
Schema Matching using Pre-Trained Language
Models

Yunjia Zhang
University of Wisconsin-Madison

yunjia@cs.wisc.edu

Avrilia Floratou
Microsoft

avflor@microsoft.com

Joyce Cahoon
Microsoft

jcahoon@microsoft.com

Subru Krishnan
Microsoft

subru@microsoft.com

Andreas C. Müller
Microsoft

amueller@microsoft.com

Dalitso Banda∗
Sentry

dalitso.banda@sentry.io

Fotis Psallidas
Microsoft

fopsalli@microsoft.com

Jignesh M. Patel
University of Wisconsin-Madison

jignesh@cs.wisc.edu

Abstract—Schema matching over relational data has been
studied for more than two decades. However, the state-of-
the-art methods do not address key modern-day challenges
encountered in real customer scenarios, namely: 1) no access to
the source (customer) data due to privacy constraints, 2) target
schema with a much larger number of entities and attributes
compared to the source schema, and 3) different but semantically
equivalent entity and attribute names in the source and target
schemata. In this paper, we address these shortcomings. Using
real-world customer schemata, we demonstrate that existing
linguistic matching approaches have low accuracy. Next, we
propose the Learned Schema Mapper (LSM), a novel linguistic
schema matching system that leverages the natural language
understanding capabilities of pre-trained language models to
improve the overall accuracy. Combining this with active learning
and a smart attribute selection strategy that selects the most
informative attributes for users to label, LSM can significantly
reduce the overall human labeling cost. Experimental results
demonstrate that users can correctly match their full schema
while saving as much as 81% of the labeling cost compared to
manual labeling.

I. INTRODUCTION

More and more organizations in various industries (retail,
healthcare, manufacturing, etc.) are adopting a data-driven
approach to discover non-trivial and strategic insights. At
the same time, the amount of information collected has
never been greater [1], highlighting the need for modern data
analytics tools that can keep up with the volume, variety,
and velocity of data associated with different industries. To
that end, multiple companies are offering industry-specific
analytics solutions [2]–[4] tailored to meet customers’ domain-
specific needs. Azure Industry solutions [2], for example,
offers a variety of services that aim to optimize industry-
specific processes, provide enhanced collaboration capabilities
and reduce the time to actionable insights. Enabling these en-
hanced experiences often requires a substantial understanding
of customer data. To tackle this problem, the service operator
usually maps the customer’s data to a known industry-specific
schema (ISS) whose semantics are clearly defined, and then
builds tools on top of it to streamline various processes.

∗Work done while at Microsoft.

In this paper, we study the schema matching problem in
the context of known ISSs and customer data in the form of a
relational schema. While the problem has been studied for over
two decades, we find that existing solutions are not adequate
in our environment.

First, information about customer data is often limited due
to privacy considerations. In particular, we find that customers
are reluctant to grant access to individual data records [5],
[6]. As a result, the service operator cannot leverage customer
data records when performing schema matching. The same
considerations do not constrain their access to the customer
schemata. Indeed, since the outcome of schema matching
reveals what entities and attributes in the known ISS are
present in the customer data, further obfuscating the customer
schema from the service operator is not valuable 1. As a result,
customers are generally willing to provide schema information
to the operator to facilitate schema matching.

Second, ISSs are typically large (in terms of entities and
attributes) as they try to capture a wide variety of concepts
associated with a given industry. The customer schema, how-
ever, does not necessarily encapsulate all these concepts and
is often much smaller than the target ISS. This discrepancy
can complicate the schema matching process as it results in a
large number of available (and potentially irrelevant) candidate
matches for each attribute of the customer schema.

Finally, the entity and attribute names of the customer
schema are often hard to understand due to abbreviations
and/or customer-specific terminology, further complicating the
automation of schema matching for the service operator.

The externally-imposed customer constraints along with
the challenges associated with real customer schemata sig-
nificantly limit the accuracy of existing schema matching
approaches (see Section III). In this work, we propose the
Learned Schema Matcher (LSM), a novel human-in-the-loop
linguistic schema matching approach. LSM does not require
access to the individual data records (data-free schema match-
ing) but only to the source schema, respecting the customer

1There are other scenarios where both the source and target schemata need
to be obfuscated from the service operator [7]. Extending our approach to
meet these more stringent privacy requirements is left for future work.

requirements. At the core of our approach lies a fine-tuned
language model that is able to scale to large ISSs and allows
us to better handle noise in the source schema. Further,
by combining this model with active learning and a smart
interaction strategy to obtain targeted feedback from the user,
we can fully map a source schema to an ISS while incurring
significantly less human labeling cost than prior work.

Our contributions are the following:
• We study the state-of-the-art linguistic schema matching

approaches on real-world schemata from Microsoft cus-
tomers and demonstrate that they have low accuracy.

• We develop LSM, a novel matching approach that relies
on a fine-tuned pre-trained language model to tackle data-
free schema matching. To the best of our knowledge, this
is the first work demonstrating that leveraging the natural
language capabilities of pre-trained language models can
improve the accuracy of data-free schema matching.
Previous methods that are either not data-free [8]–[10]
or do not leverage natural language understanding [11]–
[15].

• The externally-imposed customer constraints render near-
100% accuracy virtually impossible without humans-
in-the-loop. We thus propose to combine our schema
matching model with an active learning strategy. Our
method employs a novel attribute selection strategy to
obtain targeted feedback from the user with the goal of
reducing the human labeling cost.

• We evaluate LSM on real customer schemata and publicly
available datasets. We show that with LSM, users can
correctly match their full schema to ISS with a 81%
reduction in labeling cost compared to manual labeling.

The remainder of the paper is organized as follows: Sec-
tion II contains the problem statement. Section III presents
an evaluation of the state-of-the-art linguistic matching ap-
proaches on real customer schemata. Section IV describes the
design of our proposed LSM method. Section V contains our
experimental evaluation, and Section VI discusses our expe-
riences in designing LSM. Finally, Section VII presents the
related work, and our conclusions are stated in Section VIII.

II. PROBLEM STATEMENT

We now define the problem of schema matching in our
environment. Given a source (customer) schema and a known
target (ISS) schema that both follow the E/R model [16], our
goal is to map each attribute of the source schema to an
attribute at the target schema. Figure 1 shows an example of
an ISS and a customer schema and their corresponding match.

More formally, we are given a source schema Ss consisting
of a set of entities Es, a set of attributes As, and a set of
PK/FK relationships Rs. Similarly, we also have a known
target schema St that consists of a set of entities Et, a set of
attributes At, and a set of PK/FK relationships Rt. We assume
that each attribute in As (At) belongs to a single entity in Es

(Et).
Each entity e (e ∈ Es ∪Et) has a name e.name, a primary

key e.pk, and a set of foreign keys e.fks. Each attribute a

Item

brand_name
item_id

enabled

Product

primary_brand_id
product_id

TransactionLine

quantity
product_id

Orders

item_id
order_id

item_amount

product_item_price_amount

product_status_id

pick_up_estimated_time
promised_avalailable_curbside_pickup_timestamp

EAN european_article_number

Brand
brand_id
brand_name

transaction_id

discount
price_change_percentage

(+7 attributes)

(+21 attributes)

(+35 attributes)

Orders
…

Store
…

ProductRelatedStatus
…

Maps to
PK/FK relationship

Industry-Specific Schema (ISS)Customer schema

Promotion
discount_percentage
…

Fig. 1: An example customer schema and corresponding ISS.

(a ∈ As ∪ At) has a name a.name, a data type a.dtype,
and optionally a natural language description a.desc associated
with it.

We define an attribute correspondence as rij = (ai, aj)
where ai is an attribute in the source schema Ss and aj is
an attribute at the target schema St. As discussed in [17],
intuitively, an attribute correspondence specifies a relationship
between ai and aj . The correspondence may specify that the
two attributes are equal to each other or that there may be a
transformation function involved (e.g., from dollars to euros).
In this work, we focus on correspondences that denote equality
and leave more complex transformations as part of future
work.

