Advancing End-to-End Automatic Speech Recognition and Beyond

Jinyu Li
Outline

• End-to-end (E2E) automatic speech recognition (ASR) fundamental

• E2E advances
 • Multilingual ASR
 • Leveraging unpaired text
 • Multi-talker ASR
 • Speech translation

• Conclusions and future directions
End-to-End Fundamental
Hybrid vs. End-to-End (E2E) Modeling

Hybrid
Separate models are trained, and then are used all together during testing in an ad-hoc way.

Hey Cortana</s> Hey Cortana

E2E
A single model is used to directly map the speech waveform into the target word sequence.

Hey Cortana
Advantages of E2E Models

• E2E models use a single objective function which is consistent with the ASR objective

• E2E models directly output characters or even words, greatly simplifying the ASR pipeline

• E2E models are much more compact than traditional hybrid models -- can be deployed to devices with high accuracy and low latency

Current Status

• E2E models achieve the state-of-the-art results in most benchmarks in terms of ASR accuracy.

• Practical challenges such as streaming, latency, adaptation capability etc., have been also optimized in E2E models.

• E2E models are now the mainstream models not only in academic but also in industry.

Li, Jinyu. "Recent advances in end-to-end automatic speech recognition." APSIPA Transactions on Signal and Information Processing, 2022.
E2E Models

Connectionist Temporal Classification (CTC)

Attention-based encoder decoder (AED)

RNN-Transducer (RNN-T)
CTC

• The first and simplest E2E ASR model.

• To solve the challenge that target label length is smaller than the speech input length:
 • Inserts blank and allows label repetition to have the same length of CTC path and speech input sequence.

\[
P(y|x) = \sum_{q \in B^{-1}(y)} P(q|x)
\]

• Frame independence assumption

\[
P(q|x) = \prod_{t=1}^{T} P(q_t|x)
\]

• Revives with the Transformer encoder and the emerged self-supervised learning technologies

AED

• The sequence probability is calculated in an auto-regressive way.
 \[P(y|x) = \prod_u P(y_u|x, y_{1:u-1}) \]

• Encoder: converts input acoustic sequences into high-level hidden feature sequences.

• Attention: computes attention weights to generate a context vector as a weighted sum of the encoder output.

• Decoder: takes the previous output label together with the context vector to generate its output
 \[P(y_u|x, y_{1:u-1}) \]

Streaming

• Most commercial setups need the ASR systems to be streaming with low latency: ASR system produces the recognition results at the same time as the user is speaking.

• Full attention in AED may not be ideal to ASR because the speech signal and output label sequence are monotonic.
 • Streaming AED (MOCHA, MILK etc.): apply attention on chunks of input speech.
 • Not a natural design for streaming.

• RNN-T provides a natural way for streaming ASR and becomes the most popular E2E model.

RNN-T

Given a label sequence of length U and acoustic frames T, we generate $U \times T$ softmax. The training maximizes the probabilities of all RNN-T paths.

E2E Models

<table>
<thead>
<tr>
<th></th>
<th>CTC</th>
<th>AED</th>
<th>RNN-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independence assumption</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Attention mechanism</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Streaming</td>
<td>Natural</td>
<td>Additional work needed</td>
<td>Natural</td>
</tr>
<tr>
<td>Ideal operation scenario</td>
<td>Streaming</td>
<td>Offline</td>
<td>Streaming</td>
</tr>
<tr>
<td>Long form capability</td>
<td>Good</td>
<td>Weak</td>
<td>Good</td>
</tr>
</tbody>
</table>

RNN-T is the most popular E2E model in industry which requires streaming ASR.

