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ABSTRACT

In this paper, we propose a novel Collaborative Pure Exploration in Kernel Bandit
model (CoPE-KB), where multiple agents collaborate to complete different but
related tasks with limited communication. Our model generalizes prior CoPE for-
mulation with the single-task and classic MAB setting to allow multiple tasks and
general reward structures. We propose a novel communication scheme with an ef-
ficient kernelized estimator, and design algorithms CoKernelFC and CoKernelFB
for CoPE-KB with fixed-confidence and fixed-budget objectives, respectively.
Sample and communication complexities are provided to demonstrate the effi-
ciency of our algorithms. Our theoretical results explicitly quantify how task sim-
ilarities influence learning speedup, and only depend on the effective dimension
of feature space. Our novel techniques, such as an efficient kernelized estimator
and decomposition of task similarities and arm features, which overcome the com-
munication difficulty in high-dimensional feature space and reveal the impacts of
task similarities on sample complexity, can be of independent interests.

1 INTRODUCTION

Pure exploration (Even-Dar et al., 2006; Kalyanakrishnan et al., 2012; Kaufmann et al., 2016) is
a fundamental online learning problem in multi-armed bandits (Thompson, 1933; Lai & Robbins,
1985; Auer et al., 2002), where an agent chooses options (often called arms) and observes random
feedback with the objective of identifying the best arm. This formulation has found many important
applications, such as web content optimization (Agarwal et al., 2009) and online advertising (Tang
et al., 2013). However, traditional pure exploration (Even-Dar et al., 2006; Kalyanakrishnan et al.,
2012; Kaufmann et al., 2016) only considers single-agent decision making, and cannot be applied to
prevailing distributed systems in real world, which often face a heavy computation load and require
multiple parallel devices to process tasks, e.g., distributed web servers (Zhuo et al., 2003) and data
centers (Liu et al., 2011).

To handle such distributed applications, prior works (Hillel et al., 2013; Tao et al., 2019; Karpov
et al., 2020) have developed the Collaborative Pure Exploration (CoPE) model, where multiple
agents communicate and cooperate to identify the best arm with learning speedup. Yet, existing
results focus only on the classic multi-armed bandit (MAB) setting with single task, i.e., all agents
solve a common task and the rewards of arms are individual values (rather than generated by a re-
ward function). However, in many distributed applications such as multi-task neural architecture
search (Gao et al., 2020), different devices can face different but related tasks, and there exists sim-
ilar dependency of rewards on option features among different tasks. Therefore, it is important to
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develop a more general CoPE model to allow heterogeneous tasks and structured reward depen-
dency, and further theoretically understand how task correlation impacts learning.

Motivated by the above fact, we propose a novel Collaborative Pure Exploration in Kernel Bandit
(CoPE-KB) model. Specifically, in CoPE-KB, each agent is given a set of arms, and the expected
reward of each arm is generated by a task-dependent reward function in a high and possibly infinite
dimensional Reproducing Kernel Hilbert Space (RKHS) (Wahba, 1990; Schölkopf et al., 2002).
Each agent sequentially chooses arms to sample and observes random outcomes in order to identify
the best arm. Agents can broadcast and receive messages to and from others in communication
rounds, so that they can collaborate and exploit the task similarity to expedite learning processes.

Our CoPE-KB model is a novel generalization of prior CoPE problem (Hillel et al., 2013; Tao et al.,
2019; Karpov et al., 2020), which not only extends prior models from the single-task setting to mul-
tiple tasks, but also goes beyond classic MAB setting and allows general (linear or nonlinear) reward
structures. CoPE-KB is most suitable for applications involving multiple tasks and complicated re-
ward structures. For example, in multi-task neural architecture search (Gao et al., 2020), one wants
to search for best architectures for different but related tasks on multiple devices, e.g., the object
detection (Ghiasi et al., 2019) and object tracking (Yan et al., 2021) tasks in computer vision, which
often use similar neural architectures. Instead of individually evaluating each possible architecture,
one prefers to directly learn the relationship (reward function) between the accuracy results achieved
and the features of used architectures (e.g., the type of neural networks), and exploit the similarity
of reward functions among tasks to accelerate the search.

Our CoPE-KB generalization faces a unique challenge on communication. Specifically, in prior
CoPE works with classic MAB setting (Hillel et al., 2013; Tao et al., 2019; Karpov et al., 2020),
agents only need to learn scalar rewards, which are easy to transmit. However, under the ker-
nel model, agents need to estimate a high or even infinite dimensional reward parameter, which is
inefficient to directly transmit. Also, if one naively adapts existing reward estimators for kernel
bandits (Srinivas et al., 2010; Camilleri et al., 2021) to learn this high-dimensional reward parame-
ter, he/she will suffer an expensive communication cost dependent on the number of samples N (r),
since the reward estimators there need all raw sample outcomes to be transmitted. To tackle this
challenge, we develop an efficient kernelized estimator, which only needs average outcomes on nV
arms and reduces the required transmitted messages from O(N (r)) to O(nV ). Here V is the number
of agents, and n is the number of arms for each agent. The number of samples N (r) depends on the
inverse of the minimum reward gap, and is often far larger than the number of arms nV .

Under the CoPE-KB model, we study two popular objectives, i.e., Fixed-Confidence (FC), where
we aim to minimize the number of samples used under a given confidence, and Fixed-Budget (FB),
where the goal is to minimize the error probability under a given sample budget. We design two
algorithms CoKernelFC and CoKernelFB, which adopt an efficient kernelized estimator to simplify
the required data transmission and enjoy a O(nV ) communication cost, instead of O(N (r)) as in
adaptions of existing kernel bandit algorithms (Srinivas et al., 2010; Camilleri et al., 2021). We pro-
vide sampling and communication guarantees, and also interpret them by standard kernel measures,
e.g., maximum information gain and effective dimension. Our results rigorously quantify the influ-
ences of task similarities on learning acceleration, and hold for both finite and infinite dimensional
feature space.

The contributions of this paper are summarized as follows:

• We formulate a collaborative pure exploration in kernel bandit (CoPE-KB) model, which
generalizes prior single-task CoPE formulation to allow multiple tasks and general reward
structures, and consider two objectives, i.e., fixed-confidence (FC) and fixed-budget (FB).

• For the FC objective, we propose algorithm CoKernelFC, which adopts an efficient kernel-
ized estimator to simplify the required data transmission and enjoys only a O(nV ) commu-
nication cost. We derive sample complexity Õ(ρ

∗(ξ)
V log δ−1) and communication rounds

O(log∆−1
min). Here ξ is the regularization parameter, and ρ∗(ξ) is the problem hardness

(see Section 4.3).

• For the FB objective, we design a novel algorithm CoKernelFB with error probability
Õ(exp(− TV

ρ∗(ξ) )n
2V ) and communication rounds O(log(ω(ξ, X̃ ))). Here T is the sample
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budget, X̃ is the set of task-arm feature pairs, and ω(ξ, X̃ ) is the principle dimension of
data projections in X̃ to RKHS (see Section 5.1).

• Our algorithms offer an efficient communication scheme for information exchange in high
dimensional feature space. Our results explicitly quantify how task similarities impact
learning acceleration, and only depend on the effective dimension of feature space.

Due to the space limit, we defer all proofs to the appendix.

2 RELATED WORK

Below we review the most related works, and defer a complete literature review to Appendix B.

Collaborative Pure Exploration (CoPE). Hillel et al. (2013); Tao et al. (2019) initiate the CoPE
literature with the single-task and classic MAB setting, where all agents solve a common classic
best arm identification problem (without reward structures). Karpov et al. (2020) further extend the
formulation in (Hillel et al., 2013; Tao et al., 2019) to best m arm identification. Our CoPE-KB
generalizes prior CoPE works to allow multiple tasks and general reward structures, and faces a
unique challenge on communication due to the high-dimensional feature space. Recently, Wang
et al. (2019) study distributed multi-armed and linear bandit problems, and He et al. (2022) inves-
tigate federated linear bandits with asynchronous communication. Their algorithms directly com-
municate the estimated reward parameters and cannot be applied to solve our problem, since under
kernel representation, the reward parameter is high-dimensional and expensive to explicitly transmit.