Definition 1. An entity matchM is a triple (es, et,m), where
es is an entity in Es, et is an entity in Et, m is a set of
attribute correspondences between es and et, and each source
and target attribute occurs in at most one correspondence in
m.

Based on the above definition, we now define the schema
matching problem addressed in this paper.

Definition 2. The result M of the schema matching process
is a set of entity matches between entities in Es and in Es,
where each attribute in Ss and St appears in at most one
entity match.

As we discuss in Section IV, our approach generatesM by
utilizing all the available information in the source and target
schemata (i.e., entities, attributes, and PK/FK relationships).

III. MOTIVATION

Given that in our setting, we do not have access to the
customer data, we evaluated the applicability of the state-
of-the-art schema matching approaches that rely solely on
schema-level information. In this section, we demonstrate that
prior approaches have poor accuracy on our real customer
schemata. We then identify a set of challenges that motivate
the design of the Learned Schema Matcher.
State-of-the-art Methods. We choose four representative
schema-based matching methods: CUPID [11], COMA [18],

Entities # Attr. # Unique
Attr. Names # PK/FK Desc.

Customer A 3 29 28 2 Y
Customer B 8 53 45 7 N
Customer C 3 84 82 2 N
Customer D 7 136 125 7 N
Customer E 25 530 475 24 Y

TABLE I: Statistics on the customers’ (source) schemata.

Entities # Attributes # PK/FK

RDB-star Source 13 65 12
Target 5 34 4

IPFQR Source 1 51 0
Target 1 67 0

MovieLens-IMDB Source 6 19 5
Target 7 39 6

TABLE II: Statistics on publicly available schemata.

S-MATCH [12], and Similarity Flooding [15], which are
all heuristic-based. To evaluate the effectiveness of machine
learning-based approaches, we also experimented with the
LSD [13] and MLM [14] methods. Note that these methods
require access to both the schema and the data records, which
is not possible in our environment. We thus had to adapt them
to leverage schema-level information only. We implemented
all the methods except COMA [18] from scratch according
to the descriptions in [11]–[14] respectively. We use the
latest community edition of COMA 3.0 2. Note that COMA
and CUPID can optionally accept user feedback during the
matching process. In this section, we present results without
user feedback, but we do use the interactive mode in our
experiments in Section V where we present a comparison with
our approach. A summary of the methods is presented below:
• CUPID: CUPID tackles the schema matching problem

for both XML and relational schemata by combining both
linguistic (through a synonym dictionary) and structural
information and computing the weighted sum of the asso-
ciated similarities. In our implementation, we use the pre-
trained word embedding from FastText [19] as the synonym
dictionary and generate the similarity score using cosine
similarity. For each customer schema, we search the best-
performing weights for the weighted sum and report only
the best results.

• COMA: COMA uses a set of matchers to compute the
linguistic similarity between two attributes. The matchers
cover a broad spectrum of similarity metrics such as affix,
n-gram, Soundex, edit distance, etc. To combine the similar-
ities, COMA can choose from various aggregation functions
such as min, max, average, etc.

• S-MATCH: S-MATCH (SM) solves the semantic matching
problem on two trees. It uses WordNet [20] to understand the
meaning of the nodes in the trees and identify synonyms.
It covers multiple semantic relations such as equivalence,
mismatch, overlapping, etc. We use S-MATCH to tackle the
schema matching problem as defined in Definition 2 and
thus consider only attribute equivalence.

2https://sourceforge.net/projects/coma-ce/

CUPID COMA SM SF LSD MLM
RDB-Star 0.96 1.00 1.00 0.70 0.26 1.00

IPFQR 1.00 0.98 0.82 1.00 0.08 0.98
MovieLens-IMDB 0.64 0.54 0.72 0.71 0.00 0.64

Customer A 0.18 0.21 0.07 0.11 0.00 0.11
Customer B 0.14 0.02 0.06 0.02 0.00 0.08
Customer C 0.08 0.22 0.11 0.23 0.00 0.14
Customer D 0.27 0.31 0.13 0.14 0.00 0.14
Customer E 0.27 0.17 0.28 0.12 0.00 0.14

TABLE III: The top-3 accuracy of six state-of-the-art ap-
proaches on our schemata.

• Similarity Flooding: Similarity flooding (SF) [15] builds
a pairwise connectivity graph based on the structure of the
source and target schemata. The connectivity graph contains
element pairs as nodes. Two nodes (x1, y1) and (x2, y2) are
connected if x1, x2 and y1, y2 are neighbors in the original
schema graphs respectively. SF initializes the similarity
scores of the element pairs and propagates the scores for
each element pair following the edges in the connectivity
graph. In our implementation, we use embedding similarities
as the initial scores.

• LSD: The LSD method is one of the first to leverage
machine learning for schema matching. LSD learns to match
between the source and target schemata based on a set of
provided examples. LSD has four individual learners: 1)
the whirl learner, which classifies the attributes based on
nearest neighbors of TF-IDF encodings, 2) a naive Bayesian
learner that classifies the descriptions, 3) a name matcher
based on name similarities, and 4) a county-name recognizer
that matches the names if the attribute is a county name.
We randomly select 50% of the ground truth matches as the
training set and measure the matching quality for the rest
50% of the attributes.

• MLM: MLM is another machine learning-based method.
Different from LSD, MLM featurizes the candidate matches
using both the schema specifications and the data records.
Following the featurization, MLM generates matches with
a clustering model (K-means or self-organizing map [14]).
To apply MLM in our problem setting, we only use the
features from the schema-level specification. Since MLM
adopts unsupervised learning, all the attributes in the target
(ISS) schema are treated as the training set.

Datasets. We use five real-world schemata from Microsoft
customers in retail. The characteristics of these schemata are
shown in Table I. As shown in the table, the five schemata are
of different sizes: Customer A has the smallest schema with 29
attributes spread across three entities, while Customer E has
the largest schema with 25 entities and 530 attributes. Among
the five customer schemata, two of them contain attributes
with natural language descriptions. The corresponding target
ISS is also defined for the retail industry, which encapsulates
information about customers, goods, stores, promotions, sales,
and other assets that are typically tracked. The retail ISS
we consider consists of 92 entities, 1218 attributes, and 184
PK/FK relationships. The ground truth matches are obtained
from domain experts.

In addition, we also evaluate the performance of the state-of-
the-art solutions on three publicly available schemata shown
in Table II. RDB-Star is a synthetic dataset used in [11];
IPFQR is the Inpatient Psychiatric Facility Quality data set 3;
MovieLens-IMDB contains the mapping between the Movie-
Lens [21] schema and the IMDB schema 4. For these data
sets, we manually created the ground truth matches.
Methodology. All the methods that we study generate a
matching score for each pair of attributes at the source and
target schema. The score shows the probability that the pair
is a good match. For each attribute in the source schema, we
examine whether the correct target attribute is in the top-3
candidate target attributes list and report the top-3 accuracy.
Results. Table III shows our results. As shown in the table, all
the baseline methods, except LSD, have near-perfect accuracy
on the RDB-Star and IPFQR datasets. Since LSD is based on
the TF-IDF encodings, it has difficulty with a small training
set and concise (not verbose) input attribute names. For
MovieLens-IMDB, the best baseline achieves a 0.72 accuracy
since the matches are not as straightforward as in RDB-Star
and IPFQR datasets. Moreover, the accuracy of all methods
significantly drops (below 0.3) on the real-world customer
schemata. In addition, no single approach outperforms the
others on all schemata.

Taking a closer look at the ground truth matches in the
public schemata, we observe that the names between the
source and target attributes are similar for most of the
cases. For example, in RDB-Star, for the source attribute
Sales.Discount, the corresponding correct target attribute is
OrderDetails.Discount. Note that not only they both have
similar names (aka Discount), but there is also no other
attribute in the target schema with this name, which makes
the traditional matching task relatively straightforward. The
real-world schemata, however, do not follow the same naming
conventions as the ISS. Since we cannot directly showcase
the customer schemata due to privacy reasons, we explain the
challenges through the example in Figure 1. As shown in the
figure, the Orders.discount in the customer schema maps to
the TransactionLine.price change percentage attribute in the
ISS. The two attributes have very different names, yet they are
a match. We observe that more than 30% of the matches in
the customer schemata follow such a pattern. The RDB-Star
dataset, on the other hand, does not contain any such matches.