Sainath et al. “A streaming on-device end-to-end model surpassing server-side conventional model quality and latency” in Proc. ICASSP, 2020
Connectionist Temporal Classification (CTC)

Attention-based encoder decoder (AED)

RNN-Transducer (RNN-T)
Encoder for RNN-T

\[P(y_u|x_{1:t}, y_{1:t-1}) \]

softmax

\[z_{t,u} \]

Joint

Prediction

Encoder

LSTM

Transformer

Conformer

14
Transformer

• Self-attention: computes the attention distribution over the input speech sequence

\[\alpha_{t, \tau} = \frac{\exp(\beta(W_q x_t)^T(W_k x_\tau))}{\sum_{\tau'} \exp(\beta(W_q x_t)^T(W_k x_{\tau'}))} \]

• Attention weights are used to combine the value vectors to generate the layer output

\[z_t = \sum_{\tau} \alpha_{t, \tau} W_v x_\tau = \sum_{\tau} \alpha_{t, \tau} v_\tau \]

• Multi-head self-attention: applies multiple parallel self-attentions on the input sequence

Vaswani et al. “Attention is all you need” NIPS 2017
Conformer

• Transformer: good at capturing global context, but less effective in extracting local patterns

• Convolutional neural network (CNN): works on local information

• Conformer: combines Transformer with CNN

Industry Requirement of Transformer Encoder

• Streaming with low latency and low computational cost

• Vanilla Transformer fails so because it attends the full sequence

• Solution: Attention mask is all you need
Attention Mask is All You Need

• Compute attention weight \(\{\alpha_{t,\tau}\} \) for time \(t \) over input sequence \(\{x_{\tau}\} \), binary attention mask \(\{m_{t,\tau}\} \) to control range of input \(\{x_{\tau}\} \) to use

\[
\alpha_{t,\tau} = \frac{m_{t,\tau} \exp(\beta (W_q x_t)^T (W_k x_{\tau}))}{\sum_{\tau'} m_{t,\tau'} \exp(\beta (W_q x_t)^T (W_k x_{\tau'}))} = \text{softmax}(\beta q_t^T k_{\tau}, m_{t,\tau})
\]

• Apply attention weight over value vector \(\{v_{\tau}\} \)

\[
z_t = \sum_{\tau} \alpha_{t,\tau} W_v x_{\tau} = \sum_{\tau} \alpha_{t,\tau} v_{\tau}
\]

Attention Mask is All You Need

• Offline (whole utterance)

Predicting output for x_{10}

Not streamable

Attention Mask
Attention Mask is All You Need

• 0 lookahead, full history

Memory and runtime cost increase linearly

Predicting output for x_{10}
Attention Mask is All You Need

• 0 lookahead, limited history (3 frames)

In some scenario, small amount of latency is allowed
Attention Mask is All You Need

• Small lookahead (at most 2 frames), limited history (3 frames)

Predicting output for x_{10}

Look-ahead window $[0, 2]$
Live Caption in Windows 11
Advancing E2E Models

- multilingual
- multi-talker
- unpaired text
- speech translation
Multilingual
Multilingual

- 40% people can speak only 1 language fluently.
- 43% people can speak only 2 languages fluently.
- 13% people can speak only 3 languages fluently.
- 3% people can speak only 4 languages fluently.
- <0.1% people can speak 5+ languages fluently.

- Human cannot recognize all languages. Can we build a single high quality multilingual model on device to serve all users?

Statistics are from: http://ilanguages.org/bilingual.php
Multilingual E2E Models

- Double-edged sword of pooling all language data
 - Maximum sharing between languages; One model for all languages
 - Confusion between languages
 - can be addressed with a one-hot LID input. However, it is more like a monolingual model with the requirement of prior knowledge of language to speak.

Specific Model for Every Combination of Languages?

- Advantage: Don’t have the confusion from other languages not in target group
- Disadvantage: Development cost is formidable

\[
\sum_{1 \leq m \leq n} \binom{n}{m} \text{ for } n \text{ languages}
\]
\[
\binom{1}{10} = 10, \binom{2}{10} = 45, \binom{3}{10} = 120
\]
How to Deal with Multilingual Speakers?

