Deep Generative Models for Text-to-Speech Synthesis

Xu Tan/谭旭
Microsoft Research Asia
Principal Research Manager
xuta@microsoft.com
Outline

• Background
 • Text-to-Speech Synthesis
 • Deep Generative Models

• Deep Generative Models for TTS
 • AR/Flow/GAN/VAE/Diffusion based TTS Models
 • Comparisons and Analyses

• Summary and Outlook
Speech Signal Processing

- Speech Recognition
- Speaker Recognition
- Speech Synthesis
 - Text-to-Speech Synthesis: from text
 - Singing Voice Synthesis: from music score
 - Voice Conversion: from speech
 - EEG based Speech Synthesis: from brain signal
- Speech Enhancement
- Speech Separation
- Speech Translation
- ...
Text-to-Speech Synthesis

- Text-to-speech (TTS): generate intelligible and natural speech from text

 "speech synthesis is awesome"

 Text → TTS System → Speech

- Enabling machine to speak is an important part of AI

 - **TTS (speaking)** is as important as **ASR (listening), NLU (reading), NLG (writing)**

 - Human beings tried to build TTS systems dating back to the **12th century**

- Text-to-Speech Synthesis:

 |-------------|-------------|-------------|-----------|--------------------|

11/27/2022

Deep Generative Models for TTS, Xu Tan
Text-to-Speech Mapping is One-to-Many

- Speech contains much information that not exists in text
 - **What** to say: content
 - **Who** to say: speaker/timbre
 - **How** to say: prosody/emotion/style
 - **Where** to say: noisy environment
 - ...

Text \[\xrightarrow{\text{duration, pitch, sound volume, prosody, speaker, style, emotion, etc}}\] Speech

- Text-to-speech mapping
 - Not point-wise, but **distribution-wise**
 - Usually not single-modal, but **multi-modal**
Typical Methods to Handle One-to-Many Mapping in TTS

- Split text-to-speech conversion into multiple stages

Diagram:
- **Character** → **Linguistic Features** → **Phoneme** → **Acoustic Features** → **Waveform**
- **Linguistic Features**:
 - TN + WordSeg + POS + Prosody + G2P
 - ARST
 - Tacotron Variable
 - Transformer-TTS
 - FastSpeech 1/2
- **Acoustic Features**:
 - WaveNet
 - ParWaveNet
 - WaveRNN
 - GAN-TT
 - LPCNet
 - Griffin-Lim
 - SINCNet
 - MelGAN
 - HiFi-GAN
 - DiffWave
 - WaveGrad
- **Waveform**:
 - Char2Wav
 - Clarinet
 - FastSpeech 2
 - EATS
 - WaveTacotron
 - EfficientTTS
 - WaveGrad 2
 - VITS
 - NaturalSpeech

Table:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SPSS [418, 358, 417, 427, 359]</td>
</tr>
<tr>
<td>1</td>
<td>ARST [377]</td>
</tr>
<tr>
<td>2</td>
<td>WaveNet [255], DeepVoice 1/2 [8, 88], Par. WaveNet [256], WaveRNN [151], HiFi-GAN [23]</td>
</tr>
<tr>
<td>3</td>
<td>DeepVoice 3 [271], Tacotron 2 [304], FastSpeech 1/2 [291, 293], WaveGlow [280], FloWaveNet [164]</td>
</tr>
<tr>
<td>4</td>
<td>Char2Wav [316], Clarinet [270], FastSpeech 2s [293], EATS [70], VITS [161], NaturalSpeech [346]</td>
</tr>
</tbody>
</table>
Typical Neural TTS Pipeline

- Text analysis, acoustic model, and vocoder
- Text analysis: text \rightarrow linguistic features
- Acoustic model: linguistic features \rightarrow acoustic features
- Vocoder: acoustic features \rightarrow speech

One-to-many mapping is alleviated, but not eliminated!
How to Model One-to-Many Mapping (Multimodal Distribution)