Another difference between the real-world scenario and
the public dataset is that the ISS contains a large number
of entities and attributes compared to the customer schema.
As we discussed in Section I, this is typically the case
as the ISS tries to capture almost every concept within an
industry, which might not be the case for an individual
customer. As a result, the search space becomes much larger,
resulting in a higher number of candidate target attributes
for each source attribute. As an example, in Figure 1, a

3https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-
Instruments/HospitalQualityInits/IPFQR. We use the state data schema as
source schema and national data schema as target schema.

4https://www.imdb.com/interfaces/

simple edit distance matcher like the one used in COMA
will map the source attribute Orders.item amount to the
TransactionLine.product item price amount attribute instead
of the correct TransactionLine.quantity. The existence of a
large number of attributes in the target schema along with
multi-word attribute names increase the chances that such
candidates will occur. In the public dataset, both schemata
are relatively small and thus we do not observe this problem.
The scale of ISS, however, creates plenty of opportunities for
erroneous candidates, which the existing approaches cannot
tackle.
Insights. Based on our evaluation of the state-of-the-art ap-
proaches and the challenges we encountered, we now discuss
opportunities for improvement in the space.

• Schema-only access. The customer-imposed constraints
discussed in Section I, along with the challenges of real-
world customer schemata, render near-100% accuracy
virtually impossible. We thus believe that a combination
of a reasonably good model with human-in-the-loop
intervention in a targeted fashion is likely the best way
to improve the schema matching process. As we discuss
in the following sections, we opt for an active learning
approach that attempts to minimize the human labeling
cost while still allowing users to map their full schema
correctly to the ISS.

• Entity and attribute naming. As shown in this section,
the similarity metrics used by existing approaches fail
to capture matches where the entity and attribute names
between the two schemata are different, yet semantically
equivalent. The existence of multi-world names further
complicates the issue. We believe there is an opportunity
to address some of these issues by leveraging the natural
language understanding capabilities of pre-trained lan-
guage models. Our approach relies on BERT, an encoder-
only model, as discussed below.

• Large ISS. The ISS is typically large in terms of the
number of entities and attributes and is known in advance.
Thus, there is an opportunity to leverage pre-training
techniques to create a model that better understands the
domain we are operating on.

To address the above challenges, we design a novel linguis-
tic schema matching approach based on semi-supervised and
active learning that is presented in Section IV.

IV. THE LEARNED SCHEMA MATCHER

To address the shortcomings of prior work, we propose the
Learned Schema Matcher (LSM), a linguistic schema match-
ing approach based on semi-supervised and active learning.
In this section, we first present an overview of the matching
pipeline of the Learned Schema Matcher, followed by a
detailed description of each step.

A. Matching Pipeline Overview

Figure 2 depicts the matching pipeline of the Learned
Schema Matcher. LSM takes as input the source schema Ss

𝑎!", 𝑎#"
𝑎!", 𝑎#$
𝑎!", 𝑎#%

… …

 𝑆!

(0.1, 0.3, 0.2)

(0.3, 0.4, 0.9)

(0.8, 0.2, 0.7)

…

0.2

0.1

0.9

…

𝑎!": [𝑎#$, 𝑎#", 𝑎#%]

…

Self-training

Lexical featurizer

Embedding featurizer

BERT featurizer
Featurizers

Update labels

Matching candidates Labels

Unlabeled

Unlabeled

Unlabeled

Customer Schema

ISS !"

Featurized candidates

Inputs Preparation Step 1: Featurization Step 2: Training and prediction Step 3: User interaction

Matching score

Suggestions
Semi-supervised
meta-learner

Fig. 2: The Matching Pipeline of the Learned Schema Matcher

and the target ISS St and attempts to perform the full matching
in an iterative and interactive fashion.

For a new source schema Ss, we first generate the set
of all candidate pairs by calculating the Cartesian product
between the two attribute sets As and At (preparation phase).
The resulting candidate pairs are unlabeled to begin with. We
iteratively build our model using active learning, where at
each iteration, a new candidate pair is labeled by the user.
The interaction with the user starts in an iterative fashion.
Each iteration consists of three phases: 1) featurizing candidate
pairs, 2) model training and output of matching suggestions,
and 3) incorporating user feedback.

During the featurization phase (Step 1 in Figure 2), a
modular featurizer converts the candidate pairs into numerical
vectors. Our model consists of several pre-trained featurizers,
including BERT and FastText [19] as well as lexical features.
A key innovation in our work is the design of a fine-tuned
BERT featurizer built using a pre-trained language model, that
contributes to the high accuracy of our approach. We create
a similarity score based on BERT, using a classifier trained
just using the ISS schema, which can be reused across all
customers. During each iteration, we improve the similarity
score provided by this featurizer using human feedback, as
described below.

During the training and prediction phase (Step 2 in Fig-
ure 2), a ML model is trained on the partially labeled data
via self-training, a method from semi-supervised learning,
using the output of the featurizers as input and the user-
provided labels (available only after the first iteration) as the
target. After the training is completed, the ML model predicts
the probability that an unlabeled candidate pair represents a
correct match and then generates a set of top-k matching
suggestions for each unmapped source attribute in Ss.

In the next phase, the user receives the suggestions and
they can either choose to continue interacting with LSM or
terminate the process (Step 3 in Figure 2). If they continue, the
next step is to review the top-k suggestions for each unmapped
attribute and either mark one of them as correct or indicate
that none of them is correct. When the reviewing process is
completed, LSM selects a subset of N source attributes for
which none of the suggestions was correct and asks the user
to provide the correct matching to the ISS (N is typically 1).
To reduce the human labeling cost, we employ a smart attribute
selection strategy to identify the set of N most “informative”
attributes for users to label (see Section IV-E). The feedback

provided by the users is subsequently used to update the labels
of the candidate pairs before the next iteration starts.

We now discuss in more detail the various phases in the
matching pipeline of LSM.

B. Preparation

During this phase, we generate a set of candidate pairs by
calculating the Cartesian product between the two sets of at-
tributes As and At. Specifically, we generate a set of candidate
pairs P by calculating P = As×At = {(as, at) |as ∈ As, at ∈
At}. Each candidate pair p ∈ P , has an associated label lp
to eventually be assigned by the user, indicating whether the
candidate pair represents a correct match (lp = 1), an incorrect
match (lp = 0) or is currently unlabeled (lp = −1). The labels
for all the candidate pairs are initially set to −1 after this phase
is completed.

C. Featurization

During the featurization step, we convert the candidate pairs
(as, at) ∈ P into numerical vectors. We apply a set of different
featurizers that measure the similarity between the attributes as
and at using a variety of metrics. Each individual featurizer
takes the two attributes in the candidate pair, and outputs a
similarity score. We have built a modular featurization pipeline
with currently three featurizers plugged in, but our design
allows for easy incorporation of more featurizers in the future.
We use a word embedding featurizer and a lexical featurizer,
and we also design a novel BERT featurizer whose details are
presented next. We note that our architecture is generic enough
to accept any encoder-only model such as BERT, Electra [22],
RoBERTa [23], etc.

1) BERT Featurizer:
In Section III, we showed that existing linguistic schema
matching approaches have low accuracy on real customer
datasets. One of the reasons behind their sub-optimal perfor-
mance is that they are not robust to noise in the entity and
attribute names in the source schema. This noise might be
in the form of customer-specific terminology or abbreviations
(see Item.EAN in Figure 1). Additionally, the ISS contains
a large number of entities and attributes with multi-word
names, such as TransactionLine.product item price amount
that further complicates the matching process.