Kernel Bandits. Srinivas et al. (2010); Valko et al. (2013); Scarlett et al. (2017); Li & Scarlett
(2022) investigate the single-agent kernel bandit problem and establish regret bounds dependent on
maximum information gain. Krause & Ong (2011); Deshmukh et al. (2017) study multi-task kernel
bandits based on composite kernel functions. Dubey et al. (2020); Li et al. (2022) consider multi-
agent kernel bandits with local-broadcast and client-server communication protocols, respectively.
Camilleri et al. (2021); Zhu et al. (2021) investigate single-agent pure exploration in kernel space.
The above kernel bandit works consider either regret minimization or single-agent formulation,
which cannot be applied to resolve our challenges on round-speedup analysis and communication.

3 COLLABORATIVE PURE EXPLORATION IN KERNEL BANDIT (COPE-KB)

In this section, we define the Collaborative Pure Exploration in Kernel Bandit (CoPE-KB) problem.

Agents and Rewards. There are V agents indexed by [V ] := {1, . . . , V }, who collaborate to solve
different but possibly related instances (tasks) of the Pure Exploration in Kernel Bandit (PE-KB)
problem. For each agent v ∈ [V ], she is given a set of n arms Xv = {xv,1, . . . , xv,n} ⊆ RdX ,
where xv,i (i ∈ [n]) describes the arm feature, and dX is the dimension of arm feature vectors. The
expected reward of each arm x ∈ Xv is fv(x), where fv : Xv 7→ R is an unknown reward function.
Let X := ∪v∈[V ]Xv . At each timestep t, each agent v pulls an arm xt

v ∈ Xv and observes a random
reward ytv = fv(x

t
v) + ηtv . Here ηtv is a zero-mean and 1-sub-Gaussian noise, and it is independent

among different t and v. We assume that the best arms xv,∗ := argmaxx∈Xv
fv(x) are unique for

all v ∈ [V ], which is a common assumption in the pure exploration literature (Even-Dar et al., 2006;
Audibert et al., 2010; Kaufmann et al., 2016).

Multi-Task Kernel Composition. We assume that the functions fv are parametric functionals of a
global function F : Z × X 7→ R, which satisfies that, for each agent v ∈ [V ], there exists a task
feature vector zv ∈ Z such that

fv(x) = F (zv, x), ∀x ∈ Xv. (1)
Here Z and X denote the task feature space and arm feature space, respectively. Note that Eq. (1)
allows tasks to be different for agents (by having different task features), whereas prior CoPE
works (Hillel et al., 2013; Tao et al., 2019; Karpov et al., 2020) restrict the tasks (Xv and fv) to
be the same for all agents v ∈ [V ].

We denote a task-arm feature pair (i.e., overall input of function F ) by x̃ := (zv, x), and denote
the space of task-arm feature pairs (i.e., overall input space of function F ) by X̃ := Z × X . As a
standard assumption in kernel bandits (Krause & Ong, 2011; Deshmukh et al., 2017; Dubey et al.,
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2020), we assume that F has a bounded norm in a high (possibly infinite) dimensional Reproducing
Kernel Hilbert Space (RKHS) H specified by the kernel k : X̃ × X̃ 7→ R, and there exists a feature
mapping ϕ : X̃ 7→ H and an unknown parameter θ∗ ∈ H such that1

F (x̃) = ϕ(x̃)⊤θ∗, ∀x̃ ∈ X̃ ,
k(x̃, x̃′) = ϕ(x̃)⊤ϕ(x̃′), ∀x̃, x̃′ ∈ X̃ .

Here k(·, ·) is a product composite kernel, which satisfies that for any z, z′ ∈ Z and x, x′ ∈ X ,
k((z, x), (z′, x′)) = kZ(z, z

′) · kX (x, x′),

where kZ : Z × Z 7→ R is the task feature kernel which measures the similarity of functions fv ,
and kX : X × X 7→ R is the arm feature kernel which depicts the feature structure of arms. The
computation of kernel function k(·, ·) operates only on low-dimensional input data. By expressing
all calculations via k(·, ·), it enables us to avoid maintaining high-dimensional ϕ(·) and attain com-
putation efficiency. In addition, the composite structure of k(·, ·) allows us to model the similarity
among tasks.

Task 1 Task 2

Item 1, with reward 3 + 2 Item 3, with reward 5 + 3 2

Item 2, with reward 4 + 2 2

Task feature:

Reward function:

Feature mapping:

Reward parameter:

Kernel function:

Figure 1: Illustrating example for CoPE-KB.

Let KZ := [kZ(zv, zv′)]v,v′∈[V ] de-
note the kernel matrix of task fea-
tures. rank(KZ) characterizes how
much the tasks among agents are sim-
ilar. For example, if agents solve a
common task, i.e., the arm set Xv and
reward function fv are the same for
all agents, we have that the task fea-
ture zv is the same for all v ∈ [V ],
and rank(KZ) = 1; If all tasks are
totally different, rank(KZ) = V .

To better illustrate the model, we pro-
vide a 2-agent example in Figure 1.
There are Items 1, 2, 3 with expected
rewards 3 +

√
2, 4 + 2

√
2, 5 + 3

√
2,

respectively. Agent 1 is given Items 1, 2, denoted by X1 = {x1,1, x1,2}, and Agent 2 is given Items
2, 3, denoted by X2 = {x2,1, x2,2}, where both x1,2 and x2,1 refer to Item 2. The task feature
z1 = z2 = 1, which means that the expected rewards of all items are generated by a common
function. The reward function F is nonlinear with respect to x, but can be represented in a linear
form in a higher-dimensional feature space, i.e., F (x̃) = F (z, x) = ϕ(x̃)⊤θ∗ with x̃ := (z, x) for
any z ∈ Z and x ∈ X . Here ϕ(x̃) is the feature embedding, and θ∗ is the reward parameter. The
computation of kernel function k(x̃, x̃′) only involves low-dimensional input data x̃ and x̃′, rather
than higher-dimensional feature embedding ϕ(·). F, ϕ, θ∗ and k are specified in Figure 1. The two
agents can share the learned information on θ∗ to accelerate learning.

Communication. Following the popular communication protocol in the CoPE literature (Hillel
et al., 2013; Tao et al., 2019; Karpov et al., 2020), we allow these V agents to exchange information
via communication rounds, in which each agent can broadcast and receive messages from others.
Following existing CoPE works (Hillel et al., 2013; Tao et al., 2019; Karpov et al., 2020), we restrict
the length of each message within O(n) bits for practicability, where n is the number of arms for
each agent, and we consider the number of bits for representing a real number as a constant. We
want agents to cooperate and complete all tasks using as few communication rounds as possible.

Objectives. We consider two objectives of the CoPE-KB problem, one with Fixed-Confidence (FC)
and the other with Fixed-Budget (FB). In the FC setting, given a confidence parameter δ ∈ (0, 1), the
agents aim to identify xv,∗ for all v ∈ [V ] with probability at least 1− δ, and minimize the average
number of samples used per agent. In the FB setting, the agents are given an overall TV sample
budget (T average samples per agent), and aim to use at most TV samples to identify xv,∗ for all
v ∈ [V ] and minimize the error probability. In both FC and FB settings, the agents are requested to
minimize the number of communication rounds and control the length of each message within O(n)
bits, as in the CoPE literature (Hillel et al., 2013; Tao et al., 2019; Karpov et al., 2020).

1For any h, h′ ∈ H, we denote their inner-product by h⊤h′ := ⟨h, h′⟩H and denote the norm of h by
∥h∥ :=

√
h⊤h. For any h ∈ H and matrix M , we denote ∥h∥M−1 :=

√
h⊤M−1h.
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Algorithm 1 Collaborative Multi-agent Algorithm CoKernelFC: for Agent v ∈ [V ]

1: Input: δ, X̃ , k(·, ·) : X̃ × X̃ 7→ R, regularization parameter ξ, rounding procedure ROUND,
rounding approximation parameter ε = 1

10

2: Initialization: δr := δ
2r2 for all r ≥ 1. B(1)v′ ← X̃v′ for all v′ ∈ [V ].