- Providing more variance information
 - Providing pitch/duration/speaker ID
 - Autoregressive models \((x_0 \rightarrow x_{0:1} \rightarrow \ldots \rightarrow x_{0:t} \rightarrow \ldots \rightarrow x_{0:T})\)
 - Diffusion models \((x_T \rightarrow \ldots \rightarrow x_t \rightarrow x_{t-1} \rightarrow \ldots \rightarrow x_0)\)

- Advanced loss function
 - L1/L2 loss
 - Distribution-wise loss (e.g., SSIM, GMM)
 - GAN loss (match any distribution)

- Synthesis-by-analysis
 - \(X \rightarrow Z \rightarrow X\)
 - VAE, Flow, etc
Outline

• Background
 • Text-to-Speech Synthesis
 • Deep Generative Models

• Deep Generative Models for TTS
 • AR/Flow/GAN/VAE/Diffusion based TTS Models
 • Comparisons and Analyses

• Summary and Outlook
Deep Learning and Generative Learning

- 1950s /1960s (Computer)
- 2012 (AlexNet)
- 2013/2014/2015 (VAE/GAN/Flow/Diffusion)

CV/NLP/Speech/Machine Learning

Deep Learning (Representation Learning)

Deep Learning (Generative Learning)
Generative Models

- Generative models are learnt to estimate the likelihood of data P_θ to be close to the true data distribution P_D
 - **Data generation**: sample new data from P_θ
 - **Density estimation**: predict the density/probability of a data point

- Taxonomy of deep generative models

![Generative Models Diagram]
Deep Generative Models—GAN

- Generative Adversarial Networks

\[
\min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{\text{data}}} \log D(x; \phi) + \mathbb{E}_{x \sim p_z} \log (1 - D(G(z; \theta); \phi))
\]

- Not to find a corresponding z for x, but to directly match the distribution of x
Deep Generative Models—Flow

• Normalizing Flows: finding a z for x, and convert z back to x
 • $z = f_k^{-1} f_{k-1}^{-1} \ldots f_0^{-1}(x)$
 • $x = f_0 f_1 \ldots f_k(z), z \sim N(0, 1)$

• Training: maximizing the log likelihood $p(x)$
 • $\log p(x) = \log p(z) + \log \det \left(\frac{dz}{dx} \right) = \log p(z) + \sum_{i=1}^{k} \log |\det(J(f_i^{-1}(x)))|$
 • Flow can estimate the data likelihood exactly, as in autoregressive models

• The transformation function f should satisfy two requirements
 • It is easily invertible
 • Its Jacobian determinant is easy to compute
Deep Generative Models—Flow

- Two types: **Coupling (bipartite)** and **Autoregressive (AR)** technologies

<table>
<thead>
<tr>
<th>Flow</th>
<th>Evaluation $z = f^{-1}(x)$</th>
<th>Synthesis $x = f(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF [42]</td>
<td>$z_t = \frac{x_t - \mu_t(x_{<t})}{\sigma_t(x_{<t})}$</td>
<td>$x_t = z_t \cdot \sigma_t(x_{<t}) + \mu_t(x_{<t})$</td>
</tr>
<tr>
<td>IAF [38]</td>
<td>$z_t = x_t \cdot \sigma_t(z_{<t}) + \mu_t(z_{<t})$</td>
<td>$x_t = \frac{z_t - \mu_t(z_{<t})}{\sigma_t(z_{<t})}$</td>
</tr>
<tr>
<td>Bipartite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RealNVP [36]</td>
<td>$z_{\alpha} = x_{\alpha}$,</td>
<td>$x_{\alpha} = z_{\alpha}$,</td>
</tr>
<tr>
<td>Glow [39]</td>
<td>$z_b = x_b \cdot \sigma_b(x_{a}; \theta) + \mu_b(x_{a}; \theta)$</td>
<td>$x_b = \frac{z_b - \mu_b(x_{a}; \theta)}{\sigma_b(x_{a}; \theta)}$</td>
</tr>
</tbody>
</table>