Recently, language models have emerged as strong generic
feature extraction solutions in the context of natural language
processing (NLP) for tasks such as text generation [24],

[CLS]

BERT

𝑡! 𝑡" 𝑡# … [SEP] 𝑡$ 𝑡$%! … [SEP]

(𝑎&, 𝑎')

𝑎&. 𝑛𝑎𝑚𝑒 𝑎&. 𝑑𝑒𝑠𝑐 𝑎'. 𝑛𝑎𝑚𝑒 𝑎'. 𝑑𝑒𝑠𝑐

𝐸′[)*+]

Linear NN

 Matching classifier

Similarity score

Fig. 3: Architecture of the BERT featurizer.

text classification [25], [26], summary extraction [27], [28],
entity matching [10], etc. Therefore, we decided to leverage
them to better capture the similarity between the attributes
in each candidate pair using their corresponding names and
descriptions. Specifically, we regard this problem as a binary
text classification problem: given a sentence that describes
the two attributes, we predict whether these two attributes
represent a correct match.
Model Architecture. Among the various language models, we
choose BERT [29] as our base language model. The model
architecture of our fine-tuned BERT is similar to the one
presented in [10] and is shown in Figure 3. We use the pre-
trained BERT on the Toronto Book and Wikipedia corpora as
described in [30]. On top of the BERT hidden state E′

[CLS],
we add a binary classifier consisting of a single hidden layer
neural network with a sigmoid activation function. We refer
to this classifier as the matching classifier as it is
responsible for fine-tuning BERT for schema matching.

For the inputs of our fine-tuned BERT model, we convert
the two input attributes in a candidate pair into a sentence by
concatenating the names and descriptions of the two attributes.
Specifically, for each candidate pair (as, at), the input sentence
to the model is generated as “[CLS] as.name as.desc [SEP]
at.name at.desc [SEP]”. [CLS] and [SEP] are two special
tokens in BERT that mark the start and separation of the input
sequence, respectively. The output of the fine-tuned BERT
featurizer is a similarity score for the candidate pair.
Pre-training the Matching Classifier. To optimize the perfor-
mance of the BERT featurizer, we pre-train the matching
classifier by leveraging the content of ISS. Intuitively,
the pre-training phase informs the matching classifier
on the output of the language model (BERT) when the input
attributes are linguistically similar. Pre-training aims to quickly
impart the basic knowledge of “similar” attributes to the
matching classifier without any matching labels.

Pre-training happens only once per ISS, in other words, per
vertical, and the resulting classifier can be used without any
additional training for feature extraction on any source schema.
We generate the labeled input sequences as follows:

• Positive Samples. We generate three types of sentences

with positive labels: 1) self-repeating, 2) self-explaining,
and 3) PK/FK linking. Self-repeating: For each attribute
at ∈ St, we generate a sentence “[CLS] at.name at.desc
[SEP] at.name at.desc [SEP]” with a positive label.
Self-explaining: For each attribute at ∈ St, we generate
a sentence “[CLS] at.name [SEP] at.desc [SEP]” with
a positive label. PK/FK linking: For every two attributes
at, ak ∈ St with a PK/FK relationship, we generate
a sentence “[CLS] at.name at.desc [SEP] ak.name
ak.desc [SEP]” with a positive label.

• Negative Samples. We randomly corrupt one side of the
positively labeled sentences to generate negative samples.
Particularly, we randomly choose a a′t ∈ St, a

′
t ̸= at,

and replace at with a′t for all the three types of positive
samples.

Updating the Matching Classifier based on Human Labels.
Besides pre-training the matching classifier, we can
further improve our results by updating the classifier based on
the human labels provided by the users in each iteration. In
particular, for all attribute pairs p = (as, at), p ∈ P with labels
lp, we add the sentences “[CLS] as.name as.desc [SEP]
at.name at.desc [SEP]” and the corresponding labels lp to
the training set and assign them a larger sample weight than
the samples generated using just the ISS schema.

By pre-training the matching classifier , the BERT
featurizer is able to identify the basic linguistic similarities
even when no/limited matching labels from human experts are
initially provided. Updating the matching classifier
based on user labels allows the BERT featurizer to adapt to
the characteristics of each individual source schema.

2) Word Embedding and Lexical Featurizers:
In addition to the BERT featurizer, we employ two other com-
mon featurizers, namely, the word embedding featurizer and
the lexical featurizer, which capture the embedding similarity
and lexical similarity between a pair of attributes.

• Word Embedding Featurizer. The word embedding
featurizer calculates the cosine similarity between the
embedding representations of the attribute names. We
use the pre-trained FastText [19] embeddings in our
experiments.

• Lexical Featurizer. The lexical featurizer measures
whether two attributes have high lexical similarity. For
the attribute pair (as, at), the similarity score is cal-
culated as lsc(as.name,at.name)

min(len(as.name),len(at.name)) where function
lsc computes the length of the longest common sub-
sequence. The lexical featurizer is capable of handling
abbreviations.

The combination of various featurizers improves the ac-
curacy of the model, especially when the source schema
uses different naming conventions than the ISS and a limited
number of labels are provided.

D. Meta-learning Model Training and Prediction

Training. With the currently provided labels, we train the
meta-learner and predict the matching labels for each of the

unlabeled attributes. We use self-training [31], a standard semi-
supervised training framework. In self-training, we first train
the meta-learning model on the labeled subset of the training
data. This model is then used to generate (pseudo-)labels for
the unlabeled data points.

The base classifier for the semi-supervised framework is a
simple linear classifier using logistic loss. The inputs of the
classifier are the similarity scores given by each of the three
featurizers, and the output labels are provided using the self-
training procedure.
Prediction. After the model is trained, we use it to make a
prediction on each candidate pair (as, at) in P and obtain a
list of matching scores. We further tune the matching scores
based on other schema-level information as follows:

• Handling data type mismatches. In our application
scenario, we observe that in nearly all correct matches,
the source and target attributes have compatible data
types. Therefore, we set the score of a pair consisting
of attributes with incompatible data types to be 0, i.e.
score(as, at) ← 0 if as.dtype ̸= at.dtype. If the source
schema is not well designed, this process can be skipped.

• Penalizing introduction of new entities. Users would
typically prefer to map their schema to a concise subset
of ISS if possible. Thus, we introduce a heuristic that
penalizes matches that result in source attributes being
mapped across multiple target entities in ISS. Specifically,
we apply a penalization term z ∈ [0, 1] to penalize the
matching score, i.e. score(as, at) ← z × score(as, at),
if the entity that contains at is not part of the current
matches so far. Intuitively, the closer the newly added
entity is to the current entities in the ISS graph, the lower
the cost of adding it to the set of matches. This is because
the user would need to perform fewer join operations
to merge the data. Thus, the penalization term is set as
z = 1

1+log(1+sp(at,M))
, where sp(at,M) denotes the

shortest path (on the join graph of ISS) between the entity
containing at and the entities in ISS that are already part
of the set of matches M.

For each attribute as belonging to a candidate pair (as, at) ∈
P , we provide a list of matching suggestions ks by selecting
the target attributes at with the top-k predicted matching
scores. We define the prediction confidence cs of the matching
suggestions ks for as as the max score of all the candidate
pairs (as, at), i.e. cs = maxat∈ks

score(as, at).

E. User Interaction

After providing the matching suggestions for the unlabeled
source attributes as, the user can decide whether to continue
the interaction loop. If they choose to continue, they perform
the following two tasks: 1) review the matching suggestions
and mark the ones that are correct, and 2) label a set of
incorrectly matched attributes selected by the Learned Schema
Matcher to improve the predictions.

1) Reviewing Matching Suggestions:
During the reviewing process, for each unlabeled attribute as,

the user is given a list of k attributes (ks) from At, indicating
the top-k matching suggestions. For each suggestion, the user
either 1) selects the correct attribute that as maps to, or 2)
indicates that there are no correct matches in the k matching
suggestions. If the correct matching attribute at is selected, the
label for the pair (as, at) is positively set. In addition, negative
labels are generated for the pairs (as, a

′
t) where a′t ̸= at. If

the user indicates that there are no correct matching attributes
in the top-k suggestions, negative labels are generated for all
the pairs (as, at) where at ∈ ks. This process can be skipped
if the user decides to improve the quality of the suggestions
by providing more labels before reviewing.