3: for round r = 1, 2, . . . do
4: Let λ∗

r and ρ∗r be the optimal solution and optimal value of
min
λ∈△X̃

max
x̃i,x̃j∈B(r)

v′ ,v′∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥2(ξI+∑
x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)⊤)−1 // compute the optimal

sample allocation
5: N (r) ← max{⌈32(2r)2(1 + ε)2ρ∗r log

(
2n2V/δr

)
⌉, τ(ξ, λ∗

r , ε)}, where τ(ξ, λ∗
r , ε) is the

number of samples needed by ROUND

6: (s̃1, . . . , s̃N(r))← ROUND(ξ, λ∗
r , N

(r), ε)

7: Extract a sub-sequence s̃(r)v from (s̃1, . . . , s̃N(r)) which only contains the arms in X̃v

8: Sample the arms in s̃(r)v and observe random rewards y(r)
v

9: Let N (r)
v,i and ȳ

(r)
v,i be the number of samples and the average sample outcome on arm x̃v,i

10: Broadcast {(N (r)
v,i , ȳ

(r)
v,i )}i∈[n], and receive {(N (r)

v′,i, ȳ
(r)
v′,i)}i∈[n] from all other agents v′ ̸= v

11: kr(x̃) ← [

√
N

(r)
1 k(x̃, x̃1), . . . ,

√
N

(r)
nV k(x̃, x̃nV )]

⊤ for any x̃ ∈ X̃ . K(r) ←

[
√
N

(r)
i N

(r)
j k(x̃i, x̃j)]i,j∈[nV ]. ȳ(r) ← [

√
N

(r)
1 ȳ

(r)
1 , . . . ,

√
N

(r)
nV ȳ

(r)
nV ]

⊤ // organize overall
sample information

12: for all v′ ∈ [V ] do
13: ∆̂r(x̃, x̃

′)← (kr(x̃)− kr(x̃
′))⊤(K(r) +N (r)ξI)−1ȳ(r), ∀x̃, x̃′ ∈ B(r)v′ // use a

kernelized estimator (described in Section 4.2) to estimate reward gaps
14: B(r+1)

v′ ← B(r)v′ \ {x̃ ∈ B(r)v′ | ∃x̃′ ∈ B(r)v′ : ∆̂r(x̃
′, x̃) ≥ 2−r} // discard sub-optimal arms

15: end for
16: if ∀v′ ∈ [V ], |B(r+1)

v′ | = 1, return B(r+1)
1 , . . . ,B(r+1)

V
17: end for

Different from prior CoPE-KB works (Tao et al., 2019; Karpov et al., 2020) which consider mini-
mizing the maximum number of samples used by individual agents, we aim to minimize the average
(total) number of samples used. Our objective is motivated by the fact that in many applications,
obtaining a sample is expansive, e.g., clinical trials (Weninger et al., 2019), and thus it is important
to minimize the average (total) number of samples required. For example, consider that a medical
institution wants to conduct multiple clinical trials to identify the best treatments for different age
groups of patients (different tasks), and share the obtained data to accelerate the development. Since
conducting a trial can consume significant medical resources and funds (e.g., organ transplant surg-
eries and convalescent plasma treatments for COVID-19), the institution wants to minimize the total
number of trials required. Our CoPE-KB model is most suitable for such scenarios.

To sum up, in CoPE-KB, we let agents collaborate to simultaneously complete multiple related best
arm identification tasks using few communication rounds. In particular, when all agents solve the
same task and X is the canonical basis, our CoPE-KB reduces to existing CoPE with classic MAB
setting (Hillel et al., 2013; Tao et al., 2019).

4 FIXED-CONFIDENCE COPE-KB

We start with the fixed-confidence setting. We present algorithm CoKernelFC equipped with an
efficient kernelized estimator, and provide theoretical guarantees in sampling and communication.

4.1 ALGORITHM CoKernelFC

CoKernelFC (Algorithm 1) is an elimination-based multi-agent algorithm. The procedure for each
agent v is as follows. Agent v maintains candidate arm sets B(r)v′ for all v′ ∈ [V ]. In each round
r, agent v solves a global min-max optimization (Line 4) to find the optimal sample allocation
λ∗
r ∈ △X̃ , which achieves the minimum estimation error. Here△X̃ denotes the collection of all dis-
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tributions on X̃ , and ρ∗r is the factor of optimal estimation error. In practice, the high-dimensional
feature embedding ϕ(x̃) is only implicitly maintained, and this optimization can be efficiently solved
by kernelized gradient descent (Camilleri et al., 2021) (see Appendix C.2). After solving this opti-
mization, agent v uses ρ∗r to compute the number of samples N (r) to ensure the estimation error of
reward gaps to be smaller than 2−(r+1) (Line 5).

Next, we call a rounding procedure ROUND(ξ, λ∗
r , N

(r), ε) (Allen-Zhu et al., 2021; Camilleri et al.,
2021), which rounds a weighted sample allocation λ∗

r ∈ △X̃ into a discrete sample sequence
(s̃1, . . . , s̃N(r)) ∈ X̃N(r)

, and ensures the rounding error within ε (Line 6). This rounding pro-

cedure requires the number of samples N (r) ≥ τ(ξ, λ∗
r , ε) = O(

d̃(ξ,λ∗
r)

ε2 ) (Line 5). Here τ(ξ, λ∗
r , ε)

is the number of samples needed by ROUND. d̃(ξ, λ∗
r) is the number of the eigenvalues of matrix∑

x̃∈X̃ λ∗
r(x̃)ϕ(x̃)ϕ(x̃)

⊤ which are greater than ξ. It stands for the effective dimension of feature
space (see Appendix C.1 for details of this rounding procedure).

Obtaining sample sequence (s̃1, . . . , s̃N(r)), agent v extracts a sub-sequence s̃(r)v which only con-
tains the arms in her arm set X̃v . Then, she sample the arms in s̃(r)v and observe sample outcomes
y
(r)
v . After sampling, she only communicates the number of samples N (r)

v,i and average sample out-

come ȳ
(r)
v,i on each arm x̃v,i with other agents (Line 10). Receiving overall sample information, she

uses a kernelized estimator (discussed shortly) to estimate the reward gap ∆̂r(x̃, x̃
′) between any

two arms x̃, x̃′ ∈ B(r)
v′ for all v′ ∈ [V ], and discards sub-optimal arms (Lines 13,14). In Line 11,

for any i ∈ [nV ], we use x̃i, ȳ
(r)
i and N

(r)
i with a single subscript to denote the i-th arm in X̃ , the

average sample outcome on this arm and the number of samples allocated to this arm, respectively.

4.2 KERNELIZED ESTIMATOR, COMMUNICATION AND COMPUTATION

Now we introduce the kernelized estimator (Line 13), which boosts communication and computation
efficiency of CoKernelFC. First note that, our CoPE-KB generalization faces a unique challenge
on communication, i.e., how to let agents efficiently share their learned information on the high-
dimensional reward parameter θ∗. Naively adapting existing federated linear bandit or kernel bandit
algorithms (Dubey & Pentland, 2020; Huang et al., 2021; Dubey et al., 2020), which transmit the
whole estimated reward parameter or all raw sample outcomes, will suffer a O(dim(H)) or O(N (r))

communication cost, respectively. Here, the number of samples N (r) = Õ(deff/∆
2
min), where deff

is the effective dimension of feature space and ∆min is the minimum reward gap. Thus, N (r) is far
larger than the number of arms nV when ∆min is small.

Kernelized Estimator. To handle the communication challenge, we develop a novel kernelized
estimator (Eq. (3)) to significantly simplify the required transmitted data. Specifically, we make
a key observation: since the sample sequence (s̃1, . . . , s̃N(r)) are constituted by arms x̃1, . . . , x̃nV ,
one can merge repetitive computations for same arms. Then, for all i ∈ [nV ], we merge the repetitive
feature embeddings ϕ(x̃i) for same arms x̃i, and condense the N (r) raw sample outcomes to average
outcome ȳ

(r)
i on each arm x̃i. As a result, we express θ̂r in a simplified kernelized form, and use it

to estimate the reward gap ∆̂r(x̃, x̃
′) between any two arms x̃, x̃′ as

θ̂r := Φ⊤
r

(
N (r)ξI +K(r)

)−1
ȳ(r), (2)

∆̂r(x̃, x̃
′) := (ϕ(x̃)− ϕ(x̃′))

⊤
θ̂r = (kr(x̃)− kr(x̃

′))
⊤ (

N (r)ξI +K(r)
)−1

ȳ(r). (3)

Here Φr := [

√
N

(r)
1 ϕ(x̃1)

⊤; . . . ;

√
N

(r)
nV ϕ(x̃nV )

⊤], K(r) := [
√
N

(r)
i N

(r)
j k(x̃i, x̃j)]i,j∈[nV ],

kr(x̃) := Φrϕ(x̃) = [

√
N

(r)
1 k(x̃, x̃1), . . . ,

√
N

(r)
nV k(x̃, x̃nV )]

⊤ and ȳ(r) :=

[

√
N

(r)
1 ȳ

(r)
1 , . . . ,

√
N

(r)
nV ȳ

(r)
nV ]

⊤ stand for the feature embeddings, kernel matrix, correlations
and average outcomes of the nV arms, respectively, which merge repetitive information on same
arms. We refer interested reader to Appendix C.2, C.3 for a detailed derivation of our kernelized
estimator and a comparison with existing estimators (Dubey et al., 2020; Camilleri et al., 2021).
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Communication. Thanks to the kernelized estimator, we only need to transmit the nV average
outcomes ȳ(r)1 , . . . , ȳ

(r)
nV (Line 10), instead of the whole θ̂r or all N (r) raw outcomes as in existing

federated linear bandit or kernel bandit algorithms (Dubey & Pentland, 2020; Dubey et al., 2020).
This significantly reduces the number of transmission bits from O(dim(H)) or O(N (r)) to only
O(nV ), and satisfies the O(n)-bit per message requirement.

