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Abstract

In this paper, we study the combinatorial semi-bandits (CMAB) and focus on re-
ducing the dependency of the batch-size K in the regret bound, where K is the total
number of arms that can be pulled or triggered in each round. First, for the setting
of CMAB with probabilistically triggered arms (CMAB-T), we discover a novel (di-
rectional) triggering probability and variance modulated (TPVM) condition that can
replace the previously-used smoothness condition for various applications, such as
cascading bandits, online network exploration and online influence maximization.
Under this new condition, we propose a BCUCB-T algorithm with variance-aware
confidence intervals and conduct regret analysis which reduces the O(K) factor
to O(logK) or O(log2 K) in the regret bound, significantly improving the regret
bounds for the above applications. Second, for the setting of non-triggering CMAB
with independent arms, we propose a SESCB algorithm which leverages on the
non-triggering version of the TPVM condition and completely removes the depen-
dency on K in the leading regret. As a valuable by-product, the regret analysis
used in this paper can improve several existing results by a factor of O(logK).
Finally, experimental evaluations show our superior performance compared with
benchmark algorithms in different applications.

1 Introduction
Stochastic multi-armed bandit (MAB) [26, 3, 4] is a classical model that has been extensively studied
in online decision making. As an extension of MAB, combinatorial multi-armed bandits (CMAB)
have drawn much attention recently, owing to its wide applications in marketing, network optimization
and online advertising [13, 17, 7, 8, 29, 23]. In CMAB, the learning agent chooses a combinatorial
action in each round, and this action would trigger a set of arms (or a super arm) to be pulled
simultaneously, and the outcomes of these pulled arms are observed as feedback. Typically, such
feedback is known as the semi-bandit feedback. The agent’s goal is to minimize the expected regret,
which is the difference in expectation for the overall rewards between always playing the best action
36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Table 1: Summary of the algorithms and results for CMAB with probabilistically triggered arms.
Algorithm Smoothness Independent Arms? Computation Regret
CUCB [29] 1-norm TPM, B1 Not required Efficient O(K

∑
i∈[m]

B2
1 log T

∆min
i

)

BOIM-CUCB [25, Section 4]∗ 1-norm TPM, B1 Required Hard O((logK)2
∑

i∈[m]
B2

1 log T

∆min
i

)

BCUCB-T (Algorithm 1) TPVM<, Bv,
† λ > 1 Not required Efficient O(logK

∑
i∈[m]

B2
v log T

∆min
i

)

BCUCB-T (Algorithm 1) TPVM<, Bv,
† λ = 1 Not required Efficient O((logK log BvK

∆min

∑
i∈[m]

B2
v log T

∆min
i

)

BOIM-CUCB (Appendix C)‡ 1-norm TPM, B1 Required Hard O(logK
∑

i∈[m]
B2

1 log T

∆min
i

)

∗ This work is for a specific application, but we treat it as a general framework; † Generally, Bv = O(B1

√
K), and the existing regret bound is improved

when Bv = o(B1

√
K); ‡ Using our new analysis.

(i.e., the action with highest expected reward) and playing according to the agent’s own policy. For
CMAB, an agent not only need to deal with the exploration-exploitation tradeoff: whether the agent
should explore arms in search for a better action, or should the agent stick to the best action observed
so far to gain rewards; but also need to handle the exponential explosion of all possible actions.

To model a wider range of application scenarios where action may trigger arms probabilistically,
Chen et al. [8] first generalize CMAB to CMAB with probabilistically triggered arms (or CMAB-T
for short), which successfully covers cascading bandit [9] (CB) and online influence maximization
(OIM) bandit [31] problems. Later on, Wang and Chen [29] improve the regret bound of [8] by
introducing a smoothness condition, called the triggering probability modulated (TPM) condition,
which removes a factor of 1/p∗ compared to [8], where p∗ is the minimum positive probability that
any arm can be triggered. However, in both studies, the regret bounds still depend on a factor of
batch-size K, where K is the maximum number of arms that can be triggered, and this factor could
be quite large, e.g., for OIM K can be as large as the number of edges in a large social network.

Our Contributions. In this paper, we reduce or remove the dependency on K in the regret bounds.
For CMAB-T, we first discover a new triggering probability and variance modulated (TPVM)
bounded smoothness condition, which is stronger than the TPM condition, yet still holds for several
applications (such as CB and OIM) where only the TPM condition is known previously. We observe
that for these applications, the previous TPM condition bounds the global speed of reward change
regarding the parameter change, which will cause a large K coefficient due to the rapid change at the
boundary regions (i.e., when an arm’s mean µi is close to 0 or 1). Our TPVM condition utilizes this
observation by raising up the regret contribution of those boundary regions, leading to a significant
reduction on the dependency of K. Second, we propose a “variance-aware" BCUCB-T algorithm
that adaptively changes the width of the confidence interval according to the (empirical) variance,
cancelling out the large regret contribution raised by the TPVM condition at the boundary regions
(where the variances are also very small). Combining these two techniques, we successfully reduce the
batch-size dependence from O(K) to O(logK) or O(log2 K) for all CMAB-T problems satisfying
the TPVM condition, leading to significant improvements of the regret bounds for applications like
CB or OIM. As a by-product, we also give refined proofs that shall improve the regret for several
existing works by a factor of O(logK), e.g., [11, 23], which may be of independent interests.

In addition to the general CMAB-T setting, we show how a non-triggering version of the TPVM
condition (i.e., VM condition) can help to completely remove the batch-size K, under the additional
independent arm assumption for non-triggering CMAB problems. In particular, we propose a novel
Sub-Exponential Efficient Sampling for Combintorial Bandits Policy (SESCB) that produces tighter
sub-exponential concentrated confidence intervals. In our analysis, we show that the total regret only
depends on the arm that is observed least instead of all K arms, so that we can achieve a completely
batch-size independent regret bound. Our empirical results demonstrate that our proposed algorithms
can achieve around 20% lower regrets than previous ones for several applications. Due to the space
limit, we will move the complete proofs and empirical results into the appendix.

Related Work. The stochastic CMAB has received much attention recently. From the modelling
point of view, these CMAB works can be divided into two categories: CMAB with or without
probabilistically triggered arms (i.e. CMAB-T setting or non-triggering CMAB). For CMAB-T, our
work improves (a) the general framework in [8, 29], (b) the combinatorial cascading bandit [17], (c)
the online multi-layered network exploration [21] problem, (d) the online influence maximization
bandits [29, 25], by reducing or removing the batch-size dependent factor K in the regret bounds with
our new TPVM condition and/or our refined analysis. We defer the detailed technical comparison
to Section 3.1 and Section 5. For the algorithm, most CMAB-T studies use Combinatorial Upper
Confidence Bound (CUCB) based on Chernoff concentration bounds [29], our BCUCB-T algorithm
is different and uses the Bernstein concentration bound [2, 23] that considers variance of the arms.
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Table 2: Summary of the algorithms and results for non-triggering CMAB problems.
Algorithm Smoothness Independent Arms? Computation Regret
CUCB [29] 1-norm, B1 Not required Efficient O(K

∑
i∈[m]

B2
1 log T

∆min
i

)

CTS [30]∗ 1-norm, B1 Required Efficient O(K
∑

i∈[m]
B2

1 log T

∆min
i

)

ESCB [9] 1-norm, B1
∗∗ Required Hard O((logK)2

∑
i∈[m]

B2
1 log T

∆min
i

)

AESCB [10] Linear Required Efficient O((logK)2
∑

i∈[m]
log T
∆min

i
)

BC-UCB [23]† VM, Bv
‡ Not required Efficient O((logK)2

∑
i∈[m]

B2
v log T

∆min
i

).

CTS [30]∗ Linear Required Efficient O(logK
∑

i∈[m]
log T
∆min

i
)

SESCB (Algorithm 2) VM, Bv
‡ Required Efficient∗∗∗ O(

∑
i∈[m]

B2
v log T

∆min
i

)

BC-UCB (Appendix C)§ VM, Bv
‡ Not required Efficient O(logK

∑
i∈[m]

B2
v log T

∆min
i

)

∗ Requires exact offline oracle instead of (α, β)-approximate oracle; † This work gives sufficient smoothness condition with factor
γg and translates to Bv = 3

√
2γg in our setting; § Using our new analysis. ∗∗ This work is for the linear case, but can easily

generalize to 1-norm B1 case; ‡ Generally, Bv = O(B1

√
K) and the existing regret bound is improved when Bv = o(B1

√
K);

∗∗∗ Efficient when the reward function is submodular, otherwise the computation is hard;

For non-triggering CMAB, [13] is the first study on stochastic CMAB, and its regret has been
improved by Kveton et al. [18], Combes et al. [9], Chen et al. [8], but they still have O(K) factor
in their regrets. When arms are mutually independent, Combes et al. [9] build a tighter ellipsoidal
confidence region for exploration, and devise the Efficient Sampling for Combinatorial Bandit policy
(ESCB), which reduces the dependence on O(K) to O(log2 K) at the cost of high computational
complexity (since combinatorial optimization over the ellipsoidal region is NP-hard in general [1]).
Later on, the computational complexity is improved by AESCB [10] in the linear CMAB problem.
Recently, Merlis and Mannor [23] focus on the Probabilistic Maximum Coverage (PMC) bandit
problem and propose the BC-UCB algorithm with the Gini-smoothness condition to achieve a similar
improvement as ESCB/AESCB, but without the independent arm assumption. Our work is largely
inspired by their work, however, our study generalizes theirs to the CMAB-T setting which can handle
much broader application scenarios beyond the non-triggering CMAB (more detailed comparison is
given in Section 3). In addition, we provide a refined analysis that can save a O(logK) factor for
BC-UCB (or ESCB/AESCB) algorithm. Compared with other ESCB-type algorithms for independent
arms, as far as we know, our SESCB algorithm are the first to completely remove the dependence of
K in the leading regrets, owing to our non-triggering version of the TPVM condition. The detailed
comparisons are summarized in Table 1 and Table 2.

The usage of variance-aware algorithms to give improved regret bounds can be dated back to [2].
Recently, there is a surge of interest to apply the variance-aware principle in bandit [23, 28] and
reinforcement learning (RL) settings [33, 32]. It is notable that Vial et al. [28] share a similar
variance-aware principle as ours but focus on the distribution-independent regret bounds for the
cascading bandits [28]. Our work is more general and achieves the matching regret bound when
translating to the distribution-independent regret bound. Compared with RL works, our paper studies
a different setting as we do not consider the state transitions.

From the application’s point of view, this paper covers the applications of PMC bandit [23], com-
binatorial cascading bandits [17, 19], network exploration [21], and online influence maximiza-
tion [31, 29, 20]. Our proposed algorithms can significantly reduce the regret bounds of them, e.g.,
from O(K) to O(log2 K) for OIM where K can be hundreds of thousands in large social networks.

2 Problem Settings
We study the combinatorial multi-armed bandit problem with probabilistic triggering arms, which is
denoted as CMAB-T for short. Following the setting from [29], a CMAB-T problem instance can
be described by a tuple ([m],S,D, Dtrig, R), where [m] = {1, 2, ...,m} is the set of base arms; S
is the set of eligible actions and S ∈ S is an action;1 D is the set of possible distributions over the
outcomes of base arms with bounded support [0, 1]m; Dtrig is the probabilistic triggering function
and R is the reward function, the definitions of which will be introduced shortly.

In CMAB-T, the learning agent interacts with the unknown environment in a sequential manner as
follows. First, the environment chooses a distribution D ∈ D unknown to the agent. Then, at round

1In some cases S is a collection of subsets of [m], in which case we often refer to S ∈ S as a super arm. In
this paper we treat S as a general action space, same as in [29].
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t = 1, 2, ..., T , the agent selects an action St ∈ S and the environment draws from the unknown
distribution D a random outcome Xt = (Xt,1, ...Xt,m) ∈ [0, 1]m. Note that the outcome Xt is
assumed to be independent from outcomes generated in previous rounds, but outcomes Xt,i and Xt,j

in the same round could be correlated. Let Dtrig(S,X) be a distribution over all possible subsets
of [m], i.e. its support is 2[m]. When the action St is played on the outcome Xt, base arms in a
random set τt ∼ Dtrig(St,Xt) are triggered, meaning that the outcomes of arms in τt, i.e. (Xt)t∈τt
are revealed as the feedback to the agent, and are involved in determining the reward of action St.
Function Dtrig is referred as the probabilistic triggering function. At the end of the round t, the
agent will receive a non-negative reward R(St,Xt, τt), determined by St,Xt and τt. CMAB-T
significantly enhances the modeling power of CMAB [7, 18] and can model many applications such
as cascading bandits and online influence maximization [29], which we will discuss in later sections.

The goal of CMAB-T is to accumulate as much reward as possible over T rounds, by learning
distribution D or its parameters. Let µ = (µ1, ..., µm) denote the mean vector of base arms’
outcomes. Following [29], we assume that the expected reward E[R(S,X, τ)] is a function of
the unknown mean vector µ, where the expectation is taken over the randomness of X ∼ D and
τ ∼ Dtrig(S,X). In this context, we denote r(S;µ) ≜ E[R(S,X, τ)] and it suffices to learn the
unknown mean vector instead of the joint distribution D, based on the past observation.

The performance of an online learning algorithm A is measured by its regret, defined as the difference
of the expected cumulative reward between always playing the best action S∗ ≜ argmaxS∈S r(S;µ)
and playing actions chosen by algorithm A. For many reward functions, it is NP-hard to compute
the exact S∗ even when µ is known, so similar to [29], we assume that the algorithm A has access
to an offline (α, β)-approximation oracle, which for mean vector µ outputs an action S such that
Pr [r(S;µ) ≥ α · r(S∗;µ)] ≥ β. Formally, the T -round (α, β)-approximate regret is defined as

Reg(T ;α, β,µ) = T · αβ · r(S∗;µ)− E

[
T∑

t=1

r(St;µ)

]
, (1)

where the expectation is taken over the randomness of outcomes X1, ...,XT , the triggered sets
τ1, ..., τT , as well as the randomness of algorithm A itself.

In the CMAB-T model, there are several quantities that are crucial to the subsequent study. We
define triggering probability p

D,Dtrig,S
i as the probability that base arm i is triggered when the action

is S, the outcome distribution is D, and the probabilistic triggering function is Dtrig. Since Dtrig
is always fixed in a given application context, we ignore it in the notation for simplicity, and use
pD,S
i henceforth. Triggering probabilities pD,S

i ’s are crucial for the triggering probability modulated
bounded smoothness conditions to be defined below. We define batch size K as the maximum number
of arms that can be triggered, i.e., K = maxS∈S |{i ∈ [m] : pD,S

i > 0}|. Our main contribution of
this paper is to remove or reduce the regret dependency on batch size K, where K could be quite
large, e.g., K can be hundreds of thousands in a large social network.

Owing to the nonlinearity and the combinatorial structure of the reward, it is essential to give some
conditions for the reward function in order to achieve any meaningful regret bounds [7, 8, 29, 11, 23].
The following are two standard conditions originally proposed by Wang and Chen [29].
Condition 1 (Monotonicity). We say that a CMAB-T problem instance satisfies monotonicity condi-
tion, if for any action S ∈ S, any two distributions D,D′ ∈ D with mean vectors µ,µ′ ∈ [0, 1]m

such that µi ≤ µ′
i for all i ∈ [m], we have r(S;µ) ≤ r(S;µ′).

Condition 2 (1-norm TPM Bounded Smoothness). We say that a CMAB-T problem instance satisfies
the triggering probability modulated (TPM) B1-bounded smoothness condition, if for any action
S ∈ S, any distribution D,D′ ∈ D with mean vectors µ,µ′ ∈ [0, 1]m, we have |r(S;µ′) −
r(S;µ)| ≤ B1

∑
i∈[m] p

D,S
i |µi − µ′

i|.

The first monotonicity condition indicates the reward is larger if the parameter vector µ is larger. The
second condition bounds the reward difference caused by the parameter change (from µ to µ′). One
key feature is that the parameter change in each base arm i ∈ [m] is modulated by the triggering
probability pD,S

i . Intuitively, for base arm i that is unlikely to be triggered/observed (small pD,S
i ),

Condition 2 ensures that a large change in µi only causes a small change (multiplied by pD,S
i ) in

the reward, and thus one does not need to pay extra cost to observe such arms. Many applications
satisfy Condition 1 and Condition 2, including linear combinatorial bandits [18], combinatorial
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cascading bandits [17], online influence maximization [29], etc. With the above two conditions, Wang
and Chen [29] show that a CUCB algorithm achieves the distribution-dependent regret bound of
O(
∑

i∈[m]
B2

1K log T

∆min
i

), where ∆min
i is the distribution-dependent reward gap, to be formally defined

in Definition 1. In the following sections, we will show how to remove or reduce the dependency on
K in the above bounds under our new conditions.

3 Algorithm and Regret Analysis for CMAB-T
In this section, for the CMAB-T framework with probabilistic triggering, we improve the regret
dependency on the batch size from O(K) in [29] to O(logK) or O(log2 K). Our main tool is a
new condition called triggering probability and variance modulated (TPVM) bounded smoothness
condition, replacing the TPM condition (Condition 2). We will define the TPVM condition, comparing
it with the TPM condition and the gini-smoothness condition of [23], show our algorithm and regret
analysis that utilize this condition. Later in Section 5, we will demonstrate how this condition is
applied to applications such as cascading bandits and online influence maximization.

3.1 Triggering Probability and Variance Modulated (TPVM) Bounded Smoothness Condition
In this paper, we discover a new smoothness condition for many important applications as follows.
Condition 3 (Directional TPVM Bounded Smoothness). We say that a CMAB-T prob-
lem instance satisfies the directional TPVM (Bv, B1, λ)-bounded smoothness condition
(Bv, B1 ≥ 0, λ ≥ 1), if for any action S ∈ S, any distribution D,D′ ∈ D with mean
vector µ,µ′ ∈ (0, 1)m, for any non-negative ζ,η ∈ [0, 1]m s.t. µ′ = µ + ζ + η, we have

|r(S;µ′)− r(S;µ)| ≤ Bv

√√√√∑
i∈[m]

(pD,S
i )λ

ζ2i
(1− µi)µi

+B1

∑
i∈[m]

pD,S
i ηi. (2)

Remark 1 (Intuition for Condition 3). Looking at Eq. (2), if we ignore the (1− µi)µi term in the

denominator and set λ = 2, the RHS of Eq. (2) becomes Bv

√∑
i∈[m](p

D,S
i )2ζ2i +B1

∑
i∈[m] p

D,S
i ηi,

which holds with Bv = B1

√
K by applying the Cauchy-Schwarz inequality to Condition 2. However,

the regret upper bound following this modified Eq. (2) would not directly lead to the improvement
in the regret due to the

√
K factor in Bv. To deal with this issue, an important observation here is

that for many applications, the reason Bv is large is because that the reward changes abruptly when
parameters µi approaches 0 or 1. This motivates us to plug in the 1/(1 − µi)µi term in Eq. (2) to
enlarge the square root term when µi is close to 0 or 1, so that Bv can be as small as possible. On the
other hand, notice that when µi approaches 0 or 1, the variance Vi ≤ (1− µi)µi is also very small, 2

so the estimation of µi should be quite accurate. Therefore, the gap ζi between our estimation and
true value produces a variance-related term which cancels the (1−µi)µi in the denominator. Since ζi
in Eq. (2) is modulated by both triggering probability pD,S

i and inverse upper bound of the variance
1/(1 − µi)µi, we call Condition 3 the directional triggering probability and variance modulated
(TPVM) condition for short, where the term “directional” is explained in the next remark. The
exponent λ ≥ 1 on the triggering probability gives flexibility to trade-off between the strength of the
condition and the quantity of the regret bound: With a larger λ, we can obtain a smaller regret bound,
while with a smaller λ, the condition is easier to satisfy and allows us to include more applications.

Remark 2 (On directional TPVM vs. undirectional TPVM). In the above definition, “directional”
means that we have ζ,η ≥ 0 such that µ′ ≥ µ in every dimension. This is weaker than the version
of the undirectional TPVM condition, where ζ,η ∈ [−1, 1]m, and the ηi in the right hand side of
Eq.(2) is replaced with |ηi|. The reason we use the weaker version is that some of our applications
considered in this paper only satisfy the weaker version. To differentiate, we use TPVM< when we
refer to the directional TPVM condition.

Remark 3 (Relation between Conditions 2 and 3). First, when setting ζ to 0, the directional TPVM
condition degenerates to the directional TPM condition. However, Condition 2 is the undirectional
TPM condition, which is typically stronger than its directional counterpart. Thus, in general Condition
3 does not imply Condition 2. Nevertheless, with some additional assumptions Condition 3 does imply

2For bounded random variable X ∈ [0, 1] with mean µi, variance Vi = E[X2] − E[X]2 ≤ E[X] −
(E[X])2 ≤ (1− µi)µi, where the equality is achieved when X is a Bernoulli random variable.
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Algorithm 1 BCUCB-T: Bernstein Combinatorial Upper Confidence Bound Algorithm for CMAB-T
1: Input: Base arms [m], computation oracle ORACLE.
2: Initialize: For each arm i, T0,i ← 0, µ̂0,i = 0, V̂0,i = 0.
3: for t = 1, ..., T do
4: For arm i, compute ρt,i according to Eq. (3) and set UCB value µ̄t,i = min{µ̂t−1,i + ρt,i, 1}.
5: St = ORACLE(µ̄t,1, ..., µ̄t,m).
6: Play St, which triggers arms τt ⊆ [m] with outcome Xt,i’s, for i ∈ τt.
7: For every i ∈ τt, update Tt,i = Tt−1,i + 1, µ̂t,i = µ̂t−1,i + (Xt,i − µ̂t−1,i)/Tt,i, V̂t,i =

Tt−1,i

Tt,i

(
V̂t−1,i +

1
Tt,i

(µ̂t−1,i −Xt,i)
2
)

.
8: end for

Condition 2 with the same coefficient B1 (See Appendix A for an example of such assumptions).
Conversely, by applying the Cauchy-Schwartz inequality, one can verify that if a reward function
is TPM B1-bounded smooth, then it is (directional) TPVM (B1

√
K/2, B1, λ)-bounded smooth for

any λ ≤ 2. For applications considered in this paper, we are able to reduce their Bv coefficient from
B1

√
K/2 to a coefficient independent of K, leading to significant savings in the regret bound.