Configurable Multilingual Model (CMM)

- Training only once
 - Minimize the training cost
- Configured as different models
 - Reduce language confusion from the full set

Zhou et al., “A Configurable Multilingual Model is All You Need to Recognize All Languages,” in Proc. ICASSP, 2022.
CMM

- **Universal module:**
 modeling the sharing across languages

- **Expert module:**
 modeling the residual from universal module for each language

User language choice
CMM

- **Universal module**: modeling the sharing across languages

- **Expert module**: modeling the residual from universal module for each language
CMM

- **Universal module:** modeling the sharing across languages

- **Expert module:** modeling the residual from universal module for each language

user language choice

\[w_1 \quad w_2 \quad w_N \]

normalize

EN DE FR ES IT

0 1 0 1 1
CMM

- **Universal module**: modeling the sharing across languages

- **Expert module**: modeling the residual from universal module for each language
Unpaired Text
Leverage Unpaired Text

- Standard E2E models are trained with paired speech-text data, while hybrid models use large amount of text data for LM building.

- It is important to leverage unpaired text data for further performance improvement.

- Two research directions:
 - Domain adaptation
 - Speech/Text joint training
Domain Adaptation

• The biggest challenge: not easy to get enough paired speech-text data in the new domain.

• Solution: utilize the new-domain text data.
 • LM fusion: fusing E2E models with an external LM trained with the new-domain text data.
 • Adaptation with text data: directly adjusting modules in E2E models
 • Adaptation with augmented audio: generating audio from the text to form the paired speech-text data to adjust E2E models.
LM Fusion Methods

• Shallow Fusion
 ➢ A log-linear interpolation between the E2E and LM probabilities.
 \[
 \hat{Y} = \arg\max_Y \left[\log P(Y|X; \theta^S_{E2E}) + \lambda_T \log P(Y; \theta^T_{LM}) \right] + \lambda_S \log P(Y; \theta^S_{LM})
 \]

• Density Ratio Method
 ➢ Subtract source-domain LM score from Shallow Fusion score.
 \[
 \hat{Y} = \arg\max_Y \left[\log P(Y|X; \theta^S_{E2E}) + \lambda_T \log P(Y; \theta^T_{LM}) - \lambda_S \log P(Y; \theta^S_{LM}) \right]
 \]

• HAT/ILME-based Fusion
 ➢ Subtract internal LM score from Shallow Fusion score.
 \[
 \hat{Y} = \arg\max_Y \left[\log P(Y|X; \theta^S_{E2E}) + \lambda_T \log P(Y; \theta^T_{LM}) - \lambda_I \log P(Y; \theta^I_{E2E}) \right]
 \]

Internal LM Estimation

- **RNN-T**
 \[P(\hat{y}_i|Y_{0:u_i}, X_{1:t_i}; \theta_{RNN-T}) = \text{softmax}(z_{t_i, u_i}) \]

- **Internal LM estimation of RNN-T**
 \[P(y_u|Y_{0:u-1}; \theta_{\text{pred}}, \theta_{\text{joint}}) = \text{softmax}(z_u^{ILM,NB}) \]

- **Internal LM probability**
 - The output of the *acoustically-conditioned LM* after removing the contribution of the encoder

Is the Prediction Network a LM?

• If the prediction network in RNN-T is a LM, we can use new-domain text to adapt it.

• However, it does not fully function as a LM because it needs to predict both labels and blank.

Factorized Neural Transducer

Functions as a neural LM. Can be adapted with text only data!

LongFNT-Text: Explore Long-form Transcriptions

• Inspiration: FNT architecture explicitly separated out the LM part
• Two Level long-form contextual integrations:
 • sentence-level (statistical historical information)
 • token-level (using contextual attention)
• Long-form features are extracted using Context Encoder

TTS for Domain Adaptation

• Adapt E2E models with the synthesized speech generated from the new domain text.

• Drawbacks:
 • TTS speech is different from the real speech. It sometimes also degrades the recognition accuracy on real speech.
 • The speaker variation in the TTS data is far less than that in the large-scale ASR training data.
 • The cost of training a multi-speaker TTS model and the generation of synthesized speech from the model is large.

Sim et al., “Personalization of end-to-end speech recognition on mobile devices for named entities,” in Proc. ASRU, 2019.
Data Splicing for Domain Adaptation

• Generate new audio from original ASR training data.