Computation. In CoKernelFC, ϕ(x̃) and θ̂r are maintained implicitly, and all steps (e.g., Lines 4,
13) can be implemented efficiently by only querying kernel function k(·, ·) (see Appendix C.2 for
implementation details). Thus, the computation complexity for reward estimation is only Poly(nV ),
instead of Poly(dim(H)) as in prior kernel bandit algorithms (Zhou et al., 2020; Zhu et al., 2021).

4.3 THEORETICAL PERFORMANCE OF CoKernelFC

To formally state our results, we define the speedup and hardness as in the literature (Hillel et al.,
2013; Tao et al., 2019; Fiez et al., 2019).

For a CoPE-KB instance I, let TAM ,I denote the average number of samples used per agent in
a multi-agent algorithm AM to identify all best arms. Let TAS ,I denote the average number of
samples used per agent, by replicating V copies of a single-agent algorithm AS to complete all
tasks (without communication). Then, the speedup of AM on instance I is defined as

βAM ,I = inf
AS

TAS ,I

TAM ,I
. (4)

It holds that 1 ≤ βAM ,I ≤ V . When all tasks are the same, βAM ,I can approach V . When all
tasks are totally different, communication brings no benefit and βAM ,I = 1. This speedup can be
similarly defined for error probability results (see Section 5.2), by taking TAM ,I and TAS ,I as the
smallest numbers of samples needed to meet the confidence constraint.

The hardness for CoPE-KB is defined as

ρ∗(ξ) = min
λ∈△X̃

max
x̃∈X̃v\{x̃v,∗},v∈[V ]

∥ϕ(x̃v,∗)− ϕ(x̃)∥2A(ξ,λ)−1

(F (x̃v,∗)− F (x̃))
2 , (5)

where ξ ≥ 0 is a regularization parameter, and A(ξ, λ) := ξI +
∑

x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)
⊤. This defini-

tion of ρ∗(ξ) is adapted from prior linear bandit work (Fiez et al., 2019). Here F (x̃v,∗) − F (x̃) is
the reward gap between the best arm x̃v,∗ and a suboptimal arm x̃, and ∥ϕ(x̃v,∗) − ϕ(x̃)∥2A(ξ,λ)−1

is a dimension-related factor of estimation error. Intuitively, ρ∗(ξ) indicates how many samples it
takes to make the estimation error smaller than the reward gap under regularization parameter ξ.

Let ∆min := minx̃∈X̃v\{x̃v,∗},v∈[V ](F (x̃v,∗)− F (x̃)) denote the minimum reward gap between the
best arm and suboptimal arms among all tasks. Let S denote the average number of samples used by
each agent, i.e., per-agent sample complexity. Below we present the performance of CoKernelFC.

Theorem 1 (Fixed-Confidence Upper Bound). Suppose that ξ satisfies√
ξmaxx̃i,x̃j∈X̃v,v∈[V ] ∥ϕ(x̃i) − ϕ(x̃j)∥A(ξ,λ∗

1)
−1 ≤ ∆min

32(1+ε)∥θ∗∥ . With probability at least
1− δ, CoKernelFC returns the best arms x̃v,∗ for all v ∈ [V ], with per-agent sample complexity

S = O

(
ρ∗(ξ)

V
· log∆−1

min

(
log

(
nV

δ

)
+ log log∆−1

min

)
+

d̃(ξ, λ∗
1)

V
· log∆−1

min

)
and communication rounds O(log∆−1

min).

Remark 1. The condition on regularization parameter ξ implies that CoKernelFC needs a small
regularization parameter such that the bias due to regularization is smaller than ∆min

2 . Such condi-
tions are similarly needed in prior kernel bandit work (Camilleri et al., 2021), and can be dropped
in the extended PAC setting (allowing a gap between the identified best arm and true best arm). The
d̃(ξ, λ∗

1) log(∆
−1
min)/V term is a cost for using rounding procedure ROUND. This is a second order

term when the reward gaps ∆v,i := F (x̃v,∗)− F (x̃v,i) < 1 for all x̃v,i ∈ X̃v \ {x̃v,∗} and v ∈ [V ],
which is the common case in pure exploration (Fiez et al., 2019; Zhu et al., 2021).

When all tasks are the same, Theorem 1 achieves a V -speedup, since replicating V copies of single-
agent algorithms (Camilleri et al., 2021; Zhu et al., 2021) to complete all tasks without communica-
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tion will cost Õ(ρ∗(ξ)) samples per agent. When tasks are totally different, there is no speedup in
Theorem 1, since each copy of single-agent algorithm solves a task in her own sub-dimension and
costs Õ(ρ

∗(ξ)
V ) samples (ρ∗(ξ) stands for the effective dimension of all tasks). This result matches

the restriction of speedup.

Interpretation. Now, we interpret Theorem 1 by standard measures in kernel bandits and a decom-
position with respect to task similarities and task features. Below we first introduce the definitions
of maximum information gain and effective dimension, which are adapted from kernel bandits with
regret minimization (Srinivas et al., 2010; Valko et al., 2013) to the pure exploration setting.

We define the maximum information gain as Υ := maxλ∈△X̃
log det

(
I + ξ−1Kλ

)
, where Kλ :=

[
√

λiλjk(x̃i, x̃j)]i,j∈[nV ] denotes the kernel matrix under sample allocation λ. Υ stands for the
maximum information gain obtained from the samples generated according to sample allocation λ.

Let λ∗ := argmaxλ∈△X̃
log det

(
I + ξ−1Kλ

)
denote the sample allocation which achieves the

maximum information gain, and let α1 ≥ · · · ≥ αnV denote the eigenvalues of Kλ∗ . Then, we
define the effective dimension as deff := min{j ∈ [nV ] : jξ log(nV ) ≥

∑nV
i=j+1 αi}. deff stands for

the number of principle directions that data projections in RKHS spread.

Recall that KZ := [kZ(zv, zv′)]v,v′∈[V ] denotes the kernel matrix of task similarities. Let KX ,λ∗ :=

[
√
λ∗
i λ

∗
jkX (xi, xj)]i,j∈[nV ] denote the kernel matrix of arm features under sample allocation λ∗.

Corollary 1. The per-agent sample complexity S of algorithm CoKernelFC can be bounded by

(a) S = Õ

(
Υ

∆2
minV

)
, (b) S = Õ

(
deff

∆2
minV

)
, (c) S = Õ

(
rank(KZ) · rank(KX ,λ∗)

∆2
minV

)
,

where Õ(·) omits the rounding cost term d̃(ξ, λ∗
1) log(∆

−1
min)/V and logarithmic factors.

Remark 2. Corollaries 1(a),(b) show that, our sample complexity can be bounded by the maximum
information gain, and only depends on the effective dimension of kernel representation. Corol-
lary 1(c) reveals that the more tasks are similar (i.e., the smaller rank(KZ) is), the fewer samples
agents need. For example, when all tasks are the same, i.e., rank(KZ) = 1, each agent only needs
a 1

V fraction of the samples required by single-agent algorithms (Camilleri et al., 2021; Zhu et al.,
2021) (which need Õ(rank(KX ,λ∗)/∆2

min) samples). Conversely, when all tasks are totally differ-
ent, i.e., rank(KZ) = V , no advantage can be obtained from communication, since the information
from other agents is useless for solving local tasks. Our experimental results also reflect this rela-
tionship between task similarities and speedup, which match our theoretical bounds (see Section 6).
We note that these theoretical results hold for both finite and infinite RKHS.