Remark 4 (Comparing with [23]). Merlis and Mannor [23] introduce a Gini-smoothness condition
to reduce the batch-size dependency for CMAB problems, which largely inspires our TPVM<

condition. Their condition is specified in a differential form of the reward function, with parameters
γ∞ and γg (See Appendix B for the exact definition). We emphasize that their original condition
cannot handle the probabilistic triggering setting in CMAB-T. One natural extension is to incorporate
triggering probability modulation into their differential form of Gini-smoothness. However, we
found that the resulting TPM Gini-smoothness condition is not strong enough to guarantee desirable
regret bounds (See Appendix B.1). This motivates us to provide a new condition directly on the
difference form |r(S;µ′)− r(S;µ)|, similar to the TPM condition in [29]. Our TPVM< condition
(Condition 3) can be viewed as extending Lemma 6 of [23] to incorporate triggering probabilities
and bound the difference form |r(S;µ′)− r(S;µ)|. Intuitively, B1 and Bv correspond to γ∞ and
γg , respectively, but since they are for different forms of definitions, their numerical values may not
exactly match one another.

3.2 BCUCB-T Algorithm and Regret Analysis
Our proposed algorithm BCUCB-T is a generalization of the BC-UCB algorithm [23, Algorithm 1]
which originally solves the non-triggering CMAB problem. Algorithm 1 maintains the empirical
estimate µ̂t,i and V̂t,i for the true mean and the true variance of the base arm outcomes. To select the
action St, it feeds the upper confidence bound µ̄i into the offline oracle, where µ̄i optimistically
estimates the µi by a confidence interval ρt,i. Compared with the CUCB algorithm [29, Algorithm

1] which uses confidence interval ρt,i =
√

3 log t
2Tt−1,i

for the CMAB-T problem, the novel part is

the usage of empirical variance V̂t−1,i to construct the following “variance-aware" confidence interval:

ρt,i =

√
6V̂t−1,i log t

Tt−1,i
+

9 log t

Tt−1,i
(3)

This confidence interval leverages on the empirical Bernstein inequality instead of the Chernoff-
Hoeffding inequality. As we will show in Appendix C.1, for the first term in Eq. (3), V̂t−1,i is
approximately equal to the true variance Vi ≤ (1− µi)µi and this indicates the estimation of µi is
more accurate when µi is close to 0 or 1, which will cancel out the (1− µi)µi coefficient of the Bv

term in Condition 3 as we discussed before. The second term of Eq. (3) is to compensate the usage of
the empirical variance V̂t−1,i, rather than the true variance Vi which is unknown to the learner.

To state the regret bound, we first give some definitions followed by our main result.
Definition 1 ((Approximation) Gap). Fix a distribution D ∈ D and its mean vector µ, for each action
S ∈ S , we define the (approximation) gap as ∆S = max{0, αr(S∗;µ)− r(S;µ)}. For each arm i,
we define ∆min

i = infS∈S:pD,S
i >0, ∆S>0 ∆S , ∆max

i = supS∈S:pD,S
i >0,∆S>0 ∆S . As a convention, if

there is no action S ∈ S such that pD,S
i > 0 and ∆S > 0, then ∆min

i = +∞,∆max
i = 0. We define

∆min = mini∈[m] ∆
min
i and ∆max = maxi∈[m] ∆

min
i .
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Theorem 1. For a CMAB-T problem instance ([m],S,D, Dtrig, R) that satisfies monotonicity (Con-
dition 1), and TPVM< bounded smoothness (Condition 3) with coefficient (Bv, B1, λ),

(1) if λ > 1, BCUCB-T (Algorithm 1) with an (α, β)-approximation oracle achieves an (α, β)-
approximate regret bounded by

O

∑
i∈[m]

B2
v logK log T

∆min
i

+
∑
i∈[m]

B1 log
2

(
B1K

∆min
i

)
log T

 ; (4)

(2) if λ = 1, BCUCB-T (Algorithm 1) with an (α, β)-approximation oracle achieves an (α, β)-
approximate regret bounded by

O

∑
i∈[m]

log

(
BvK

∆min
i

)
B2

v logK log T

∆min
i

+
∑
i∈[m]

B1 log
2

(
B1K

∆min
i

)
log T

 . (5)

Remark 5 (Discussion for Regret Bounds). Looking at the above regret bounds, for λ > 1 and
λ = 1, the leading terms are O(

∑m
i=1

B2
v logK log T

∆min
i

) and O(
∑m

i=1(log
BvK
∆min

i
)
B2

v logK log T

∆min
i

). When

Bv ≥ B1 (which typically holds, see Section 5) and gaps are small (i.e., ∆i
min ≤ 1/ log2 K), the

dependencies over K are O(logK) and O(log2 K), respectively. For the setting of CMAB-T, [29]
is the closest work to our paper, where the reward function satisfies Condition 1 and Condition
2 with coefficient B1. As mentioned in Remark 3 in Section 3.1, their reward function trivially
satisfies our Condition 3 with coefficient (B1

√
K/2, B1, 2) so our work reproduces a bound of

O(
∑

i∈[m]
B2

1K logK log T

∆min
i

), matching [29] up to a factor of O(logK). As will be shown in Section 5,

for applications that satisfy TPVM (or TPVM<) condition with non-trivial Bv , i.e., Bv = o(B1

√
K),

our work improves their regret bounds up to a factor of O(K/ logK). As for the lower bound,
according to the lower bound results by Merlis and Mannor [24], our regret bound is tight up to a
factor of O(log2 K) on the (degenerate) non-triggering CMAB case. We defer the details about the
lower bound results and the distribution-independent regret bounds in the Appendix C.5.

Proof ideas. Our proof uses a few events to filter the total regret and then bound these event-
filtered regrets separately. As will be shown in the supplementary material, the event that
contributes to the leading regret is Et = {∆St ≤ et(St)}, where the error term et(St) =

O(Bv

√∑
i∈S̃t

( log t
Tt−1,i

)(pD,St

i )λ + B1

∑
i∈S̃t

( log t
Tt−1,i

)(pD,St

i )). To handle the probabilistic trigger-
ing, our key ingredient is to use the triggering probability group technique proposed by Wang and
Chen [29] in the definition of above events. For the λ = 1 case, one new issue arises since the
triggering probability group divides sub-optimal actions S into infinite geometrically separated
bins (1/2, 1], (1/4, 1/2]..., (2−j , 2−j+1), ..., over pD,S

i , and the regret should be proportional to the
number of bins (which are infinitely large). To handle this, we show that it suffices to consider the
first j ≤ jmax

i = O(log BvK
∆min

i
) bins (which is why Eq. (5) has this additional factor in the leading

term) and the regret of other bins (with very small pD,S
i ) can be safely neglected. To bound the

leading regret filtered by Et as mentioned earlier, we use the reverse amortization trick from Wang
and Chen [29, 30] and adaptively allocates each arm’s regret contribution (according to thresholds
on the number of times arm i is triggered). Note that these thresholds are carefully chosen for the
error term et(St), since trivially following the thresholds in Wang and Chen [29] would either yield
no meaningful bound or suffer from additional O(log T ) or O(logK) factors in the regret. As a
by-product, one can also use our analysis to replace that of Merlis and Mannor [23] and Perrault et al.
[25] (where similar error term et(St) appears) to improve their bound by a factor of O(logK). For
the detailed proofs, we defer them in the Appendix C. ■

4 Algorithm and Analysis For CMAB with Independent Arms
In this section, we aim to show that for the non-triggering CMAB, the assumption that all arms are
independent, compounded with a non-triggering version of the above TPVM condition (named as VM
condition below), together allow us to completely remove the O(log2 K) or O(logK) dependence
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Algorithm 2 SESCB: Sub-Exponential Sampling for Combinatorial Bandits with Independent Arms
1: Input: Base arms [m], sub-Gaussian parameter C1, VM smoothness coefficient Bv, (α, β)-

approximation ORACLE Ō.
2: Initialize: For each arm i, T0,i ← 0, µ̂0,i = 0.
3: for t = 1, ..., T do
4: For all S ∈ S, define min-count Tmin

t−1,S = mini∈S Tt−1,i, let interval ρt(S) =

Bv

√∑
i∈S

C1

Tt−1,i
+max

{
8C1

√∑
i∈S

log(2|S|T )
T 2
t−1,i

, 8C1 log(2|S|T )

Tmin
t−1,S

}
.

5: For all S ∈ S, define optimistic reward r̄t(S) = r(S; µ̂t−1) + ρt(S).
6: Play St = Ō(µ̂t,Tt) s.t. Pr

[
r̄t(S) ≥ α · r̄t(S̄∗

t )
]
≥ β,where S̄∗

t = argmaxS∈S r̄t(S), and
observe outcome Xt,i’s, for i ∈ St.

7: For every i ∈ St, update Tt,i = Tt−1,i + 1, µ̂t,i = µ̂t−1,i + (Xt,i − µ̂t−1,i)/Tt,i.
8: end for

in the existing regret bounds. In particular, we focus on the a non-triggering CMAB problem instance
([m],S,D, R). Its setting is similar to CMAB-T, but here we assume that S are collections of subsets
of [m] and only arms pulled by action St ∈ S are revealed as feedback (i.e., τt = St).
Condition 4 (VM Bounded Smoothness). We say that a non-triggering CMAB problem instance
([m],S,D, R) satisfies the Variance Modulated (VM) (Bv, B1 ≥ 0)-bounded smoothness condition,
if for any action S ∈ S , any distribution D,D′ ∈ D with mean vector µ,µ′ ∈ (0, 1)m, for any ζ,η ∈
[−1, 1]m s.t. µ′ = µ+ζ+η, we have |r(S;µ′)−r(S;µ)| ≤ Bv

√∑
i∈S

ζ2
i

(1−µi)µi
+B1

∑
i∈[m] |ηi|.

Condition 5 (Independent base arms). We say that the base arms are independent, if for any D ∈ D,
the outcome vectors X ∼ D are independent (across base arms), i.e., D = ⊗i∈[m]Di.

Condition 6 (C1µi(1−µi) sub-Gaussian). The outcome distribution Di with mean µi is C1µi(1−µi)
sub-Gaussian, where C1 is a known coefficient.

Remark 6 (Comparison with TPVM Condition and [23]). Condition 4 is the non-triggering version
of TPVM, by setting pD,S

i = 1 if i ∈ S and 0 otherwise. As shown in Appendix B.2, Condition 4 can
be implied by the original Gini-smoothness condition [23] with (Bv, B1) = (3

√
2γg, γ∞), so PMC

application satisfies the VM condition (the fifth row in Table 3). But different from [23, Lemma 6]
and TPVM<, the VM condition is the undirectional version (i.e., we allow ζ,η to be negative). This
is important for using empirical means in the algorithm (as we did in our SESCB policy), since they
are not necessarily larger than the true means.

Remark 7 (Motivation and Feasibility for Condition 6). Condition 6 helps to cancel out the
(1− µi)µi effect in the VM condition without explicitly using the empirical variance that will bring
in additional batch-size dependent errors. For Bernoulli arms with mean µi, we can compute the
explicit value of C1, i.e., C1 = maxi∈[m]

1−2µi

2 ln(
1−µi
µi

)(1−µi)(µi)
by [22]. Notice that C1 could be large

when µi is approaching 0 or 1, but it is safe to consider µi over bounded supports that are not too
close to 0 or 1, e.g., when µi ∈ [0.01, 0.99], C1 ≈ 10.78.

SESCB Algorithm. Our proposed algorithm is shown in Algorithm 2. Instead of maintaining one
upper confidence bound for each base arm i, we maintain an upper confidence bound for each super
arm S, based on the estimated reward of the empirical means and a confidence interval. In line 4, we
compute the confidence interval ρt(S) by taking the max of two tentative segments within the square
root, which corresponds to two different segments of the concentration bound for the sub-exponential
random variable [27]. Such a sub-exponential concentrated confidence interval comes from the VM
condition by treating (ζi)i∈S as |S| independent sub-Gaussian random variables, whose summation
produces a more concentrated sub-exponential random variable compared with considering them
as |S| possibly dependent variables. It is notable that for the second tentative interval, SESCB uses
the min-counter Tmin

t−1,S instead of all counters Tt−1,i in S, which is the key ingredient that removes
the O(logK) factor as to be shown in the analysis. After getting ρt(S), the optimistic reward is
defined in Line 5 and the learner selects St via the (α, β)-approximation oracle Ō and updates the
corresponding statistics.

Regret Bound and Analysis. The following theorem summarizes the regret bound for Algorithm 2.
Theorem 2. For a non-triggering CMAB problem instance ([m],S,D, R) that satisfies VM bounded
smoothness (Condition 4) with coefficient (Bv, B1), Condition 5 and Condition 6 with coefficient C1,
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SESCB (Algorithm 2) with an (α, β)-approximation oralce achieves (α, β)-approximate regret that

is bounded by O
(∑

i∈[m]
B2

v log T

∆min
i

+
B2

vmK
∆min

+m∆max

)
.

Looking at the above regret bound, the leading term totally removes the O(logK) dependency
compared with Theorem 1. Compared with [23], our regret bounds improves theirs by O(log2 K).

Proof Ideas. Similar to the proof of Theorem 1, we first identify an error term et(St) = 2ρt(St)
as Line 4 and consider the regret filtered by the event {∆St

≤ et(St)}. The key ingredient is by

following Condition 4 and Condition 6, and bound |r(S; µ̂) − r(S;µ)| ≤ Bv

√∑
i∈S u2

t,i, where

ut,i is a ( C1

Tt−1,i
)-sub-Gaussian random variable. Let Yt,S =

∑
i∈S u2

t,i. One can show Yt,S is a
(32C2

1

∑
i∈S

1
T 2
t−1,i

, 4C1
1

Tmin
t−1,S

)-sub-Exponential random variable, so applying the concentration

bounds on Yt,S [27] and one can obtain the above et(St). Then we consider two cases based on the
value of

∑
i∈St

1
Tt−1,i

. For both cases, we use the reverse amortization trick from [29] but different
from Section 3.2, et(St) ensures that we only need to consider regret contributions from the min-arm
(which is least played in St) according to certain batch-size independent thresholds. This in turn
gives batch-size independent regret bounds that totally removes O(logK) in the leading term. See
Appendix D for more details. ■

Computational Efficiency. Notice that like other ESCB-type algorithms [9], for the general reward
function r(S;µ), there may not exist efficient Ō, so one needs to enumerate over all possible
actions S ∈ S each round, where the time complexity could be as high as O(|S|T ). However, when
r(S;µ) is a monotone submodular function (e.g, the reward function of the PMC problem [8]), we
can modify ρt(S) so that the optimistic reward r̄t(S) is also monotone submodular, which can be
efficiently optimized with a greedy (1− 1/e, 1)-approximation oracle. Observe that the current ρt(S)
is not submodular since the maximum of two submodular functions are not necessarily submodular,
but we know the summation of two submodular functions are submodular. Based on this obser-

vation, we change ρt(S) to ρ′t(S) = Bv

√∑
i∈S

C1

Tt−1,i
+ 8C1

√∑
i∈S

log(2|S|T )
T 2
t−1,i

+ 8C1 log(2|S|T )

Tmin
t−1,S

,

where max is replaced with a sum (+), and we prove in Appendix D.3 that ρ′t(S) is a monotone
submodular function. Now we can use the greedy oracle to maximize a new optimistic reward
r′t(S) = r(S; µ̂t−1) + ρ′t(S) in our SESCB algorithm. As for the final regret, using ρ′t(S) instead of
ρt(S) only worsens the final regret by a constant factor of two.

Now compared with [23] that achieves (1 − 1/e, 1)-approximate regret bound for PMC problem,
our SESCB achieves the same (1− 1/e, 1)-approximate regret bound but completely removes the
O(logK) dependency. Moreover, our greedy oracle is efficient with computational complexity
O(TKL), where T is the total number of rounds, K is the number of source nodes to be selected in
each round and L is the total number of source nodes, which is much faster than the enumeration
method. For the regret analysis when using r′t(S), see Appendix D.3 for more details.

5 Applications
In this section, we show how various applications satisfy our new TPVM, TPVM< or VM smoothness
condition and their corresponding (Bv, B1, λ) coefficients with non-trivial Bv , i.e., Bv = o(B1

√
K),

which in turn improves the regret bounds over the batch-size dependence of K.
Theorem 3. The combinatorial cascading bandits [17], the multi-layered network exploration [21],
the influence maximization problems [29] and the probabilistic maximum coverage problem [23]
satisfy the TPVM (TPVM< or VM) conditions with coefficients (Bv, B1, λ), resulting regret bounds
and improvements shown in Table 3.

Note that the first four applications in Table 3 applies Theorem 1, while the last application applies
Theorem 2. More specifically, the first two applications we consider are disjunctive and conjunctive
cascading bandits [17], where m base arms represent web pages and routing edges in online advertis-
ing and network routing, respectively. Batch-size K is the maximum size of the ordered sequence
S ∈ S to be selected in each round, which will trigger web pages/routing edge one by one until
certain stopping condition is satisfied, i.e., a click or a routing edge being broken. The reward is 1
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Table 3: Summary of the coefficients, regret bounds and improvements for various applications.
Application Condition (Bv, B1, λ) Regret Improvement

Disjunctive Cascading Bandits [17] TPVM< (1, 1, 2) O(
∑

i∈[m]
logK log T

∆min
i

) O(K/ logK)

Conjunctive Cascading Bandits [17] TPVM (1, 1, 1) O(
∑

i∈[m] log
K

∆min

logK log T
∆i,min

) O(K/(logK log K
∆min

))

Multi-layered Network Exploration [21] TPVM (
√

1.25|V |, 1, 2) † O(
∑

i∈A
|V | log(n|V |) log T

∆min
i

) O(n/ log(n|V |))

Influence Maximization on DAG [29] TPVM< (
√
L|V |, |V |, 1) † O(

∑
i∈[m] log

|E|
∆min

L|V |2 log |E| log T

∆min
i

) O(|E|/(L log |E| log |E|
∆min

))

Probabilistic Maximum Coverage [23]∗ VM (3
√

2|V |, 1,−) O(
∑

i∈[m]
|V | log T

∆min
i

) O(log2 k).
∗ This row is for the application in Section 4 and the rest of rows are for Section 3.1; † |V |, |E|, n, k, L denotes the number of target nodes, the number of edges that
can be triggered by the set of seed nodes, the number of layers, the number of seed nodes and the length of the longest directed path, respectively.

if any web page is clicked (or if all routing edges are live) and 0 otherwise. Compared with [29],
we achieve an improvement O(K/(logK log K

∆min
)) for the conjunctive case and an improvement

O(K/ logK) for the disjunctive case, due to the same Bv, B1 = 1 but different orders λ.

The third application is the mutli-layered network exploration (MuLaNE) problem [21], and the
MuLaNE task is to allocate B budgets into n layers to explore target nodes V . In MuLaNE, the base
arms form a set A = {(i, u, b) : i ∈ [n], u ∈ [V ], b ∈ [B]}, the batch-size K = (n+ 1)|V | and the
reward is defined as the total reward give by the first visit of any target nodes. MuLaNE fits into our
study, and compared with [21], the regret bound is improved by a factor of O(n/ logK).

Our fourth application is the online influence maximization (OIM) problems direct acyclic graphs
(DAG). For this application, the goal is to select at most k seed nodes to influence as many target
nodes V as possible, where the influence process follows the independent cascade (IC) model [29]
(see Appendix E for more details). The base arms are the edges with unknown edge probabilities
and the batch-size K is the total number of edges that could be triggered by any set of k seed nodes,
denoted as |E|. The improvements here are significant, improving the existing results [23] by a factor
of O(|E|/(L log |E| log |E|

∆min
)).

For the PMC problem [23], we consider a complete bipartite graph with L source nodes on the left and
|V | target nodes V on the right. The goal is to select k seed nodes from L nodes trying to influence as
many as target nodes, so the edges E are independent base arms and the batch-size is k|V |. By using
the computational efficient version of Algorithm 2 and applying Theorem 2, we achieve O(log2 k)
improvement compared with [23] while maintaining good computational efficiency.

Proof Ideas. For all above applications (except for the OIM on DAG), our proof involves the
use of telescoping series to decompose the reward difference, together with a smart use of the
Cauchy–Schwarz inequality aided by the variance terms. For disjunctive cascading bandits, for exam-
ple, the reward difference |r(S; µ̄)− r(S;µ)| =

∏K
i=1(1−µi)−

∏K
i=1(1− µ̄i) can be telescoped as∑

i∈[K](µ̄i − µi)
(∏i−1

j=1(1− µj) ·
∏K

j=i+1(1− µ̄j)
)

. After this decomposition, we replace certain

terms with pD,S
i and bound above by

∑
i∈[K] ζip

D,S
i

√∏K
j=i+1(1− µj) +

∑
i∈[K] ηip

D,S
i . Then we

simultaneously multiply and divide the variance term
√

(1− µi)µi on the first term and apply the
Cauchy–Schwarz inequality to move the summation over K into the square root, concluding the

satisfaction of Condition 3 with Bv =
√∑

i∈[K](1− µi)µi

∏K
j=i+1(1− µj) ≤ 1. As for the OIM

on DAG, since reward function have no closed-form solutions [5], the analysis is more involved with
the need of advanced techniques such as the coupling technique [20], see Appendix E for details. ■

6 Conclusion and Future Direction
This paper studies the CMAB problem with probabilistically triggered arms or independent arms. We
discover new TPVM and VM conditions, and propose BCUCB-T and SESCB algorithms to reduce
and remove the batch-size K in the regret bounds, respectively. We also show that several important
applications all satisfy our conditions to achieve improved regrets, both theoretically and empirically.
There are many compelling directions for future study. For example, it would be interesting to study
the setting of CMAB-T together with independent arms. One could also explore how to extend our
application and consider general graphs in online influence maximization bandits.
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Appendix
The Appendix is organized as follows. We first compare the TPVM< Condition (Condition 3) with
TPM Condition (Condition 2) in Appendix A. The comparisons between Gini-smoothness Condition
with the TPVM (Condition 3) and VM (Condition 4) Condition are introduced in Appendix B. The
detailed proofs for Theorem 1 together with some discussions are in Appendix C. The detailed proofs
for Theorem 2 are in Appendix D. The application details and the proof details related to Theorem 3
are in Appendix E. The experiments for different applications are included in Appendix F.

