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• Text-to-speech (TTS): generate intelligible and natural speech from text

• Enabling machine to speak is an important part of AI

• TTS (speaking) is as important as ASR (listening), NLU (reading), NLG (writing)

• Human beings tried to build TTS systems dating back to the 12th century  

Text-to-Speech Synthesis
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• Speech contains much information that not exists in text

• What to say: content

• Who to say: speaker/timbre

• How to say: prosody/emotion/style 

• Where to say: noisy environment

• …

• Text-to-speech mapping

• Not point-wise, but distribution-wise

• Usually not single-modal, but multi-modal

Text-to-Speech Mapping is One-to-Many
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Text Speech
duration, pitch, sound volume, prosody, speaker, style, emotion, etc



• Split text-to-speech conversion into multiple stages

Typical Methods to Handle One-to-Many Mapping in TTS
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• Text analysis, acoustic model, and vocoder

• Text analysis: text → linguistic features

• Acoustic model: linguistic features → acoustic features

• Vocoder: acoustic features → speech

Typical Neural TTS Pipeline
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One-to-many mapping is alleviated, but not eliminated!



• Providing more variance information 

• Providing pitch/duration/speaker ID

• Advanced loss function
• L1/L2 loss

• Synthesis-by-analysis

• X → Z → X

• VAE, Flow, etc

How to Model One-to-Many Mapping (Multimodal Distribution)

Deep Generative Models for TTS, Xu Tan 

→ Autoregressive models (𝑥0→𝑥0:1→…→𝑥0:𝑡→…→𝑥0:𝑇)

→ Distribution-wise loss (e.g., SSIM, GMM)

→ GAN loss (match any distribution)

→ Diffusion models (𝑥𝑇 → … → 𝑥𝑡→𝑥𝑡−1→…→𝑥0)
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Deep Learning and Generative Learning

Deep Generative Models for TTS, Xu Tan 

CV/NLP/Speech/Machine Learning
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• Generative models are learnt to estimate the likelihood of data 𝑃𝜃 to be close to the 
true data distribution 𝑃𝐷
• Data generation: sample new data from 𝑃𝜃
• Density estimation: predict the density/probability of a data point

• Taxonomy of deep generative models

Generative Models
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• Generative Adversarial Networks

• Not to find a corresponding z for x, but to directly match the distribution of x

Deep Generative Models—GAN
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• Normalizing Flows: finding a z for x, and convert z back to x

• 𝑧 = 𝑓𝑘
−1 𝑓𝑘−1

−1 … 𝑓0
−1(𝑥)

• 𝑥 = 𝑓0 𝑓1…𝑓𝑘 𝑧 , 𝑧 ~ 𝑁 0, 1

• Training: maximizing the log likelihood 𝑝(𝑥)

• log 𝑝 𝑥 = log 𝑝 𝑧 + log det
𝑑𝑧

𝑑𝑥
= log 𝑝 𝑧 + σ𝑖=1

𝑘 log | det(𝐽(𝑓𝑖
−1(𝑥))) |

• Flow can estimate the data likelihood exactly, as in autoregressive models

• The transformation function 𝑓 should satisfy two requirements
• It is easily invertible

• Its Jacobian determinant is easy to compute

Deep Generative Models—Flow
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• Two types: Coupling (bipartite) and Autoregressive (AR) technologies

• It is easily invertible 

• See table above

• Its Jacobian determinant is easy to compute

• The invertible functions have triangular Jacobians

• It’s easy to calculate from the diagonal elements

Deep Generative Models—Flow
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[Ping, 2019]



• Why Variational Autoencoders?