- It is easily invertible
 - See table above
- Its Jacobian determinant is easy to compute
 - The invertible functions have triangular Jacobians
 - It’s easy to calculate from the diagonal elements

[Ping, 2019]
Deep Generative Models—VAE

• Why Variational Autoencoders?
 • Naïve AE: $||x - dec(enc(x))||^2$
 • No regularization: z is irregular and non-smoothing, generalization is poor

• Maximizing the log likelihood $p(x)$

$$
\log p(x) = \log \int p(x|z)p(z)dz = \log \int q(z|x) \frac{p(x|z)p(z)}{q(z|x)}dz \\
= \log \mathbb{E}_{z \sim q(z|x)} \frac{p(x|z)p(z)}{q(z|x)} \geq \mathbb{E}_{z \sim q(z|x)} \log \frac{p(x|z)p(z)}{q(z|x)} \\
= \mathbb{E}_{z \sim q(z|x)} \log p(x|z) - KL(q(z|x)||p(z))
$$

• Maximize the ELBO

$$
L(x; \theta, \phi) = -\mathbb{E}_{z \sim q(z|x; \phi)} \log p(x|z; \theta) + KL(q(z|x; \phi)||p(z))
$$
Deep Generative Models—DDPM

- Denoising Diffusion Probabilistic Models

\[
q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1}), \quad q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)
\]

- Forward process

\[
p_\theta(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_\theta(x_{t-1}|x_t), \quad p_\theta(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t), \Sigma_\theta(x_t, t))
\]
Deep Generative Models—DDPM

• Maximizing the log likelihood $p(x_0)$

$$\log p(x_0) = \log \int p(x_{0:T})dx_{1:T} = \log \int q(x_{1:T}|x_0) \frac{p(x_{0:T})}{q(x_{1:T}|x_0)} dx_{1:T}$$

$$= \log \mathbb{E}_{x_{1:T} \sim q(x_{1:T}|x_0)} \frac{p(x_{0:T})}{q(x_{1:T}|x_0)} \geq \mathbb{E}_{x_{1:T} \sim q(x_{1:T}|x_0)} \log \frac{p(x_{0:T})}{q(x_{1:T}|x_0)} = ELBO$$

• Maximize the ELBO

$$ELBO = \mathbb{E}_{x_{1:T} \sim q(x_{1:T}|x_0)} \log \frac{p(x_{0:T})}{q(x_{1:T}|x_0)}$$

$$= -\mathbb{E}_q \left[KL(q(x_T|x_0)||p(x_T)) \right] + \sum_{t=2}^{T} \left[KL(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) - \log p_{\theta}(x_0|x_1) \right]$$

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t,x_0,\epsilon} \left[\| \epsilon - \epsilon_{\theta}(x_t,t) \|^2 \right]$$
Deep Generative Models—DDPM

• Training and inference pipeline

Algorithm 1 Training

```latex
\textbf{repeat}
\begin{itemize}
  \item Sample $x_0 \sim q_{data}$, $\epsilon \sim \mathcal{N}(0, I)$
  \item Sample $t \sim \mathcal{U} \{1, \ldots, T\}$
  \item $\mathcal{L} = \|\epsilon - \epsilon_\theta(\sqrt{\alpha_t}x_0 + \sqrt{1 - \alpha_t}\epsilon, t)\|^2$
  \item Update $\theta$ with $\nabla_\theta \mathcal{L}$
\end{itemize}
\textbf{until} converged
```

Algorithm 2 Sampling

```latex
\text{Sample } x_T \sim \mathcal{N}(0, I)
\text{for } t = T, T - 1, \ldots, 1 \text{ do}
\begin{itemize}
  \item Sample $z \sim \mathcal{N}(0, I)$ if $t > 1$; else $z = 0$
  \item $x_{t-1} = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \epsilon_\theta(x_t, t)) + \sigma_t z$
\end{itemize}
\textbf{end for}
\textbf{return } x_0
```
Deep Generative Models—SMLD