A Comparing the TPVM< Condition (Condition 3) with the TPM Condition
(Condition 2)

As discussed in Section 3.1, the TPVM< condition (Condition 3) does not imply the TPM condition
(Condition 2) in general. In this section, we show that under some additional conditions, Condition 3
does imply Condition 2.
Lemma 1. Assume that the followings are true: (a) Condition 1 holds; (b) there exist D∨, D∧ ∈ D
with mean vectors µ∨ = µ ∨ µ′ and µ∧ = µ ∧ µ′ respectively, where operation ∨ and ∧ means
taking coordinate wise max and min; and (c) pD,S

i increases as the mean vector of D increases.
Then Condition 3 implies Condition 2 with the same B1 coefficient.

Proof. First, when setting ζ = 0 in Condition 3, we obtain the directional TPM condition. Then we
prove with the following derivation that with the three assumptions stated in the lemma, directional
TPM condition implies the undirectional TPM condition (Condition 2). For any D,D′ ∈ D with
mean vectors µ,µ′, without loss of generality, we assume that r(S;µ′) ≥ r(S;µ). we have

|r(S;µ′)− r(S;µ)|
= r(S;µ′)− r(S;µ)

≤ r(S;µ∨)− r(S;µ∧) by Assumptions (a) and (b)

≤ B1

∑
i∈[m]

pD∧,S
i |µi − µ′

i| by Assumption (b) and the directional TPM condition

≤ B1

∑
i∈[m]

pD,S
i |µi − µ′

i|. By Assumption (c)

Therefore, the undirectional TPM condition (Condition 2) holds. ■

It is not difficult to verify that for the online influence maximization application discussed in Section 5,
all three assumptions in the lemma holds.

B Comparing the Gini-smoothness Condition [23] with the TPVM<

Condition (Condition 3) and VM Condition (Condition 4)
Merlis and Mannor [23] define the following Gini-smoothness condition. In this section, we provide
comparisons between this condition and our TPVM< condition (Condition 3) and VM condition
(Condition 4).
Condition 7 (Gini-smoothness Condition, Restated, [23]). Let f(S;x) : S × [0, 1]m → R be a
differentiable function in x ∈ (0, 1)m and continuous in x ∈ [0, 1]m, for any S ∈ S. The function
f(S;x) is said to be monotonic Gini-smooth, with smoothness parameters (γg , γ∞) if:

1. For any S ∈ S, the function f(S;x) is monotonically increasing with bounded gradient, i.e., for
any i ∈ S and x ∈ (0, 1)m, 0 ≤ ∂f(S;x)

∂xi
≤ γ∞. If i /∈ S, then ∂f(S;x)

∂xi
= 0 for all x ∈ (0, 1)L.

2. For any S ∈ S and x ∈ (0, 1)m, it holds that√∑
i∈S

xi(1− xi)(
∂f(S;x)

∂xi
) ≤ γg. (6)
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B.1 Triggering Probability Modulated Gini-smoothness Condition Does Not Imply TPVM<

Condition
The original Gini-smoothness condition (Condition 7) does not work directly with probabilistically
triggered arms. Thus, our first attempt is to add triggering probability modulation to the Gini-
smoothness condition as given below, in hope that it would extend the result in [23] to the CMAB-T
framework.
Condition 8 (TPM Gini-smoothness). For a CMAB-T problem instance ([m],S,D, Dtrig, R), assume
the reward function r(S;µ) : S × [0, 1]m → R is a differentiable function in µ ∈ (0, 1)m and
continuous in µ ∈ [0, 1]m, for any S ∈ S. The reward function r(S;µ) is said to be monotonic
Triggering Probability Modulated (TPM) Gini-smooth, with smoothness parameters (γg , γ∞, λ ≥ 1)
if:

1. For any distribution D ∈ D with mean vector µ ∈ (0, 1)m and any action S ∈ S, the function
r(S;µ) is monotonically increasing with bounded gradient: For any i ∈ [m], if pD,S

i > 0, then
0 ≤ ∂r(S;µ)

∂µi

1

pD,S
i

≤ γ∞; If pD,S
i = 0, then ∂r(S;µ)

∂µi
= 0 for all µ ∈ (0, 1)m.

2. For any distribution D ∈ D with mean vector µ ∈ (0, 1)m and any action S ∈ S, it holds that√√√√∑
i∈S̃

µi(1− µi)(
∂r(S;µ)

∂µi
)2

1

(pD,S
i )λ

≤ γg. (7)

However, using the above TPM Gini-smoothness condition, we cannot derive a desirable regret bound.
In particular, the above condition only guarantees the following lemma (following the analysis of
Lemma 6 in [23]), which is weaker than our TPVM< condition (Condition 3), leading to a weaker
regret with an additional factor maxS∈S,i∈[m] p

max,S
i /pD,S

i . Such a factor could be exponentially
large and undesirable in applications, similar to the factor being avoided in [8] by introducing the
TPM condition.
Lemma 2. Let r(S;x) be a monotonic (γg, γ∞, λ) TPM gini-smooth function. For any µ,µ′,µ′′ ∈
[0, 1]m, with ζ = µ′ − µ,η = µ′′ − µ′, let Dµ,µ′,µ′′ = {D ∈ D with mean vector x : ∀i ∈
[m],min{µi, µ

′
i, µ

′′
i } ≤ xi ≤ max{µi, µ

′
i, µ

′′
i }} and pmax,S

i = maxD∈Dµ,µ′,µ′′ p
D,S
i , it holds that

|r(S;µ′′)− r(S;µ)| ≤ 3
√
2γg

√√√√∑
i∈S

(
|ζi|√

(1− µi)µi

)2

pmax,S
i +

∑
i∈S̃

pmax,S
i |ηi| , (8)

Proof. For the |r(S;µ′)− r(S;µ)| term,

First, we define two functions g, h, where

g(z) =

∫ z

0

dy√
y(1− y)

, h(z) =

∫ z

0

dy
√
y ∧
√
1− y

. (9)

For g(z), g′(z) > 0 so the inverse function g−1 is well defined. We also know that h(z) has the
following closed form,

h(z) =

{
2
√
z, if z ≤ 1/2

2
√
2− 2

√
1− z, if z ≥ 1/2.

(10)

Note that these two functions are closely related: h′(z) ≤ g′(z) ≤
√
2h′(z) with g(0) = h(0).

Therefore, h(z) ≤ g(z) ≤
√
2h(z) and g(z2)−g(z1) ≤

√
2(h(z2)−h(z1)) for any z1 ≤ z2 ∈ [0, 1].

Now we set up a parameterization z(t) for t ∈ [0, 1] such that zi(0) = µi, zi(1) = µ′
i. Specifically,

we choose the parameterization to be

zi(t) = g−1([g(µ′
i)− g(µi)]t+ g(µi)]), (11)

Then its gradient is

z′i(t) =
g(µ′

i)− g(µi)

g′(zi(t))
= (g(µ′

i)− g(µi))
√

zi(t)(1− zi(t)). (12)
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Then we can use the gradient theorem to bound |r(S;µ′)− r(S;µ)| as

|r(S;µ′)− r(S;µ)| =

∣∣∣∣∣
∫ µ′

x=µ

∇r(S;x) · dx

∣∣∣∣∣ =
∣∣∣∣∣∣
∫ 1

t=0

∑
i∈S̃

∂r(S; z(t))

∂xi
z′i(t)dt

∣∣∣∣∣∣ (13)

≤
∫ 1

0

√∑
i∈S̃

(g(µ′
i)− g(µi))2(p

z(t),S
i )λ

√√√√∑
i∈S̃

(
∂r(S; z(t))

∂xi
)2
zi(t)(1− zi(t))

(p
z(t),S
i )λ

dt

(14)

≤
∫ 1

0

γg

√∑
i∈S̃

(g(µ′
i)− g(µi))2(p

z(t),S
i )λdt (15)

≤ γg

√∑
i∈S̃

(g(µ′
i)− g(µi))2(p

max,S
i )λ, (16)

Following the similar derivation for Eq. (28) in next subsection, we have

|r(S;µ′)− r(S;µ)| ≤ 3
√
2γg

√√√√√∑
i∈S̃

(
|µ′

i − µi|√
(1− µi)µi

)2

(pmax,S
i )λ. (17)

For the |r(S;µ′′)− r(S;µ′)| term,

We can use the gradient theorem to bound, let x(t) with xi(t) = t(µ′′
i − µ′

i) + µ′
i.

|r(S;µ′′)− r(S;µ′)| =

∣∣∣∣∣∣
∫ 1

t=0

∑
i∈S̃

∂r(S;x(t))

∂xi
x′
i(t)dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ 1

t=0

∑
i∈S̃

∂r(S;x(t))

∂xip
x(t),S
i

p
x(t),S
i (µ′′

i − µ′
i)dt

∣∣∣∣∣∣
≤
∫ 1

t=0

∑
i∈S̃

∣∣∣∣∣∂r(S;x(t))∂xip
x(t),S
i

∣∣∣∣∣ ∣∣∣px(t),Si (µ′′
i − µ′

i)
∣∣∣ dt

≤
∫ 1

t=0

∑
i∈S̃

γ∞

∣∣∣px(t),Si (µ′′
i − µ′

i)
∣∣∣ dt

≤
∫ 1

t=0

∑
i∈S̃

γ∞

∣∣∣pmax,S
i (µ′′

i − µ′
i)
∣∣∣ dt

= γ∞
∑
i∈S̃

pmax,S
i |ηi|. (18)

Combining Eq. (17) and Eq. (18), we conclude the lemma. ■

The above lemma indicates that directly extending the Gini-smoothness condition may not be strong
enough for the probabilistic triggering setting. This motivates us to define the new TPVM< condition
not based on the differential form, but directly on the difference form |r(S;µ′)− r(S;µ)|. This can
be viewed as incorporating triggering probability properly into the result of Lemma 6 in [23].

B.2 Gini-smoothness Condition Implies VM Condition
In this section, we show in the following lemma that the original Gini-smoothness condition (Condi-
tion 7) implies the VM condition (Condition 4), with (Bv, B1) = (3

√
2γg, γ∞). The proof of this

lemma is similar to [23, Lemma 6], but we need to extend it to the undirectional case, where µ′′ is
not necessarily larger than µ in all dimensions.
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Lemma 3. Let r(S;µ) be a monotonic (γg, γ∞) gini-smooth function as given in Condition 7. For
any µ,µ′,µ′′ ∈ [0, 1]m, with ζ = µ′ − µ,η = µ′′ − µ′, it holds that

|r(S;µ′′)− r(S;µ)| ≤ 3
√
2γg

√√√√∑
i∈S

(
|ζi|√

(1− µi)µi

)2

+ γ∞
∑
i∈S

|ηi| . (19)

Proof. We use |r(S;µ′′)− r(S;µ)| ≤ |r(S;µ′)− r(S;µ)|+ |r(S;µ′′)− r(S;µ′)| and separately
bound two terms in the LHS.

For the |r(S;µ′)− r(S;µ)| term,

We define two functions g, h, where

g(z) =

∫ z

0

dy√
y(1− y)

, h(z) =

∫ z

0

dy
√
y ∧
√
1− y

. (20)

For g(z), g′(z) > 0 so the inverse function g−1 is well defined. We also know that h(z) has the
following closed form,

h(z) =

{
2
√
z, if z ≤ 1/2

2
√
2− 2

√
1− z, if z ≥ 1/2.

(21)

Note that these two functions are closely related: h′(z) ≤ g′(z) ≤
√
2h′(z) with g(0) = h(0).

Therefore, h(z) ≤ g(z) ≤
√
2h(z) and g(z2)−g(z1) ≤

√
2(h(z2)−h(z1)) for any z1 ≤ z2 ∈ [0, 1].

Now we set up a parameterization z(t) for t ∈ [0, 1] such that zi(0) = µi, zi(1) = µ′
i. Specifically,

we choose the parameterization to be

zi(t) = g−1([g(µ′
i)− g(µi)]t+ g(µi)]), (22)

Then its gradient is

z′i(t) =
g(µ′

i)− g(µi)

g′(zi(t))
= (g(µ′

i)− g(µi))
√

zi(t)(1− zi(t)). (23)

Then we can use the gradient theorem to bound r(S;µ′)− r(S;µ) as

|r(S;µ′)− r(S;µ)| =

∣∣∣∣∣
∫ µ′

x=µ

∇r(S;x) · dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

t=0

∑
i∈S

∂r(S; z(t))

∂xi
z′i(t)dt

∣∣∣∣∣ (24)

≤
∫ 1

t=0

∑
i∈S

|g(µ′
i)− g(µi)|

∣∣∣∣∂r(S; z(t))∂xi

∣∣∣∣√zi(t)(1− zi(t))dt (25)

≤
∫ 1

0

√∑
i∈S

(g(µ′
i)− g(µi))2

√∑
i∈S

(
∂r(S; z(t))

∂xi
)2zi(t)(1− zi(t))dt (26)

≤
∫ 1

0

γg

√∑
i∈S

(g(µ′
i)− g(µi))2dt (27)

To calculate the bound, we use the relation between g and h, and calculate the difference over h for
the following cases:

Case 1: When µi ≤ µ′
i ≤ 1/2, then |g(µ′

i)− g(µi)| = g(µ′
i)− g(µi) ≤

√
2(h(µ′

i)− h(µi)).

h(µ′
i)− h(µi) = 2

√
µ′
i − 2

√
µi = 2

√
µi(

√
1 +
|µ′

i − µi|
µi

− 1)

≤ 2
√
µi
|µ′

i − µi|
2µi

≤ |µ′
i − µi|√

(1− µi)µi

,

where the first inequality uses the fact that
√
1 + x ≤ 1+x/2, for any x > −1. So |g(µ′

i)−g(µi)| ≤√
2

|µ′
i−µi|√

(1−µi)µi

.
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Case 2: When µ′
i ≤ µi ≤ 1/2, then |g(µ′

i)− g(µi)| = g(µi)− g(µ′
i) ≤

√
2(h(µi)− h(µ′

i)).

h(µi)− h(µ′
i) = 2

√
µi − 2

√
µ′
i = 2

√
µi(1−

√
1− |µ

′
i − µi|
µi

)

≤ 2
√
µi
|µ′

i − µi|
µi

≤ 2|µ′
i − µi|√

(1− µi)µi

.

where the first inequality uses the fact that 1 −
√
1− x ≤ x for x ∈ [0, 1]. So |g(µ′

i) − g(µi)| ≤
2
√
2

|µ′
i−µi|√

(1−µi)µi

.

Case 3: When 1/2 ≤ µi ≤ µ′
i, then |g(µ′

i)− g(µi)| = g(µ′
i)− g(µi) ≤

√
2(h(µ′

i)− h(µi)).

h(µ′
i)− h(µi) = 2

√
1− µi − 2

√
1− µ′

i = 2
√
1− µi(1−

√
1− |µ

′
i − µi|
1− µi

)

≤ 2
√
1− µi

|µ′
i − µi|

(1− µi)
≤ 2|µ′

i − µi|√
(1− µi)µi

,

So |g(µ′
i)− g(µi)| ≤ 2

√
2

|µ′
i−µi|√

(1−µi)µi

.

Case 4: When 1/2 ≤ µ′
i ≤ µi, then |g(µ′

i)− g(µi)| = g(µi)− g(µ′
i) ≤

√
2(h(µi)− h(µ′

i)).

h(µi)− h(µ′
i) = 2

√
1− µ′

i − 2
√

1− µi = 2
√
1− µi(

√
1 +
|µ′

i − µi|
1− µi

− 1)

≤
√
1− µi

|µ′
i − µi|

(1− µi)
≤ |µ′

i − µi|√
(1− µi)µi

,

So |g(µ′
i)− g(µi)| ≤

√
2

|µ′
i−µi|√

(1−µi)µi

.

Case 5: When 1/2 ≤ µ′
i, µi ≤ 1/2, then |g(µ′

i)− g(µi)| = g(µ′
i)− g(µi) ≤

√
2(h(µ′

i)− h(µi)).

h(µ′
i)− h(µi) = (h(µ′

i)− h(1/2)) + (h(µi)− h(1/2))

≤ 2
µ′
i − 1/2√
1− 1/2

+
1/2− µi√

µi

≤ µ′
i − µi√
µi

+
µ′
i − µi√
µi

≤ 3
|µ′

i − µi|√
µi(1− µi)

,

where the first inequality uses the results for 1/2 ≤ µi ≤ µ′
i and for µi ≤ µ′

i ≤ 1/2, the second
inequality uses the relation that µi ≤ 1/2 and µ′

i ≥ 1/2. So |g(µ′
i)− g(µi)| ≤ 3

√
2

|µ′
i−µi|√

(1−µi)µi

.

Case 6: When 1/2 ≤ µi, µ
′
i ≤ 1/2, then |g(µ′

i)− g(µi)| = g(µi)− g(µ′
i) ≤

√
2(h(µi)− h(µ′

i)).

h(µi)− h(µ′
i) = (h(µi)− h(1/2)) + (h(µ′

i)− h(1/2))

≤ µi − 1/2√
1− µi

+ 2
1/2− µ′

i√
1/2

≤ µi − µ′
i√

1− µi
+ 2

µi − µ′
i√

1− µi

≤ 3
|µ′

i − µi|√
µi(1− µi)

,

where the first inequality uses the results for 1/2 ≤ µ′
i ≤ µi and for µ′

i ≤ µi ≤ 1/2, the second
inequality uses the relation that µ′

i ≥ 1/2 and 1− µi ≥ 1/2. So |g(µ′
i)− g(µi)| ≤ 3

√
2

|µ′
i−µi|√

(1−µi)µi

.
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By above cases, we have |g(µ′
i)−g(µi)| ≤ 3

√
2

|µ′
i−µi|√

(1−µi)µi

. Putting back this inequality into Eq. (27),

we have

|r(S;µ′)− r(S;µ)| ≤ 3
√
2γg

√√√√∑
i∈S

(
|µ′

i − µi|√
(1− µi)µi

)2

. (28)

For the |r(S;µ′′)− r(S;µ′)| term,

We can use the gradient theorem to bound,

|r(S;µ′′)− r(S;µ′)| =

∣∣∣∣∣
∫ µ′′

x=µ′
∇r(S;x) · dx

∣∣∣∣∣
≤ sup

x
∥∇r(S;x)∥∞

∑
i∈S

|µ′′
i − µ′

i|

≤ γ∞
∑
i∈S

|ηi|. (29)

Combining Eq. (28) and Eq. (29), we conclude the lemma. ■

C Regret Analysis for CMAB-T with TPVM Bounded Smoothness (Proofs
Related to Theorem 1)

In this section, we provide detailed proofs for Theorem 1 and give some discussions for the
distribution-independent regret bounds as well as the lower bound results.

For the structure of this section, we first introduce some useful tools in Appendix C.1 that will be
helpful for our analysis. Next we transform the total regret to the regret terms filtered by some events
in Appendix C.2. Then we provide regret bounds for all these regret terms. For these regret terms, we
give two different proofs for the leading regret term: the proof giving Theorem 1 that uses the reverse
amortization trick (see Eq. (62) and Eq. (73)) are in Appendix C.3, while the proof Appendix C.4
directly follows [23]. Recall that former proof improves the latter by a factor of O(logK) and readers
can skip the latter one if you are not interested. It is notable that this trick can be used to improve
Degenne and Perchet [11], Merlis and Mannor [23], Perrault et al. [25] in a similar way, owing
to the fact that their error terms have the similar form as ours shown in Eq. (48) (except without
triggering probability modulation). Lastly, we summarize the detailed distribution-dependent regret,
distribution-independent regret bounds and lower bounds in Appendix C.5.

C.1 Useful Concentration Bounds, Definitions and Inequalities
We use the following tail bound for the construction of the confidence radius and our analysis.
Lemma 4 (Empirical Bernstein Inequality [2]). Let (Xi)i∈[n] be n i.i.d random variables with
bounded support [0, 1] and mean E[Xi] = µ. Let X̂n ≜ 1

n

∑
i∈[n] Xi and V̂n ≜ 1

n

∑
i∈[n](Xi−X̂n)

2

be the empirical mean and empirical variance of (Xi)i∈[n]. Then for any n ∈ N and y > 0, it holds
that

Pr

|X̂n − µ| ≥

√
2V̂ny

n
+

3y

n

 ≤ 3e−y (30)

We use the following Bernstein Inequality to bound the difference between the empirical variance
and the true variance.
Lemma 5 (Bernstein Inequality [12]). Let (Xi)i∈[n] be n independent random variables in [0, 1]

with mean E[Xi] = µ and variance Var[Xi] ≜ E[X2
i ]− (E[Xi])

2 = V . Then with probability 1− δ:

1

n

∑
i∈[n]

Xi ≤ µ+
2 log 1/δ

3n
+

√
2V log 1/δ

n
. (31)
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Similar to [29], we define the event-filtered regret, the triggering group, the counter, the nice triggering
event and the nice sampling event to help our analysis.
Definition 2 (Event-Filtered Regret). For any series of events (Et)t≥[T ] indexed by round number
t, we define the RegAα,µ(T, (Et)t≥[T ]) as the regret filtered by events (Et)t≥[T ], or the regret is only
counted in t if E happens in t. Formally,

RegAα,µ(T, (Et)t≥[T ]) = E

∑
t∈[T ]

I(Et)(α · r(S∗;µ)− r(St;µ))

 . (32)

For simplicity, we will omit A,α,µ, T and rewrite RegAα,µ(T, (Et)t≥[T ]) as Reg(T, Et) when contexts
are clear.
Definition 3 (Triggering Probability (TP) group). For any arm i and index j, define the triggering
probability (TP) group (of actions) as

SDi,j = {S ∈ S : 2−j < pD,S
i ≤ 2−j+1}. (33)

Notice {SDi,j} forms a partition of {S ∈ S : pD,S
i }.

Definition 4 (Counter). For each TP group Si,j , we define a counter Ni,j which is initialized to 0. In
each round t, if the action St is chosen, then we update Ni,j to Ni,j + 1 for (i, j) that St ∈ SD

i,j . We
also denote Ni,j at the end of round t as Nt,i,j . Formally, we have the following recursive equation
to define Nt,i,j as follows:

Nt,i,j =


0, if t = 0

Nt−1,i,j + 1, if t > 0 and St ∈ SD
i,j

Nt−1,i,j , otherwise.
(34)

Definition 5 (Nice triggering event N t
t ). Given a series integers {jmax

i }i∈[m], we say that the
triggering is nice at the beginning of round t, if for every triggered group identified by (i, j), as long
as 6 ln t

1
3Nt−1,i,j2−j ≤ 1, there is Tt−1,i ≥ 1

3Nt−1,i,j · 2−j . We denote this event as N t
t .