2) Selecting Attributes to be Labeled:
As the next step, to further improve the model’s performance,
LSM selects N attributes (N is typically set to 1) and asks
users to provide the correct mapping. Since providing this
information requires the users to have some knowledge of the
ISS, we design a smart attribute selection strategy, namely, the
least confident anchor strategy, to reduce the number of labels
needed. In Section V, we compare this sophisticated strategy
with a purely random strategy and demonstrate its impact on
the model’s performance.
Least Confident Anchor. In the least confident anchor strategy,
we keep a set of anchor attributes, containing the most
“informative” attributes of the schema. LSM can either adopt
a user-provided anchor set or create a default anchor set based
on the PK/FK relationships in the source schema Ss. These
relationships carry a lot of information as they indicate how
various entities and attributes are connected with each other.
Specifically, the anchor set of the source schema consists of the
attributes in {e.pk, e.fks|∀e ∈ Es}. For example, the default
anchor set corresponding to the example source schema in
Figure 1 is { Item.item id, Orders.order id, Orders.item id }.

To select N attributes from the anchor set, we use the
least confidence strategy, which is common in active learning
scenarios [32]–[35]. More specifically, among the set of anchor
attributes, LSM chooses N unlabeled anchor attributes as with
the least prediction confidence cs. The prediction confidence
c is calculated by Softmax function on the matching scores
for a. At the first iteration, LSM selects the first N attributes
from the anchor set for users to label. If all the attributes in
the anchor set are labeled, LSM applies the least confidence
selection strategy to all other non-anchor attributes.

After the N attributes are selected, users are asked to
provide the corresponding matches to the ISS. As before, for
each correct match (as, at), we mark the label for (as, at) to
be 1, and all other (as, a′t) to be −1.

V. EXPERIMENTAL EVALUATION

We now experimentally evaluate the quality of LSM on both
customer and publicly available schemata and perform an in-
depth analysis of the results.

A. Experimental Setup
Datasets. We follow the setup presented in Section III and use
the five real-customer schemata and three publicly available
datasets.

Baseline Approaches. We compare LSM with the state-of-the-
art matching approaches (COMA, CUPID, SM, SF, LSD, and
MLM). We tune the baselines by performing a grid search of
their hyper-parameters as discussed in Section III. To ensure a
fair comparison with LSM, we run the baselines in interactive
mode as described in [11], [18]. We additionally implement a
similar interaction strategy for S-MATCH (SM) and Similarity
Flooding (SF). Note that as opposed to our work, the works
in [11], [18] do not propose a concrete strategy for selecting
attributes to be mapped by the user. Thus, instead of employing
a random strategy, we further optimize the baseline approaches
by applying our smart attribute selection strategy.
Evaluation Goals. Our experiments aim to answer the follow-
ing questions:

• What is the prediction quality of our model? (Sec-
tion V-B)

• What is the human labeling cost to map the full source
schema to the ISS? (Section V-C)

• What is the contribution of the BERT featurizer and
the attribute descriptions to the overall performance?
(Section V-D)

• How is the performance of LSM affected in the presence
of noise? (Section V-F)

• How much time is spent re-training the model after the
user provides new labels? (Section V-G).

Evaluation Metrics. To answer the above questions, we use the
following metrics to evaluate the performance of our model:

• Human Labeling Cost. This metric captures the number
of human labels needed to map the full source schema to
the ISS.

• Prediction Accuracy. Since the ISS captures a wide
variety of concepts for an industry, each of the source
attributes ai ∈ As in the customer schema has a matching
attribute in the target At. For each source attribute, we
provide a list of matching suggestions and measure the
top-k accuracy of these suggestions on the unlabeled part
of the source schema [36]. This metric also implicitly
reflects the expected reviewing cost (see Section IV-E1):
the higher the accuracy, the fewer attributes would need
to be reviewed in the next iteration. We use k = 3 for
our experiments unless specified otherwise.

• Response Time. Given the interactive nature of our ap-
proach, the users’ experience will be affected by how fast
we can retrain our model using the provided human labels
at each iteration. Therefore, we measure the response time
in seconds at each iteration and report the average.

B. Evaluating Model Performance

In this experiment, we test our model in a non-interactive
manner in order to decouple the evaluation of the active
learning strategy from the evaluation of the model itself: given
a set of training matching labels, we train our model and
evaluate how accurate it is on the test set. We follow the
same methodology as in Section III but now report top-k
accuracy for k=1,3,5. We use both the publicly available and

Best Baseline LSM
top-1 top-3 top-5 top-1 top-3 top-5

RDB-Star 0.95 1.00 1.00 0.98 0.98 1.00
IPFQR 1.00 1.00 1.00 1.00 1.00 1.00

MovieLens-IMDB 0.53 0.72 0.75 0.65 0.83 0.87

TABLE IV: Top-k accuracy of LSM on the public schemata.

A B C D E0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

LSM
Best baseline

(a) Top-1

A B C D E0.0

0.2

0.4

0.6

0.8

(b) Top-3

A B C D E0.0

0.2

0.4

0.6

0.8

(c) Top-5

Fig. 4: Top-k accuracy of LSM vs the best baseline on
customer schemata A-E.

the real customer schemata. For each schema, we only report
the results from the best baseline according to Table III.
Public Schemata. The results on public schemata are shown
in Table IV. We report the median top-1, 3, 5 accuracy of five
independent trials. As shown in the table, both LSM and the
best baseline approach can achieve near-perfect matching pre-
dictions on the relatively easy RDB-Star and IPFQR datasets,
while LSM out-performs the best linguistic matching baseline
by over 10% on the MovieLens-IMDB dataset. This shows
LSM can perform well on small and relatively straightforward
matching tasks.
Customer Schemata. Figure 4 presents the accuracy on cus-
tomer schemata. The height of the bars show the average accu-
racy of five independent trials and the error bars correspond to
the standard errors. The best baseline refers to the baseline that
leads to the highest accuracy on the given customer’s schema.
Note that the best baseline is not the same for all customer
schemata (Table III). To directly showcase the ranking quality
of the matching results, we compare the top-1, 3, 5 accuracy
between LSM and the best baseline. As Figure 4 shows, LSM
constantly outperforms the best baseline for all values of k
in all schemata. The accuracy gap between LSM and the best
baseline is up to 0.3 for k = 1, 0.38 for k = 3, and 0.36 for
k = 5.
Takeaways. The above results show that LSM outperforms
the best baselines in predicting the matching results on both
relatively straightforward public schemata and complex real
customer schemata.

C. End-to-end Evaluation

In this experiment, we evaluate the full human-in-the-loop
pipeline that encompasses the language model in an active
learning setting as well as the attribute selection policy. The
goal is to quantify the amount of human effort needed to map
the entire source schema to the ISS using the human labeling
cost as a proxy. We simulate the users’ matching workflow
and measure the number of human labels required.

0 10 20 30
Percent of labels provided

0

20

40

60

80

100
Pe

rc
en

t o
f c

or
re

ct
ly

 m
at

ch
ed

 a
ttr

.
Customer A

LSM w/ smart selection
LSM w/ random selection
best baseline
manual labeling

0 10 20 30 40
Percent of labels provided

0

20

40

60

80

100 Customer B

0 5 10 15 20
Percent of labels provided

0

20

40

60

80

100 Customer C

0 10 20 30
Percent of labels provided

0

20

40

60

80

100 Customer D

0 5 10 15 20 25
Percent of labels provided

0

20

40

60

80

100 Customer E

Fig. 5: Percentage of the attributes correctly matched vs. percentage of human labels provided.