5 FIXED-BUDGET COPE-KB

For the fixed-budget objective, we propose algorithm CoKernelFB and error probability guarantees.
Due to space limit, we defer the pseudo-code and detailed description to Appendix C.4.

5.1 ALGORITHM CoKernelFB

CoKernelFB pre-determines the number of rounds and the number of samples according to the
principle dimension of arms, and successively cut down candidate arms to a half based on principle
dimension. CoKernelFB also adopts the efficient kernelized estimator (in Section 4.2) to estimate
the rewards of arms, so that agents only need to transmit average outcomes rather than all raw sample
outcomes or the whole estimated reward parameter. Thus, CoKernelFB only requires a O(nV )
communication cost, instead of O(N (r)) or O(dim(H)) as in adaptions of prior single-agent and
fixed-budget algorithm (Katz-Samuels et al., 2020).

5.2 THEORETICAL PERFORMANCE OF CoKernelFB

Define the principle dimension of X̃ as ω(ξ, X̃ ) := minλ∈△X̃
maxx̃i,x̃j∈X̃ ∥ϕ(x̃i)−ϕ(x̃j)∥2A(ξ,λ)−1 ,

where A(ξ, λ) := ξI +
∑

x̃∈X̃λx̃ϕ(x̃)ϕ(x̃)
⊤. ω(ξ, X̃ ) represents the principle dimension of data

projections in X̃ to RKHS. Now we provide the error probability guarantee for CoKernelFB.
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(a) FC, rank(KZ) = 1
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(b) FC, rank(KZ) ∈ (1, V )
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(c) FC, rank(KZ) = V

Figure 2: Experimental results for CoPE-KB in the FC setting.

Theorem 2 (Fixed-Budget Upper Bound). Suppose that ξ satisfies ξ ≤ 1
16(1+ε)2(ρ∗(ξ))2∥θ∗∥2 . Algo-

rithm CoKernelFB uses at most T samples per agent, and returns the best arms x̃v,∗ for all v ∈ [V ]
with error probability

O

(
exp

(
− TV

ρ∗(ξ) · log(ω(ξ, X̃ ))

)
· n2V log(ω(ξ, X̃ ))

)
and O(log(ω(ξ, X̃ ))) communication rounds.

To guarantee an error probability δ, CoKernelFB only requires Õ(ρ
∗(ξ)
V log δ−1) sample budget,

which attains full speedup when all tasks are the same. Theorem 2 can be decomposed into compo-
nents related to task similarities and arm features as in Corollary 1 (see Appendix E.2).

6 EXPERIMENTS

In this section, we provide the experimental results. Here we set V = 5, n = 6, δ = 0.005,
H = Rd, d ∈ {4, 8, 20}, θ∗ = [0.1, 0.1 + ∆min, . . . , 0.1 + (d − 1)∆min]

⊤, ∆min ∈ [0.1, 0.8] and
rank(KZ) ∈ [1, V ]. We run 50 independent simulations and plot the average sample complexity
with 95% confidence intervals (see Appendix A for a complete setup description and more results).

We compare our algorithm CoKernelFC with five baselines, i.e., CoKernel-IndAlloc, IndRAGE,
IndRAGE/V , IndALBA and IndPolyALBA. CoKernel-IndAlloc is an ablation variant of
CoKernelFC, where agents use locally optimal sample allocations. IndRAGE, IndALBA and
IndPolyALBA are adaptions of existing single-agent algorithms RAGE (Fiez et al., 2019), ALBA (Tao
et al., 2018) and PolyALBA (Du et al., 2021), respectively. IndRAGE/V is a V -speedup baseline,
which divides the sample complexity of the best single-agent adaption IndRAGE by V .

Figures 2(a), 2(b) show that CoKernelFC achieves the best sample complexity, which demonstrates
the effectiveness of our sample allocation and cooperation schemes. Moreover, the empirical results
reflect that the more tasks are similar, the higher learning speedup agents attain, which matches
our theoretical analysis. Specifically, in the rank(KZ) = 1 case (Figure 2(a)), i.e., tasks are the
same, CoKernelFC matches the V -speedup baseline IndRAGE-V . In the rank(KZ) ∈ (1, V )
case (Figure 2(b)), i.e., tasks are similar, the sample complexity of CoKernelFC lies between
IndRAGE/V and IndRAGE, which indicates that CoKernelFC achieves a speedup lower than V .
In the rank(KZ) = V case (Figure 2(c)), i.e., tasks are totally different, CoKernelFC performs
similar to IndRAGE, since information sharing brings no advantage in this case.

7 CONCLUSION

In this paper, we propose a collaborative pure exploration in kernel bandit (CoPE-KB) model with
fixed-confidence and fixed-budget objectives. CoPE-KB generalizes prior CoPE formulation from
the single-task and classic MAB setting to allow multiple tasks and general reward structures. We
propose novel algorithms with an efficient kernelized estimator and a novel communication scheme.
Sample and communication complexities are provided to corroborate the efficiency of our algo-
rithms. Our results explicitly quantify the influences of task similarities on learning speedup, and
only depend on the effective dimension of feature space.
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Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In Conference on Learning Theory, pp. 41–53. Citeseer, 2010.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-armed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

Romain Camilleri, Kevin Jamieson, and Julian Katz-Samuels. High-dimensional experimental de-
sign and kernel bandits. In International Conference on Machine Learning, pp. 1227–1237.
PMLR, 2021.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pp. 844–853. PMLR, 2017.

Aniket Anand Deshmukh, Urun Dogan, and Clayton Scott. Multi-task learning for contextual ban-
dits. In Advances in Neural Information Processing Systems, pp. 4851–4859, 2017.

Yihan Du, Yuko Kuroki, and Wei Chen. Combinatorial pure exploration with full-bandit or partial
linear feedback. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
7262–7270, 2021.

Abhimanyu Dubey and AlexSandy’ Pentland. Differentially-private federated linear bandits. Ad-
vances in Neural Information Processing Systems, 33:6003–6014, 2020.

Abhimanyu Dubey et al. Kernel methods for cooperative multi-agent contextual bandits. In Inter-
national Conference on Machine Learning, pp. 2740–2750, 2020.

Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of
Machine Learning Research, 7(6):1079–1105, 2006.

Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design
for transductive linear bandits. Advances in Neural Information Processing Systems, 32:10667–
10677, 2019.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic neural
architecture search towards general-purpose multi-task learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11543–11552, 2020.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid architec-
ture for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7036–7045, 2019.

10



Published as a conference paper at ICLR 2023

Jiafan He, Tianhao Wang, Yifei Min, and Quanquan Gu. A simple and provably efficient algorithm
for asynchronous federated contextual linear bandits. Advances in Neural Information Processing
Systems, 2022.

Eshcar Hillel, Zohar S Karnin, Tomer Koren, Ronny Lempel, and Oren Somekh. Distributed explo-
ration in multi-armed bandits. In Advances in Neural Information Processing Systems, volume 26,
pp. 854–862, 2013.

Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits.
Advances in Neural Information Processing Systems, 34, 2021.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. PAC subset selection in
stochastic multi-armed bandits. In International Conference on Machine Learning, volume 12,
pp. 655–662, 2012.

Nikolai Karpov, Qin Zhang, and Yuan Zhou. Collaborative top distribution identifications with
limited interaction. In IEEE Annual Symposium on Foundations of Computer Science, pp. 160–
171, 2020.

Julian Katz-Samuels, Lalit Jain, Kevin G Jamieson, et al. An empirical process approach to the
union bound: Practical algorithms for combinatorial and linear bandits. In Advances in Neural
Information Processing Systems, volume 33, pp. 10371–10382, 2020.
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APPENDIX

A MORE EXPERIMENTS

In this section, we give a complete description of experimental setup, and present the results for the
FB setting.

Experimental Setup. Our experiments are run on Intel Xeon E5-2660 v3 CPU at 2.60GHz. We set
V = 5, n = 6, δ = 0.005 and H = Rd, where d is a dimension parameter that will be specified
later. We consider three different cases of task similarities, i.e., rank(KZ) = 1 (tasks are the same),
rank(KZ) ∈ (1, V ) (tasks are similar), and rank(KZ) = V (tasks are totally different), to show
how task similarities impact learning performance in practice.