Lemma 6 (Appendix B.1, Lemma 4 [29]). For a series of integers (jmax
i )i∈[m], we have Pr[¬N t

t ] ≤∑
i∈[m] j

max
i t−2 for every round t ∈ [T ].

Proof. We refer the readers to Lemma 4 in Appendix B.1 from Wang and Chen [29] for detailed
proofs. ■

Definition 6. We say that the sampling is nice at the beginning of round t if: (1) for every base arm

i ∈ [m], |µ̂t−1,i − µi| ≤ ρt,i, where ρt,i =

√
6V̂t−1,i log t

Tt−1,i
+ 9 log t

Tt−1,i
; (2) for every base arm i ∈ [m],

V̂t−1,i ≤ 2µi(1− µi) +
3.5 log t
Tt−1,i

. We denote such event as N s
t .

The following lemma bounds the probability that N s
t does not happen.

Lemma 7. For each round t, Pr[¬N s
t ] ≤ 4mt−2.

Proof. Let N s,1
t ,N s,2

t be the event (1) and event (2), where N s
t = N s,1

t

⋂
N s,2

t . We first bound the
probability that N s,1

t does not happen, we have

Pr[¬N s,1
t ] = Pr

∃i ∈ [m] s.t. |µ̂t−1,i − µi| >

√
6V̂t−1,i log t

Tt−1,i
+

9 log t

Tt−1,i

 (35)

≤
∑
i∈[m]

∑
τ∈[t]

Pr

|µ̂t−1,i − µi| >

√
6V̂t−1,i log t

τ
+

9 log t

τ
, Tt−1,i = τ

 (36)

≤ 3mt−2, (37)
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where Eq. (36) is due to the union bound over i, τ , Eq. (37) is due to Lemma 4 by setting y = 3 log t

and when Tt−1,i = τ, µ̂t−1,i and V̂t−1,i are the empirical mean and empirical variance of τ i.i.d
random variables with mean µi.

We then bound the probability that second event N s,2
t does not happen using the similar proof of [23,

Eq. (7)]. Fix Tt−1,i = τ and consider (Y 1
i , ..., Y

τ
i ), where Y k

i = (Xk
i − µi)

2 ∈ [0, 1] and Xk
i is the

random outcome of the k-th i.i.d trial. Since Xk
i are independent across k, Y k

i are independent across
k as well. In this case, one can verify that V̂t−1,i =

1
τ

∑τ
k=1(X

k
i − µi)

2 − ( 1τ
∑τ

k=1 X
k
i − µi)

2 ≤
1
τ

∑τ
k=1(X

k
i − µi)

2 = 1
τ

∑τ
k=1 Y

k
i ; E[Y k

i ] = E[(Xk
i )

2] − µ2
i ≤ E[Xk

i ] · 1 − µ2
i = (1 − µi)µi;

and Var[Yi] = E[(Y k
i )2]− (E[Y k

i ])2 ≤ E[(Y k
i )2] ≤ E[Y k

i ] ≤ (1− µi)µi. By Lemma 5 over τ i.i.d
random variable (Y k

i )k∈τ , it holds with probability at least 1− t−3 that

1

τ

τ∑
k=1

Y k
i ≤ E[Y k

i ] +
2 log t

τ
+

√
6Var[Y k

i ] log t

τ
(38)

This implies

V̂t−1,i ≤
1

τ

τ∑
k=1

Y k
i ≤ E[Y k

i ] +
2 log t

τ
+

√
6Var[Y k

i ] log t

τ
(39)

≤ µi(1− µi) +
2 log t

τ
+

√
6(1− µi)µi log t

τ
(40)

≤ µi(1− µi) +
2 log t

τ
+ µi(1− µi) +

3 log t

2τ
(41)

= 2µi(1− µi) +
3.5 log t

τ
(42)

where Eq. (40) is using 2ab ≤ a2 + b2 and a =
√
2µi(1− µi), b =

√
3 log t

n .

Now by applying union bound over i ∈ [m] and τ ∈ [t], we have Pr[¬N s,2
t ] ≤ mt−2. Lastly,

applying union bound over N s,1
t and N s,2

t , we have Pr[¬N s
t ] ≤ 4mt−2. ■

After setting up all above definitions, we can prove Lemma 8 about the confidence radius, which
appears in the main content.
Lemma 8. Fix every base arm i and every time t, with probability at least 1− 4mt−3, it holds that

µi ≤ µ̄t,i ≤ min{µi + 2ρt,i, 1} ≤ min

{
µi + 4

√
3

√
µi(1− µi) log t

Tt−1,i
+

28 log t

Tt−1,i
, 1

}
. (43)

Proof. Recall that µ̄t,i = min{µ̂t−1,i + ρt,i, 1} = min{µ̂t−1,i +

√
6V̂t−1,i log t

Tt−1,i
+ 9 log t

Tt−1,i
, 1}. Under

event Ns,1
t , we have |µi − µ̂t,i| ≤ ρt,i by Lemma 7, hence the first and the second inequality in

Lemma 8 holds.

For the last inequality, under event Ns,2
t , it holds that

µi + 2ρt,i = µi + 2

√6V̂t−1,i log t

Tt−1,i
+

9 log t

Tt−1,i

 (44)

≤ µi + 2


√√√√6 · (2µi(1− µi) +

3.5 log t
Tt−1,i

) log t

Tt−1,i
+

9 log t

Tt−1,i

 (45)

≤ µi + 4
√
3

√
µi(1− µi) log t

Tt−1,i
+ 2
√
21

log t

Tt−1,i
+

18 log t

Tt−1,i
(46)
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≤ µt−1,i + 4
√
3

√
µi(1− µi) log t

Tt−1,i
+

28 log t

Tt−1,i
, (47)

where Eq. (46) uses
√
a+ b ≤

√
a+
√
b.

Since N s
t = N s,1

t

⋂
N s,2

t and by Lemma 7, Eq. (43) holds with probability at least 1− 4mt−2. ■

C.2 Decompose the Total Regret to Event-Filtered Regrets
In this section, we decompose the regret Reg(T, {}) = Reg(T,N s

t ,N o
t )+Reg(T,¬(N s

t

⋂
N o

t )) ≤
Reg(T,N s

t ,N o
t )+Reg(T,¬N s

t )+Reg(T,¬N o
t ), whereN s

t is defined in Definition 6,N o
t denotes

the event where oracle successfully outputs an α-approximate solution (with probability at least β).
We have the following lemma to do the decomposition.
Lemma 9. [Leading Regret Term] Let r(S;µ) be TPVM smoothness with coefficients (Bv, B1, λ),
and define the error term

et(St) = 4
√
3Bv

√√√√∑
i∈S̃t

(
log t

Tt−1,i
∧ 1

28
)(pD,St

i )λ + 28B1

∑
i∈S̃t

(
log t

Tt−1,i
∧ 1

28
)(pD,St

i ) (48)

and event Et = I{∆St ≤ et(St)}. The regret of Algorithm 1, when used with (α, β) approximation
oracle is bounded by

Reg(T ) ≤ Reg(T,Et) +
2π2

3
m∆max. (49)

Proof. Under event N s
t ,N o

t , by Lemma 8, it is easily to check that

µ̄t,i ≤ min{µt−1,i + 4
√
3

√
µi(1− µi) log t

Tt−1,i
+

28 log t

Tt−1,i
, 1}

≤ µt−1,i + 4
√
3

√
µi(1− µi)(

log t

Tt−1,i
∧ 1

28
) + 28(

log t

Tt−1,i
∧ 1

28
) (50)

Therefore, it holds that

αr(S∗;µ) ≤ αr(S∗; µ̄t) ≤ r(St; µ̄t) (51)

≤ r(St;µ) + 4
√
3Bv

√√√√∑
i∈S̃t

(
log t

Tt−1,i
∧ 1

28
)(pD,St

i )λ + 28B1

∑
i∈S̃t

(
log t

Tt−1,i
∧ 1

28
)(pD,St

i ),

(52)

where the first inequality in Eq. (51) is due to monotonicity condition (Condition 1) and second
inequality in Eq. (51) is due to event N o

t , Eq. (52) is because of Eq. (50) and the TPVM condition

(Condition 3) by plugging in ζi = 4
√
3
√
µi(1− µi)(

log t
Tt−1,i

∧ 1
28 ) and ηi = 28( log t

Tt−1,i
∧ 1

28 ).

So Reg(T,N s
t ,N o

t ) ≤ Reg(T,Et). Now for Reg(T,¬N s
t ), by Lemma 7 it holds that

Reg(T,¬N s
t ) ≤

T∑
t=1

Pr[¬N s
t ] ≤

T∑
t=1

4mt−2 ≤ 2π2

3
m∆max. (53)

Similarly by definition, it holds that

Reg(T,¬N o
t ) ≤ (1− β)T∆max. (54)

Therefore Reg(T, {}) ≤ Reg(T,Et) +
2π2

3 m∆max + (1 − β)T∆max. And we have Reg(T ) =

Reg(T, {})− (1− β)T∆max ≤ Reg(T,Et) +
2π2

3 ∆max, which concludes Lemma 9.

■
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Recall that event Et = {∆St ≤ et(St)}, where et(St) = 4
√
3Bv

√∑
i∈S̃t

( log t
Tt−1,i

∧ 1
28 )(p

D,St

i )λ +

28B1

∑
i∈S̃t

( log t
Tt−1,i

∧ 1
28 )(p

D,St

i ). We will further decompose the event-filtered regret Reg(T,Et)

into two event-filtered regret Reg(T,Et,1) and Reg(T,Et,2),
Reg(T,Et) ≤ Reg(T,Et,1) +Reg(T,Et,2), (55)

where Et,1 = {∆St ≤ 2et,1(St)}, Et,2 = {∆St ≤ 2et,2(St)}, et,1(St) =

4
√
3Bv

√∑
i∈S̃t

( log t
Tt−1,i

∧ 1
28 )(p

D,St

i )λ,et,2(St) = 28B1

∑
i∈S̃t

( log t
Tt−1,i

∧ 1
28 )(p

D,St

i ). The above
inequality holds since the following facts: We can observe et,1(St) + et,2(St) = et(St). From
Et, we know either Et,1 holds or Et,2 holds. So Et implies that 1 ≤ I{Et,1} + I{Et,2}, and
thus ∆St

I{Et} ≤ ∆St
I{Et,1} + ∆St

I{Et,2}, which concludes Reg(T,Et) ≤ Reg(T,Et,1) +
Reg(T,Et,2). The next two sections will provide two different proofs for Reg(T,Et,1), Reg(T,Et,2)
separately, where the second improves the first by a factor of O(logK).

C.3 Our Improved Analysis Using the Reverse Amortized Trick
In this section, we are going to bound the Reg(T,Et,1) and Reg(T,Et,2) separately under the event
N t

t , similar to Appendix C.4. The idea is to use a refined reverse amortization trick originated in [29]
and to allocate the regret ∆St

to each base arm according to carefully designed thresholds. Note that
it is highly non-trivial to derive the right thresholds and regret allocation strategy so that the K,T
factors are as small as possible, which is our main contribution.

C.3.1 Upper bound for Reg(T,Et,1)
We first break Reg(T,Et,1) into two parts and bound them separately: Reg(T,Et,1

⋂
N t

t ) and
Reg(T,¬N t

t ).

For Reg(T,Et,1

⋂
N t

t ), under the eventN t
t , let c1 = 4

√
3 and we set jmax

i = 1
λ (⌈log2

c21B
2
vK

(∆min
i )2
⌉+1).

We first define a regret allocation function

κi,j,T (ℓ) =



c21B
2
v2

(−j+1)(λ−1)

∆min
i

, if ℓ = 0 and j ≤ jmax
i ,

2

√
24c21B

2
v2

(−j+1)(λ−1) log T
ℓ , if 1 ≤ ℓ ≤ Li,j,T,1 and j ≤ jmax

i ,
48c21B

2
v2

(−j+1)(λ−1) log T

∆min
i

1
ℓ , if Li,j,T,1 < ℓ ≤ Li,j,T,2 and j ≤ jmax

i ,

0, if ℓ > Li,j,T,2 or j > jmax
i ,

(56)

where Li,j,T,1 =
24c21B

2
v2

(−j+1)(λ−1) log T

(∆min
i )2

, Li,j,T,2 =
48c21B

2
v2

(−j+1)(λ−1)K log T

(∆min
i )2

.

Lemma 10. For any time t ∈ [T ], if N t
t and Et,1 hold, we have

∆St ≤
∑
i∈S̃t

κ
i,j

St
i ,T

(N
t−1,i,j

St
i
), (57)

where jSt
i is the index of the triggering group Si,j such that 2−j

St
i < pD,St

i ≤ 2−j
St
i +1.

Proof. By event Et,1, which is defined in Eq. (48), we apply the reverse amortization (Eq. (62))

∆St
≤
∑
i∈S̃t

4c21B
2
v(p

D,St

i )λ min{ log t
Ti,t−1

, 1
28}

∆St

(58)

≤ −∆St
+ 2

∑
i∈S̃t

4c21B
2
v(p

D,St

i )λ min{ log t
Ti,t−1

, 1
28}

∆St

(59)

≤
∑
i∈S̃t

(
8c21B

2
v(p

D,St

i )λ min{ log t
Ti,t−1

, 1
28}

∆St

− ∆St

|S̃t|

)
(60)

≤
∑
i∈S̃t


8c21B

2
v(p

D,St

i )λ min{ log t

1
3Nt−1,i,j

St
i

2−j
St
i

, 1
28}

∆St

− ∆St

|S̃t|

 (61)
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≤
∑
i∈S̃t


8c21B

2
v(2

−j
St
i +1)λ min{ log t

1
3Nt−1,i,j

St
i

2−j
St
i

, 1
28}

∆St

− ∆St

K


︸ ︷︷ ︸

(62,i)

, (62)

where Eq. (58) is by the definition of Et,1 which says ∆2
St
≤
∑

i∈S̃t
4c21B

2
v(p

D,St

i )λ min{ log t
Ti,t−1

, 1
28}

and by dividing both sides by ∆St
> 0, Eq. (59) is because we double the LHS and RHS of Eq. (58)

at the same time and then put one into the RHS, Eq. (60) is by putting −∆St
inside the summation,

Eq. (61) is due to the same reason of Eq. (76) under event N t
t , Eq. (62) is due to pD,St

i ≤ 2−j
St
i +1

given by the definition of jSt
i and |S̃t| ≤ K.

Note that the Eq. (59) is called the reverse amortization trick, since we allocate two times of the total
regret and then minus the ∆St term to amortize the regret when ℓ > Li,j,T,2 or j > jmax

i in Eq. (57),
which saves the analysis for arms that are sufficiently triggered. Now we bound (62, i) under different
cases.

When j > jmax
i ,

we have (62, i) ≤ 8c21B
2
v(2

−j
St
i

+1)λ

∆St
· 1
28 −

∆St

K ≤ 8c21B
2
v

∆St

(∆min
i )2

c21B
2
vK
· 1
28 −

∆St

K ≤ ∆min
i

K · 8
28 −

∆St

K ≤
0 = κ

i,j
St
i ,T

(N
t−1,i,j

St
i
).

When N
t−1,i,j

St
i

> L
i,j

St
i ,T,2

,

we have (62, i) ≤ 8c21B
2
v(2

−j
St
i

+1)λ log t

1
3Nt−1,i,j

St
i

·2−j
St
i ∆St

− ∆St

K ≤ 48c21B
2
v2

(−j
St
i

+1)(λ−1) log T
∆St

1
N

t−1,i,j
St
i

− ∆St

K <

(∆min
i )2

K∆St
− ∆St

K ≤ 0 = κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

When L
i,j

St
i ,T,1

< N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,2

and j ≤ jmax
i ,

We have (62, i) ≤ 8c21B
2
v(2

−j
St
i

+1)λ log t

1
3Nt−1,i,j

St
i

2−j
St
i ∆St

− ∆St

K ≤ 48c21B
2
v2

(−j
St
i

+1)(λ−1) log T
∆St

1
N

t−1,i,j
St
i

− ∆St

K <

48c21B
2
v2

(−j
St
i

+1)(λ−1) log T
∆St

1
N

t−1,i,j
St
i

≤ 48c21B
2
v2

(−j
St
i

+1)(λ−1) log T

∆min
i

1
N

t−1,i,j
St
i

= κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

When N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,1

and j ≤ jmax
i ,

We further consider two different cases N
t−1,i,j

St
i

≤ 24c21B
2
v2

(−j
St
i

+1)(λ−1) log T
(∆St )

2 or

24c21B
2
v2

(−j
St
i

+1)(λ−1) log T
(∆St )

2 < N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,1

=
24c21B

2
v2

(−j
St
i

+1)(λ−1) log T

(∆min
i )2

.

For the former case, if there exists i ∈ S̃t so that N
t−1,i,j

St
i
≤ 24c21B

2
v2

(−j
St
i

+1)(λ−1) log T
(∆St )

2 , then

we know
∑

q∈S̃t
κ
i,j

St
q ,T

(N
t−1,q,j

St
q
) ≥ κ

i,j
St
i ,T

(N
t−1,i,j

St
i
) = 2

√
24c21B

2
v2

(−j
St
i

+1)(λ−1) log T
N

t−1,i,j
St
i

≥

2∆St > ∆St , which makes Eq. (57) holds no matter what. This means we do not need to consider
this case for good.

For the later case, when 24c21B
2
v2

(−j
St
i

+1)(λ−1) log T
(∆St )

2 < N
t−1,i,j

St
i

,

we know that (62, i) ≤ 48c21B
2
v2

(−j
St
i

+1)(λ−1) log T
∆St

1
N

t−1,i,j
St
i

=
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2

√
24c21B

2
v2

(−j
St
i

+1)(λ−1) log T
(∆St )

2
1

N
t−1,i,j

St
i

√
24c21B

2
v2

(−j
St
i

+1)(λ−1) log T
N

t−1,i,j
St
i

≤

2

√
24c21B

2
v2

(−j
St
i

+1)(λ−1) log T
N

t−1,i,j
St
i

= κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

When ℓ = 0 and j ≤ jmax
i ,

We have (62, i) ≤ 8c21B
2
v(2

−j
St
i

+1)λ

∆St
· 1

28 −
∆St

K ≤ c21B
2
v(2

−j
St
i

+1)λ

∆St
≤ c21B

2
v(2

−j
St
i

+1)λ

∆min
i

=

κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

Combining all above cases, we have ∆St
≤
∑

i∈S̃t
κ
i,j

St
i ,T

(N
t−1,i,j

St
i
). ■

Since N
t,i,j

St
i

is increased if and only if i ∈ S̃t and consider all possible Nt,i,jSi
where

κi,jSi ,T (S,Nt−1,i,jS ) > 0, we have

Reg(T,Et,1

⋂
N t

t )

≤
∑
t∈[T ]

∑
i∈S̃t

κ
i,j

St
i ,T

(Nt−1,i,jSt ) (63)

≤
∑
i∈[m]

jmax
i∑
j=1

c21B
2
v(2

−j+1)λ

∆min
i

+
∑
i∈[m]

jmax
i∑
j=1

Li,j,T,1∑
ℓ=1

2

√
24c21B

2
v2

(−j+1)(λ−1) log T

ℓ

+
∑
i∈[m]

jmax
i∑
j=1

Li,j,T,2∑
Li,j,T,1+1

48c21B
2
v2

(−j+1)(λ−1) log T

∆min
i

1

ℓ
(64)

≤
∑
i∈[m]

jmax
i∑
j=1

c21B
2
v(2

−j+1)λ

∆min
i

+
∑
i∈[m]

jmax
i∑
j=1

96c21B
2
v2

(−j+1)(λ−1) log T

∆min
i

+
∑
i∈[m]

jmax
i∑
j=1

48c21B
2
v2

(−j+1)(λ−1) log T

∆min
i

(1 + logK) (65)

=
∑
i∈[m]

jmax
i∑
j=1

c21B
2
v(2

−j+1)λ

∆min
i

+
∑
i∈[m]

jmax
i∑
j=1

48c21B
2
v2

(−j+1)(λ−1) log T

∆min
i

(3 + logK) (66)

When λ > 1, we have Reg(T,Et,1

⋂
N t

t ) ≤
∑

i∈[m]

∑∞
j=1

c21B
2
v2

−j+1

∆min
i

+∑
i∈[m]

∑∞
j=1

48c21B
2
v2

(−j+1)(λ−1) log T

1−2(λ−1)∆min
i

(3 + logK) =
∑

i∈[m]
2c21B

2
v

∆min
i

+
∑

i∈[m]
48c21B

2
v log T

∆min
i

(3 +

logK).

When λ = 1, we have Reg(T,Et,1

⋂
N t

t ) ≤
∑

i∈[m]

∑∞
j=1

c21B
2
v2

−j+1

∆min
i

+∑
i∈[m] j

max
i

48c21B
2
v log T

∆min
i

(3+logK) =
∑

i∈[m]
2c21B

2
v

∆min
i

+
∑

i∈[m] log
c21B

2
vK

(∆min
i )2

48c21B
2
v log T

∆min
i

(3+logK).

Similar to Eq. (96), with additional Reg(T,¬N t
t ), we have the following inequality holds:

When λ > 1, we have Reg(T,Et,1) ≤
∑

i∈[m]
2c21B

2
v

∆min
i

+
∑

i∈[m]
48c21B

2
v log T

∆min
i

(3 + logK) +

mπ2

6 log2

(
c21B

2
vK

λ(∆min)2

)
∆max.

When λ = 1, we have Reg(T,Et,1) ≤
∑

i∈[m]
2c21B

2
v

∆min
i

+
∑

i∈[m] log
c21B

2
vK

(∆min
i )2

48c21B
2
v log T

∆min
i

(3+logK)+

mπ2

6 log2

(
c21B

2
vK

(∆min)2

)
∆max.
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C.3.2 Upper bound for Reg(T,Et,2)
As usual, we first break Reg(T,Et,2) into two parts and bound them separately: Reg(T,Et,2

⋂
N t

t )
and Reg(T,¬N t

t ).