• Naïve AE: ||𝑥 − 𝑑𝑒𝑐(𝑒𝑛𝑐(𝑥))||2

• No regularization: z is irregular and non-smoothing, generalization is poor

• Maximizing the log likelihood 𝑝(𝑥)

• Maximize the ELBO

𝐿 𝑥; 𝜃, 𝜙 = −𝔼𝑧~𝑞(𝑧|𝑥;𝜙) log 𝑝(𝑥|𝑧; 𝜃) + 𝐾𝐿 𝑞 𝑧 𝑥; 𝜙 ||𝑝(𝑧)

Deep Generative Models—VAE
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• Denoising Diffusion Probabilistic Models

• Forward process

• Backward process

Deep Generative Models—DDPM
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• Maximizing the log likelihood 𝑝(𝑥0)

• Maximize the ELBO

Deep Generative Models—DDPM
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• Training and inference pipeline

Deep Generative Models—DDPM
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• Score Matching with Langevin Dynamics  (SMLD) [Song, 2020]

• Score: the score of a probability density p(x) is ∇x log p(x)

• Training: score matching for score estimation

• Inference:  sampling with Langevin dynamics

Deep Generative Models—SMLD
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• Stochastic Differential Equation (SDE) [Song, 2020]

• Extend discrete time to continuous time

Deep Generative Models—SDE
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• VE-SDE (Variance-Exploding Stochastic Differential Equation) and SMLD [Song, 2020]

• VP-SDE (Variance-Preserving Stochastic Differential Equation) and DDPM [Song, 2020]

Deep Generative Models—VE-SDE, VP-SDE
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• A corresponding deterministic process to SDE: ODE (Ordinary Differential Equation) 
[Song, 2020]

Deep Generative Models—Probability Flow ODE
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• Autoregressive models

• Tacotron 1/2, DeepVoice 3, TransformerTTS

• Non-autoregressive models: FastSpeech 1/2

• Flow
• Glow-TTS

• VAE
• Para. Tacotron 1/2

• GAN

• Diffusion
• Diff-TTS, Grad-TTS, DiffGAN-TTS, PriorGrad

Deep Generative Models—Examples in Acoustic Model

RNN

CNN

Transformer

Flow

VAE

GAN

Diffusion11/27/2022



• Autoregressive models

• WaveNet, SampleRNN, WaveRNN

• Flow

• Par. WaveNet, WaveGlow, FloWaveNet

• GAN

• MelGAN, Para. WaveGAN, HiFiGAN

• VAE

• WaveVAE

• Diffusion

• DiffWave, WaveGrad, PriorGrad, SpecGrad

Deep Generative Models—Examples in Vocoder

AR

Flow

GAN

VAE

Diffusion
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• Autoregressive models

• Char2Wav 

• Flow

• ClariNet, Wave-Tacotron

• GAN

• FastSpeech 2s, EATS

• Diffusion

• WaveGrad 2

• VAE+Flow+GAN

• VITS, NaturalSpeech

Deep Generative Models—Examples in End-to-End TTS
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• WaveNet: autoregressive model with dilated causal convolution

• Other works
• Acoustic model: Tacotron 1/2, DeepVoice 3, TransformerTTS

• Vocoder: SampleRNN, WaveRNN

Autoregressive Model for TTS
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• Parallel WaveNet (AR)

• Knowledge distillation: Student (IAF), Teacher (AF)

• Combine the best of both worlds
• Parallel inference of IAF student

• Parallel training of AF teacher

• Other works
• ClariNet

Flow for TTS
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• WaveGlow (Bipartite)
• Flow based transformation

• Affine Coupling Layer

• Other works
• FloWaveNet, WaveFlow

Flow for TTS
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• Glow-TTS (Bipartite) for acoustic model
• Log likelihood 

• Prior is learnt from phoneme text

• Alignment A is obtained by monotonic alignment search

• Other works
• FlowTTS, Flowtron

Flow for TTS
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• With specific designs on generators, 

discriminators, and loss functions
• Multi-scale discriminator in MelGAN
• Multi-period discriminator in HiFiGAN

• Other works
• Para. WaveGAN, BigVGAN
• FastSpeech 2s, EATS

GAN for TTS
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VAE + Flow + GAN for TTS

• NaturalSpeech for fully end-to-end TTS

• Reconstruction: z~q(z|x), x~p(x|z)

• Prior prediction: z~p(z|y)

• Solutions in NaturalSpeech

• Phoneme encoder with phoneme pre-training 

• Differentiable durator

• Bidirectional prior/posterior

• Memory based VAE

• Other works

• VITS, Glow-WaveGAN
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• Vocoder: DiffWave, WaveGrad

