
MULTI-VIEW LEARNING FOR SPEECH EMOTION RECOGNITION WITH CATEGORICAL
EMOTION, CATEGORICAL SENTIMENT, AND DIMENSIONAL SCORES

Daniel Tompkins, Dimitra Emmanouilidou, Soham Deshmukh, Benjamin Elizalde

Microsoft
{daniel.tompkins, diemmano, sdeshmukh, benjaminm}@microsoft.com

ABSTRACT

Psychological research has postulated that emotions and
sentiment are correlated to dimensional scores of valence,
arousal, and dominance. However, the literature of Speech
Emotion Recognition focuses on independently predicting
the three of them for a given speech audio. In this paper, we
evaluate and quantify the predictive power of the dimensional
scores towards categorical emotions and sentiment for two
publicly available speech emotion datasets. We utilize the
three emotional views in a joined multi-view training frame-
work. The views comprise the dimensional scores, emotions
categories, and sentiment categories. We present a compar-
ison for each emotional view or combination of, utilizing
two general-purpose models for speech-related applications:
CNN14 and Wav2Vec2. To our knowledge this is the first
time such a joint framework is explored. We found that a
joined multi-view training framework can produce results as
strong or stronger than models trained independently for each
view.

Index Terms— Speech emotion recognition, sentiment
analysis, affective computing, valence, arousal, dominance

1. INTRODUCTION

Emotion and sentiment recognition has been studied for
decades in many domains including vision, language, and
speech. Emotions commonly include categorical labels such
as Happy, Sad, Angry, etc. while sentiment map emotions
onto three categories: Positive, Negative, Neutral. In ad-
dition to these categorical labels, dimensional affect labels
provide continuous values: valence describes the level of
pleasantness, arousal describes the amount of excitement or
energy in actions such as speaking, and dominance relates
to the amount of control [1], with the latter often omitted
due to its high correlation with arousal. Decades of psycho-
logical research has postulated that categorical emotions can
be mapped to dimensional regions on a valence and arousal
space—notably in the works related to Russell’s circumplex
model of affect [2].

Mainstream Machine Learing (ML) models break Speech
Emotion Recognition (SER) into different tasks of detecting
emotions, sentiment and emotional dimensions of valence-

arousal-dominance. The SER model consists of an pretrained
audio encoder trained on large scale speech data, which is
then finetuned on the target speech emotion dataset. In [3],
Papparagi et al. found that deep models pre-trained in speaker
recognition and fine-tuned for SER performs better than a ran-
dom network initialization, especially in the case of smaller or
restricted datasets such as IEMOCAP [4]. Prior work in sup-
plementary techniques such as data augmentation for Speech
Emotion Recognition (SER) has showed no or little benefit,
especially for larger or more diverse datasets [3, 5, 6]. With
recent advances in transformers, the SER models have im-
proved performance on predicting dimensional labels [7].

While SER research is dominated by the separate tasks
of detecting emotions, sentiment, and emotional dimensions,
there has not been much work in combining the continuous
dimensional space with the discrete labels of emotions and/or
sentiment. The psychological research evidently shows this
relationship between the continuous space of emotional di-
mensions and the discrete emotional labels. In this paper, we
have three main contributions:

• We evaluate and quantify the predictive power of the
dimensional scores towards categorical emotions and
categorical sentiment for two publicly available speech
emotion datasets. To our knowledge this is the first time
this information is presented.

• We utilize three emotional views of the available
speech emotion corpora towards a joined multi-view
training framework. The views comprise the dimen-
sional scores, emotions categories, and sentiment cat-
egories. To our knowledge this is the first time such a
joint framework is explored.

• We present a comparison for each emotional view or
combination of, utilizing two general-purpose audio
models, CNN14 and Wav2Vec2.

2. DATASETS AND METRICS

2.1. Datasets

MSP-Podcast v1.10: This large speech emotion dataset of
∼ 166 hours was collected from podcast recordings of more



than 600 speakers [8]. In this work we considered the follow-
ing 7 classes: {Happy, Neutral, Sad, Angry, Disgust Fear,
Contempt}; these categorical labels were converted to senti-
ment labels as {Pos, Neu, Neg, Neg, Neg, Neg, Neg}, respec-
tively. Segments without judge consensus or labeled Other
were excluded, as was class Surprise, since it could represent
either positive or negative valence. We used the standard split
(77, 783 files total), with Test1 as the test set (12, 731 files),
and Development for validation (8, 283 files).
IEMOCAP: The Interactive Emotional Dyadic Motion Cap-
ture dataset is an acted dataset of scripted and improvised di-
alogues by 10 speakers, with a duration of ∼ 12 hours [4].
We used data from 8 emotional classes (excluding Surprise)
{Happy, Neutral, Sad, Angry, Disgust Fear, Excited Frus-
trated}. sentiment labels were created by converting class
labels to {Pos, Neu, Neg} in a similar manner as above. In
total, there were 7, 451 files remaining after excluding labels
Other or of no agreement.

