initial values). We made similar observations
when we used number of cold starts as the reward.

Figure 8: CDF of app-wise reduction in the cost metrics rel-
ative to the best global policy (circled in Figure 7) achieved
via SelfTune on AzureFaaS. All improvements come from ≲
20% of the apps (axis curtailed for clarity).

Figure 8 shows that the overall cost reduction
with SelfTune can be attributed to less than 20% of
the apps. SelfTune is able to exploit the behavior of a
fraction of apps to find better choices of parameter values,
while for the other apps, the default global policy parameters
already work quite well.

6.4 Time-varying Tuning

To answer the second question, i.e., whether SelfTune’s peri-
odic parameter tuning helps reduce resource usage over time,
we collected a much larger set of traces from the Azure FaaS



infrastructure between July 15 and Oct 31, 2019 and used
them to drive the simulator. As in the previous section, in this
large-scale study, we divide the traces into pairs of consecu-
tive weeks, use SelfTune to tune parameters per-application
on the first week, and evaluate the impact on the second week.
Since we use 14 weeks of data, we have 7 such pairs.

Figure 9: Performance of VM management policy [54] with
app-specific tuning of parameters via SelfTune on the large
Azure dataset: SelfTune is consistently superior or competi-
tive w.r.t. the baselines along both the metrics, across weeks.

Figure 10: Distribution of differences in converged values, for
the two parameters, over 3 months. SelfTune picked signifi-
cantly different values in October vs. August, for over 25%
apps, reflecting the temporal shift in the invocation patterns.

Figure 9 shows the value of P75 application cold starts
and normalized wasted memory time with SelfTune and three
baselines. We have included a baseline policy that achieves the
best possible cold starts (prewarm = 0, keepalive = 100)
for calibration. For SelfTune, we use multiple initial values
as in Figure 7, and pick the best results obtained. Relative
to the keepalive= 95 policy, on average, SelfTune reduces
the cold starts by 5%, while incurring a 2.1% larger mem-
ory wastage. Also, relative to the keepalive = 99 policy,
SelfTune yields 12.5% less memory wastage for a small
(0.5%) increase in cold starts.

Figure 10 shows how SelfTune changes parameter values
(for a random subset of apps) in October compared to Au-
gust. SelfTune picks significantly different values, up to 300%
relative change, for over 25% of the applications. This under-

scores the importance of continuously tuning the parameters.

7 Container Rightsizing

In this section, we show how SelfTune can be integrated with
microservices architecture and Kubernetes to improve (a) clus-
ter resource utilization, and (b) tail latencies of microservices-
based cloud applications. We also present comparisons with
BO and RL techniques.
Simulation setup: We use the social networking application
in the DeathStar microservices benchmark [36]. We set up a
cluster with 4 servers, each with 24 cores, 40GB of memory
and 250GB of disk space. We restrict monitoring services to
one server to avoid interference and deploy the microservices
on the other three servers based on the functionality (e.g.,
all backend microservices are on one server). We simulate a
diurnal workload, with short traffic bursts. Following [58], the
workload generator [16] issues GET (read timeline), POST
(create new post) requests continuously for 15 minutes at 500
requests per second, in the ratio 9 (GET):1 (POST).
Configuration parameters: We tune two types of parame-
ters: (i) the first 4 CPU-related parameters listed in Table 1
for the Kubernetes VPA (Vertical Pod Autoscaler) [8], which
impact the efficiency of autoscaling and throughput, and (ii)
about 85 key numerical configuration parameters (2–5 param-
eters per microservice) for the 28 microservices in DeathStar
(as identified in [58]), which impact the application latency.
Compared methods: We compare SelfTune’s Bluefin with
three standard techniques: (i) Bayesian Optimization — the
Gaussian Process (GP) method [25], implemented in [15],
and used in [23, 58, 66], (ii) Contextual Bandits [26] RL tech-
nique — the ε-greedy algorithm implemented in [19], and
used in [20, 21], and (iii) Deep Deterministic Policy Gradi-
ent (DDPG) [41], a popular deep RL technique for continuous
action spaces used by prior works to tune system parame-
ters [49,67]. For all the experiments, we initialize Bluefin and
BO (GP) with the default parameter values as well as ran-
dom values, and report the best results. We note that, in this
scenario, the initialization does not have a significant effect
on the algorithms’ convergence. For both the algorithms, the
difference in performances yielded by the best configurations
obtained with either initialization is around 2%–4%. Each
15-minute peak workload constitutes a sample (a round). We
fix a budget of 50 samples for all the methods for fair com-
parison. We configure the ε-greedy and DDPG algorithms to
explore for the first 25 rounds and then exploit for 25 rounds.