For Reg(T,Et,2

⋂
N t

t ), under the event N t
t , let c2 = 28 be a constant and K = maxS∈S |S̃|. We

set jmax
i = ⌈log2 4B1c2K

∆min
i
⌉+ 1. We first define a regret allocation function

κi,j,T (ℓ) =


∆max

i , if 0 ≤ ℓ ≤ Li,j,T,1 and j ≤ jmax
i

24c2B1 log T
ℓ , if Li,j,T,1 < ℓ ≤ Li,j,T,2 and j ≤ jmax

i

0, if ℓ > Li,j,T,2 + 1 or j > jmax
i ,

(67)

where Li,j,T,1 = 24c2B1 log T
∆max

i
, Li,j,T,2 = 24c2B1K log T

∆min
i

.

Lemma 11. For any time t ∈ [T ], if N t
t and Et,2 hold, we have

∆St
≤
∑
i∈S̃t

κ
i,j

St
i ,T

(N
t−1,i,j

St
i
), (68)

where jSt
i is the index of the triggering group Si,j such that 2−j

St
i < pD,St

i ≤ 2−j
St
i +1.

Proof. By event Et,2, we have

∆St
≤
∑
i∈S̃t

2c2B1p
D,St

i min{ log t

Ti,t−1
,
1

28
} (69)

≤ −∆St + 2
∑
i∈S̃t

2c2B1p
D,St

i min{ log t

Ti,t−1
,
1

28
} (70)

≤
∑
i∈S̃t

(
4c2B1p

D,St

i min{ log t

Ti,t−1
,
1

28
} − ∆St

|S̃t|

)
(71)

≤
∑
i∈S̃t

4c2B1p
D,St

i min{ log t
1
3Nt−1,i,j

St
i
2−j

St
i

,
1

28
} − ∆St

|S̃t|

 (72)

≤
∑
i∈S̃t

4c2B12
−j

St
i +1 min{ log t

1
3Nt−1,i,j

St
i
2−j

St
i

,
1

28
} − ∆St

K


︸ ︷︷ ︸

(73,i)

, (73)

where Eq. (69) is by the definition of Et,1 which says ∆St
≤
∑

i∈S̃t
2c2B1p

D,St

i min{ log t
Ti,t−1

, 1
28}

and by dividing both sides by ∆St > 0, Eq. (70) is because we double the LHS and RHS of Eq. (69)
at the same time and then put one into the RHS, Eq. (71) is by putting −∆St inside the summation,
Eq. (72) is due to the same reason of Eq. (76) under event N t

t , Eq. (73) is due to pD,St

i ≤ 2−j
St
i +1

given by the definition of jSt
i and |S̃| ≤ K.

Similar to Eq. (73), Eq. (70) is called the reverse amortization. Now we bound (73, i) under different
cases.

When j > jmax
i ,

we have (73, i) ≤ 4c2B12
−j

St
i +1 − ∆St

K ≤ 4c2B1
∆min

i

c2B1K
− ∆St

K ≤ ∆min
i

K
4
28 −

∆St

K ≤ 0 =

κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

When N
t−1,i,j

St
i

> L
i,j

St
i ,T,2

,

we have (73, i) ≤ 4c2B12
−j

St
i +1 log t

1
3Nt−1,i,j

St
i

2−j
St
i

− ∆St

K ≤ 24c2B1 log T
N

t−1,i,j
St
i

− ∆St

K <
∆min

i

K − ∆St

K ≤

0 = κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).
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When N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,2

and j ≤ jmax
i ,

We have (73, i) ≤ 4c2B12
−j

St
i +1 log t

1
3Nt−1,i,j

St
i

2−j
St
i

− ∆St

K = 24c2B1 log T
N

t−1,i,j
St
i

− ∆St

K < 24c2B1 log T
N

t−1,i,j
St
i

=

κ
i,j

St
i ,T

(N
t−1,i,j

St
i
).

When N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,1

and j ≤ jmax
i ,

If there exists i ∈ S̃t so that N
t−1,i,j

St
i
≤ L

i,j
St
i ,T,1

=, then we know
∑

q∈S̃t
κ
i,j

St
q ,T

(N
t−1,q,j

St
q
) ≥

κ
i,j

St
i ,T

(N
t−1,i,j

St
i
) = ∆max

i ≥ ∆St , which makes Eq. (68) holds no matter what. This means we
do not need to consider this case for good.

Combining all above cases, we have ∆St
≤
∑

i∈S̃t
κ
i,j

St
i ,T

(N
t−1,i,j

St
i
). ■

Since N
t,i,j

St
i

is increased if and only if i ∈ S̃t and consider all possible i, jSi and Nt,i,jSi
where

κi,jSi ,T (Nt−1,i,jS ) > 0, we have

Reg(T,Et,2

⋂
N t

t )

≤
∑
t∈[T ]

∑
i∈S̃t

κ
i,j

St
i ,T

(Nt−1,i,jSt )

≤
∑
i∈[m]

jmax
i∑
j=0

Li,j,T,1∑
ℓ=1

∆max
i +

∑
i∈[m]

jmax
i∑
j=1

Li,j,T,2∑
Li,j,T,1+1

24c2B1 log T

ℓ

≤
∑
i∈[m]

jmax
i∑
j=1

24c2B1 log T +
∑
i∈[m]

jmax
i∑
j=1

24c2B1 log(
K∆max

i

∆min
i

) log T

=
∑
i∈[m]

jmax
i∑
j=1

24c2B1

(
1 + log(

K∆max
i

∆min
i

)

)
log T

≤
∑
i∈[m]

24c2B1

(
log2

B1c2K

∆min
i

)(
1 + log(

K∆max
i

∆min
i

)

)
log T

Similar to Eq. (96), with additional Reg(T,¬N t
t ), we have

We have Reg(T,Et,2) ≤
∑

i∈[m] 24c2B1

(
log2

B1c2K
∆min

i

)(
1 + log(

K∆max
i

∆min
i

)
)
log T +

mπ2

6 log2
4B1c2K
∆min

i
∆max.

C.4 The Proof Following [23] Using Infinitely Many Events With an Additional Factor of
O(logK)

Now we can separately bound these two event-filtered regrets. Recall that S̃t = {i ∈ [m] :

pD,St

i > 0} is the set of arms that could be triggered in round t. Let K = maxt∈[T ] |S̃t| be the
maximum number of base arms that can be triggered in any rounds. In round t, given base arm
i and action St, we denote jSt

i to be the corresponding index of the triggering group Si,j so that
2−j

St
i < pD,St

i ≤ 2−j
St
i +1. Our strategy is to find (perhaps infinitely many) events that must happen

when Et,1 (or Et,2) happens. Then we can show that the number of times these events can happen
are bounded or otherwise Et,1 (or Et,2) will not hold anymore.

C.4.1 Upper bound for Reg(T,Et,1)
To upper bound Reg(T,Et,1), we bound it by Reg(T,Et,1) ≤ Reg(T,Et,1

⋂
N t

t ) +Reg(T,¬N t
t ).

In the following, we will consider to first bound Reg(T,Et,1

⋂
N t

t ) and then Reg(T,¬N t
t ).

Recall that et,1(St) = 4
√
3Bv

√∑
i∈S̃t

( log t
Tt−1,i

∧ 1
28 )(p

D,St

i )λ. Let c1 = 4
√
3 be a constant and

Ot = {i ∈ S̃t : jSt
i ≤ jmax

i } be the set of base arms whose triggering probabilities are not too
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small, where the threshold jmax
i = 1

λ (⌈log2
c21B

2
vK

(∆min
i )2
⌉ + 1). Let α1 > α2 > ... > αk > ... > α∞

and 1 = β0 > β1 > ... > βk > ... > β∞ be two infinite sequences of positive numbers that are
decreasing and converge to 0, which will be used later to define specific set of base arms (At,k)

∞
k=1

and events (Gt,k)
∞
k=1.

For positive integers k and t, we define At,k = {i ∈ S̃t : N
t−1,i,j

St
i
≤ αk

g(K,∆St )f(t)

∆2
St

, jSt
i ≤

jmax
i } = {i ∈ S̃t ∩ OSt

: N
t−1,i,j

St
i
≤ αk

g(K,∆St )f(t)

∆2
St

}, which is the set of arms in S̃t that are

counted less that a threshold and whose triggering probabilities are not too small, where g(K,∆St)
and f(t) are going to be tuned for later use. Moreover, we define the complementary set Āt,k = {i ∈
S̃t ∩Ot : Nt−1,i,j

St
i

> αk
g(K,∆St )f(t)

∆2
St

}.

Now we are ready to define the events Gt,k = {|At,k| ≥ βkK;∀h < k, |At,h| < βhK}. Note
that Gt,k is true when at least βkK arms triggered are in the set At,k but less than βhK arms
triggered are in the set At,h for h < k. Let Gt =

⋃∞
k=1 Gt,k and by definition its complementary

Gt = {|At,k| < βkK,∀k ≥ 1}. We first introduce a lemma saying that if there exists k0 > 0 such
that βk0

is smaller than 1/K, we can safely use finite many events to conclude infinitely many events.

Lemma 12. If there exists k0 such that βk0
≤ 1/K, then Gt =

⋃k0

k=1 Gt,k and Gt = {|At,k| <
βkK,∀1 ≤ k ≤ k0}.

Proof. Let k0 such that βk0 ≤ 1/K. THen for all k > k0, Gt,k = {|At,k| ≥ 1;∀h < k0, |At,h| ≤
Kβk;∀k0 ≤ h < k, |At,h| = 0}. But as the sequence of sets At,k is decreasing, {|At,k0 | = 0} and
{|At,k| ≥ 1} cannot happen at the same time. Thus, |At,k| cannot happen for k > k0. ■

Now we have the following lemma showing an upper bound of et,2(St) when Gt and N t
t happens.

Lemma 13. Under the event Gt and N t
t and if ∃ k0 such that βk0 ≤ 1/K, then

(et,1(St))
2 <

6c21B
2
v2

(−j
St
i +1)(λ−1) log t∆2

St
K

g(K,∆St
)f(t)

(

k0∑
k=1

βk−1 − βk

αk
+

βk0

αk0

) +
∆2

St

8
(74)

Proof.

(et,1(St))
2 =

∑
i∈S̃t

c21B
2
v(p

D,St

i )λ min{ log t

Ti,t−1
,
1

28
} (75)

≤
∑
i∈S̃t

c21B
2
v(p

D,St

i )λ min{ log t
1
3Nt−1,i,j

St
i
2−j

St
i

,
1

28
} (76)

≤
∑

i∈S̃t∩OSt

c21B
2
v(2

−j
St
i +1)λ

log t
1
3Nt−1,i,j

St
i
2−j

St
i

+
1

28

∑
i∈S̃t∩ŌSt

c21B
2
v(2

−jmax
i +1)λ

(77)

≤
∑

i∈S̃t∩OSt

6c21B
2
v2

(−j
St
i +1)(λ−1) log t

N
t−1,i,j

St
i

+
∑

i∈S̃t∩ŌSt

B2
vc

2
1

(∆min
i )2

8B2
vc

2
1K

(78)

≤
k0∑
k=1

∑
i∈Āt,k\Āt,k−1

6c21B
2
v2

(−j
St
i +1)(λ−1) log t

N
t−1,i,j

St
i

+
∆2

St

8
(79)

<

k0∑
k=1

6c21B
2
v2

(−j
St
i +1)(λ−1) log t∆2

St
|Āt,k\Āt,k−1|

αkg(K,∆St
)f(t)

+
∆2

St

8
(80)

<
6c21B

2
v2

(−j
St
i +1)(λ−1) log t∆2

St
K

g(K,∆St)f(t)
(

k0∑
k=1

βk−1 − βk

αk
+

βk0

αk0

) +
∆2

St

8
(81)
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where Equation (75) is by definition, Equation (76) holds because if ln t
1
3Ni,j,t−12−j > 1/28,

then min{ log t

1
3Nt−1,i,j

St
i

2−j
St
i

, 1/28} = 1/28 and thus larger than min{ log t
Tt−1,i

, 1/28}, else we have

6 log t

1
3Nt−1,i,j

St
i

2−j
St
i

< 6/28 < 1 and by N t
t we have Tt−1,i ≥ 1

3Nt−1,i,jSt · 2−jSt and thus

min{ log t
Tt−1,i

, 1/28} < log t

1
3Nt−1,i,j

St
i

2−j
St
i

, Eq. (77) is by considering Ot and Ōt , Equation (78) is

due to definition of jmax
i , Equation (79) is by setting k0 be the largest number that βk0

≤ 1/K,
Equation (80) is by definition of Āt,k, Equation (81) is due to the similar reason of Lemma 8 from
[11]. ■

Now we set g(K,∆St) = 2(−j
St
i +1)(λ−1)Kl, where l =

∑k0

k=1
βk−1−βk

αk
+

βk0

αk0
and f(t) =

48c21B
2
v log t. By Lemma 13, we can show that ∆St > 2et,1 under event Gt

⋂
N t

t . In other
words, under event N t

t , if Et,1 holds, then Gt must hold.

For any arm i, let arm related event Gt,k,i = Gt,k

⋂
{i ∈ S̃t, Nt−1,i,j

St
i
≤ αk

g(K,∆St )f(t)

∆2
St

, jSt
i ≤

jmax
i }. When Gt,k happens, we have I{Gt,k} ≤ 1

βkK

∑
i∈[m]{Gt,k,i}. We consider two cases when

λ > 1 and when λ = 1.

Case 1: When λ > 1

The Reg(T,Et,1

⋂
N t

t ) is bounded by,

Reg(T,Et,1

⋂
N t

t ) ≤
T∑

t=1

k0∑
k=1

∆St
I{Gt,k} (82)

≤
T∑
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k0∑
k=1

m∑
i=1

∆St

Kβk
I{Gt,k,i} (83)

≤
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k0∑
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1

Kβk

T∑
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∆St
I{i ∈ S̃t, Ni,j

St
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≤ θk2
(−j
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i +1)(λ−1)

∆2
St

, jSt
i ≤ jmax

i }

(with θk = αkKlf(t))

≤
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i=1

∞∑
j=1

k0∑
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1

Kβk

T∑
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∆StI{i ∈ S̃t, Ni,j
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i = j} (84)
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1

Kβk
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∆2
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(with ∆i,1 ≥ ∆i,2 ≥ ... ≥ ∆i,Di
) (85)
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∆St = ∆i,n, j
St
i = j} (87)

≤
m∑
i=1

∞∑
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k0∑
k=1

1

Kβk

T∑
t=1

Di∑
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St
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= ∆i,n,∆St

> 0, jSt
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≤
m∑
i=1

∞∑
j=1

k0∑
k=1

2(−j+1)(λ−1)

Kβk
(
θk
∆i,1

+ θk

Di∑
p=2

∆i,p(
1

∆2
i,p

− 1

∆2
i,p−1

)) (89)

=

m∑
i=1

∞∑
j=1

k0∑
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Kβk
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θk
∆i,Di

+ θk
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p=1

∆i,p −∆i,p+1

∆2
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) (90)

≤
m∑
i=1

∞∑
j=1

k0∑
k=1

2(−j+1)(λ−1)

Kβk
(
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∆i,Di

+ θk

∫ ∆i,1

∆i,Di

x−2dx) (91)

≤
m∑
i=1

∞∑
j=1

k0∑
k=1

2θk2
(−j+1)(λ−1)

Kβk∆i,Di

(92)

≤
m∑
i=1

(

k0∑
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2

1− 2−(λ−1)

1
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i

αk

βk
lf(T )) (93)

≤
m∑
i=1

(
480c21B

2
v

(1− 2−(λ−1))

)
⌈ logK
1.61

⌉2 log T
∆min

i

(94)

where Eq. (82) is because under event N t
t , if Et,1 holds then Gt must hold, Eq. (83) is because

I{Gt,k} ≤ 1
βkK

∑
i∈[m]{Gt,k,i}, Eq. (84) is by applying union bound over jSt

i = 1, ..., jmax
i ,

Eq. (85) is by considering Di gaps for ∆St
and applying union bounds, Eq. (86) is by dividing

N
i,j

St
i ,t−1

≤ θk2
(−j+1)(λ−1)

∆2
i,n

into non-overlapping sub-intervals, Eq. (87) is by extending summation
over p to Di, Eq. (88) is by replacing summation over n = 1, ..., Di to ∆St > 0, Eq. (89) is to
bound the number of times the event happen to the length of interval, Eq. (90) to Eq. (93) are math
calculation by replacing summation by integrals, Eq. (94) is similar to [11, Lemma 11, Appendix C]
by setting αk = βk = 0.2k and

∑k0
k=1

αk

βk
l ≤ 5⌈ logK

1.61 ⌉
2.

Case 2: When λ = 1 The only difference is we have to sum over j = 1 to j = jimax in Eq. (92),
instead of∞, so that we replace 1

(1−2−(λ−1))
to jimax = log2

(
c21B

2
vK

(∆min
i )2

)
. we can bound the following

inequality

Reg(T,Et,1 ∧N t
t ) ≤

m∑
i=1

(
480c21B

2
v

)
log2

(
c21B

2
vK
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i )2

)
⌈ logK
1.61

⌉2 log T
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i

(95)

Now for Reg(T,¬N t
t ), by Lemma 6,

Reg(T,¬N t
t ) ≤

T∑
t=1

∑
i∈[m]

jmax
i t−2∆max (96)

≤ mπ2

6
log2

(
c21B

2
vK

(∆min)2

)
∆max (97)

So we have when λ > 1,

Reg(T,Et,1) ≤
m∑
i=1

(
480c21B

2
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(1− 2−(λ−1))

)
⌈ logK
1.61

⌉2 log T
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i

+
mπ2

6
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(
c21B

2
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)
∆max; (98)

and when λ = 1,

Reg(T,Et,1) ≤
m∑
i=1

(
480c21B

2
v

)
log2

(
c21B

2
vK

(∆min
i )2

)
⌈ logK
1.61

⌉2 log T
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+
mπ2

6
log2

(
c21B

2
vK

(∆min)2

)
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(99)

C.4.2 Upper bound for Reg(T,Et,2)

Let c2 = 28 be a constant and Ot = {i ∈ S̃t : jSt
i ≤ jmax

i } be the set of base arms whose
triggering probabilities are not too small, where the threshold jmax

i = ⌈log2 4B1c2K
∆min

i
⌉ + 1. Let
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α1 > α2 > ... > αk > ... > α∞ and 1 = β0 > β1 > ... > βk > ... > β∞ be two infinite sequences
of positive numbers that are decreasing and converge to 0, which will be used later to define specific
set of base arms (At,k)

∞
k=1 and events (Gt,k)

∞
k=1.

For positive integers k and t, we define At,k = {i ∈ S̃t : N
t−1,i,j

St
i
≤ αk

g(K,∆St )f(t)

∆2
St

, jSt
i ≤

jmax
i } = {i ∈ S̃t ∩ OSt : N

t−1,i,j
St
i
≤ αk

g(K,∆St )f(t)

∆2
St

}, which is the set of arms in S̃t that are

counted less that a threshold and whose triggering probabilities are not too small, where g(K,∆St
)

and f(t) are going to be tuned for later use. Moreover, we define the complementary set Āt,k = {i ∈
S̃t ∩Ot : Nt−1,i,j

St
i

> αk
g(K,∆St )f(t)

∆2
St

}.

Now we are ready to define the events Gt,k = {|At,k| ≥ βkK;∀h < k, |At,h| < βhK}. Note
that Gt,k is true when at least βkK arms triggered are in the set At,k but less than βhK arms
triggered are in the set At,h for h < k. Let Gt =

⋃∞
k=1 Gt,k and by definition its complementary

Gt = {|At,k| < βkK,∀k ≥ 1}. We first introduce a lemma saying that if there exists k0 > 0 such
that βk0

is smaller than 1/K, we can safely use finite many events to conclude infinitely many events.

Lemma 14. If there exists k0 such that βk0 ≤ 1/K, then Gt =
⋃k0

k=1 Gt,k and Gt = {|At,k| <
βkK,∀1 ≤ k ≤ k0}.

Proof. By the same argument as Lemma 12, the lemma is proved. ■

Now we have the following lemma showing an upper bound of et,2(St) when Gt and N t
t happens.

Lemma 15. Under the event Gt and N t
t and if ∃ k0 such that βk0

≤ 1/K, then

et,2(St) <
6c2B1 log t∆

2
St
K

g(K,∆St
)f(t)

(

k0∑
k=1

βk−1 − βk

αk
+

βk0

αk0

) +
∆St

4
(100)

Proof.

et,2(St) =
∑
i∈S̃t

c2B1p
D,St

i min{ log t

Tt−1,i
,
1

28
} (101)

≤
∑
i∈S̃t

c2B1p
D,St

i min{ log t
1
3Nt−1,i,j

St
i
2−j

St
i

,
1

28
} (102)

≤
∑

i∈S̃t∩Ot

c2B12
−j

St
i +1 log t

1
3Nt−1,i,j

St
i
2−j

St
i

+
1

28

∑
i∈S̃t∩Ōt

B1c22
−jmax

i +1 (103)

≤
∑

i∈S̃t∩Ot

6c2B1 log t

N
t−1,i,j

St
i

+
∑

i∈S̃t∩Ōt

B1c2
∆min

i

4B1c2K
(104)

≤
k0∑
k=1

∑
i∈Āt,k\Āt,k−1

6c2B1 log t

N
t−1,i,j

St
i

+
∆St

4
(105)

<

k0∑
k=1

6c2B1 log t∆
2
St
|Āt,k\Āt,k−1|

αkg(K,∆St
)f(t)

+
∆St

4
(106)

<
6c2B1 log t∆

2
St
K

g(K,∆St
)f(t)

(

k0∑
k=1

βk−1 − βk

αk
+

βk0

αk0

) +
∆St

4
(107)

where Equation (101) is by definition, Equation (102) holds because if 6 ln t
1
3Ni,j,t−12−j >

1
28 , then min{ 6 log t

1
3Nt−1,i,j

St
i

2−j
St
i

, 1} = 1
28 and thus larger than min{ log t

Tt−1,i
, 1}, else we have

6 log t

1
3Nt−1,i,j

St
i

2−j
St
i

< 6/28 < 1 and by N t
t we have Tt−1,i ≥ 1

3Nt−1,i,jSt · 2−jSt and thus
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min{ log t
Tt−1,i

, 1/28} < log t

1
3Nt−1,i,j

St
i

2−j
St
i

, Eq. (103) is by considering Ot and Ōt , Equation (104)

is due to definition of jmax
i , Equation (105) is by setting k0 be the largest number that βk0 ≤ 1/K,

Equation (106) is by definition of Āt,k, Equation (107) is due to the proof of Lemma 8 of [11]. ■

Now we set g(K,∆St) = K∆St l, where l =
∑k0

k=1
βk−1−βk

αk
+

βk0

αk0
and f(t) = 24c2B1 log T . By

Lemma 15, we can show that ∆St > 2et,2 under event Gt

⋂
N t

t . In other words, under event N t
t , if

Et,2 holds, then Gt must hold.