Speech/Text Joint Training

• Leverage large amount of unpaired text data

• Learn the unified representation for speech and text
SpeechT5

Inputs:
- Speech encoder Pre-net
- Text-encoder Pre-net

Shared Codebook
Vector Quantization
Speech/Text Transformer Encoder

Outputs:
- Mixed
- Speech-decoder Post-net
- Text-decoder Post-net

SpeechLM

Zhang et al., SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder Based Speech-Text Pre-training, EMNLP 2022.
Maestro

- Inject text representations and match the two modalities

Slides credit to Zhehuai Chen
Multi-talker ASR

Slides credit to Naoyuki Kanda
Multi-talker Models

• E2E ASR systems have high accuracy in single-speaker applications 😊

• Very difficult to achieve satisfactory accuracy in scenarios with multiple speakers talking at the same time 😞

• Solutions: E2E multi-talker models
Multi-talker AED model with PIT

- No need for noisy-clean audio pair for training.

\[L^{PIT} = \min_{\phi \in \Phi(1, \ldots, S)} \sum_{s=1}^{S} CE(y^s, r^{\phi[s]}) \]

Seki et al., “A Purely End-to-end System for Multi-speaker Speech Recognition,” ACL, 2018
Serialized Output Training (SOT)

iterate for label i

Encoder

Attention

Decoder

Softmax

how are you $\langle \text{sc} \rangle$ I am fine thank you $\langle \text{eos} \rangle$

how are you

I am fine thank you

Serialized Output Training (SOT)

- Can recognize any number of speakers
- Achieved SOTA WERs for LibriSpeechMix, LibriCSS, AMI, AliMeeting

```
how are you <sc> I am fine thank you <eos>
```

```
iterate for label i
```

```
how are you
I am fine thank you
```

```
Encoder
Decoder
Softmax
Attention
```

53
Serialized Output Training (SOT)

- Can recognize any number of speakers
- Achieved SOTA WERs for LibriSpeechMix, LibriCSS, AMI, AliMeeting

Only applicable for attention-based encoder decoder architecture
→ Only applicable for offline (i.e. non-streaming) inference
Streaming unmixing and recognition transducer (SURT)

Heuristic Error Assignment Training:
order the label sequences based on the utterance start time

Streaming unmixing and recognition transducer (SURT)

- Can deal with overlapping speech
- Streaming inference

- Complicated
- Accuracy was not very good
 - Duplicated hypotheses issue
 - No hypothesis issue

Token-level Serialized Output Training (t-SOT)

Token-level Serialized Output Training (t-SOT)

Multi-talker transcription

<table>
<thead>
<tr>
<th>Virtual channel 1</th>
<th>hello how are</th>
<th>you</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual channel 2</td>
<td>i am</td>
<td>fine thank</td>
<td>you</td>
</tr>
</tbody>
</table>

Serialized transcription

<table>
<thead>
<tr>
<th></th>
<th>Deserialization</th>
<th>Recognition with low latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>hello how are</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>you</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fine thank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>you</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Audio stream

<table>
<thead>
<tr>
<th>Speaker 1</th>
<th>hello</th>
<th>how</th>
<th>are</th>
<th>you</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker 2</td>
<td>i</td>
<td>am</td>
<td>fine</td>
<td>thank</td>
</tr>
<tr>
<td>Speaker 3</td>
<td></td>
<td></td>
<td></td>
<td>good</td>
</tr>
</tbody>
</table>

Token-level Serialized Output Training (t-SOT)

Multi-talker transcription

<table>
<thead>
<tr>
<th>Virtual channel 1</th>
<th>hello how are</th>
<th>you</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i am</td>
<td>fine thank</td>
<td>you</td>
</tr>
</tbody>
</table>

Serialized transcription

hello how are <cc> i am <cc> you <cc> fine thank <cc> good <cc> you

Streaming E2E ASR

Audio stream

Continuous audio input

Token-level Serialized Output Training (t-SOT)