• Score Matching with Langevin Dynamics (SMLD) [Song, 2020]
 • Score: the score of a probability density $p(x)$ is $\nabla x \log p(x)$

• Training: score matching for score estimation

$$\mathbb{E}_{p(x)} \left[\| s_{\theta}(x) - \nabla \log p(x) \|_2^2 \right] \quad \arg \min_{\theta} \sum_{t=1}^{T} \lambda(t) \mathbb{E}_{p_{\sigma_t}(x_t)} \left[\| s_{\theta}(x, t) - \nabla \log p_{\sigma_t}(x_t) \|_2^2 \right]$$

• Inference: sampling with Langevin dynamics

$$x_{i+1} \leftarrow x_i + c \nabla \log p(x_i) + \sqrt{2c} \epsilon, \quad i = 0, 1, ..., K$$

$$\nabla \log p(x_t) = -\frac{1}{\sqrt{1 - \alpha_t}} \epsilon$$
Deep Generative Models—SDE

- Stochastic Differential Equation (SDE) [Song, 2020]
 - Extend discrete time to continuous time

\[
\theta^* = \arg \min_{\theta} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{x(0)} \mathbb{E}_{x(t) \mid x(0)} \left[\| s_{\theta}(x(t), t) - \nabla_x \log p_{0t}(x(t) \mid x(0)) \|_2^2 \right] \right\}.
\]
Deep Generative Models—VE-SDE, VP-SDE

- VE-SDE (Variance-Exploding Stochastic Differential Equation) and SMLD [Song, 2020]
 \[x_i = x_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} z_{i-1}, \quad i = 1, \cdots, N, \]
 \[dx = \sqrt{\frac{d}{dt} \left[\sigma^2(t) \right]} dw \]

- VP-SDE (Variance-Preserving Stochastic Differential Equation) and DDPM [Song, 2020]
 \[x_i = \sqrt{1 - \beta_i} x_{i-1} + \sqrt{\beta_i} z_{i-1}, \quad i = 1, \cdots, N. \]
 \[dx = -\frac{1}{2} \beta(t) x dt + \sqrt{\beta(t)} dw \]

\[
p_{0t}(x(t) \mid x(0)) = \begin{cases}
\mathcal{N}(x(t); x(0), [\sigma^2(t) - \sigma^2(0)] I), \\
\mathcal{N}(x(t); x(0) e^{-\frac{1}{2} \int_0^t \beta(s) ds}, I - I e^{-\int_0^t \beta(s) ds}) \\
\mathcal{N}(x(t); x(0) e^{-\frac{1}{2} \int_0^t \beta(s) ds}, [1 - e^{-\int_0^t \beta(s) ds}]^2 I)
\end{cases}
\]

(VE SDE)

(VE PDE)

(sub-VP SDE)

<table>
<thead>
<tr>
<th>Algorithm 2 PC sampling (VE SDE)</th>
<th>Algorithm 3 PC sampling (VP SDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: (x_N \sim \mathcal{N}(0, \sigma_{\text{mix}}^2 I))</td>
<td>1: (x_N \sim \mathcal{N}(0, I))</td>
</tr>
<tr>
<td>2: for (i = N - 1) to 0 do</td>
<td>2: for (i = N - 1) to 0 do</td>
</tr>
<tr>
<td>3: (x'i \leftarrow x{i+1} + (\sigma_{i+1}^2 - \sigma_i^2) s_{\theta^*}(x_{i+1}, \sigma_{i+1}))</td>
<td>3: (x'i \leftarrow \left(2 - \sqrt{1 - \beta_i + 1}\right) x{i+1} + \beta_i s_{\theta^*}(x_{i+1}, i + 1))</td>
</tr>
<tr>
<td>4: (z \sim \mathcal{N}(0, I))</td>
<td>4: (z \sim \mathcal{N}(0, I))</td>
</tr>
<tr>
<td>5: (x_i \leftarrow x'i + \sqrt{\beta{i+1}} z)</td>
<td>5: (x_i \leftarrow x'i + \sqrt{\beta{i+1}} z)</td>
</tr>
<tr>
<td>6: for (j = 1) to (M) do</td>
<td>6: for (j = 1) to (M) do</td>
</tr>
<tr>
<td>7: (z \sim \mathcal{N}(0, I))</td>
<td>7: (z \sim \mathcal{N}(0, I))</td>
</tr>
<tr>
<td>8: (x_i \leftarrow x_i + c_i s_{\theta^*}(x_i, \sigma_i) + \sqrt{2c_i} z)</td>
<td>8: (x_i \leftarrow x_i + c_i s_{\theta^*}(x_i, i) + \sqrt{2c_i} z)</td>
</tr>
<tr>
<td>9: return (x_0)</td>
<td>9: return (x_0)</td>
</tr>
</tbody>
</table>
Deep Generative Models—Probability Flow ODE