For the rank(KZ) = 1 case, we set d = 4. For any v ∈ [V ], {ϕ(x̃)}x̃∈X̃v
is the set of all

(
4
2

)
vectors in R4, where each vector has two entries 0 and two entries 1. For the rank(KZ) ∈ (1, V )
case, we set d = 8. For any v ∈ {1, 2} and v′ ∈ {3, 4, 5}, {ϕ(x̃)}x̃∈X̃v

and {ϕ(x̃)}x̃∈X̃v′ are the
two sets of all

(
4
2

)
vectors in the first and second subspaces R4 of the whole space R8, respectively,

where each vector has two entries 0 and two entries 1. For the rank(KZ) = V case, we set
d = 20. For any v ∈ [V ], {ϕ(x̃)}x̃∈X̃v

is the set of all
(
4
2

)
vectors in the v-th subspace R4 of

the whole space R20, where each vector has two entries 0 and two entries 1. For all cases, we set
θ∗ = [0.1, 0.1+∆min, . . . , 0.1+ (d− 1)∆min]

⊤ ∈ Rd, where ∆min is a reward gap parameter that
will be tuned in the experiments.

In the FC setting, we change the reward gap ∆min ∈ [0.1, 0.8] to generate different instances, and run
50 independent simulations to plot the average sample complexity with 95% confidence intervals.
In the FB setting, we change the sample budget T ∈ [7000, 300000] to obtain different instances,
and perform 100 independent runs to report the average error probability across runs.

Results for the Fixed-Budget Setting. In the FB setting (Figure 3), we compare our algorithm
CoKernelFB with three baselines, i.e., CoKernelFB-IndAlloc, IndPeaceFB (Katz-Samuels et al.,
2020) and IndUniformFB. CoKernelFB-IndAlloc is an ablation variant of CoKernelFB, where
agents use locally optimal sample allocations, instead of a globally optimal sample allocation.
IndPeaceFB and IndUniformFB run V copies of existing single-agent algorithms, PeaceFB (Katz-
Samuels et al., 2020) and the uniform sampling strategy, to independently complete the V tasks,
respectively.

Figures 3(a), 3(b) show that, our CoKernelFB enjoys a lower error probability than the baselines.
Moreover, the experimental results also reflect the influences of task similarities on learning speedup,
and match our theoretical bounds. Specifically, from Figures 3(a) to 3(c), the error probability of
CoKernelFB gets closer and closer to that of the single-agent adaption IndPeaceFB, which shows
that the learning speedup of CoKernelFB slows down as the task similarity decreases.

B RELATED WORK

In this section, we present a complete review of related works.

Collaborative Pure Exploration (CoPE). The collaborative pure exploration literature is initiated
by (Hillel et al., 2013), where all agents solve a common classic best arm identification problem.
Hillel et al. (2013) design fixed-confidence algorithms based on majority vote and provides upper
bound analysis. Tao et al. (2019) further develop a fixed-budget algorithm and complete the analysis
of communication round-speedup lower bounds. Karpov et al. (2020) extend the best arm identifi-
cation formulation of (Hillel et al., 2013; Tao et al., 2019) to best m arm identification, and show
complexity separations between these two formulations. Our CoPE-KB generalizes prior CoPE
works (Hillel et al., 2013; Tao et al., 2019; Karpov et al., 2020) from single-task and classic MAB
setting to allow multiple tasks and general reward structures, and faces unique challenges on com-
munication and computation due to high (possibly infinite) dimensional feature space.

Kernel Bandits. For kernel bandits with the regret minimization objective, Srinivas et al. (2010)
and Valko et al. (2013) design algorithms from Bayesian and frequentist perspectives, respectively.
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(a) FB, rank(KZ) = 1
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(b) FB, rank(KZ) ∈ (1, V )
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Figure 3: Experimental results for CoPE-KB in the FB setting.

Chowdhury & Gopalan (2017) improve the regret bound in (Srinivas et al., 2010) by building a
new self-normalized concentration inequality for kernel bandits. Scarlett et al. (2017) develop re-
gret lower bounds for the squared-exponential kernel and Matérn kernel, and Li & Scarlett (2022)
establish a near-optimal regret upper bound. Krause & Ong (2011); Deshmukh et al. (2017) study
multi-task kernel bandits, which consider a composite kernel constituted by two sub-kernels with
respect to tasks and items. Dubey et al. (2020) investigate multi-agent kernel bandits with a local
communication protocol, where agents can immediately share the observed data with their neighbors
in a network. Li et al. (2022) study distributed kernel bandits with a client-server communication
protocol, where agents only communicate with a central server. The communication costs in (Dubey
et al., 2020; Li et al., 2022) depend on the total number of timesteps T in the regret minimization
game, while our communication costs depend only on the number of arms in the pure exploration
setting.

For kernel bandits with the pure exploration objective, there are only a few related works (Scarlett
et al., 2017; Vakili et al., 2021; Camilleri et al., 2021; Zhu et al., 2021), and all of them study
the single-agent formulation. Scarlett et al. (2017); Vakili et al. (2021) consider the simple regret
setting in pure exploration, where an agent reports an arm at each timestep and aims to minimize
the suboptimality of the reported arm (simple regret) after T timesteps. In contrast, Camilleri et al.
(2021); Zhu et al. (2021) investigate the best arm identification setting in pure exploration, where an
agent aims to identify the best arm and minimizes the number of samples used (our work also falls
in the best arm identification line). Camilleri et al. (2021) propose a robust inverse propensity score
estimator to save the samples needed for rounding procedures. Zhu et al. (2021) use neural networks
to approximate nonlinear reward functions. The above kernel bandit works consider either the regret
minimization or single-agent setting, which is different from our CoPE-KB problem and does not
involve our challenges on round-speedup trade-off analysis and communication. Thus, these works
cannot be applied to solve our problem.

Recently, there are several works which study federated/distributed bandits with the regret mini-
mization objective. Wang et al. (2019) study distributed multi-armed and linear bandit problems,
and He et al. (2022) investigate federated linear bandits with asynchronous communication. Wang
et al. (2019); He et al. (2022); Dubey & Pentland (2020); Huang et al. (2021); Li & Wang (2022) de-
velop algorithms for (low-dimensional) federated linear bandits, where agents directly communicate
the whole vectors of reward parameters. These works cannot be adapted to resolve our challenges,
because under kernel representation, the reward parameter is high-dimensional and expensive to
explicitly calculate or transmit.

C OMITTED DISCUSSION FOR ALGORITHMS

C.1 ROUNDING PROCEDURE

In algorithms CoKernelFC and CoKernelFB, we use a rounding procedure ROUND(ξ, λ,N, ε) (Al-
gorithm 2 in (Camilleri et al., 2021)). For any weighted sample allocation λ ∈ △X̃ , regular-

ization parameter ξ and approximation parameter ε, with N ≥ τ(ξ, λ, ε) = O( d̃(ξ,λ)ε2 ) samples,
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ROUND(ξ, λ,N, ε) returns a discrete sample allocation (s̃1, . . . , s̃N ) ∈ X̃N such that
max

x̃i,x̃j∈X̃v,v∈[V ]
∥ϕ(x̃i)− ϕ(x̃j)∥2(NξI+

∑N
i=1 ϕ(s̃i)ϕ(s̃i)⊤)−1

≤2(1 + ϵ) max
x̃i,x̃j∈X̃v,v∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥2(NξI+
∑

x̃∈X̃ Nλx̃ϕ(x̃)ϕ(x̃)⊤)−1 . (6)

This rounding procedure requires the number of samples N to satisfy that N ≥ τ(ξ, λ, ε) =

O( d̃(ξ,λ)ε2 ). Here d̃(ξ, λ) is the number of the eigenvalues of matrix
∑

x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)
⊤ which

are greater than ξ. d̃(ξ, λ) stands for the effective dimension of the feature space spanned by data
projections of X̃ under regularization parameter ξ.

C.2 KERNELIZED COMPUTATION IN ALGORITHM CoKernelFC

Kernelized Estimator. Below we present a derivation of our kernelized estimator (Eq. (3)), which
plays an important role in boosting the communication and computation efficiency.

Let θ̂r denote the minimizer of the following regularized least square loss function:

L(θ) = N (r)ξ∥θ∥2 +
N(r)∑
j=1

(yj − ϕ(s̃j)
⊤θ)2.

Letting the derivative of L(θ) equal to zero, we have

N (r)ξθ̂r +

N(r)∑
j=1

ϕ(x̃j)ϕ(x̃j)
⊤θ̂r =

N(r)∑
j=1

ϕ(x̃j)yj .