Multi-talker transcription

<table>
<thead>
<tr>
<th>Virtual channel 1</th>
<th>hello how are</th>
<th>you</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual channel 2</td>
<td>i am</td>
<td>fine thank</td>
<td>you</td>
</tr>
</tbody>
</table>

Serialized transcription

Deserialization

<table>
<thead>
<tr>
<th>hello how are</th>
<th>i am</th>
<th>you</th>
</tr>
</thead>
<tbody>
<tr>
<td><cc></td>
<td><cc></td>
<td><cc></td>
</tr>
<tr>
<td>fine thank</td>
<td><cc></td>
<td>you</td>
</tr>
</tbody>
</table>

Recognition with low latency

Streaming E2E ASR

Audio stream

Continuous audio input

Token-level Serialized Output Training (t-SOT)

t-SOT vs. SURT
- t-SOT is simpler
- t-SOT requires less computation
- t-SOT is significantly better in accuracy

Token-level Serialized Output Training (t-SOT)

t-SOT vs. SOT
- t-SOT is streamable
- t-SOT can be used for any type of ASR architecture
- t-SOT has limit on max concurrent utterances

Multi-talker ASR Demo
Popular Simultaneous Speech Translation (ST) Methods

- **Re-Translation**: re-translate partial ASR results from beginning
 - Cost is very high because machine translation (MT) needs to be called multiple times
 - Stability is an issue because the outputs of different MT calls are independent

- **Wait-K**: start to translate ASR results after waiting for K words.
 - The read-write operation is interleaving, not flexible
 - K is pre-determined

- **AED models for E2E ST**
 - Streaming AED is still a challenge
Can We Build a Simultaneous E2E ST System?

• Treating ST as an ASR problem – we already have the success in streaming E2E ASR.

What's the weather in Seattle?

ASR
Can We Build a Simultaneous Direct ST System?

• Treating ST as an ASR problem – we already have the success in streaming E2E ASR.

西雅图的天气怎么样？

what's the weather in Seattle?
Can We Build a Simultaneous Direct ST System?

• Treating ST as an ASR problem – we already have the success in streaming E2E ASR.
• We directly use streaming Transformer Transducer to build streaming ST.

Flexible RNN-T Path

Frames t

Labels u, t

m, a, e
No Significant Word-Reordering

Frames t

Labels

m a e

$<s>$ u t
Word-Reordering at the End of Utterance

- \(<s> \)
- m
- a
- e
- \(u \)
- t

Frames \(t \)
Streaming Multilingual Speech Model (SM\(^2\))

• Multilingual data is pooled together to train a streaming model to perform both ST and ASR functions.

• ST training is totally weakly supervised without using any human labeled parallel corpus.

• The model is very small, running on devices.

SM^2 Trained with 25 Languages->English
Language Expansion

• Every language has its own prediction and joint network, sharing the same encoder
Language Expansion

• Every language has its own prediction and joint network, sharing the same encoder.
Zero-Shot Speech Translation

Trained only with English/German/Chinese->Chinese data, without observing any other language to Chinese.
Why Can SM^2 Do the Zero-Shot Translation?

• The utterances in the interlingua space (circle) have the same semantic meaning.

• Encoder is frozen for a new language output.

• Utterances in the interlingua space learn to translate to the new target language even if the pair is not observed.

• Because of the calibration inside the language, the learning can be extended to other utterances in the unseen language (dashed area).
Conclusions

• E2E models are now the mainstreaming ASR models.
 • Streaming Transformer Transducer with masks can achieve very high accuracy and low latency.

• To further advance E2E models, we have discussed several key technologies.
 • Multilingual: configurable multilingual model
 • Leverage unpaired text: domain adaptation and speech/text joint training
 • Multi-talker ASR: (token-level) serialized output training
 • Speech translation: streaming multilingual speech model
Future Directions

• Self-supervised learning: leveraging unlabeled data.
• Multi-modality: e.g., VATLM: visual-audio-text joint training.
• High quality multilingual models
• E2E ASR with extended functions: multi-talker, multi-channel, and speaker diarization
• E2E with knowledge integration
• E2E for more downstream tasks

Thank You!