The three types of emotional views used in this work are:
i) dimensional scores from valence, arousal, and dominance;
ii) categorical labels of emotions enumerated above, and iii)
sentiment labels created by casting the emotion classes to la-
bels of Pos, Neu, Neg. Depending on the modeling paradigm,
data from all classes per dataset are used (allC), or from only
the first 4 classes (4C), or the first 5 (5C) classes.

2.2. Performance metrics

We use the following performance metrics for assessing the
categorical (categ) and sentiment (senti) models: sample-
weighted accuracy, wACC, which corresponds to the per-
centage of correctly classified samples over all samples;
unweighted (or balanced) accuracy, uACC, which is the
average of the individual class accuracies and is not affected
by imbalanced classes; and weighted F1 score, F1w. For
predicting continuous values of the dimensional emotions
arousal, valence, and dominance, the Concordance Correla-
tion Coefficient (CCC) [9] is used; CCC provides a measure
of agreement between two sets of data, similarly to a cor-
relation coefficient, but is more conservative as it takes into
account the bias of the true values.

3. PREDICTING EMOTION AND SENTIMENT
FROM DIMENSIONAL SCORES

Many psychological works have plotted emotions on the di-
mensional valence/arousal graph from Posner et al [10]. To
compare the theoretical emotional mappings, we used the la-
beled data from the MSP-Podcastdataset to plot the valence
and arousal scores with the categorical emotions, as shown
in Fig. 1. The figure overlays the mean and standard devia-
tion of valence/arousal scores of each emotion with a common
theoretical circumplex layout. There is a clear delineation be-
tween the mean coordinates of most emotions, especially An-

Fig. 1. The outer circle and emotions are the circumplex
model of affect, adapted from [10]. The x-axis represents
valence while the y-axis represents arousal. We plotted inside
the circle the mean valence and arousal values and their stan-
dard deviations of 8 emotions from the MSP-Podcast dataset.

gry and Sad but there is significant overlap between many of
the emotions in the standard deviation lines. While the sep-
aration of emotions in valence/arousal space is visible, it is
much less distinct than in the theoretical circumplex models.

3.1. Experimental setup

In this section, we look at how predictive dimensional scores
of arousal, valence and dominanceare of i) the emotional cat-
egories and ii) the sentiment categories.

We used a weighted linear Support Vector Machines
(SVM) classifier with a one-vs-one multi-class strategy, with
fixed γ=1/(feat dim) and parameter C=argmaxC(uACC+
wACC) over the dev split set, with logarithmic search for
C ∈ [0.0001, 20]. Valence (V), Arousal (A) and Domi-
nance (D) values were used as input features, and categorical
(categ) or sentiment (senti) values as output. Results are
presented in Table 1, where column @randm shows perfor-
mance at chance level. The definitions below help the reader
navigate Table 3.2:

◦ Subscripts {V, A, D}: input to the SVM model - ei-
ther valence only (V) or both valence and arousal (V, A) or all
three valence, arousal and dominance (V, A, D).

◦ Superscripts 4C, 5C, and allC: the number of input
data classes (see Section 2.1).

3.2. Results

For case allC, the categorical models (categ) have a 14.29%
(12.50%) chance at random for MSP-Podcast (IEMOCAP).
Sentiment models (senti) use the converted {Pos, Neu, Neg}



labels and have a 33.33% chance at random. Sentiment mod-
els (senti) were not expected to benefit from adding arousal
to the feature set - a small < 2% increase in performance was
observed. For categorical classification (categ), adding dom-
inance showed no particular benefit (< 3% performance in-
crease), which is in agreement with some prior behavioral and
psychological studies [11, 1]. Comparing the last to the one-
but-last row, we see a uACC increase from 34.00 to 53.29
for the {V,A,D} case compared to {V,A}, which is a mislead-
ing result of having two classes in the IEMOCAP test set with
≤ #2 samples (for Disgust and Fear). In all cases, the use of
RBF - instead of a linear - kernel showed < 2% performance
increase (not showed here).