Merging repetitive computations for the same arms, we can obtain

N (r)ξθ̂r +

(
nV∑
i=1

N
(r)
i ϕ(x̃i)ϕ(x̃i)

⊤

)
θ̂r =

nV∑
i=1

N
(r)
i ϕ(x̃i)ȳ

(r)
i , (7)

where N (r)
i is the number of samples and ȳ

(r)
i is the average observation on arm x̃i for any i ∈ [nV ].

Let Φr = [

√
N

(r)
1 ϕ(x̃1)

⊤; . . . ;

√
N

(r)
nV ϕ(x̃nV )

⊤], K(r) = ΦrΦ
⊤
r = [

√
N

(r)
i N

(r)
j k(x̃i, x̃j)]i,j∈[nV ]

and ȳ(r) = [

√
N

(r)
1 ȳ

(r)
1 , . . . ,

√
N

(r)
nV ȳ

(r)
nV ]

⊤. Then, we can write Eq. (7) as(
N (r)ξI +Φ⊤

r Φr

)
θ̂r =Φ⊤

r ȳ
(r).

Since
(
N (r)ξI +Φ⊤

r Φr

)
≻ 0 and

(
N (r)ξI +ΦrΦ

⊤
r

)
≻ 0,

θ̂r =
(
N (r)ξI +Φ⊤

r Φr

)−1

Φ⊤
r ȳ

(r)

= Φ⊤
r

(
N (r)ξI +ΦrΦ

⊤
r

)−1

ȳ(r)

= Φ⊤
r

(
N (r)ξI +K(r)

)−1

ȳ(r).

Let kr(x̃) = Φrϕ(x̃) = [

√
N

(r)
1 k(x̃, x̃1), . . . ,

√
N

(r)
nV k(x̃, x̃nV )]

⊤ for any x̃ ∈ X̃ . Then, for any
arms x̃i, x̃j ∈ X̃ , we obtain the efficient kernelized estimators of the expected reward F (x̃i) and
expected reward gap F (x̃i)− F (x̃j) as

f̂r(x̃i) = ϕ(x̃i)
⊤θ̂r = kr(x̃i)

⊤
(
N (r)ξI +K(r)

)−1

ȳ(r),

∆̂r(x̃i, x̃j) = (kr(x̃i)− kr(x̃j))
⊤
(
N (r)ξI +K(r)

)−1

ȳ(r).

Kernelized Optimization Solver. Following (Camilleri et al., 2021), we use a kernelized optimiza-
tion solver for the min-max optimization in Line 4 of Algorithm 1. The optimization problem is as
follows.

min
λ∈△X̃

max
x̃i,x̃j∈B(r)

v ,v∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥2A(ξ,λ)−1 , (8)

15



Published as a conference paper at ICLR 2023

where A(ξ, λ) := ξI +
∑

x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)
⊤ for any ξ ≥ 0 and λ ∈ △X̃ .

Define function h(λ) = max
x̃i,x̃j∈B(r)

v ,v∈[V ]

∥ϕ(x̃i) − ϕ(x̃j)∥2A(ξ,λ)−1 , and define x̃∗
i (λ), x̃

∗
j (λ) as the

optimal solution of h(λ). Then, the gradient of h(λ) with respect to λ is

[∇λh(λ)]x̃ = −
((

ϕ(x̃∗
i (λ))− ϕ(x̃∗

j (λ))
)⊤

A(ξ, λ)−1ϕ(x̃)
)2

,∀x̃ ∈ X̃ . (9)

Next, we show how to efficiently compute gradient [∇λh(λ)]x̃ with kernel function k(·, ·).

Since
(
ξI +Φ⊤

λΦλ

)
ϕ(x̃) = ξϕ(x̃) + Φ⊤

λ kλ(x̃) for any x̃ ∈ X̃ , we have

ϕ(x̃) =ξ
(
ξI +Φ⊤

λΦλ

)−1
ϕ(x̃) +

(
ξI +Φ⊤

λΦλ

)−1
Φ⊤

λ kλ(x̃)

=ξ
(
ξI +Φ⊤

λΦλ

)−1
ϕ(x̃) + Φ⊤

λ (ξI +Kλ)
−1

kλ(x̃)

Multiplying
(
ϕ(x̃∗

i (λ))− ϕ(x̃∗
j (λ))

)⊤
on both sides, we have(

ϕ(x̃∗
i (λ))− ϕ(x̃∗

j (λ))
)⊤

ϕ(x̃)

=ξ
(
ϕ(x̃∗

i (λ))− ϕ(x̃∗
j (λ))

)⊤ (
ξI +Φ⊤

λΦλ

)−1
ϕ(x̃)

+
(
kλ(x̃

∗
i (λ))− kλ(x̃

∗
j (λ))

)⊤
(ξI +Kλ)

−1
kλ(x̃)

Then,(
ϕ(x̃∗

i (λ))− ϕ(x̃∗
j (λ))

)⊤ (
ξI +Φ⊤

λΦλ

)−1
ϕ(x̃)

=ξ−1
(
ϕ(x̃∗

i (λ))− ϕ(x̃∗
j (λ))

)⊤
ϕ(x̃)− ξ−1

(
kλ(x̃

∗
i (λ))− kλ(x̃

∗
j (λ))

)⊤
(ξI +Kλ)

−1
kλ(x̃)

=ξ−1
(
k(x̃∗

i (λ), x̃)− k(x̃∗
j (λ), x̃)−

(
kλ(x̃

∗
i (λ))− kλ(x̃

∗
j (λ))

)⊤
(ξI +Kλ)

−1
kλ(x̃)

)
(10)

Therefore, we can compute gradient ∇λh(λ) (Eq. (9)) using the equivalent kernelized expression
Eq. (10), and then the optimization (Eq. (8)) can be efficiently solved by projected gradient descent.

C.3 COMPARISON OF ESTIMATORS

In the following, we compare our kernelized estimator (Eq. (3)) to those in prior kernel bandit
works (Zhou et al., 2020; Zhu et al., 2021; Dubey et al., 2020; Camilleri et al., 2021) and adaptions
of federated linear bandits (Dubey & Pentland, 2020; Huang et al., 2021; Li & Wang, 2022).

First, prior kernel bandit works (Zhou et al., 2020; Zhu et al., 2021) or adaptions of federated linear
bandits (Dubey & Pentland, 2020; Huang et al., 2021; Li & Wang, 2022) explicitly maintain the
regularized least square estimator of reward parameter θ∗ as

θ̂r =
(
N (r)ξI +

N(r)∑
j=1

ϕ(s̃j)ϕ(s̃j)
⊤
)−1 N(r)∑

j=1

ϕ(s̃j)yj . (11)

Since both θ̂r and ϕ(s̃j) lie in the high-dimensional feature space H, this estimator will incur
O(dim(H)) computation and communication costs.

Second, (Dubey et al., 2020) and Algorithm 6 in (Camilleri et al., 2021) use a redundant kernelized
form of θ̂r as

θ̂r = (Ψ⊤Ψ+N (r)ξI)−1Ψ⊤Y,

where Ψ := [ϕ(s̃1)
⊤; . . . ;ϕ(s̃N(r))⊤] ∈ RN(r)×dim(H), Y := [y1, . . . , yN(r) ]⊤ ∈ RN(r)

, and
y1, . . . , yN(r) are the observed raw outcomes of sample sequence (s̃1, . . . , s̃N(r)). This estimator
needs all N (r) raw sample outcomes y1, . . . , yN(r) as inputs, rather than only nV average outcomes
ȳ
(r)
1 , . . . , ȳ

(r)
nV as our estimator (Eq. (2)), which will incur a O(N (r)) communication cost. Here the

number of samples N (r) is often far larger than the number of arms nV .