• A corresponding deterministic process to SDE: ODE (Ordinary Differential Equation) [Song, 2020]

\[
\frac{dx}{dt} = \left[f(x, t) - \frac{1}{2} q(t)^2 \nabla_x \log p_t(x) \right] dt
\]

\[
x_i = x_{i+1} + \frac{1}{2} \left(\frac{\sigma_{i+1}^2 - \sigma_i^2}{\sigma_i^2} \right) s_{\theta^*}(x_{i+1}, \sigma_{i+1}), \quad i = 0, 1, \cdots, N - 1.
\]

\[
x_i = (2 - \sqrt{1 - \beta_{i+1}})x_{i+1} + \frac{1}{2} \beta_{i+1} s_{\theta^*}(x_{i+1}, i + 1), \quad i = 0, 1, \cdots, N - 1.
\]
Outline

• Background
 • Text-to-Speech Synthesis
 • Deep Generative Models

• Deep Generative Models for TTS
 • AR/Flow/GAN/VAE/Diffusion based TTS Models
 • Comparisons and Analyses

• Summary and Outlook
Deep Generative Models—Examples in Acoustic Model

- Autoregressive models
 - Tacotron 1/2, DeepVoice 3, TransformerTTS
- Non-autoregressive models: FastSpeech 1/2
- Flow
 - Glow-TTS
- VAE
 - Para. Tacotron 1/2
- GAN
- Diffusion
 - Diff-TTS, Grad-TTS, DiffGAN-TTS, PriorGrad
Deep Generative Models—Examples in Vocoder

- **Autoregressive models**
 - WaveNet, SampleRNN, WaveRNN
- **Flow**
 - Par. WaveNet, WaveGlow, FloWaveNet
- **GAN**
 - MelGAN, Para. WaveGAN, HiFiGAN
- **VAE**
 - WaveVAE
- **Diffusion**
 - DiffWave, WaveGrad, PriorGrad, SpecGrad
Deep Generative Models—Examples in End-to-End TTS