At each iteration, the user first reviews the matching results
suggested by LSM and marks the correct ones. Then, they
select one more attribute from the unmarked portion of the
customer schema and map it to the ISS (i.e., provide a
new matching label). The model is then retrained and the
next iteration begins. During the reviewing phase, a match
is marked as correct only if for a given attribute in the
customer schema, the correct corresponding ISS attribute is
in the top-3 suggestions produced by LSM. For LSM, we test
and compare the two different attribute selection strategies:
random selection and smart selection (Section IV-E2). As for
the baseline approaches, we use the same smart interaction
strategy to optimize their performance. We report the percent-
age of customer schema attributes matched correctly as the
user provides more matching labels.
Results. Figure 5 shows the schema matching progress with
LSM and the best baseline as more labels are provided by the
user. Overall, we observe that LSM ends up requiring as few
as 19% of total customer schema attributes to be manually
labeled by the user in order to map the full customer schema
to the ISS, as opposed to 75% with the best baseline. In
addition, with less than 5% of human labels, our model can
correctly match around 70% of the customer schema attributes.
Using the smart selection strategy, our model outperforms
not only the best baseline but also the random selection
strategy by reducing the total labels required by up to 11%.
Moreover, compared with random selection strategy, the smart
selection strategy boosts the performance of LSM especially
when a limited number of labels are provided. As for the
baseline approaches, their performance becomes similar to
that of manual labeling after 10% of labels are provided, i.e.,
providing more labels does not help them generalize to a larger
number of attributes.

Figure 5 also demonstrates the attribute reviewing cost.
Since the curves in the figure present the percentage of
attributes matched, the distance between each data point on
the curve and 100% represents the percentage of the attributes
not matched yet and thus needed to be reviewed in the
next iteration. Thus, the area above the curve, denotes the
total number of attributes that need to be reviewed by the
user. We observe that LSM with smart selection strategy can
largely reduce the reviewing cost compared to the baseline
approaches.
Takeaways. As opposed to manual labeling and existing

baselines, the Learned Schema Matcher with smart selection
strategy requires only a small number of labels from the user to
match the entire source schema. Thus, LSM provides a better
overall user experience than existing approaches.

D. Impact of the BERT Featurizer

As described in Section IV-C, a key distinction of our ap-
proach is that LSM leverages the natural language capabilities
of a fine-tuned pre-trained language model. The model takes
as input pairs of attributes from the source and ISS schema and
returns a natural language similarity score. The score is based
on the input attribute names and the corresponding natural
language descriptions (if available). We perform an ablation
study to quantify the contribution of the BERT featurizer
to the overall performance. We adopt the same setting as
Section V-C.
Results. Figure 6 shows the percentage of correctly matched
attributes as more labels are provided. If we disable the BERT
featurizer in our model (denoted as LSM w/o BERT), the user
may need to provide up to 17% more labels (Customer B)
to map their full schema to ISS. The gap between the two
approaches is more significant when limited number of labels
are provided for all the customer schemata. This large gap
demonstrates that the BERT featurizer is a critical component
of our model.
Takeaways. The pre-trained language model significantly con-
tributes to the overall performance of our method on a variety
of customer schemata. It can quickly lead to higher accuracy
with a limited number of labels.

E. Impact of Attribute Descriptions

The LSM can optionally take attribute descriptions con-
tained in the schema as input. Although the ISS schema is
typically well-documented, such descriptions might not be
available in the customer-provided source schema. Among the
five customer schemata, only two of them contain attribute
descriptions (customers A and E). In this experiment, we
study the impact of natural language descriptions to the overall
performance.

We perform an ablation study by removing the natural
language descriptions from LSM’s input. We use the two
customer schemata that already contain natural language de-
scriptions (Customer A and E). Our experiment settings are
the same as in Section V-C.

0 10 20 30
Percent of labels provided

0

20

40

60

80

100
Pe

rc
en

t o
f c

or
re

ct
ly

 m
at

ch
ed

 a
ttr

.
Customer A

LSM
LSM w/o BERT
best baseline
manual labeling

0 20 40 60
Percent of labels provided

0

20

40

60

80

100 Customer B

0 5 10 15 20
Percent of labels provided

0

20

40

60

80

100 Customer C

0 10 20 30
Percent of labels provided

0

20

40

60

80

100 Customer D

0 10 20
Percent of labels provided

0

20

40

60

80

100 Customer E

Fig. 6: Ablation study on the BERT Featurizer using various customer schemata.

0 10 20 30
Percent of labels provided

0

20

40

60

80

100

Pe
rc

en
t o

f c
or

re
ct

ly
 m

at
ch

ed
 a

ttr
.

Customer A

LSM
LSM w/o description
best baseline
manual labeling

0 10 20 30
Percent of labels provided

0

20

40

60

80

100 Customer E

Fig. 7: Performance of LSM with and without attribute de-
scriptions.

Results. The performance of LSM with and without natu-
ral language descriptions is shown in Figure 7. As shown
in the figure, LSM still outperforms the best baseline,
even when descriptions are not available. This is because
by using the BERT featurizer, we are able to match at-
tributes that are semantically equivalent but lexically dif-
ferent, which is not possible with the baselines. Two ex-
ample matches that fall under this category are: (Order-
Line.TotalOrderLineAmount, Orders.items subtotal) and (Pro-
ductPriceList.SuggestedRetailPrice, Sales Item.full price).

As shown in the figure, descriptions reduce the overall
human labeling cost: for both Customer A and E, removing the
descriptions results in a 4% increase in the labeling cost. The
effect is more pronounced when a limited number of labels
are provided. For example, for Customer A, LSM can match
70% of the attributes with 5% of labels when descriptions
are provided, but can only match 52% of the attributes if the
descriptions are not available. Such an effect is mitigated as
more labels are provided.
Takeaways. Attribute descriptions can help improve the per-
formance of LSM, especially when a limited number of labels
are provided. Without the descriptions, LSM still outperforms
the best baselines on the real customer schemata.

F. Performance in the Presence of Noise

Noisy labels can be a significant challenge in modern
machine learning tasks. Likewise for LSM, it is also possible
that the user provides erroneous labels when matching the
source attributes to the ISS. Therefore, in this experiment, we
evaluate how the presence of noisy labels affects our model’s
overall performance.
Noise Generation. To generate noisy labels, we corrupt the
ground truth matching pair (as, at) to (as, a

′
t) by selecting a

corruption attribute a′t from ISS (a′t ̸= at) with a probability
(noise rate) n < 1. During the human labeling phase, noise
can often be generated when the user selects an attribute from
ISS that is semantically close to the source attribute but is
actually not the correct matching target. To simulate this noise
generation process, we select the corruption attribute a′t to
be the attribute in ISS with the maximum word embedding
similarity with as (where a′t ̸= at). We follow the same
experimental setup as in Section V-C and report the human
labeling cost. We use noise rates n = 0.1, 0.2, 0.3 to show
the performance of LSM under different level of noise. As
for the baseline approaches, we still report the best baseline
performance with correct labels.
Results. Figure 8 shows the human labeling effort of LSM
with noise rates n = 0 (original LSM), 0.1, 0.2, and 0.3.
As expected, we observe that as we increase the noise rate,
the total number of correctly matched attributes drops. In
particular, the output contains 90%, 80% and 70% correctly
matched attributes for n = 0.1, 0.2, and 0.3 respectively
(shown as dashed horizontal line in Figure 8). However, even
when the LSM is trained with 30% of noisy labels, it still
outperforms the best baseline without noisy labels on all
customer schemata.
Takeaways. The Learned Schema Matcher can still outperform
the best baseline even in the presence of noisy labels.