For any arm i, let arm related event Gt,k,i = Gt,k

⋂
{i ∈ S̃t, Nt−1,i,j

St
i
≤ αk

g(K,∆St )f(t)

∆2
St

, jSt
i ≤

jmax
i }. When Gt,k happens, we have I{Gt,k} ≤ 1

βkK

∑
i∈[m]{Gt,k,i}. So the Reg(T,Et,2

⋂
N t

t )

is bounded by,

Reg(T,Et,2

⋂
N t

t ) ≤
T∑

t=1

k0∑
k=1

∆St
I{Gt,k} (108)

≤
T∑

t=1

k0∑
k=1

m∑
i=1

∆St

Kβk
I{Gt,k,i} (109)

≤
m∑
i=1

k0∑
k=1

1

Kβk

T∑
t=1

∆StI{i ∈ S̃t, Nt−1,i,j
St
i
≤ θk

∆St

, jSt
i ≤ jmax

i } (with θk = αkKlf(t))

≤
m∑
i=1

jmax
i∑
j=1

k0∑
k=1

1

Kβk

T∑
t=1

∆StI{i ∈ S̃t, Nt−1,i,j
St
i
≤ θk

∆St

, jSt
i = j} (110)

≤
m∑
i=1

jmax
i∑
j=1

k0∑
k=1

1

Kβk

T∑
t=1

Di∑
n=1

∆i,nI{i ∈ S̃t, Nt−1,i,j
St
i
≤ θk

∆i,n
,∆St = ∆i,n, j

St
i = j}

(with ∆i,1 ≥ ∆i,2 ≥ ... ≥ ∆i,Di) (111)

≤
m∑
i=1

jmax
i∑
j=1

k0∑
k=1

1

Kβk

T∑
t=1

Di∑
n=1

n∑
p=1

∆i,pI{i ∈ S̃t, Nt−1,i,j
St
i
∈ (

θk
∆i,p−1

,
θk
∆i,p

],∆St
= ∆i,n, j

St
i = j}

(112)

≤
m∑
i=1

jmax
i∑
j=1

k0∑
k=1

1

Kβk

T∑
t=1

Di∑
n=1

Di∑
p=1

∆i,pI{i ∈ S̃t, Nt−1,i,j
St
i
∈ (

θk
∆i,p−1

,
θk
∆i,p

],∆St
= ∆i,n, j

St
i = j}

(113)

≤
m∑
i=1

jmax
i∑
j=1

k0∑
k=1

1

Kβk

T∑
t=1

Di∑
p=1

∆i,pI{i ∈ S̃t, Nt−1,i,j
St
i
∈ (

θk
∆i,p−1

,
θk
∆i,p

],∆St = ∆i,n,

∆St > 0, jSt
i = j} (114)

≤
m∑
i=1

jmax
i∑
j=1

k0∑
k=1

1

Kβk
(θk + θk

Di∑
p=2

∆i,p(
1

∆i,p
− 1

∆i,p−1
)) (115)

=

m∑
i=1

jmax
i∑
j=1

k0∑
k=1

1

Kβk
(θk + θk

Di−1∑
p=1

∆i,p −∆i,p+1

∆i,p
) (116)

≤
m∑
i=1

jmax
i∑
j=1

k0∑
k=1

1

Kβk
(θk + θk

∫ ∆i,1

∆i,Di

x−1dx) (117)

≤
m∑
i=1

jmax
i∑
j=1

k0∑
k=1

θk
Kβk

(1 + log
∆max

i

∆min
i

) (118)
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≤
m∑
i=1

jmax
i∑
j=1

(

k0∑
k=1

αk

βk
lf(T ))(1 + log

∆max
i

∆min
i

) (119)

≤ 120c2B1

m∑
i=1

(
log2

c2B1K

∆min
i

)(
1 + log

∆max
i

∆min
i

)
⌈ logK
1.61

⌉
2

log T (120)

where Eq. (108) is because under event N t
t , if Et,1 holds then Gt must hold, Eq. (109) is because

I{Gt,k} ≤ 1
βkK

∑
i∈[m]{Gt,k,i}, Eq. (110) is by applying union bound over jSt

i = 1, ..., jmax
i ,

Eq. (111) is by considering Di gaps for ∆St
and applying union bounds, Eq. (112) is by dividing

N
i,j

St
i ,t−1

≤ θk2
(−j+1)(λ−1)

∆2
i,n

into non-overlapping sub-intervals, Eq. (113) is by extending summation
over p to Di, Eq. (114) is by replacing summation over n = 1, ..., Di to ∆St > 0, Eq. (115) is to
bound the number of times the event happen to the length of interval, Eq. (116) to Eq. (119) are math
calculation by replacing summation by integrals, Eq. (120) is similar to [11, Lemma 11, Appendix C]
by setting αk = βk = 0.2k and

∑k0
k=1

αk

βk
l ≤ 5⌈ logK

1.61 ⌉
2.

Similarly, consider Reg(T,¬N t
t ) ≤ mπ2

6 log2

(
c2B1K
∆min

)
∆max

We have

Reg(T,Et,2) ≤ 120c2B1

m∑
i=1

(
log2

c2B1K

∆min
i

)(
1 + log

∆max
i

∆min
i

)
⌈ logK
1.61

⌉
2

log T

+
mπ2

6
log2

(
c2B1K

∆min

)
∆max (121)

C.5 Summary of Regret Upper Bounds and Discussions on Distribution-Independent Bounds
and Lower Bounds

C.5.1 Analysis using the reverse amortization tricks (Appendix C.3).
When using the improved analysis in Appendix C.3, by Eq. (49), Appendix C.3.1, Appendix C.3.2,
the total regret is bounded as follows

(1) if λ > 1,

Reg(T ) ≤ Reg(T,Et,1) +Reg(T,Et,2) +
2π2

3
m∆max

≤
m∑
i=1

48c21B
2
v log T

∆min
i

(3 + logK) +
∑
i∈[m]

24c2B1

(
log2

B1c2K

∆min
i

)(
1 + log(

K∆max
i

∆min
i

)

)
log T

+
∑
i∈[m]

2c21B
2
v

∆min
i

+
mπ2

6
log2

(
c21B

2
vK

λ(∆min)2

)
∆max +

mπ2

6
log2

4B1c2K

∆min
i

∆max +
2π2

3
m∆max+

≤ O

∑
i∈[m]

B2
v logK log T

∆min
i

+
∑
i∈[m]

B1 log
2

(
B1K

∆min
i

)
log T

 (122)

(2) if λ = 1,

Reg(T ) ≤ Reg(T,Et,1) +Reg(T,Et,2) +
2π2

3
m∆max

≤
m∑
i=1

log
c21B

2
vK

(∆min
i )2

48c21B
2
v log T

∆min
i

(3 + logK)

+
∑
i∈[m]

24c2B1

(
log2

B1c2K

∆min
i

)(
1 + log(

K∆max
i

∆min
i

)

)
log T

+
∑
i∈[m]

2c21B
2
v

∆min
i

+
mπ2

6
log2

(
c21B

2
vK

(∆min)2

)
∆max +

mπ2

6
log2

4B1c2K

∆min
i

∆max +
2π2

3
m∆max
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≤ O

∑
i∈[m]

B2
v log

(
BvK
∆min

i

)
logK log T

∆min
i

+
∑
i∈[m]

B1 log
2

(
B1K

∆min
i

)
log T

 (123)

C.5.2 Regret Bound Using the Infinitely Many Events (Appendix C.4).
When using the analysis in Appendix C.4, by Eq. (49), Appendix C.4.1, Appendix C.4.2, the total
regret is bounded as follows

(1) if λ > 1,

Reg(T ) ≤ Reg(T,Et,1) +Reg(T,Et,2) +
2π2

3
m∆max

≤
m∑
i=1

(
480c21B

2
v

(1− 2−(λ−1))

)
⌈ logK
1.61

⌉2 log T
∆min

i

+ 120c2B1

m∑
i=1

(
log2

c2B1K

∆min
i

)(
1 + log

∆max
i

∆min
i

)
⌈ logK
1.61

⌉
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log T +
mπ2

6
log2
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c21B

2
vK

λ(∆min)2

)
∆max +

mπ2

6
log2
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c2B1K
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B1 log
2
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)
log2 K log T
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(2) if λ = 1,

Reg(T ) ≤ Reg(T,Et,1) +Reg(T,Et,2) +
2π2

3
m∆max

≤
m∑
i=1

(
480c21B

2
v

)
log2

(
c21B

2
vK

(∆min
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)
⌈ logK
1.61

⌉2 log T
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+ 120c2B1

m∑
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c2B1K
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1 + log
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)
⌈ logK
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⌉
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log T

+
mπ2

6
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c21B
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)
∆max +

mπ2

6
log2

(
c2B1K
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3
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+
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(125)

C.5.3 Discussion on the Distribution-Independent Bounds
Similar to [29, Appendix B.3], for the distribution-independent regret bound, we fix a gap ∆ to be
decided later and we consider two events on ∆St

: {∆St
≤ ∆} and {∆St

> ∆}.
For the former case, the regret is trivially Reg(T, {∆St ≤ ∆}) ≤ T∆. For the later case,
under {∆St

> ∆} it is also straight-forward to replace all ∆min
i with ∆ in Appendix C.5.1

and derive Reg(T, {∆St
> ∆}) ≤ O

(
mB2

v logK log T
∆ +mB1 log

2(B1K
∆ ) log T

)
if λ > 1 and

Reg(T, {∆St
> ∆}) ≤ O

(
mB2

v log(BvK
∆ ) logK log T

∆ +mB1 log
2(B1K

∆ ) log T
)

if λ = 1.

Therefore, for λ > 1, by selecting ∆ = Θ

(√
mB2

v log T logK
T + B1m logK log T

T

)
, we have

Reg(T ) ≤ O
(
Bv

√
m(logK)T log T +B1m log2(KT ) log T

)
(126)

For λ = 1, by selecting ∆ =

√
mB2

v log2 T logK
T + B1m logK log T

T , we have

Reg(T ) ≤ O
(
Bv

√
m(logK)T log(KT ) +B1m log2(KT ) log T

)
(127)
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C.6 Discussion on the Lower Bounds
We consider the degenerate case from the lower bound result [24], our regret bound is tight (up
to polylogaritmic factors in K). More specifically, Merlis and Mannor [24] consider the special
non-triggering CMAB (where ∆min = ∆ and µ are not exponentially close to 0 or 1), and they

prove Ω(
mγ2

g log T

∆ ) and Ω(
mγ2

g log T

logK∆ ) regret lower bounds for non-monotone and monotone reward

functions, respectively. In our paper, this setting is the same as letting pD,S
i = 1 for i ∈ S and

pD,S
i = 0 otherwise (i.e., TPVM condition degenerates to VM condition). According to the Remark

4 in Section 3.1, we know Bv = 3
√
2γg and λ = 2 so this gives an O(

mγ2
g logK log T

∆ ) bound, which
is tight to the lower bound up to a O(log2 K) factor.

D Regret Analysis for CMAB with Independent Arms (Proofs Related to
Theorem 2)

D.1 Useful definitions and Inequalities
We first give the formal definition, the properties and the tail bounds for sub-Gaussian and sub-
Exponential random variables, which helps our analysis.
Definition 7 (Sub-Gaussian Random Variable, [27]). A random variable with mean µ = E[X] is
sub-Gaussian with parameter σ2 if

E[eλ(X−µ)] ≤ e
λ2σ2

2 for any λ ∈ R. (128)

In this case, we write X ∈ SG(σ2).
Definition 8 (Sub-Exponential Random Variable, [27]). A random variable with mean µ = E[X] is
sub-Exponential with parameter (ν2, b) if

E[eλ(X−µ)] ≤ e
λ2ν2

2 for any |λ| < 1

b
. (129)

In this case, we write X ∈ SE(ν2, b).
Lemma 16 (Tail bounds for sub-Exponential random variables, [27]). Let Y ∈ SE(ν2, b) with mean
µ = E[Y ]. Then

Pr[|Y − µ| ≥ τ ] ≤

{
2e−τ2/(2ν2), if 0 < τ ≤ ν2

b

2e−τ/(2b), if τ > ν2

b .
(130)

Lemma 17. (Square of Sub-Gaussian Random Variable is Sub-Exponential [14, Appendix B]) For
X ∈ SG(σ2) and let Y = X2, then

E[eλ(Y−E[Y ])] ≤ 16λ2σ4, for any |λ| ≤ 1

4σ2
. (131)

Thus, X2 ∈ SE(ν2, b) with ν = 4
√
2σ2, b = 4σ2.

Lemma 18 (Composition of independent sub-Exponential random variables, [27]). Let Y1, ..., Yn be
independent sub-Exponential random variables Yi ∈ SE(ν2i , bi) with E[Yi] = µi. Then

n∑
i=1

(Yi − µi) ∈ SE

(
n∑

i=1

ν2i ,max
i

bi

)
(132)

D.2 Proof of Theorem 2
Recall that at time t, Tt−1,i is the number of times base arm i is observed and µ̂t−1,i is the empirical
mean of arm i. Let δt,i = µ̂t−1,i − µi and by Condition 6, δt,i is a sub-Gaussian random variable
SE(C1(1−µi)µi

Tt−1,i
) with mean 0.

Let ut,i =
δt,i√

(1−µi)µi

, then ut,i is also sub-Gaussian SE( C1

Tt−1,i
). By Condition 4, we have that

|r(S; µ̂t−1) − r(S;µ)| ≤ Bv

√∑
i∈S

(
|µ̂t,i−µi|√
(1−µi)µi

)2

= Bv

√∑
i∈S u2

t,i. Fix a super arm S, we

will focus on random variable Yt,S ≜
∑

i∈S u2
t,i.
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Since ut,i ∈ SG( C1

Tt−1,i
) with E[ut,i] = 0, and ut,i are independent across i ∈ [m], we know

Yt,S ∈ SE(C2
1C3

∑
i∈S

1

T 2
t−1,i

, C1C4
1

Tmin
t−1,S

) (133)

due to Lemma 17 and Lemma 18, where Tmin
t−1,S = mini∈S Tt−1,i, constants C3 = 32, C4 = 4.

For the mean of Yt,S , we can also show that E[Yt,S ] =
∑

i∈[S] E[u2
t,i] =

∑
i∈S(Var[ut,i] +

(E[ut,i])
2) =

∑
i∈S Var[ut,i] ≤

∑
i∈S

C1

Tt−1,i
, where the last inequality is because the variance

of any sub-Gaussian random variable X ∈ SE(σ2) is smaller than σ2 [27].

For such a sub-Exponential random variable, we can give the confidence interval for Yt,S based on
the tail bound Lemma 16. For any action S ∈ S, any time t ∈ [T ], it holds with probability 1− δ,

Yt,S ≤

E[Yt,S ] +
√

2C2
1C3 log(

2
δ )
∑

i∈S
1

T 2
t−1,i

, if C1C4

Tmin
t−1,S

√
2 log(2δ ) ≤

√
C2

1C3

∑
i∈S

1
T 2
t−1,i

E[Yt,S ] + 2C1C4 log(
2
δ )

1
Tmin
t−1,S

, otherwise.
(134)

Equivalently, we can rewrite the above inequality by merging the above two segments as Yt,S ≤
C1

∑
i∈S

1
Tt−1,i

+max{
√
2C2

1C3 log(
2
δ )
∑

i∈S
1

T 2
t−1,i

, 2C1C4 log(
2
δ )

1
Tmin
t−1,S

} and with probability

at least 1− δ, it holds that
|r(S; µ̂t−1)− r(S;µ)| ≤ ρt(S), (135)

where ρt(S) = Bv

√∑
i∈S

C1

Tt−1,i
+max

{√
2C2

1C3

∑
i∈S

log( 2
δ )

T 2
t−1,i

,
2C1C4 log( 2

δ )

Tmin
t−1,S

}
. If S is selected

as the action in any round t, then

∆S = αr(S∗;µ)− r(S;µ) (136)
≤ α(r(S∗; µ̂t−1) + ρt(S

∗))− r(S;µ) by Eq. (135) over S∗ (137)

≤ r̄t(S)− r(S;µ) S is produced by Ō in line 6 of Algorithm 2 (138)
= r(S; µ̂t−1) + ρt(S)− r(S;µ) (139)
≤ 2ρt(S) by Eq. (135) over S, (140)

In other words, S can only be selected when ρt(S) > ∆S/2.

Now we consider two different cases based on the
∑

i∈S
1

Tt−1,i
.

Case 1: When
∑

i∈S
1

Tt−1,i
<

C4∆
2
S

4C1(C3+C4)(Bv)2
,

We first show by contraction that the confidence interval lies in the second part of Eq. (134), i.e.
ρt(S) = Bv

√
C1

∑
i∈S

1
Tt−1,i

+ 8C1 log(
2
δ )

1
Tmin
t−1,S

. Based on Lemma 16, if the confidence interval

lies in the first part, then

τ ≤ ν2

b
=

C2
1C3

∑
i∈S

1
T 2
t−1,i

C1C4
1

Tmin
t−1,S

=
∑
i∈S

C1C3

C4

Tmin
t−1,S

T 2
t−1,i

(141)

≤
∑
i∈S

C1C3

C4

1

Tt−1,i
(142)

≤ C1C3

C4

C4∆
2
S

4C1(C3 + C4)(Bv)2
=

C3∆
2
S

4(C3 + C4)(Bv)2
. (143)

This indicates that

ρt(S) = Bv

√
E[Yt,S ] + τ (144)

≤ Bv

√
E[Yt,S ] +

C3∆2
S

4(C3 + C4)(Bv)2
(145)
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≤ Bv

√√√√C1

∑
i∈S

1

Tt−1,i
+

C3∆2
S

4(C3 + C4)(Bv)2
(146)

≤ Bv

√
C4∆2

S

4(C3 + C4)B2
v

+
C3∆2

S

4(C3 + C4)(Bv)2
(147)

= ∆S/2, (148)

which contradicts the requirement ρt(S) > ∆S/2.

Therefore, the confidence interval lies in the second part of Eq. (134) with τ =
2C1C4 log( 2

δ )

Tmin
t−1,S

. By the

same analysis, we need τ ≥ C3∆
2
S

4(C3+C4)(Bv)2
(or otherwise we suffer from the same contradiction as

shown in Eq. (148)), hence we require ∆S ≤
√

8(C3+C4)(Bv)2C1C4 log( 2
δ )

C3Tmin
t−1,S

.

Equivalently, we require ∆S ≤ 2

√
8(C3+C4)(Bv)2C1C4 log( 2

δ )

C3Tmin
t−1,S

−∆S whenever S is selected, due to

the use of the reverse amortization trick as in Eq. (60).

Now we can define the regret allocation, We first define a regret allocation function

κi,δ(S, ℓ) =

{
2

√
8(C3+C4)B2

vC1C4 log( 2
δ )

C3ℓ
, if 1 ≤ ℓ ≤ Li,δ and i = argminj∈S Tt−1,j

0, otherwise,
(149)

where Li,δ =
32(C3+C4)B

2
vC1C4 log( 2

δ )

C3(∆min
i )2

. Also note that if there are multiple arms that achieves the
minimum, select the one with minimum index as the min-arm.

It can be easily shown that ∆St ≤
∑

i∈St
κi,δ(St, Tt−1,i) as follows.

Let j = argmini∈St
Tt−1,i. If Tt−1,j > Lj,δ, then ∆St ≤ 2

√
8(C3+C4)B2

vC1C4 log( 2
δ )

C3Tmin
t−1,S

−

∆St
≤ 2

√
8(C3+C4)B2

vC1C4 log( 2
δ )

C3Tt−1,j
− ∆St

≤ ∆min
j − ∆St

≤ 0 =
∑

i∈St
κi,δ(St, Tt−1,i). If

Tt−1,j ≤ Lj,δ, then ∆St
≤ 2

√
8(C3+C4)B2

vC1C4 log( 2
δ )

C3Tmin
t−1,S

− ∆St
≤ 2

√
8(C3+C4)B2

vC1C4 log( 2
δ )

C3Tmin
t−1,S

=

2
√

8(C3+C4)B2
vC1C4 log( 2

δ )

C3Tt−1,j
+
∑

i∈St\{j} 0 =
∑

i∈St
κi,δ(St, Tt−1,i)

Hence the regret for case 1 is upper bounded by
T∑

t=1

∑
i∈St

∆St ≤
T∑

t=1

κi,δ(St, Tt−1,i) (150)

≤
∑
i∈[m]

Li,δ∑
ℓ=1

2

√
8(C3 + C4)B2

vC1C4 log(
2
δ )

C3ℓ
(151)

≤
∑
i∈[m]

2

√
8Li,δ(C3 + C4)B2

vC1C4 log(
2
δ )

C3

∫ Li,δ

x=0

√
1

x
(152)

≤
∑
i∈[m]

64(C3 + C4)B
2
vC1C4 log(

2
δ )

C3∆min
i

(153)

Case 2: When
∑

i∈S
1

Tt−1,i
≥ C4∆

2
S

4C1(C3+C4)B2
v

,

This case implies that K
Tmin
t−1,S

≥
∑

i∈S
1

Tt−1,i
≥ C4∆

2
S

4C1(C3+C4)B2
v

. Rewriting the inequality, we have

∆S ≤
√

4KC1(C3+C4)B2
v

C4Tmin
t−1,S

and following the similar regret allocation and argument from case 1
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(where we require ∆S ≤
√

8(C3+C4)(Bv)2C1C4 log( 2
δ )

C3Tmin
t−1,S

), we have the case 2 contributes at most

32mKC1(C3+C4)B
2
v

C4∆min
, which is irrelevant of the time horizon T .