7.1 Results
Optimizing throughput: We now demonstrate the signif-
icance of tuning Kubernetes VPA parameters. We set up a
barebones version of DeathStar application, where Nginx
microservice with two replicas serves static content for the
GET requests. We use one of the servers in the cluster as



Metric Bluefin BO (GP) ε-greedy DDPG

Throughput % 86.1 ± 2.2 83.9 ± 3.1 71.2 ± 4.3 73.4 ± 5.4
# Samples 12 14 13 50

Table 3: Tuning key parameters of Kubernetes VPA.

the controller node and another as the worker node [7]. As
the requests are light-weight, we ramp the workload up to
10000 rps, and see how quickly Kubernetes autoscales to
catch up with the workload. In general, it has been found
that default configuration for the Kubernetes VPA can hurt
system performance [17]. For instance, with the default value
of recommendation-margin-fraction = 0.15, Kubernetes
will add a margin of 0.15 * computed CPU recommendation
to allow the container to adapt to sudden changes in the work-
load. This ramp up can be quite slow at such high workloads.
On the other hand, setting the parameter to a very large value
might help quickly catch up with the heavy workload, but will
lead to severe resource wastage once the peak dies.

A natural question is if we can tune the VPA param-
eters (the CPU parameters from Table 1) to help im-
prove resource utilization. We use the throughput attained
(over the 15-minute peak workload), with a penalty on
the cpu-histogram-decay-half-life value as the reward
function, to minimize wastage during off-peak hours.

Table 3 shows the best throughput achieved (mean and
std. dev. over 5 deployments of the best parameters) and
the number of samples needed by each of the methods to
attain the best value. We find both BO and Bluefin con-
verge, fairly quickly, yielding over 75% better throughput
relative to the default configuration; Bluefin achieves the
best throughput overall (statistically significant), an abso-
lute improvement of 2.2% compared to BO. At conver-
gence, Bluefin sets recommendation-margin-fraction to
1.5, and pod-recommendation-min-cpu to 850 millicores
(see Table 1). This helps Kubernetes auto-scale the containers
sufficiently quickly (compared to the default values of 0.15
and 250 millicores respectively) and serve the peak work-
load of 10000 rps. At the same time, Bluefin (and the other
methods) converges to a small value (about 45 seconds) of
cpu-histogram-decay-half-life, which is ideal for short
bursts of workloads: Kubernetes evicts the worker containers
right after the peak, thereby freeing up resources.

In what follows, we show how we can also tune the config-
uration parameters of microservices (running in containers)
themselves, in order to improve application latency.

Optimizing tail latency: Microservices that are deployed
in containers have multiple configuration parameters [9, 11–
13, 18] that influence their performance. For instance, the
number of threads of performance-critical microservices (e.g.,
compose-post-service in DeathStar) is known to significantly
improve latency [58, 59]. We tuned 85 key numerical param-

Metric Bluefin BO (GP) ε-greedy DDPG

P95 latency (ms) 19.5 19.9 20.0 20.2
# Samples 8 41 30 50

P50 iter. cost (ms) 20.5 23.3 29.2 20.6
P75 iter. cost (ms) 21.1 33.0 33.2 22.1
P95 iter. cost (ms) 28.3 76541.9 67640.3 148543.1

Table 4: Tuning parameters of microservices in DeathStar:
The second row indicates the number of samples (i.e., rounds)
it took for each method to attain the best P95 latency reported
in the first row. The last three rows show the spread of the
latencies while tuning over 50 rounds.

eters of the microservices in DeathStar with P95 latency as
the reward for all the methods.
Effectiveness of Bluefin in high dimensions: Table 4 shows
the best tail (P95) latency attained by each of the methods
and the number of samples they took to achieve the same. We
deployed each parameter setting three times, and report the
median number. This high-dimensional tuning setting clearly
brings out the superiority of Bluefin over the popular tech-
niques in terms of sample complexity. Even though there are
85 parameters, there are only a few parameters that critically
influence the reward value. Indeed, Bluefin quickly converges
to 19.5ms P95 latency (starting from 31.1ms, corresponding
to the default values), with just 8 samples; in contrast, BO and
ε-greedy algorithms take 3-5 times as many samples to attain
similar latencies. The multi-arm bandits approach (ε-greedy)
treats the parameter values as categorical choices and does not
exploit continuity of the problem or correlations across the
parameters. On the other hand, the deep RL method, DDPG,
does exploit, but it has a much higher sample complexity.

We also show the iteration cost, i.e., the latency incurred
through each round of tuning (which matters in deployments).
The spread of the iteration costs for SelfTune indicates con-
vergence close to 20ms. Even though all the compared al-
gorithms eventually converge to statistically similar latency
values, they incur several orders of magnitude worse P95
iteration costs than Bluefin. This is strong evidence of the
effectiveness of Bluefin for tuning in live deployments, where
the reward function can be highly ill-conditioned and can vary
wildly in some regions of the explored parameter space.