• Autoregressive models
 • Char2Wav

• Flow
 • ClariNet, Wave-Tacotron

• GAN
 • FastSpeech 2s, EATS

• Diffusion
 • WaveGrad 2

• VAE+Flow+GAN
 • VITS, NaturalSpeech

<table>
<thead>
<tr>
<th>Model</th>
<th>One-Stage Training</th>
<th>AR/NAR</th>
<th>Modeling</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Char2Wav [321]</td>
<td>N</td>
<td>AR</td>
<td>Seq2Seq</td>
<td>RNN</td>
</tr>
<tr>
<td>ClariNet [275]</td>
<td>N</td>
<td>AR</td>
<td>Flow</td>
<td>CNN</td>
</tr>
<tr>
<td>FastSpeech 2s [298]</td>
<td>Y</td>
<td>NAR</td>
<td>GAN</td>
<td>Self-Att/CNN</td>
</tr>
<tr>
<td>EATS [70]</td>
<td>Y</td>
<td>NAR</td>
<td>GAN</td>
<td>CNN</td>
</tr>
<tr>
<td>Wave-Tacotron [392]</td>
<td>Y</td>
<td>AR</td>
<td>Flow</td>
<td>CNN/RNN/Hybrid</td>
</tr>
<tr>
<td>EfficientTTS-Wav [241]</td>
<td>Y</td>
<td>NAR</td>
<td>GAN</td>
<td>CNN</td>
</tr>
<tr>
<td>VITS [163]</td>
<td>Y</td>
<td>NAR</td>
<td>VAE+Flow+GAN</td>
<td>CNN/Self-Att/Hybrid</td>
</tr>
<tr>
<td>NaturalSpeech [351]</td>
<td>Y</td>
<td>NAR</td>
<td>VAE+Flow+GAN</td>
<td>CNN/Self-Att/Hybrid</td>
</tr>
</tbody>
</table>
Autoregressive Model for TTS

- WaveNet: autoregressive model with dilated causal convolution

- Other works
 - Acoustic model: Tacotron 1/2, DeepVoice 3, TransformerTTS
 - Vocoder: SampleRNN, WaveRNN

11/27/2022
Flow for TTS

• Parallel WaveNet (AR)
 • Knowledge distillation: Student (IAF), Teacher (AF)
 • Combine the best of both worlds
 • Parallel inference of IAF student
 • Parallel training of AF teacher

• Other works
 • ClariNet
Flow for TTS

- WaveGlow (Bipartite)
 - Flow based transformation
 \[z = f_k^{-1} \circ f_{k-1}^{-1} \circ \ldots \circ f_0^{-1}(x) \quad x = f_0 \circ f_1 \circ \ldots \circ f_k(z) \quad z \sim \mathcal{N}(z; 0, I) \]
 - Affine Coupling Layer
 \[x_a, x_b = \text{split}(x) \]
 \[(\log s, t) = \text{WN}(x_a, \text{mel-spectrogram}) \]
 \[x_b' = s \circ x_b + t \]
 \[f_{\text{coupling}}^{-1}(x) = \text{concat}(x_a, x_b') \]

- Other works
 - FloWaveNet, WaveFlow
Flow for TTS

- Glow-TTS (Bipartite) for acoustic model
 - Log likelihood
 \[\log P_X(x|c) = \log P_Z(z|c) + \log \left| \det \frac{\partial f_{dec}^{-1}(x)}{\partial x} \right| \]
 - Prior is learnt from phoneme text
 \[\log P_Z(z|c; \theta, A) = \sum_{j=1}^{T_{mel}} \log \mathcal{N}(z_j; \mu_{A(j)}, \sigma_{A(j)}) \]
 - Alignment A is obtained by monotonic alignment search

- Other works
 - FlowTTS, Flowtron
GAN for TTS

• With specific designs on generators, discriminators, and loss functions
 • Multi-scale discriminator in MelGAN
 • Multi-period discriminator in HiFiGAN

• Other works
 • Para. WaveGAN, BigVGAN
 • FastSpeech 2s, EATS
VAE + Flow + GAN for TTS

• NaturalSpeech for fully end-to-end TTS
 - Reconstruction: $z \sim q(z|x)$, $x \sim p(x|z)$
 - Prior prediction: $z \sim p(z|y)$
 - Solutions in NaturalSpeech
 - Phoneme encoder with phoneme pre-training
 - Differentiable durator
 - Bidirectional prior/posterior
 - Memory based VAE

• Other works
 - VITS, Glow-WaveGAN
Diffusion for TTS

- **Vocoder**: DiffWave, WaveGrad
- **Acoustic model**: Diff-TTS, Grad-TTS
Diffusion—Speedup