Now for the first m rounds so that each arm is observed at least once (i.e., counter Tt−1,i ≥ 1 from
t ≥ m+ 1 rounds) and consider the bad events when there exists t ∈ [T ], S ∈ S such that Eq. (134)
does not hold, by setting δ = (|S|T )−1 and using the union bound, the additional regret is upper
bounded by

m∆max +
∑
t∈[T ]

∑
S∈S

1

|S|T
∆max ≤ (m+ 1)∆max. (154)

Therefore the total regret is upper bounded by (using the similar proof following Eq. (54) for the
failure of oracle),

Reg(T ) ≤
∑
i∈[m]

64(C3 + C4)B
2
vC1C4 log(2|S|T )

C3∆min
i

+
32mKC1(C3 + C4)B

2
v

C4∆min
+ (m+ 1)∆max

(155)

≤
∑
i∈[m]

64(C3 + C4)B
2
vC1C4 log(2T )

C3∆min
i

+
∑
i∈[m]

64(C3 + C4)B
2
vC1C4 log(|S|)

C3∆min
i

+
32mKC1(C3 + C4)B

2
v

C4∆min
+ (m+ 1)∆max (156)

≤ O

∑
i∈[m]

B2
v log T

∆min
i

 (157)

For the distribution-independent regret, similar to Appendix C.5.3, Reg(T ) ≤ mB2
v log T
∆ + T∆,

when T →∞. By setting ∆ = Θ

(√
mB2

v log T
T

)
, we have

Reg(T ) ≤ O
(
Bv

√
mT log T

)
. (158)

D.3 Computational Efficient Oracle for SESCB

Recall that ρ′t(S) = Bv

√∑
i∈S

C1

Tt−1,i
+ 8C1

√∑
i∈S

log(2|S|T )
T 2
t−1,i

+ 8C1 log(2|S|T )

Tmin
t−1,S

and r′t(S) =

r(S; µ̂t−1) + ρ′t(S). For the submodularity of r′t(S), it suffices to show ρ′t(S) is monotone sub-
modular when r(S;µ) is monotone submodular. We know that g(f(S)) is submodular if f(S) is
submodular and g is a non-decreasing concave function, so it suffices to show three terms within the
(non-decreasing concave) square root in ρ′t(S) are submodular. The first term is a modular function,
the second term is the square root of a modular function, and the third term can be rewritten as
maxi∈S

8C1 log(2|S|T )
Tt−1,i

, which is also submodular.

For the regret bound when using ρ′t(S) instead of ρt(S), it can be seen that ρt(S) ≤ ρ′t(S) ≤
√
2ρt(S)

for all S ∈ S, since max{a, b} ≤ a + b ≤ 2{a, b} for any a, b ∈ R. So we can equivalently use
B′

v =
√
2Bv to replace Bv and repeat the same proof in Theorem 2 with an additional factor of 2 in

Eq. (157).

E Proof of TPVM Smoothness Conditions for Various Applications (Related
to Theorem 3)

For convenience, we show our table again in this section.

E.1 Combinatorial cascading bandits
Combinatorial cascading bandits has two categories: conjunctive cascading bandits and disjunctive
cascading bandits [17].
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Table 4: Summary of the coefficients, regret bounds and improvements for various applications.
Application Condition (Bv, B1, λ) Regret Improvement

Disjunctive Cascading Bandits [17] TPVM< (1, 1, 2) O(
∑

i∈[m]
logK log T

∆min
i

) O(K/ logK)

Conjunctive Cascading Bandits [17] TPVM (1, 1, 1) O(
∑

i∈[m] log
K

∆min

logK log T
∆i,min

) O(K/(logK log K
∆min

))

Multi-layered Network Exploration [21] TPVM (
√

1.25|V |, 1, 2) † O(
∑

i∈A
|V | log(n|V |) log T

∆min
i

) O(n/ log(n|V |))

Influence Maximization on DAG [29] TPVM< (
√
L|V |, |V |, 1) † O(

∑
i∈[m] log

|E|
∆min

L|V |2 log |E| log T

∆min
i

) O(|E|/(L log |E| log |E|
∆min

))

Probabilistic Maximum Coverage [23]∗ VM (3
√

2|V |, 1,−) O(
∑

i∈[m]
|V | log T

∆min
i

) O(log2 k).
∗ This row is for the application in Section 4 and the rest of rows are for Section 3.1; † |V |, |E|, n, k, L denotes the number of target nodes, the number of edges that
can be triggered by the set of seed nodes, the number of layers, the number of seed nodes and the length of the longest directed path, respectively.

Disjunctive form For the disjunctive form, we want to select an ordered list S of K items from total
L items, so as to maximize the probability that at least one of the outcomes of the selected items are 1.
Each item is associated with a Bernoulli random variable with mean µi, indicating whether the user
will be satisfied with the item if he scans the item. This setting models the movie recommendation
system where the user sequentially scans a list of recommended items and the system is rewarded
when the user is satisfied with any recommended item. After the user is satisfied with any item or
scans all K items but is not satisfied with any of them, the user leaves the system. Due to this stopping
rule, the agent can only observe the outcome of items until (including) the first item whose outcome
is 1. If there are no satisfactory items, the outcomes must be all 0. In other words, the triggered set is
the prefix set of items until the stopping condition holds. For this application, we have the following
lemma.
Lemma 19. Disjunctive conjunctive cascading bandit problem satisfies TPVM< bounded smoothness
condition with coefficient (Bv, B1, λ) = (1, 1, 2).

Proof. Without loss of generality, let the action be {1, ...,K}, then the reward function is r(S;µ) =
1 −

∏K
j=1(1 − µj) and the triggering probability is pD,S

i =
∏i−1

j=1(1 − µj). Let µ̄ = (µ̄1, ..., µ̄K)

and µ = (µ1, ..., µK), where µ̄ = µ+ ζ + η with µ̄,µ ∈ (0, 1)K , ζ,η ∈ [0, 1]K .

|r(S; µ̄)− r(S;µ)|

=

K∏
i=1

(1− µi)−
K∏
i=1

(1− µ̄i) (159)

=
∑
i∈[K]

(µ̄i − µi)((1− µ1)...(1− µi−1)(1− µ̄i+1)...(1− µ̄K)) (160)

=
∑
i∈[K]

(ζi + ηi)((1− µ1)...(1− µi−1)(1− µ̄i+1)...(1− µ̄K)) (161)

≤
∑
i∈[K]

(ζi)((1− µ1)...(1− µi−1)(1− µi+1)...(1− µK)) +
∑
i∈[K]

(ηi)((1− µ1)...(1− µi−1))

(162)

≤
∑
i∈[K]

ζip
D,S
i√

(1− µi)µi

√
(1− µi+1)...(1− µK)µi +

∑
i∈[K]

ηip
D,S
i (163)

≤

√√√√∑
i∈[K]

ζ2i
(1− µi)µi

(pD,S
i )2

√∑
i∈[K]

(1− µi+1)...(1− µK)µi +
∑
i∈[K]

ηip
D,S
i (164)

≤

√√√√∑
i∈[K]

ζ2i
(1− µi)µi

(pD,S
i )2

√
1− (1− µ1)...(1− µK) +

∑
i∈[K]

ηip
D,S
i (165)

≤

√√√√∑
i∈[K]

ζ2i
(1− µi)µi

(pD,S
i )2 +

∑
i∈[K]

ηip
D,S
i , (166)

where Eq. (159) uses µi ≤ µ̄i, i ∈ [m], Eq. (160) is by telescoping the reward difference, Eq. (161)
is by definition of ζ,η, Eq. (162) is due to µ̄i ≥ µi, i ∈ [m] , Eq. (163) is due to the definition of
pD,S
i and we multiply the first term by

√
µi but divide it by

√
(1− µi)µi, Eq. (164) is due to the

Cauchy–Schwarz inequality on the first term, is by math calculation. Hence, (Bg, B1, λ) = (1, 1, 2).
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Conjunctive form. For the conjunctive form, the learning agent wants to select K paths from total L
paths (i.e., base arms) so as to maximize the probability that the outcomes of the selected paths are
all 1. Each item is associated with a Bernoulli random variable with mean µi, indicating whether the
path will be live if the package will transmit via this path. Such a setting models the network routing
problem [17], where the items are routing paths and the package is delivered when all paths are alive.
The learning agent will observe the outcome of the first few paths till the first one that is down, since
the transmission will stop if any of the path is down. In other words, the triggered set is the prefix set
of paths until the stopping condition holds. We have the following lemma.
Lemma 20. Conjunctive cascading bandit problem satisfies TPVM bounded smoothness condition
with coefficient (Bv, B1, λ) = (1, 1, 1).

Proof. Without loss of generality, suppose the selected base arms are {1, ...,K}, then the reward
function is r(S;µ) =

∏K
j=1 µj and the triggering probability is pµ,Si =

∏i−1
j=1 µj . Let µ̄ =

(µ̄1, ..., µ̄K) and µ = (µ1, ..., µK), where µ̄ = µ+ ζ + η with µ̄,µ ∈ (0, 1)K , ζ,η ∈ [−1, 1]K .

|r(S; µ̄)− r(S;µ)|

=

∣∣∣∣∣
K∏
i=1

µ̄i −
K∏
i=1

µi

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈[K]

(µ̄i − µi)(µ1...µi−1µ̄i+1...µ̄K)

∣∣∣∣∣∣
=
∑
i∈[K]

(|ζi|+ |ηi|)(µ1...µi−1µ̄i+1...µ̄K)

≤
∑
i∈[K]

|ζi| (µ1...µi−1) +
∑
i∈[K]

|ηi| (µ1...µi−1) (167)

≤
∑
i∈[K]

|ζi|√
(1− µi)µi

√
pD,S
i

√
(µ1...µi−1)(1− µi) +

∑
i∈[K]

|ηi| pD,S
i (168)

≤

√√√√∑
i∈[K]

ζ2i
(1− µi)µi

pD,S
i

√∑
i∈[K]

(µ1...µi−1)(1− µi) +
∑
i∈[K]

|ηi| pD,S
i (169)

≤

√√√√∑
i∈[K]

ζ2i
(1− µi)µi

pD,S
i

√
1− µ1...µK +

∑
i∈[K]

|ηi| pD,S
i (170)

≤

√√√√∑
i∈[K]

ζ2i
(1− µi)µi

pD,S
i +

∑
i∈[K]

|ηi| pD,S
i (171)

where Eq. (167) uses µ̄i ∈ [0, 1], i ∈ [m], Eq. (168) is due to the definition of pD,S
i and multiply

the first term by
√
1− µi but divided it by

√
(1− µi)µi, Eq. (169) is due to the Cauchy–Schwarz

inequality on the first term, Eq. (170) is by math calculation and Eq. (171) is due to µi ∈ [0, 1], i ∈ [m].
Hence, (Bg, B1, λ) = (1, 1, 1). ■

E.2 Multi-layered Network Exploration Problem (MuLaNE) [21]
We consider the MuLaNE problem with random node weights. After we apply the bipartite coverage
graph, the corresponding graph is a tri-partite graph (n, V,R) (i.e., a 3-layered graph where the first
layer and the second layer forms a bipartite graph, and the second and the third layer forms another
bipartite graph), where the left nodes represent n random walkers; Middle nodes are |V | possible
targets V to be explored; Right nodes R are V nodes, each of which has only one edge connecting
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the middle edge. The MuLaNE task is to allocate B budgets into n layers to explore target nodes V
and the base arms are A = {(i, u, b) : i ∈ [n], u ∈ V, b ∈ [B]}.
With budget allocation k1, ..., kL, the (effective) base arms consists of two parts:

(1) {(i, j) : i ∈ [n], j ∈ V }, each of which is associated with visiting probability xi,j ∈ [0, 1]
indicating whether node j will be visited by explorer i given ki budgets. All these base arms
corresponds to budget ki, i ∈ [n] are triggered.

(2) yj ∈ [0, 1] for j ∈ V represents the random node weight. The triggering probability pD,S
j =

1−
∏

i∈[n] (1− xi,j).

We have the following lemma.
Lemma 21. MuLaNE problem satisfies TPVM bounded smoothness condition with coefficient
(Bv, B1, λ) = (

√
1.25|V |, 1, 2), where |V | is the total number of vertices to be explored.

Proof. Let effective base arms µ = (x,y) ∈ (0, 1)(n|V |+|V |), µ̄ = (x̄, ȳ) ∈ (0, 1)(n|V |+|V |), where
x̄ = ζx+ηx+x, ȳ = ζy +ηy +y, for ζ,η ∈ [−1, 1](n|V |+|V |). For the target node j ∈ V , the per-
target reward function rj(S;x,y) = yj(1−

∏
i∈[n](1−xi,j)). Denote p̄D,S

j = 1−
∏

i∈[n] (1− x̄i,j).

|r(S; µ̄)− r(S;µ)|

=

∣∣∣∣∣∣
∑
j∈V

rj(S; x̄, ȳ)− rj(S;x,y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈V

ȳj p̄
D,S
j − ȳjp

D,S
j + ȳjp

D,S
j − yjp

D,S
j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈V

ȳj

∏
i∈[n]

(1− xi,j)−
∏
i∈[n]

(1− x̄i,j))

+
∑
j∈V

(ȳj − yj)p
D,S
j

∣∣∣∣∣∣ (172)

≤

∣∣∣∣∣∣
∑
j∈V

∑
i∈[n]

(x̄i,j − xi,j) ((1− x1,j)...(1− xi−1,j)(1− x̄i+1,j)...(1− x̄L,j)) ȳj

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈V

(ȳj − yj)p
D,S
j

∣∣∣∣∣∣
≤
∑
j∈V

∑
i∈[n]

(|ζx,i,j |+ |ηx,i,j |) ((1− x1,j)...(1− xi−1,j)) ȳj +
∑
j∈V

(|ζy,j |+ |ηy,j |)pD,S
j (173)

≤
∑
j∈V

∑
i∈[n]

(
|ζx,i,j |√

(1− xi,j)xi,j

)
√

((1− x1,j)...(1− xi−1,j))xi,j ȳj

+
∑
j∈V

(
|ζy,j | pD,S

j√
(1− yj)yj

)√
(1− yj)yj +

∑
j∈V

∑
i∈[n]

|ηx,i,j |+
∑
j∈V

|ηy,j | pD,S
j

 (174)

≤

√√√√∑
j∈V

∑
i∈[n]

(
ζ2x,i,j

(1− xi,j)xi,j
) +

∑
j∈V

ζ2y,j(p
D,S
j )2

(1− yj)yj

·
√∑

j∈V

∑
i∈[n]

((1− x1,j)...(1− xi−1,j))xi,j ȳ2j +
∑
j∈V

(1− yj)yj

+

∑
j∈V

∑
i∈[n]

|ηx,i,j |+
∑
j∈V

|ηy,j | pD,S
j

 (175)
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=

√√√√∑
j∈V

∑
i∈[n]

(
ζ2x,i,j

(1− xi,j)xi,j
) +

∑
j∈V

ζ2y,j(p
D,S
j )2

(1− yj)yj

√√√√√∑
j∈V

1−
∏
i∈[n]

(1− xi,j)

 ȳ2j +
∑
j∈V

(1− yj)yj

+

∑
j∈V

∑
i∈[n]

|ηx,i,j |+
∑
j∈V

|ηy,j | pD,S
j

 (176)

≤

√√√√∑
j∈V

∑
i∈[n]

(
ζ2x,i,j

(1− xi,j)xi,j
) +

∑
j∈V

ζ2y,j(p
D,S
j )2

(1− yj)yj

√∑
j∈V

ȳ2j + (1− yj)yj+

∑
j∈V

∑
i∈[n]

|ηx,i,j |+
∑
j∈V

|ηy,j | pD,S
j

 (177)

≤

√√√√∑
j∈V

∑
i∈[n]

(
ζ2x,i,j

(1− xi,j)xi,j
) +

∑
j∈V

ζ2y,j(p
D,S
j )2

(1− yj)yj
·
√
1.25|V |

+

∑
j∈V

∑
i∈[n]

|ηx,i,j |+
∑
j∈V

|ηy,j | pD,S
j

 , (178)

where Eq. (172) is by telescoping the difference of
(∏

i∈[n](1− xi,j)−
∏

i∈[n](1− x̄i,j))
)

,
Eq. (173) is due to x̄i,j ∈ [0, 1] for any i, j, Eq. (174) is because we multiply the first term by
√
xi,j but divide it by

√
xi,j(1− xi,j) and we multiply the second term by √yj but divide it by√

yj(1− yj), Eq. (175) is by applying the Cauchy-Schwarz inequality to the first term and the second
term simultaneously, Eq. (176) is due to the math calculation on , Eq. (177) is due to the support of
xi,j are bounded with [0, 1] for any i, j and Eq. (178) is due to the support of yj , ȳj are bounded with
[0, 1] for any j. Hence (Bg, B1, λ) = (

√
1.25|V |, 1, 2). ■

E.3 Online Influence Maximization Bandit [29]
In this section, we first introduce the general problem setting of online influence maximization
(OIM). Then we start with a easier problem instance, i.e., OIM on tri-partite graph (TPG) to get some
intuition, where reward functions have closed form solutions. Finally, we give the results for OIM on
the directed acyclic graph (DAG), which are much more involved since the reward function have no
closed form solutions.

E.3.1 Setting of the Online Influence Maximization
Following the setting of [29, Section 2.1], we consider a weighted directed graph G(V,E, p), where
V is the set of vertices, E is the set of directed edges, and each edge (u, v) ∈ E is associated with
a probability p(u, v) ∈ [0, 1]. When the agent selects a set of seed nodes S ⊆ V , the influence
propagates as follows: At time 0, the seed nodes S are activated; At time t > 1, a node u activated at
time t− 1 will have one chance to activate its inactive out-neighbor v with independent probability
p(u, v). The influence spread of S is denoted as σ(S) and is defined as the expected number of
activated nodes after the propagation process ends. The problem of Influence Maximization is to find
seed nodes S with |S| ≤ k so that the influence spread σ(S) is maximized.

For the problem of online influence maximization (OIM), we consider T rounds repeated influence
maximization tasks and the edge probabilities p(u, v) are assumed to be unknown initially. For each
round t ∈ [T ], the agent selects k seed nodes as St, the influence propagation of St is observed and
the reward is the number of nodes activated in round t. The agent’s goal is to accumulate as much
reward as possible in T rounds. The OIM fits into CMAB-T framework: the edges E are the set
of base arms [m], the (unknown) outcome distribution D is the joint of m independent Bernoulli
random variables for the edge set E, the action S are any seed node sets with size k at most k. For the
arm triggering, the triggered set τt is the set of edges (u, v) whose source node u is reachable from
St. Let Xt be the outcomes of the edges E according to probability p(u, v) and the live-edge graph
Glive

t (V,Elive) be a induced graph with edges that are alive, i.e., e ∈ Elive iff Xt,e = 1 for e ∈ E. The
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triggering probability distribution Dtrig(St, Xt) degenerates to a deterministic triggered set, i.e., τt is
deterministically decided given St and Xt. The reward R(St, Xt, τt) equals to the number activated
nodes at the end of t, i.e., the nodes that are reachable from St in the live-edge graph Glive

t . The offline
oracle is a (1− 1/e− ε, 1/|V |)-approximation algorithm given by the greedy algorithm from [15].

E.3.2 Online Influence Maximization Bandit on Tri-partite Graph (TPG)
We consider a OIM scenario where the underlying graph is a graph with three layers: the seed node
layer, the intermediate layer and the target node layer. Specifically, the underlying graph is denoted
as (L,M,R), where the first layer consists of L candidates for the seed node selection, the second
layer consists of M intermediate nodes and the third layer are R target nodes. Such a setting is of
significant interest since the edges connecting the target nodes can only be triggered and cannot be
observed by seed-node selection, which requires the notion of triggering arms. Another favorable
feature is that the reward function of this setting can be explicitly expressed, whereas for general IM,
even calculating the explicit form of the reward function is NP-hard [5].

In this application, the base arms consists of two parts:

(1) {(i, j) : i ∈ [L], j ∈ [M ]}, each of which is associated with probability xi,j ∈ [0, 1] indicating
the probability whether edge (i, j) is alive when i is selected as seed nodes. Without loss of generality,
we assume the seed nodes are S = {1, ...,K}.
(2){(j, k) : j ∈ [M ], k ∈ [R]}, each of which is associated with probability yj,k ∈ [0, 1] indicating
whether edge (j, k) is live when j is triggered for the first time. The triggering probability pD,S

j =

1−
∏

i∈[K] (1− xi,j).

Let µ = (x,y) ∈ (0, 1)(LM+MR), µ̄ = (x̄, ȳ) ∈ (0, 1)(LM+MR), where x̄ = ζx + ηx + x, ȳ =
ζy + ηy + y, for ζ,η ∈ [0, 1](LM+MR). Fix any target node k, the reward function rk(S;x,y) =

1−
∏

j∈[M ]

(
1− yj,k(1−

∏
i∈[K](1− xi,j))

)
.

Lemma 22. OIM-TPG problem satisfies TPVM< bounded smoothness condition with coefficient
(Bv, B1, λ) = (

√
2R,R, 1), where R is the total number of target nodes.

Proof. For notational brevity, we denote pj ≜ pD,S
j = 1−

∏
i∈[L] (1− xi,j), p̄j = 1−

∏
i∈[K](1−

x̄i,j), gj = 1− ȳj,kpj , ḡj = 1− ȳj,kp̄j .

The difference of rk(S; µ̄), rk(S;µ) can be written as,

|r(S; µ̄)− r(S;µ)| =
∑
k∈[R]

rk(S; µ̄)− rk(S;µ) (179)

=
∑
k∈[R]

1−
∏

j∈[M ]

(1− ȳj,kp̄j)

−
1−

∏
j∈[M ]

(1− ȳj,kpj)


︸ ︷︷ ︸

term (a)

+
∑
k∈[R]

1−
∏

j∈[M ]

(1− ȳj,kpj)

−
1−

∏
j∈[M ]

(1− yj,kpj)


︸ ︷︷ ︸

term(b)

, (180)

where Eq. (180) is by adding and subtracting the same
∑

k∈[R]

(
1−

∏
j∈[M ](1− ȳj,kpj)

)
.