8 Conclusion

This paper presents SelfTune, an RL-based framework using
which cluster managers can tune parameters to improve clus-
ter performance. We have deployed SelfTune with a large-
scale task scheduler at Microsoft and show how it has im-
proved overall system throughput. We show that SelfTune
significantly improves system performance with experiments
on Azure FaaS workloads, Kubernetes’s Vertical Pod Au-
toscaler, and the DeathStarBench microservice benchmark.
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A SelfTune’s Client API Implementation

We now formally present the syntax and the semantics of
SelfTune’s client API (introduced informally in Section 3,
and in Figure 1).
Creation. The Create API creates an instance of the param-
eter learning problem for SelfTune. This API allows optional
arguments that encode domain knowledge for tuning the pa-
rameters:
(a) names for the parameters to learn,
(b) (optional) initial values for the parameters,
(c) (optional) constraints on the parameters to be tuned; the
API supports range constraints (min and max), type constraints
(e.g., isInt = TRUE if a parameter takes only integral values),
(d) (optional) for user-defined types, one could specify step-
size (e.g., memory sizes in multiples of 64MB), or scale (e.g.,
logarithmic or linear).
string Create(string[] params,
Dictionary<string, double> initValue,
Dictionary<string, Constraints> constraints,
Dictionary<string, Type> type)

Connection. The Create API sets up a data store instance
in the back-end for tuning the specified parameters, initializes
the necessary background services to maintain/update this
store. A unique identifier to this store instance is returned by

the call to Create. The Connect API connects a parameter
learning instance to a SelfTune object.

void Connect (int problemId)
Note that if a store already exists (for the parameter(s) of
interest), then the client can directly connect to the instance
by referencing the unique identifier to the instance, as the
store instances are persistent. This also enables multiple
clients (distributed spatially and/or temporally) to query the
latest decisions for, as well as give feedback to, the same
learning problem.

Prediction. With the Predict interface, the developer can
query the current values for the parameters. These values are
decided by the learning algorithm (presented subsequently).

(int, double[]) Predict (string[] params)

Note that Predict returns a pair of values – a unique
identifier which identifies the particular invocation of
Predict, and the predicted value.

Feedback. As shown in Figure 1, the SetReward interface
allows the client to specify a reward value. More generally,
it allows the client to associate the value with a particular
invocation of Predict:
void SetReward(int invocationId, double
reward)

The invocation id helps associate the reward to the parame-
ters (and their values) returned by previous Predict calls
— in particular, the reward value applies to all the parame-
ters that were part of all the Predict calls since the last
SetReward call.

B Parameter Convergence

In this section, we provide graphs to give the reader an idea
of how long it takes for RefreshCycle to converge in our
experiments with WLM (see Figure 11, Figure 12 and Figure
13)

Figure 11: Convergence of RefreshCycle with SelfTune in
the experiment using Cluster 1.



Figure 12: Convergence of RefreshCycle with SelfTune in
the experiment using Cluster 2.

Figure 13: Convergence of RefreshCycle with SelfTune in
the experiment using Cluster 3.

C Baselines

In this section, we discuss the implementation details of dif-
ferent baselines used in Section 7.

For Bayesian Optimization (BO), we used the skopt li-
brary [15] with gp_hedge as the acquisition function. The
algorithm was initialized with the default configuration or
with 3 random configurations (uniform sampling), and we
reported the best results in Tables 3 and 4.

For Contextual Bandits (CB), we used the popular Vowpal
Wabbit library [19]. Since the configuration space is too huge
for the bandits formulation to handle, we restrict tuning to
the four important parameters (memory limit parameter of
the post-storage-memcached microservice, worker_processes
and worker_connections parameters of the frontend microser-
vice, memory limit of the post-storage-mongodb microser-

vice) based on empirical observations and recommendations
from prior work [58]. Since the algorithm expects discrete
actions spaces, we suitably quantize the configuration space
of each parameter. We use a step_factor for each parame-
ter which yields (upper_limit − lower_limit)/step_ f actor
number of quantized values per parameter. The value of step_-
factor is chosen such that the resulting (discrete) action space
is not too large. After discretizing the four parameters in this
fashion, we arrived at 24960 actions for the CB algorithm. We
used the “explore first” strategy in the ε-greedy algorithm via
the command -cb_explore num_actions -first num_-
random, which implies that the algorithm will (only) explore
the action space with uniform probability for the first num_-
random iterations.

We implemented Deep Deterministic Policy Gradient
(DDPG) [41] using PyTorch [48]. DDPG is a popular policy-
based Reinforcement Learning algorithm used by prior works
to tune system parameters [49,67]. We use the CPU and mem-
ory utilization of microservices on the nodes where microser-
vices are running, workload volume (requests per second),
number of clients, and request composition as state features.
Both the actor and the critic networks consist of 1 hidden
layer. The number of inputs to the actor layer is equal to the
number of state features and the output is equal to the number
of actions (i.e., parameters tuned). The input and the hidden
layer use ReLU as the activation function while the output
layer uses Tanh. For the critic network, the number of inputs is
equal to the number of state features + the number of actions
while the output is just 1-dimensional.

We use 1 step for each episode (to match how the iterations
of the baselines and Bluefin proceed) and run the algorithm
for 50 episodes. We let the algorithm explore random points
for the first 25 episodes followed by 25 episodes where the
explored configurations are chosen by the algorithm. To im-
prove the algorithm’s ability to explore, we add a Gaussian
noise to the action chosen which is controlled by a parameter
γ (γ = 0.1 in our experiments). We update the model after
every 5 steps. Once the 50 episodes are complete, we query
the model to provide the best configuration for the initial state.
We average the rewards over 5 such queries.
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