Table 1. Predicting emotion (categ) and sentiment (senti)
labels from the ground truth labels of arousal (A), valence
(V), dominance (D); for 4 emotional classes (4C) or 5 (5C)
or for all classes (allC).

uACC wACC F1w @randm

MSP-Podcast - v1.10 (%)
SVM4C

V senti 72.62 71.2 71.32 33.33
SVM5C

V senti 71.66 70.75 70.7 33.33
SVMallC

V senti 68.86 67.91 67.78 33.33

SVM4C
{V,A} categ 71.81 65.24 66.56 25.00

SVM4C
{V,A,D} categ 72.13 65.42 66.82 25.00

SVM5C
{V,A,D} categ 60.63 59.17 61.18 20.00

SVMallC
{V,A} categ 43.18 49.80 51.31 14.29

SVMallC
{V,A,D} categ 43.48 45.62 47.30 14.29

IEMOCAP - Fold #1 (%)
SVM4C

V senti 74.99 75.85 75.19 33.33
SVMallC

V senti 74.09 78.71 78.57 33.33

SVM4C
{V,A} categ 68.23 67.23 67.16 25.00

SVM4C
{V,A,D} categ 70.77 68.84 68.60 25.00

SVMallC
{V,A} categ 34.00∗ 42.91 45.55 12.50

SVMallC
{V,A,D} categ 53.29∗ 44.15 45.16 12.50

*misleading uACC increase caused by classes of ≤ #2 data samples in the test set.

Overall findings suggest that valence, arousal and domi-
nance have ∼65-71%wACC predictive power for sentiment
or categorical (4-class) labels, and ∼49% prediction rate for
finer-grain labels (7 classes - categ), for MSP-Podcast. This
may indicate an upper bound for sentiment or categorical SER
models architectured to learn from the ground truth labels of
arousal and valence.

4. MULTI-VIEW LEARNING FOR PREDICTING
EMOTION, SENTIMENT AND DIMENSIONAL

4.1. Architecture

The architecture used for multi-view learning experiments
are shown in Figure 2. Let the training data be D =
{(ai, yi)}i=N

i=1 where ai and yi represents the raw audio and
labels respectively. Let f(a) be the audio encoder. The audio

Fig. 2. Multi-view framework for prediction of Dimensional
scores, Sentiment Categories, and Emotion Categories. The
output layer varies per model: three regression outputs for
three Dimensional classes ( valence, arousal and dominance);
three classes for sentiment (Pos, Neu, Neg); five classes for
Emotions; and the combinations (Dimensional+Sentiment,
Dimensional+Emotion, or all 3).

encoder f(a) first produces a log Mel Spectrogram from raw
audio followed by a learnable embedding function. For a
batch size of b, this results in:

xa = {f(ai)}i=b
i=1 (1)

where xa ∈ Rb×v are the audio representations of dimension
v. The audio representation is then passed through a projec-
tion layer la(xa) as shown in Figure 2. The projection layer
consists of a liner layer with ReLU activation.

x̂a = la(xa) (2)

where x̂a ∈ Rb×d is the final representation consumed by
different tasks. Let the tasks be represented by {ti}i=5

i=1. Each
task has its independent loss {ℓi}i=5

i=1. We use linear layer
for each task. For Emotion and sentiment tasks, the predic-
tions are passed through Softmax activation and the choice
of loss is Binary Cross Entropy. For Valence, Arousal and
Dominance prediction we use CCC as loss. The loss for final
model is average of individual task losses:

L =
1

N

i=5∑
i=1

ℓi (3)

4.2. Experimental Setup

We use sampling rate of 16 kHz for all the models. We use
a Convolutional Neural Network architecture CNN14 [14]
and a transformer-based model Wav2Vec2 [15] as audio en-
coders. The CNN14 encoder is pretrained on AudioSet [16],
while Wav2Vec2 is pretrained on 960h of speech data. The
Wav2Vec2 audio encoder directly works with raw audio
waveforms. For Cnn14 audio encoder, the audio is repre-
sented by Log Mel Spectrogram with 64 mel bins, hop size



Table 2. Rows a to l show the performance for Emotion Classification (Emo), Sentiment Classification (Senti), Dimensional
regression (V/A/D), and the proposed multi-view framework (Dimensional+Sentiment, Dimensional+Emotion, or all 3), for
the MSP-Podcast corpus. Column ’Train/Predict’ shows the input (and output) labels for each model. *indicates sentiment
score derived indirectly from emotion outputs. The top section of the table references prior work.