• Sampling steps, latency

<table>
<thead>
<tr>
<th>System</th>
<th>RTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastSpeech 2 [18] + HiFiGAN [17]</td>
<td>0.011</td>
</tr>
<tr>
<td>Grad-TTS [14] (1000) + HiFiGAN [17]</td>
<td>4.120</td>
</tr>
<tr>
<td>Grad-TTS [14] (10) + HiFiGAN [17]</td>
<td>0.082</td>
</tr>
<tr>
<td>VITS [15]</td>
<td>0.014</td>
</tr>
<tr>
<td>NaturalSpeech</td>
<td>0.013</td>
</tr>
</tbody>
</table>
Diffusion—Speedup

- **Prior distribution**: standard Gaussian \rightarrow non-standard, e.g., PriorGrad, SpecGrad, Grad-TTS, DDGM
- **Forward process**: fixed \rightarrow learnable, e.g., Variational diffusion models
- **Diffusion + X**
 - Diffusion + GAN: e.g., DiffusionGAN
 - Diffusion + VAE: e.g., Latent Diffusion
 - Diffusion + KD: e.g., Progressive Distillation
- **Diffusion assumption**: Markovian \rightarrow non-Markovian: e.g., DDIM
- **Reverse process** (noise levels, schedule, or variance): fixed \rightarrow learnable, e.g., BDDM, Improved DDPM
- **SDE/ODE solver**: e.g., Euler-Maruyama, Runge-Kutta, adaptive-size SDE, PNDM, DPM-Solver, DPM-Solver++
Outline

• Background
 • Text-to-Speech Synthesis
 • Deep Generative Models

• Deep Generative Models for TTS
 • AR/Flow/GAN/VAE/Diffusion based TTS Models
 • Comparisons and Analyses

• Summary and Outlook
Deep Generative Models—Comparisons

- Find a \(z \) and transform it into \(x \)
Deep Generative Models—Comparisons

- Pros and cons

<table>
<thead>
<tr>
<th>Generative Models</th>
<th>AR Flow</th>
<th>VAE Diffusion</th>
<th>SMLD</th>
<th>SDE ODE</th>
<th>GAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Quality</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Fast Sampling</td>
<td>N</td>
<td>Y*</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mode Diversity</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Likelihood Estimation</td>
<td>Y</td>
<td>Y*</td>
<td>Y*</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Latent Manipulation</td>
<td>N</td>
<td>Y</td>
<td>Y*</td>
<td>Y*</td>
<td>Y*</td>
</tr>
<tr>
<td>Error Propagation</td>
<td>Y</td>
<td>N*</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Stable Training</td>
<td>Y</td>
<td>Y</td>
<td>N*</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

[Xiao, 2021]
Outline

• Background
 • Text-to-Speech Synthesis
 • Deep Generative Models

• Deep Generative Models for TTS
 • AR/Flow/GAN/VAE/Diffusion based TTS Models
 • Comparisons and Analyses

• Summary and Outlook
Summary

- Text-to-speech synthesis is a typical conditional data generation task
 - Suffer from one-to-many mapping

Text ➔ duration, pitch, sound volume, prosody, speaker, style, emotion, etc ➔ Speech

- Usually handled by deep generative models
 - AR/Flow/GAN/VAE/Diffusion models
Outlook—Exploiting Generative Models

• Considering the pros and cons of deep generative models, can we fully exploit them in different scenarios?

<table>
<thead>
<tr>
<th>Generative Models</th>
<th>AR Flow</th>
<th>VAE Diffusion</th>
<th>SMLD</th>
<th>SDE ODE</th>
<th>GAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Quality</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Fast Sampling</td>
<td>N</td>
<td>Y*</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mode Diversity</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Likelihood Estimation</td>
<td>Y</td>
<td>Y*</td>
<td>Y*</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Latent Manipulation</td>
<td>N</td>
<td>Y</td>
<td>Y*</td>
<td>Y*</td>
<td>Y*</td>
</tr>
<tr>
<td>Error Propagation</td>
<td>Y</td>
<td>N*</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Stable Training</td>
<td>Y</td>
<td>Y</td>
<td>N*</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

• Find a killer application for each generative model?
• Will a specific kind of generative model take all? e.g., diffusion model
Outlook—Exploiting Generative Models

• Understanding diffusion models
 • Why diffusion models are better than other models?
 • Difference between hierarchical VAEs and continuous normalizing flows

• Improving diffusion models
 • What is the limit of sampling steps? Is one step meaningful?
 • New diffusion or denoising process? e.g., non-diffusion
 • New training procedure?
Outcome—Exploring Generative Models

• Considering the pros and cons of deep generative models, can we design brand-new models that inherit the advantages and avoid the disadvantages?