• Acoustic model: Diff-TTS, Grad-TTS

Diffusion for TTS
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Diffusion—Speedup

• Sampling steps, latency

Deep Generative Models for TTS, Xu Tan 11/27/2022



Diffusion—Speedup

• Prior distribution: standard Gaussian → non-standard, e.g., PriorGrad, SpecGrad, 
Grad-TTS, DDGM 

• Forward process: fixed → learnable, e.g., Variational diffusion models

• Diffusion + X
• Diffusion + GAN: e.g., DiffusionGAN
• Diffusion + VAE: e.g., Latent Diffusion
• Diffusion + KD: e.g., Progressive Distillation

• Diffusion assumption: Markovian → non-Markovian: e.g., DDIM

• Reverse process (noise levels, schedule, or variance): fixed → learnable, e.g., BDDM, 
Improved DDPM

• SDE/ODE solver: e.g., Euler-Maruyama, Runge-Kutta, adaptive-size SDE, PNDM, DPM-
Solver, DPM-Solver++ 

Deep Generative Models for TTS, Xu Tan 11/27/2022
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• Find a z and transform it into x

Deep Generative Models—Comparisons

Deep Generative Models for TTS, Xu Tan 

z x

GAN

VAE

Flow

Diffusion

AR
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• Pros and cons

Deep Generative Models—Comparisons

Deep Generative Models for TTS, Xu Tan 11/27/2022

[Xiao, 2021]
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• Text-to-speech synthesis is a typical conditional data generation task

• Suffer from one-to-many mapping

• Usually handled by deep generative models 
• AR/Flow/GAN/VAE/Diffusion models

Summary

Deep Generative Models for TTS, Xu Tan 

Text Speech
duration, pitch, sound volume, prosody, speaker, style, emotion, etc
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• Considering the pros and cons of deep generative models, can we fully exploit them in 
different scenarios? 

• Find a killer application for each generative model?

• Will a specific kind of generative model take all? e.g., diffusion model

Outlook—Exploiting Generative Models
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• Understanding diffusion models

• Why diffusion models are better than other models? 

• Difference between hierarchical VAEs and continuous normalizing flows

• Improving diffusion models

• What is the limit of sampling steps? Is one step meaningful? 

• New diffusion or denoising process?  e.g., non-diffusion

• New training procedure? 

Outlook—Exploiting Generative Models
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• Considering the pros and cons of deep generative models, can we design brand-new 
models that inherit the advantages and avoid the disadvantages? 

• e.g., AR + Flow, VAE + GAN, VAE + Flow, Diffusion + GAN, Diffusion + VAE

• Can we stop borrowing models from computer vision, invent something new for speech? 

Outlook—Exploring Generative Models
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Deep Generative Models—Comparison

https://cvpr2022-tutorial-diffusion-models.github.io/



Reference

See the references in: 
A Survey on Neural Speech Synthesis

https://arxiv.org/pdf/2106.15561.pdf

https://speechresearch.github.io/
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A book on TTS

A book on “Neural Text-to-Speech Synthesis”, by Xu Tan

will be published soon!

Watch this repo for update: https://github.com/tts-tutorial/book

Deep Generative Models for TTS, Xu Tan 11/27/2022
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We are hiring

• Research FTE (social/campus hire)
• Speech/Audio/Music Generation, Machine Translation, etc

• Digital Human Generation (Talking Face Generation, 3D Synthesis, etc)

• Generative Models (AR, GAN, Flow, VAE, Diffusion, etc)

• Machine Learning, Deep Learning

• Research Intern
• Speech, Music, Machine Translation, Digital Human Generation, Machine Learning

Machine Learning Group, Microsoft Research Asia
Xu Tan xuta@microsoft.com
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Thank You!

Xu Tan/谭旭
Principal Research Manager @ Microsoft Research Asia

xuta@microsoft.com

tan-xu.github.io
https://www.microsoft.com/en-us/research/people/xuta/

https://speechresearch.github.io/
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