G. Evaluating Model Response Time

Given the interactive nature of our approach, it is important
to quantify how fast we can retrain our model using the
provided human labels.
Response Time. Figure 9 shows the response time of LSM as
the number of matching labels provided varies. Our experi-
ments are run on an Azure cloud server with an 8-core CPU,
112 GiB of memory and a Tesla P100 GPU. We report the
average time over 10 runs. The response time includes the
time spent: 1) training the BERT featurizer, 2) featurizing the
matching candidates, 3) training the semi-supervised model,
and 4) making predictions. We observe that for small schemata
(Customer A-D), the response time can be as low as a few
seconds, and for larger schemata with hundreds of attributes
(Customer E), the response time is in the order of one minute.
This is because LSM is actually more sensitive to the number
of attributes in the source schema than the number of labels
provided. The reason behind this behavior is that the training

0 5 10 15 20 25
Percent of labels provided

0

20

40

60

80

100
Pe

rc
en

t o
f c

or
re

ct
ly

 m
at

ch
ed

 a
ttr

.
Customer A

LSM
LSM w/ n=0.1
LSM w/ n=0.2
LSM w/ n=0.3
best baseline
manual labeling

0 10 20 30 40
Percent of labels provided

0

20

40

60

80

100 Customer B

0 5 10 15
Percent of labels provided

0

20

40

60

80

100 Customer C

0 10 20
Percent of labels provided

0

20

40

60

80

100 Customer D

0 5 10 15 20 25
Percent of labels provided

0

20

40

60

80

100 Customer E

Fig. 8: Performance of LSM in the presence of noise with varying noise rates n.

time is affected more by the number of candidate pairs (which
in turn depends on the number of attributes in the source
schema) than the number of labels, as in a semi-supervised
setting both labeled and unlabeled examples will anyway be
used for training.
Takeaways. The Learned Schema Matcher has a good response
time, especially for smaller source schemata. It is worth noting
that the overall response time is minimal compared to the time
needed to manually label the full schema.

VI. DISCUSSION

In this section, we summarize the lessons we learned during
our exploration and provide a discussion on the various design
choices in the space and the limitations of our approach.

A. Tuning Hyper-parameters

When studying the existing approaches on our customer
schemata and ISS, we observed that: 1) tuning hyper-
parameters is challenging, and 2) the optimal hyper-parameter
values are typically schema-specific. Tuning the hyper-
parameters requires a metric to optimize, i.e. the accuracy on a
set of labeled attributes. In our case, optimizing the baselines
was an easy task because we were given the ground truth
matches and had access to a large number of labels. However,
when on boarding a new customer, labeled data are often
not available and thus automatic hyper-parameter tuning is
almost impossible. In that case, we need to rely on a human
expert that fully understands the naming conventions in both
the source and target schema to configure the behavior of the
matching tool. We thus believe that designing matching tools
with a limited number of components to tune is important for
usability and performance. For this reason, we opt for an active
learning approach that relies on a limited number of matching
examples provided by the user.

B. ML in Schema Matching

Given that we do not maintain any historical matching
records when matching customer schemata to ISS due to
privacy constraints, the only resource we have for training is
the limited user-provided matching labels. However, training
with a small amount of data entails the risk of overfitting.
We run the risk of creating a model that is overly focused on
the matching patterns provided by the user and that has poor
ability to generalize to other unlabeled parts of the schema.

To avoid this problem, we use an active learning approach
that relies on a small number of human labels. To prevent

4 8 12 16 20
Percent of labels provided

0

10

20

30

40

Re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Customer A
Customer B
Customer C
Customer D
Customer E

Fig. 9: Response time of the LSM as the number of labels is
varied.

overfitting, we leverage: 1) a light-weight model (logistic clas-
sification) with a semi-supervised framework (self-training)
and 2) a pre-trained BERT featurizer on the ISS. Firstly, by
making use of a semi-supervised framework, the model not
only considers the labeled attributes, but also the unlabeled
part of the schema to obtain a “global view” of the matches.
Secondly, using a light-weight model reduces overfitting [37]
as a model with fewer parameters is less likely to “memorize”
the training examples and thus maintains the ability to gener-
alize. Finally, by pre-training the BERT featurizer on ISS, we
create a model that better understands the domain we operate
on.

C. Response Time

As pointed out in [38], achieving a good response time is a
challenge when both the source and target schemata are large.
Previous approaches tried to address the problem of large-
scale matching mainly by 1) partitioning the schemata and 2)
parallelizing the matching algorithms [39].

The complexity of the Learned Schema Matcher in terms
of the number of attributes is O (|As| × |At|), where |As|
and |At| are the number of attributes in the source and target
schemata, respectively. Although we propose methods to effi-
ciently rank the matching pairs, the response time of our model
still grows as the number of the input attributes increases
(from several seconds for tens of attributes to the order of
minutes for hundreds of attributes). We believe that this cost is
still acceptable given the manual matching alternative. As part
of future work, we plan to investigate potential performance
optimizations when matching large customer schemata to ISS.

D. Design Space

As discussed in previous sections, prior work that either
does not use ML or trains models from scratch (see Section III)
has limitations in our context. We thus decided to explore
whether pre-trained language models applied on a relational
schema can be leveraged instead to provide more accurate
results for data-free schema matching.

The potential designs would be:
• Use large language models like Codex [40] or GPT-3 [41]

along with few-shot prompting.
• Fine-tune a smaller model such as BERT.
• Perform domain specific pre-training for a model like

BERT (e.g, BERT for healthcare, retail, etc.)
We opted for the second option as we do have enough data to
fine tune a smaller model like BERT. The other two approaches
are also valid and worth exploring in future work.

E. Limitations of the LSM

Due to externally imposed constraints, LSM heavily re-
lies on schema-only information to perform the matching.
However, there is a class of problems where the user does
not control or understand their schema. This often happens
when the schema is generated by a third-party application with
encoded names. Our methods here do not address this class
of problems and likely data access would be required to solve
those.

VII. RELATED WORK

Schema matching approaches typically fall into two cat-
egories: schema-based and instance-based. Hybrid/composite
matchers combine a set of individual matchers (schema and
instance-based) to improve the overall accuracy [42]. We now
discuss the most representative works in these two categories
and compare them with the LSM. In addition, we also discuss
the approaches that incorporate user feedback.
Schema-level matching Approaches. Schema information
used by previous approaches includes entity and attribute
names, relationships, integrity constraints, etc. Several metrics
have been proposed to evaluate the similarity of the entity
and attribute names between the source and target schemata.
DIKE [43] uses a dictionary created by human experts to store
the similarity of commonly used names. CUPID [11] uses a
thesaurus to evaluate word similarity. COMA [18] utilizes a
combination of individual name marchers to evaluate the sim-
ilarity of two attribute names such affix, n-gram, edit distance,
Soundex, etc. COMA then combines the matching results
using various aggregation functions (min, max, average, etc).
However, selecting a well-performing strategy is a non-trivial
task and the selection often ends-up being schema-specific.
(see Section VI). S-MATCH [12] uses WordNet [20] to infer
synonyms for a set of words. More recently, SemProp [44]
uses a semantic matcher which leverages word embeddings
to find objects that are semantically related. As opposed to
prior works, LSM utilizes a robust pre-trained language model
to better understand the semantics of the various entity and
attribute names.

Beyond linguistic information, various schema-based ap-
proaches leverage structural information as well. For exam-
ple, COMA [18] computes the structural similarity between
two trees. Along the same lines, CUPID [11] computes the
structure similarity between two hierarchical schemata. The
structural information in a relational schema is not as rich as
in an XML schema or an ontology, so the Learned Schema
Matcher does not currently leverage such information. It
does, however, use the PK/FK relationships to optimize the
interaction with the user during the labeling phase.
Instance-level matching Approaches. In addition to schema-
based approaches, a variety of instance-based approaches
have been proposed. SEMINT [45] associates attributes in
the schema with signatures derived from instance values;
LSD [13] takes a multi-strategy learning approach to exploit
various information such as names, data distributions, word
frequencies, etc. GLUE [46] is an extension of LSD that
tackles the problem of matching a pair of ontologies. More
recently, EmbDI [9] generates local embeddings specific to
relational data and uses them for data integration tasks. Sim-
ilarly, REMA [47] leverages graph-embeddings for relational
schema matching. In a parallel context, [48] uses tabular
models for table understanding tasks, and [8] leverages
pre-trained language models for column annotation. As we
previously discussed, these approaches are not applicable to
our setting due to lack of access to the customer’s data.
Incorporating User Feedback. Some schema matching ap-
proaches incorporate human feedback. As indicated in [49],
these human interventions include tuning the parameters,
answering questions, and reusing previous resources. In our
scenario, human feedback entails providing the correct target
attribute for a given source attribute. Approaches adopting this
type of feedback include [11], [18], [50], [36], etc. As opposed
to CUPID and COMA, we present a concrete user interaction
strategy (i.e., least confident anchor) that explicitly aims to
reduce the number of labels needed.