For term (a), it holds that

term(a) =
∑

j∈[M ]

(gj − ḡj)(g1...gj−1ḡj+1...ḡM ) (181)

=
∑

j∈[M ]

ȳj,k(p̄j − pj)(g1...gj−1ḡj+1...ḡM )
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=
∑

j∈[M ]

ȳj,k(g1...gj−1ḡj+1...ḡM )

1−
∏

i∈[K]

(1− x̄i,j)

−
1−

∏
i∈[K]

(1− xi,j)


=
∑

j∈[M ]

ȳj,k(g1...gj−1ḡj+1...ḡM )
∑
i∈[K]

(x̄i,j − xi,j) ((1− x1,j)...(1− xi−1,j)(1− xi+1,j)...(1− xK,j))

(182)

=
∑
i∈[K]

∑
j∈[M ]

(ζx,i,j + ηx,i,j)ȳj,k(g1...gj−1ḡj+1...ḡM ) ((1− x1,j)...(1− xi−1,j)(1− xi+1,j)...(1− xK,j))

≤
∑
i∈[K]

∑
j∈[M ]

(
ζx,i,j√

(1− xi,j)xi,j

)√
xi,j(1− x1,j)...(1− xi−1,j)ȳj,k(g1...gj−1)︸ ︷︷ ︸

term(c)

+
∑
i∈[K]

∑
j∈[M ]

ηx,i,j︸ ︷︷ ︸
term(d)

, (183)

where Eq. (181) is by telescoping the term (b), Eq. (182) is by telescoping p̄j − pj , Eq. (183) is
because ḡj ∈ [0, 1] for all j and multiplying the first term by√xi,j but dividing it by

√
(1− xi,j)xi,j .

For term (b), it holds that

term(b) =

1−
∏

j∈[M ]

(1− ȳj,kpj)

−
1−

∏
j∈[M ]

(1− yj,kpj)


=
∑

j∈[M ]

pj(ȳj,k − yj,k)(1− y1,kp1)...(1− yj,kpj)(1− ȳj+1,kpj+1)...(1− ȳM,kpM )

(184)

≤
∑

j∈[M ]

(
ζy,j,k

√
pj√

(1− yj,k)yj,k

)√
yj,kpj(1− y1,kp1)...(1− yj−1,kpj−1)︸ ︷︷ ︸

term(e)

+
∑

j∈[M ]

pjηy,j,k︸ ︷︷ ︸
term(f)

,

(185)

where Eq. (184) is by telescoping on the term (b), Eq. (185) is by multiplying the first term by√yi,j
but dividing it by

√
(1− yi,j)yi,j .

Next, we apply Cauchy–Schwarz inequality to term (c) and term (e) simultaneously,∑
k∈[R]

(term(c) + term(e))

≤

√√√√√
 ∑

i∈[K],j∈[M ],k∈[R]

ζ2x,i,j
(1− xi,j)xi,j

+

 ∑
j∈[M ]

∑
k∈[R]

ζ2y,j,kpj

(1− yj,k)yj,k


·

[∑
i∈[K]

∑
j∈[M ]

∑
k∈[R]

xi,j(1− x1,j)...(1− xi−1,j)ȳj,k(g1...gj−1)


+

 ∑
j∈[M ]

∑
k∈[R]

yj,kpj(1− y1,kp1)...(1− yj−1,kpj−1)

]1/2

≤

√√√√√
 ∑

i∈[K],j∈[M ],k∈[R]

ζ2x,i,j
(1− xi,j)xi,j

+

 ∑
j∈[M ]

∑
k∈[R]

ζ2y,j,kpj

(1− yj,k)yj,k
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·

√√√√√
 ∑

j∈[M ]

∑
k∈[R]

(1−
∏

i∈[K]

(1− xi,j))ȳj,k(g1...gj−1)

+
∑
k∈[R]

1−
∏

j∈[M ]

(1− yj,kpj)

 (186)

=

√√√√√
 ∑

i∈[K],j∈[M ],k∈[R]

ζ2x,i,j
(1− xi,j)xi,j

+

 ∑
j∈[M ]

∑
k∈[R]

ζ2y,j,kpj

(1− yj,k)yj,k



·

√√√√√∑
k∈[R]

 ∑
j∈[M ]

(1− gj)(g1...gj−1)

+
∑
k∈[R]

1−
∏

j∈[M ]

(1− yj,kpj)

 (187)

=

√√√√√
 ∑

i∈[K],j∈[M ],k∈[R]

ζ2x,i,j
(1− xi,j)xi,j

+

 ∑
j∈[M ]

∑
k∈[R]

ζ2y,j,kpj

(1− yj,k)yj,k



·

√√√√√∑
k∈[R]

1−
∏

j∈[M ]

(1− ȳj,kpj)

+
∑
k∈[R]

1−
∏

j∈[M ]

(1− yj,kpj)

 (188)

≤
√
R

√√√√√
∑

i∈[K]

∑
j∈[M ]

ζ2x,i,j
(1− xi,j)xi,j

+

 ∑
j∈[M ]

∑
k∈[R]

ζ2y,j,kpj

(1− yj,k)yj,k



·

√√√√√∑
k∈[R]

1−
∏

j∈[M ]

(1− ȳj,kpj)

+
∑
k∈[R]

1−
∏

j∈[M ]

(1− yj,kpj)

 (189)

≤

√√√√√
 ∑

i∈[K],j∈[M ],k∈[R]

ζ2x,i,j
(1− xi,j)xi,j

+

 ∑
j∈[M ]

∑
k∈[R]

ζ2y,j,kpj

(1− yj,k)yj,k

 · √2R, (190)

where Eq. (186) is due to the math calculation on the summation over i ∈ [K], Eq. (187) is due to the
definition of gj , Eq. (188) is due to the math calculation on the summation over j ∈ [M ], Eq. (189)
is because we take one summation over k ∈ [R] out for the first square root term and Eq. (190) is
because yj,k, ȳj,k, pj are all bounded with support [0, 1].

Combined with
∑

k∈[R](term(d) + term(f)), we can derive that

|r(S; µ̄)− r(S;µ)| =

√√√√√
∑

i∈[K]

∑
j∈[M ]

ζ2x,i,j
(1− xi,j)xi,j

+

 ∑
j∈[M ]

∑
k∈[R]

ζ2y,j,kpj

(1− yj,k)yj,k

 · √2R
+
∑
i∈[K]

∑
j∈[M ]

∑
k∈[R]

ηx,i,j +
∑

j∈[M ]

∑
k∈[R]

pjηy,j,k

≤

√√√√√
∑

i∈[K]

∑
j∈[M ]

ζ2x,i,j
(1− xi,j)xi,j

+

 ∑
j∈[M ]

∑
k∈[R]

ζ2y,j,kpj

(1− yj,k)yj,k

 · √2R
+R

∑
i∈[K]

∑
j∈[M ]

ηx,i,j +
∑

j∈[M ]

∑
k∈[R]

pjηy,j,k

 , (191)

where Eq. (191) is because the summation over k ∈ [R] in the second term.

Hence we have (Bg, B1, λ) = (
√
2R,R, 1). ■
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E.3.3 Influence Maximization on Directed Acyclic Graphs (DAG)
In this section, we introduce how to derive (Bg, B1, λ) for DAGs. Note that TBG (or even multi-
layered bipartite graphs) are special cases of DAG. However, the main challenge is that for general
DAGs, there are no closed-form solutions for the reward function since it is NP-Hard to compute their
influence spread [5]. To deal with this challenge, we will use the live-edge graph and edge coupling
technique as [20] and prove the following lemma.
Lemma 23. OIM-DAG problem satisfies TPVM< bounded smoothness condition with coefficient
(Bv, B1, λ) = (

√
L|V |, |V |, 1), where L is the length of the longest directed path.

Proof. Denote the DAG graph as G(V,E) where V are nodes and E are the edges. With a little
abuse of the notation, we will denote u(e), v(e) as the starting node and ending node of the edge e.
Inspired by previous applications with closed-form solutions, we will partition edges E (i.e., base
arms) into L groups, where L is the length of the longest directed path of G. More specifically, we
apply the topological sort on G and label each node with l(v) ∈ {0, 1, ..., L}, where l(v) is the length
of the longest path that starts from node v. For simplicity, we say node v in layer l(v). This sorting
and labelling procedure can be done in O(V + E) time complexity. Given this labelling l(v) for
v ∈ V , we partition edges E into L disjoint edge sets so that E =

⋃
s∈[L] Es, where Es contains

edges that point from node in layer s to node in lower layers, i.e., Es = {(u, v) : l(u) = s, l(v) < s}.
One critical property we will use later is that for any two edges e, e′ ∈ Es in the same layer s,
there are no directed path p from any node v ∈ V so that both e, e′ are in the path p, or otherwise
l(u(e)) ̸= l(u(e′)) which contradicts the assumption that starting nodes u(e) and u(e′) belong to the
same layer s.

Let µ = (µ1, ...,µL) be the true mean vector for the partitions (E1, ..., EL) mentioned above,
where each partition contains ns = |Es| base arms (with µs ∈ (0, 1)ns), for s ∈ [L]. Similarly,
we denote µ̄ = (µ̄1, ..., µ̄L), ζ = (ζ1, ..., ζL),η = (η1, ...,ηL) such that µ̄ = µ + ζ + η and
µ̄s ∈ (0, 1)ns , ζ,η ∈ [0, 1]ns . Now for the reward, we focus on each node t as target, so that
r(S;µ) ≜

∑
t∈V rt(S;µ) and r(S; µ̄) ≜

∑
t∈V rt(S; µ̄). Now fix any target node t ∈ V , we can

telescope the reward by gradually changing one partition from µ̄s to µs as follows:

|rt(S; µ̄)− rt(S;µ)|
= rt(S; µ̄1, ..., µ̄L)− rt(S;µ1, µ̄2, ..., µ̄L)

= rt(S;µ1, µ̄2, ..., µ̄L)− rt(S;µ1,µ2, µ̄3, ..., µ̄L)

+ ...

+ rt(S;µ1, ...µs−1, µ̄s, ..., µ̄L)− rt(S;µ1, ...,µs, µ̄s+1, ..., µ̄L)︸ ︷︷ ︸
s-th partition

+ ...

+ rt(S;µ1, ...,µL−1, µ̄L)− rt(S;µ1, ...,µL) (192)

For the s-th partition, since the first term and the second term differs only in µs and µ̄s, we denote the
first s− 1 partitions as ∪s−1

ℓ=1µℓ and the last L− s partitions as ∪Lℓ=s+1µ̄ℓ. We can further telescope
the reward difference by gradually changing one parameter from µ̄s,i to µs,i as follows:

s-th partition

= rt(S;∪s−1
ℓ=1µℓ, µ̄s,1, ..., µ̄s,ns ,∪Lℓ=s+1µ̄ℓ)− rt(S;∪s−1

ℓ=1µℓ, µs,1, µ̄s,2, ..., µ̄s,ns ,∪Lℓ=s+1µ̄ℓ)

= rt(S;∪s−1
ℓ=1µℓ, µs,1, µ̄s,2, ..., µ̄s,ns ,∪Lℓ=s+1µ̄ℓ)− rt(S;∪s−1

ℓ=1µℓ, µs,1, µs,2, µ̄s,3, ..., µ̄s,ns ,∪Lℓ=s+1µ̄ℓ)

+ ...

+ rt(S;∪s−1
ℓ=1µℓ,∪i−1

ℓ=1µs,ℓ,∪ns

ℓ=iµ̄s,ℓ,∪Lℓ=s+1µ̄ℓ)− rt(S;∪s−1
ℓ=1µℓ,∪iℓ=1µs,ℓ,∪ns

ℓ=i+1µ̄s,ℓ,∪Lℓ=s+1µ̄ℓ))︸ ︷︷ ︸
i-th change in s-th partition

+ ...

+ rt(S;∪s−1
ℓ=1µℓ, µs,1, ..., µs,ns−1, µ̄s,ns

,∪Lℓ=s+1µ̄ℓ)− rt(S;∪s−1
ℓ=1µℓ, µs,1, ..., µs,ns

,∪Lℓ=s+1µ̄ℓ)
(193)
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For the i-th change in s-th partition, we use the live edge graph [6] technique (which links the
probability of a node is activated to the probability this node is reachable in the random live-edge
graph where each edge i is independently selected as live-edge with probability µi), in order to
transform the reward difference into the probability of some events happens. Note that by using
“bypass of edge e", we mean the path that connects seed nodes S and target node t but does not
contains edge e in this path. Let es,i = (u(es,i), v(es,i)) denote the i-th edge with staring node u(es,i)
and ending node v(es,i) in partition Es, for i ∈ [ns]. We use Pr[A|µ] to denote the probability of all
live-edge graphs under parameter µ so that event A happens. Consider the live-edge graphs without
es,i,

i-th change in s-th partition

= (µ̄s,i − µs,i) Pr[S → u(es,i), v(es,i)→ t, no bypass of es,i | ∪s−1
ℓ=1µℓ,

µs,1, ...µs,i−1, µ̄s,i+1, ..., µ̄s,ns
,∪Lℓ=s+1µ̄ℓ] (194)

≤ (µ̄s,i − µs,i) Pr[S → u(es,i), v(es,i)→ t, no bypass of es,i | ∪s−1
ℓ=1µℓ,µs\µs,i,∪Lℓ=s+1µ̄ℓ]

(195)

≤ ζs,i Pr[S → u(es,i), v(es,i)→ t, no bypass of es,i | ∪s−1
ℓ=1µℓ,µs\µs,i,∪Lℓ=s+1µ̄ℓ]

+ ηs,i Pr[S → u(es,i) | ∪s−1
ℓ=1µℓ] (196)

=

√
ζ2s,i
µs,i

√
µs,i(Pr[S → u(es,i), v(es,i)→ t, no bypass of es,i | ∪s−1

ℓ=1µℓ,µs\µs,i,∪Lℓ=s+1µ̄ℓ])2

+ ηs,i Pr[S → u(es,i) | ∪s−1
ℓ=1µℓ] (197)

≤

√
ζ2s,i Pr[S → u(es,i) | ∪s−1

ℓ=1µℓ]

(1− µs,i)µs,i

·
√
Pr[S → u(es,i), es,i is live, v(es,i)→ t, no bypass of es,i | ∪sℓ=1µℓ,∪Lℓ=s+1µ̄ℓ]

+ ηs,i Pr[S → u(es,i) | ∪s−1
ℓ=1µℓ], (198)

where Eq. (194) is due to the coupling technique [20] and the contribution of live-edge graph G′

to the reward difference is µ̄s,i − µs,i if u(es,i) is reachable from S, the target node t is reachable
from v(es,i) but t is not reachable from any other paths in G′ that bypasses edge es,i or otherwise the
contribution of G′ is 0; Eq. (195) is due to es,i and es,j for j ∈ [ns]\{i} are in the same s-th partition,
so that the parameter change from µ̄s,j to µs,j for j ∈ [ns]\{i} neither affects the probability of
u(es,i) is reachable from S nor affects the probability of the target node t is reachable from v(es,i),
but only increases the probability of there is no bypass of es,i (since there is less possibility of a path
connects S and t by reducing µ̄s,j to µs,j); Eq. (196) is because for the second term, we only require
u(es,i) is reachable from S; Eq. (197) is because we multiply and divide the first term by√µs,i at
the same time; Eq. (198) is because we divide the first term by

√
1− µs,i which is within (0, 1).

Now we can summation over all (s, i)s∈[L],i∈[ns], we have

|rt(S; µ̄)− rt(S;µ)|

≤
∑
s,i

√
ζ2s,i Pr[S → u(es,i) | ∪s−1

ℓ=1µℓ]

(1− µs,i)µs,i

·
√
Pr[S → u(es,i), es,i is live, v(es,i)→ t, no bypass of es,i | ∪sℓ=1µℓ,∪Lℓ=s+1µ̄ℓ]

+
∑
s∈[L]

∑
i∈[ns]

ηs,i Pr[S → u(es,i) | ∪s−1
ℓ=1µℓ]

≤

√√√√√∑
i∈[m]

ζ2i p
D,S
i

µi(1− µi)

∑
s∈[L]

∑
i∈[ns]

Pr[S → u(es,i), es,i is live, v(es,i)→ t, no bypass of es,i | ∪sℓ=1µℓ,∪Lℓ=s+1µ̄ℓ]
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+
∑
i∈[m]

ηip
D,S
i (199)

≤

√√√√∑
i∈[m]

ζ2i p
D,S
i

µi(1− µi)

√
L+

∑
i∈[m]

ηip
D,S
i , (200)

where Eq. (199) uses the Cauchy-Schwatz Inequality; Eq. (200) uses the critical property that
for es,i and es,j with i ̸= j, there does not exist any path that can contain both es,i and es,j
as mentioned earlier, which means under the same parameter (∪sℓ=1µℓ,∪Lℓ=s+1µ̄ℓ), the live edge
graphs that satisfies {S → u(es,i), es,i is live, v(es,i) → t, no bypass of es,i} and the live edge
graphs that satisfies {S → u(es,j), es,j is live, v(es,j) → t, no bypass of es,j} are disjoint (or
otherwise contradicts the fact that there is no bypass of es,i or es,j), so it holds that

∑
i∈[ns]

Pr[S →
u(es,i), es,i is live, v(es,i)→ t, no bypass of es,i | ∪sℓ=1µℓ,∪Lℓ=s+1µ̄ℓ] ≤ 1.

Considering all the target nodes t ∈ [V ], we have (Bv, B1, λ) = (|V |
√
L, |V |, 1). ■

E.4 Probabilistic Maximum Coverage Bandit [8, 23]
In this section, we consider the probabilistic maximum coverage (PMC) problem. PMC is modeled
by a weighted bipartite graph G = (L, V,E), where L are the source nodes, V is the target nodes
and each edge (u, v) ∈ E is associated with a probability p(u, v). The task of PMC is to select a
set S ⊆ L of size k so as to maximize the expected number of nodes activated in V , where a node
v ∈ V can be activated by a node u ∈ S with an independent probability p(u, v). PMC can naturally
models the advertisement placement application, where L are candidate web-pages, V are the set of
users, and p(u, v) is the probability that a user v will click on web-page u.

PMC fits into the non-triggering CMAB framework: each edge (u, v) ∈ E corresponds to a base
arm, the action is the set of edges that are incident to the set S ⊆ L, the unknown mean vectors
µ ∈ (0, 1)E with µu,v = p(u, v) and we assume they are independent across all base arms. In this
context, the reward function r(S;µ) =

∑
v∈V (1−

∏
u∈S(1− µu,v)).

Lemma 24. PMC problem satisfies VM bounded smoothness condition (Condition 4) with coefficient
(Bv, B1) = (3

√
2|V |, 1).

Proof. We prove PMC satisfies VM condition by the definition of Gini-smoothness condition (Con-
dition 7) and Lemma 3. First, we know ∂r(S;µ)

∂µu,v
=
∏

i∈S,i ̸=u(1 − µi,j) ≤ 1, thus γ∞ = 1. Also√∑
u∈S,v∈V µu,v(1− µu,v

∂(r(S;µ)
∂µu,v

)2 =
√∑

u∈S,v∈V µu,v(1− µu,v)
∏

i∈S,i ̸=u(1− µi,v)2 =√∑
v∈V

∑
u∈S

(
µu,v

∏
i∈S,i ̸=u(1− µi,v)

) (∏
i∈S(1− µi,v)

)
≤
√∑

v∈V 1/4 =
√
|V |/4, where

the second last inequality uses the fact consider S coins and the i-th coin is up with prob. µi,v,

the first term
(
µu,v

∏
i∈S,i ̸=u(1− µi,v)

)
corresponds to probability P1 that only one coin is

up and the second term
(∏

i∈S(1− µi,v)
)

corresponds to the probability P2 that all coins are
down, thus P1 ∗ P2 ≤ P1(1 − P1) ≤ 1/4. Hence γg =

√
V/4. By Lemma 3, we have

(Bv, B1) = (3
√
2γg, γ∞) = (3

√
|V |/2, 1). ■

F Experiments
In this section, we conduct experiments to validate our proposed algorithms. All experiments were
performed on a desktop with i7-9700K CPU and 32 GB RAM.

F.1 Cascading Bandits
We consider cascading bandits as the application for CMAB with probabilistically triggered arms.
More specifically, we choose the disjunctive cascading bandit problem to compare the performance
of CUCB and BCUCB-T, where the reward function is r(S;µ) = 1 −

∏
i∈S(1 − µi). Similar to

the experimental setup in [16], we set batch-size K = 10 and generate 30 base arms with means
randomly sampled from the uniform distribution U(0, 0.1). Figure 1 shows the cumulative regrets
of CUCB and BCUCB-T for 200, 000 rounds. We repeat each experiment 20 times and show the
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Figure 1: Cumulative regrets of CUCB and BCUCB-T for disjunctive cascading bandit.

average regret with shaded standard deviation. The average running time of CUCB and BCUCB-T
for 200, 000 rounds are 13s and 19s, respectively. As shown in the figure, BCUCB-T achieves around
20% less regret than CUCB, owing to its variance-aware confidence radius control.
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Figure 2: Cumulative regrets of ESCB, BCUCB-T and SESCB for the PMC problem.

F.2 Probabilistic Maximum Coverage
We consider Probabilistic Maximum Coverage (PMC) as the application for non-triggering CMAB.
We generate a complete bipartite graph with 10 source nodes on the left and 20 target nodes on the
right. The goal is to select 5 seed nodes from source nodes to influence as many as target nodes.
The edge probabilities are randomly sampled from the uniform distribution U(0.05, 0.06). We run
ESCB [9], BCUCB-T and SESCB on this graph. For SESCB, we set sub-Gaussian parameter C1 = 3
(according to Remark 7) and VM smoothness coefficient Bv = 3

√
2 · 20/2. Since the number

of base arms to be learned in PMC is large, we shrink the confidence intervals of all algorithms
by αρ = 0.01 to speed up the learning, e.g., for SESCB, r̄t(S) = r(S; µ̂t−1) + αρ · ρt(S). We
repeat each experiment 10 times and show the average regret. The average running time of ESCB,
BCUCB-T and SESCB for 10, 000 rounds are 80s, 7s and 115s, respectively. Figure 2 shows the
cumulative regrets with shaded standard deviations. SESCB achieves around 15% less regret than
BCUCB-T, since it utilizes the independence of base arms while BCUCB-T; it also outperforms
ESCB as ESCB is mainly designed for the linear reward case.
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