<table>
<thead>
<tr>
<th>Generative Models</th>
<th>AR</th>
<th>Flow</th>
<th>VAE Diffusion</th>
<th>SMLD</th>
<th>SDE ODE</th>
<th>GAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Quality</td>
<td>Y</td>
<td>N</td>
<td>Y Y</td>
<td>Y</td>
<td>Y Y Y</td>
<td>Y</td>
</tr>
<tr>
<td>Fast Sampling</td>
<td>N</td>
<td>Y*</td>
<td>Y Y</td>
<td>N</td>
<td>N Y</td>
<td>Y</td>
</tr>
<tr>
<td>Mode Diversity</td>
<td>Y</td>
<td>Y</td>
<td>Y Y</td>
<td>Y</td>
<td>Y Y</td>
<td>N</td>
</tr>
<tr>
<td>Likelihood Estimation</td>
<td>Y</td>
<td>Y</td>
<td>Y* Y*</td>
<td>N</td>
<td>N Y</td>
<td>N</td>
</tr>
<tr>
<td>Latent Manipulation</td>
<td>N</td>
<td>Y</td>
<td>Y Y*</td>
<td>Y*</td>
<td>Y* Y*</td>
<td>Y*</td>
</tr>
<tr>
<td>Error Propagation</td>
<td>Y</td>
<td>N*</td>
<td>N Y</td>
<td>Y</td>
<td>Y Y</td>
<td>N</td>
</tr>
<tr>
<td>Stable Training</td>
<td>Y</td>
<td>Y</td>
<td>N* Y</td>
<td>Y</td>
<td>Y Y</td>
<td>N</td>
</tr>
</tbody>
</table>

• e.g., AR + Flow, VAE + GAN, VAE + Flow, Diffusion + GAN, Diffusion + VAE
• Can we stop borrowing models from computer vision, invent something new for speech?
The Landscape of Deep Generative Learning

- Variational Autoencoders
- Energy-based Models
- Autoregressive Models
- Normalizing Flows
- Denoising Diffusion Models

https://cvpr2022-tutorial-diffusion-models.github.io/
Reference

See the references in:

* A Survey on Neural Speech Synthesis

A Survey on Neural Speech Synthesis

Xu Tan, Tao Qin, Frank Soong, Tie-Yan Liu
{xuta,taoqin,frankkps,tyliu}@microsoft.com
Microsoft Research Asia

https://speechresearch.github.io/
A book on TTS

A book on “Neural Text-to-Speech Synthesis”, by Xu Tan

will be published soon!

Watch this repo for update: https://github.com/tts-tutorial/book
We are hiring

• Research FTE (social/campus hire)
 • Speech/Audio/Music Generation, Machine Translation, etc
 • Digital Human Generation (Talking Face Generation, 3D Synthesis, etc)
 • Generative Models (AR, GAN, Flow, VAE, Diffusion, etc)
 • Machine Learning, Deep Learning

• Research Intern
 • Speech, Music, Machine Translation, Digital Human Generation, Machine Learning

Machine Learning Group, Microsoft Research Asia
Xu Tan xuta@microsoft.com

11/27/2022
Thank You!

Xu Tan/谭旭
Principal Research Manager @ Microsoft Research Asia
xuta@microsoft.com
tan-xu.github.io
https://www.microsoft.com/en-us/research/people/xuta/
https://speechresearch.github.io/