VIII. CONCLUSIONS

In this paper, we studied the schema matching problem
in a setting where the records in the source data cannot be
accessed due to privacy concerns. We present the Learned
Schema Matcher, a schema matching algorithm that relies on
active learning and a fine-tuned pre-trained language model.
Our evaluation shows that our proposed approach has better
performance than prior work. As part of future work, we plan
to extend LSM to handle more complex mapping transforma-
tions.

REFERENCES

[1] “Amount of data created, consumed, and stored 2010-2025,”
https://www.statista.com/statistics/871513/worldwide-data-created/,
2021.

[2] “Azure Industry Solutions,” https://azure.microsoft.com/en-
us/industries/, 2022.

[3] “Lakehouse for Retail,” https://databricks.com/solutions/industries/retail-
industry-solutions, 2022.

[4] “SAP Industries,” https://www.sap.com/industries.html, 2022.

[5] “Regulation (EU) 2016/679 of the European Parliament,” https://eur-
lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32016R0679/,
2016.

[6] “California Consumer Privacy Act,” https://oag.ca.gov/privacy/ccpa,
2018.

[7] M. Scannapieco, I. Figotin, E. Bertino, and A. K. Elmagarmid,
“Privacy preserving schema and data matching,” in Proceedings of
the 2007 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 653–664. [Online]. Available:
https://doi.org/10.1145/1247480.1247553

[8] Y. Suhara, J. Li, Y. Li, D. Zhang, c. Demiralp, C. Chen, and
W.-C. Tan, “Annotating columns with pre-trained language models,”
in Proceedings of the 2022 International Conference on Management
of Data, ser. SIGMOD ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1493–1503. [Online]. Available:
https://doi.org/10.1145/3514221.3517906

[9] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embed-
dings of heterogeneous relational datasets for data integration tasks,”
ser. SIGMOD ’20. New York, NY, USA: Association for Computing
Machinery, 2020.

[10] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan, “Deep entity matching
with pre-trained language models,” Proceedings of the VLDB Endow-
ment, 2020.

[11] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic schema matching
with cupid,” in vldb, vol. 1. Citeseer, 2001, pp. 49–58.

[12] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-match: an algorithm
and an implementation of semantic matching,” in ESWS, 2004.

[13] A. Doan, P. Domingos, and A. Levy, “Learning source description for
data integration.” 01 2000, pp. 81–86.

[14] T. Sahay, A. Mehta, and S. Jadon, “Schema matching using machine
learning,” CoRR, vol. abs/1911.11543, 2019. [Online]. Available:
http://arxiv.org/abs/1911.11543

[15] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A
versatile graph matching algorithm and its application to schema match-
ing,” in Proceedings 18th international conference on data engineering.
IEEE, 2002, pp. 117–128.

[16] P. P.-S. Chen, “The entity-relationship model—toward a unified view of
data,” ACM transactions on database systems (TODS), vol. 1, no. 1, pp.
9–36, 1976.

[17] A. Doan, A. Y. Halevy, and Z. G. Ives, Principles of Data Integration.
Morgan Kaufmann, 2012.

[18] H.-H. Do and E. Rahm, “Coma—a system for flexible combination of
schema matching approaches,” in VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases. Elsevier, 2002,
pp. 610–621.

[19] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext.zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[20] “WordNet,” https://wordnet.princeton.edu, 2022.
[21] F. M. Harper and J. A. Konstan, “The movielens datasets: History and

context,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[22] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra:
Pre-training text encoders as discriminators rather than generators,”
2020. [Online]. Available: https://arxiv.org/abs/2003.10555

[23] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized bert pretraining approach,” 2019. [Online]. Available:
https://arxiv.org/abs/1907.11692

[24] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” arXiv preprint arXiv:2107.13586, 2021.

[25] T. Schick and H. Schütze, “Exploiting cloze questions for few shot
text classification and natural language inference,” arXiv preprint
arXiv:2001.07676, 2020.

[26] P. Röttger and J. B. Pierrehumbert, “Temporal adaptation of bert and
performance on downstream document classification: Insights from
social media,” arXiv preprint arXiv:2104.08116, 2021.

[27] S. Min, M. Lewis, L. Zettlemoyer, and H. Hajishirzi, “Metaicl: Learning
to learn in context,” arXiv preprint arXiv:2110.15943, 2021.

[28] T. Bansal, K. Gunasekaran, T. Wang, T. Munkhdalai, and A. McCallum,
“Diverse distributions of self-supervised tasks for meta-learning in nlp,”
arXiv preprint arXiv:2111.01322, 2021.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[30] ——, “Bert: Pre-training of deep bidirectional transformers for language
understanding,” 2019.

[31] J. Du, E. Grave, B. Gunel, V. Chaudhary, O. Celebi, M. Auli, V. Stoy-
anov, and A. Conneau, “Self-training improves pre-training for natural
language understanding,” arXiv preprint arXiv:2010.02194, 2020.

[32] B. Settles, “Active learning literature survey,” 2009.
[33] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:

Probabilistic models for segmenting and labeling sequence data,” 2001.
[34] A. Culotta and A. McCallum, “Reducing labeling effort for structured

prediction tasks,” in AAAI, vol. 5, 2005, pp. 746–751.
[35] B. Settles and M. Craven, “An analysis of active learning strategies

for sequence labeling tasks,” in proceedings of the 2008 conference on
empirical methods in natural language processing, 2008, pp. 1070–1079.

[36] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos, “imap:
Discovering complex semantic matches between database schemas,” in
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, 2004, pp. 383–394.

[37] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[38] P. A. Bernstein, S. Melnik, M. Petropoulos, and C. Quix, “Industrial-
strength schema matching,” ACM Sigmod Record, vol. 33, no. 4, pp.
38–43, 2004.

[39] E. Rahm, “Towards large-scale schema and ontology matching,” in
Schema matching and mapping. Springer, 2011, pp. 3–27.

[40] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,
B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba,
“Evaluating large language models trained on code,” 2021. [Online].
Available: https://arxiv.org/abs/2107.03374

[41] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[42] E. Rahm and P. Bernstein, “A survey of approaches to automatic schema
matching.” VLDB J., vol. 10, pp. 334–350, 12 2001.

[43] L. Palopoli, G. Terracina, and D. Ursino, “The system dike: Towards the
semi-automatic synthesis of cooperative information systems and data
warehouses,” in ADBIS-DASFAA Symposium, 2000.

[44] R. C. Fernandez, E. Mansour, A. A. Qahtan, A. Elmagarmid, I. Ilyas,
S. Madden, M. Ouzzani, M. Stonebraker, and N. Tang, “Seeping se-
mantics: Linking datasets using word embeddings for data discovery,” in
2018 IEEE 34th International Conference on Data Engineering (ICDE).
IEEE, 2018, pp. 989–1000.

[45] W.-S. Li and C. Clifton, “SEMINT: A tool for identifying attribute
correspondences in heterogeneous databases using neural networks,”
Data Knowl. Eng., vol. 33, pp. 49–84, 2000.

[46] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Learning to
map between ontologies on the semantic web,” in Proceedings of the
11th International Conference on World Wide Web, ser. WWW ’02.
New York, NY, USA: Association for Computing Machinery, 2002, p.
662–673. [Online]. Available: https://doi.org/10.1145/511446.511532

[47] C. Koutras, M. Fragkoulis, A. Katsifodimos, and C. Lofi, “Rema:
Graph embeddings-based relational schema matching,” in EDBT/ICDT
Workshops, 2020.

[48] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu, “Turl: Table
understanding through representation learning,” 2020. [Online].
Available: https://arxiv.org/abs/2006.14806

[49] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: the teenage
years,” in Proceedings of the 32nd international conference on Very
large data bases. VLDB Endowment, 2006, pp. 9–16.

[50] R. McCann, A. Doan, V. Varadarajan, and A. Kramnik, “Building data
integration systems via mass collaboration,” in Intl. Workshop on the
Web and Databases, USA, 2003.