Model Train/Predict Dimensional Sentiment (%) Emotions (%)
CCCV CCCA CCCD wACC uACC F1w wACC uACC F1w

Prior work
preCPC [12] V/A/D .377 .706 .639 - - - - - -
ResNet-sc [6] Emo - - - - - - - - 50.71
ResNet-SID [6] Emo - - - - - - - - 58.62
CNN14-sc [7] V/A/D .248 .658 .564 - - - - - -
w2v2-b [13] V/A/D .363 .728 .636 - - - - - -

Proposed work
a. CNN14 V/A/D .345 .618 .514 - - - - - -
b. CNN14 Senti - - - 57.8 48.5 55.1 - - -
c. CNN14 Emo - - - 58.5* 46.8* 53.5* 57.9 29.7 52.3
d. CNN14 V/A/D, Senti .340 .623 .518 59.0 48.3 55.3 - - -
e. CNN14 V/A/D, Emo .344 .610 .514 59.2* 46.4* 52.9* 58.1 29.3 52.9
f. CNN14 V/A/D, Senti, Emo .351 .617 .516 58.8 48.3 55.1 58.5 30.2 53.6
g. w2v2-b V/A/D .515 .641 .542 - - - - - -
h. w2v2-b Senti - - - 61.9 51.4 58.2 - - -
i. w2v2-b Emo - - - 47.5* 33.3* 30.6* 47.5 20.0 30.6
j. w2v2-b V/A/D, Senti .520 .637 .536 63.4 53.1 60.1 - - -
k. w2v2-b V/A/D, Emo .478 .605 .499 62.1* 51.3* 58.2* 61.2 32.9 56.3
l. w2v2-b V/A/D, Senti, Emo .500 .632 .525 63.5 53.6 60.5 62.2 34.1 57.3

of 320, window size 1024 and with frequency range between
50 to 14000 Hz. We finetune both CNN14 and Wav2Vec2
encoders along with the task linear layers. Similar to [13], the
initial CNN layers in Wav2Vec2 remain frozen. All models
are trained with PyTorch with batch size of 128 and learning
rate of 10−4.

4.3. Results

The results of our experiments are shown in Table 2. We re-
port the average of two runs per model, except row l, report-
ing a single run. We found that multi-view models trained
to predict both categorical emotions, categorical sentiment,
and dimensional scores of valence, arousal and dominance
produce results comparable and sometimes better than single-
view models with the same architecture that were trained on
each separately. For example, the multi-view CNN14 model
results from row f, which was trained to predict 11 classes
(dimensional, emotions, sentiment), exceeds all of the scores
of the CNN14 of row c (5 emotion classes), and exceeds al-
most all scores of row a (3 dimensional values), while all rows
share the same model architecture. This shows that the infor-
mation needed to predict dimensional scores and categorical
emotions is complementary enough that a joined single model
can be trained to effectively predict all types.

These findings agree with those in Figure 1 and Table 1
which indicate that valence, arousal and dominance correlate
with categorical emotions, but are not very strong predictors
due to overlap in the space. If the correlation were stronger,
the performance difference between single-view and multi-

view might have been smaller.
Models from previous works trained on MSP-Podcast can

be seen at the top of Table 2, although it should be noted that
our version of MSP-Podcast is newer (v1.10 which includes
an updated test set) and differs somewhat than the cited pub-
lications, so they may not be directly comparable. Also, au-
thors in [7] trained the CNN-14 from scratch rather than using
the pretrained model from [14]. Nevertheless, we show sim-
ilar trends: valence scores lower than other dimensional la-
bels, and Wav2Vec2.0 scores higher than CNN14—although
the gap is much smaller in our experiments.

5. CONCLUSION

We analyzed the relationship between dimensional scores of
valence, arousal, and dominance, categorical emotions and
categorical sentiment and compared our results with theo-
retical psychological works of the circumplex of affect. We
found that a joined multi-view training framework that simul-
taneously predict dimensional scores, emotions categories,
and sentiment categories can produce results as strong or
stronger than models trained independently for each view.
Our analysis of the relationship between the three views in
human-assigned labels showed overlap of several emotions in
dimensional space rather than the theoretical distinct spaces
in psychological research. Further exploration of the relation-
ship between dimensional and categorical emotional data can
offer additional insights into the core technology of emotion
recognition and understanding.
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