Finally, Algorithm 4 in (Camilleri et al., 2021) adopts a robust inverse propensity score estimator as

θ̂r := argmin
θ

max
x̃i,x̃i′∈B(r)

v ,v∈[V ]

∣∣∣(ϕ(x̃i)− ϕ(x̃i′))
⊤θ −W i,i′

∣∣∣
∥ϕ(x̃i)− ϕ(x̃i′)∥A(ξ,λ∗

r)
−1

,
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Algorithm 2 Collaborative Multi-agent Algorithm CoKernelFB: for Agent v ∈ [V ]

1: Input: regularization parameter ξ ≤ 1
16(1+ε)2(ρ∗(ξ))2∥θ∗∥2 , per-agent budget T ≥

max{ρ∗(ξ), d̃(ξ,λ∗
1)}

V log(ω(ξ, X̃ )), arm set X̃ which satisfies ω(ξ, {x̃v,∗, x̃}) ≥ 1 for all x̃ ∈
X̃v \ {x̃v,∗} and v ∈ [V ], k(·, ·) : X̃ × X̃ 7→ R, rounding procedure ROUND, rounding approxi-
mation parameter ε = 1

10

2: Initialization: R← ⌈log2(ω(ξ, X̃ ))⌉. N ← ⌊TV/R⌋. B
(1)
v′ ← X̃v′ for all v′ ∈ [V ]. r ← 1. //

pre-determine the number of rounds and samples
3: while r ≤ R and ∃v′ ∈ [V ], |B(r)v′ | > 1 do
4: Let λ∗

r and ρ∗r be the optimal solution and optimal value of
min
λ∈△X̃

max
x̃i,x̃j∈B(r)

v′ ,v′∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥2(ξI+∑
x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)⊤)−1 // compute the optimal

sample allocation
5: (s̃1, . . . , s̃N )← ROUND(ξ, λ∗

r , N, ε)

6: Extract a sub-sequence s̃(r)v from (s̃1, . . . , s̃N ) which only contains arms in X̃v

7: Sample s̃(r)v and observe random rewards y(r)
v

8: Broadcast {(N (r)
v,i , ȳ

(r)
v,i )}i∈[n], and receive {(N (r)

v′,i, ȳ
(r)
v′,i)}i∈[n] from all other agents v′ ∈

[V ] \ {v}
9: for all v′ ∈ [V ] do

10: F̂r(x̃)← kr(x̃)
⊤(K(r) +N (r)ξI)−1ȳ(r) for all x̃ ∈ B(r)v′ // estimate the rewards of alive

arms
11: Sort all x̃ ∈ B(r)v′ by F̂r(x̃) in decreasing order, and denote the sorted sequence by

x̃(1), . . . , x̃(|B(r)

v′ |)

12: Let ir+1 be the largest index such that ω(ξ, {x̃(1), . . . , x̃(ir+1)}) ≤ ω(ξ,B(r)v′ )/2

13: B(r+1)
v′ ← {x̃(1), . . . , x̃(ir+1)} // cut down the alive arm set to half dimension

14: end for
15: r ← r + 1
16: end while
17: return B(r)1 , . . . ,B(r)V

W i,i′ := µ̂

({
(ϕ(x̃i)− ϕ(x̃i′))

⊤A(ξ, λ∗
r)

−1ϕ(s̃j)yj
}N(r)

j=1

)
,

Here A(ξ, λ) := ξI +
∑

x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)
⊤ for any ξ ≥ 0 and λ ∈ △X̃ . λ∗

r is the optimal sample
allocation defined in Line 4 of algorithm CoKernelFC (Algorithm 1). µ̂(·) is the median-of-means
estimator or Catoni’s estimator (Lugosi & Mendelson, 2019). This estimator also requires all N (r)

raw sample outcomes y1, . . . , yN(r) , and will cause a O(N (r)) communication cost.

C.4 PSEUDO-CODE AND DESCRIPTION OF ALGORITHM CoKernelFB

In this section, we present the algorithm pseudo-code of CoKernelFB (in Algorithm 2), and give a
detailed algorithm description.

The procedure of CoKernelFB is as follows. During initialization (Line 2), we pre-determine the
number of rounds R and the number of samples N for each round according to data dimension
ω(ξ, X̃ ), which is formally defined as

ω(ξ, S̃) := min
λ∈△X̃

max
x̃i,x̃j∈S̃

∥ϕ(x̃i)− ϕ(x̃j)∥2A(ξ,λ)−1 , ∀S̃ ⊆ X̃ ,

where A(ξ, λ) := ξI +
∑

x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)
⊤. ω(ξ, S̃) represents the principle dimension of data

projections in S̃ to the RKHS under regularization parameter ξ. Each agent v maintains alive arm
sets B(r)v′ for all agents v′ ∈ [V ], and calculates a global optimal sample allocation λ∗

r (Line 4). Then,
she generates a sample sequence (s̃

(r)
1 , . . . , s̃

(r)
N ) according to λ∗

r , and selects the sub-sequence s̃(r)v
that only contains her available arms to perform sampling (Lines 5,6). Similar to CoKernelFC, she
only communicates the number of samples N (r)

v,i and average observed reward ȳ
(r)
v,i for each arm x̃v,i
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with other agents (Line 8). With the shared information, she estimates rewards of alive arms and
only keeps the best half of them in the dimension sense (Lines 10-13).

Regarding the conditions on the input parameters (Line 1), the condition on regularization param-
eter ξ implies that CoKernelFC needs a small regularization parameter such that the bias due to
regularization is small. Such conditions are similarly needed in prior kernel bandit work (Camilleri
et al., 2021), and can be dropped in the extended PAC setting (allowing a gap between the identi-
fied best arm and true best arm). The condition on T is to ensure that the given sample budget is
larger than the number of samples required by rounding procedure ROUND. In addition, the condi-
tion on ω(·, ·) is to guarantee that the number of rounds is bounded by O(log(ω(ξ, X̃ ))) rather than
an uncontrollable variable. Such conditions are also needed by prior fixed-budget pure exploration
algorithm (Katz-Samuels et al., 2020).

Communication and Computation. CoKernelFB also adopts the kernelized estimator in Sec-
tion 4.2 to estimate the rewards of alive arms (Line 10). Specifically, using Eq. (2), we can estimate
the reward for arm x̃ by

F̂r(x̃) = ϕ(x̃)⊤θ̂r = kr(x̃)
⊤
(
N (r)ξI +K(r)

)−1

ȳ(r), (12)

where ȳ(r) := [

√
N

(r)
1 ȳ

(r)
1 , . . . ,

√
N

(r)
nV ȳ

(r)
nV ]

⊤, K(r) := [
√
N

(r)
i N

(r)
j k(x̃i, x̃j)]i,j∈[nV ] and

kr(x̃) := [

√
N

(r)
1 k(x̃, x̃1), . . . ,

√
N

(r)
nV k(x̃, x̃nV )]

⊤ are the average outcomes, kernel matrix and
correlations of the nV arms, respectively, which merge repetitive information on same arms.

Using the kernelized estimator (Eq. (12)), CoKernelFB only requires a O(nV ) communication cost,
instead of O(N (r)) or O(dim(H)) as in adaptions of existing single-agent algorithm (Katz-Samuels
et al., 2020).

D PROOFS FOR THE FIXED-CONFIDENCE SETTING

D.1 PROOF OF THEOREM 1

Our proof of Theorem 1 adapts the analytical procedure of (Fiez et al., 2019; Katz-Samuels et al.,
2020) to the multi-agent setting.

Let r∗ := ⌈log2 2
∆min
⌉ + 1. Intuitively, r∗ is the upper bound of the number of rounds used by

algorithm CoKernelFC. For any λ ∈ △X̃ , let Φλ := [
√
λ1ϕ(x̃1)

⊤; . . . ;
√
λnV ϕ(x̃nV )

⊤], where λi

denotes the weight allocated to arm x̃i for any i ∈ [nV ]. For any ξ ≥ 0 and λ ∈ △X̃ , A(ξ, λ) :=

ξI +
∑

x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)
⊤ = ξI +Φ⊤

λΦλ.

The regularization parameter ξ in algorithm CoKernelFC satisfies
√
ξmaxx̃i,x̃j∈X̃v,v∈[V ] ∥ϕ(x̃i)−

ϕ(x̃j)∥A(ξ,λ∗
1)

−1 ≤ ∆min

32(1+ε)∥θ∗∥ . Since max
x̃i,x̃j∈B̃(r)

v ,v∈[V ]
∥ϕ(x̃i) − ϕ(x̃j)∥A(ξ,λ∗

r)
−1 is non-

increasing with respect to r (from Line 4 in algorithm CoKernelFC), we have 2(1 +
ε)
√
ξmax

x̃i,x̃j∈B̃(r)
v ,v∈[V ]

∥ϕ(x̃i) − ϕ(x̃j)∥A(ξ,λ∗
r)

−1∥θ∗∥ ≤ ∆min

16 ≤ 1
2r+1 for any 1 ≤ r ≤ r∗.

In order to prove Theorem 1, we first introduce several important lemmas.

Lemma 1 (Concentration). Defining event

G =

{∣∣∣(F̂r(x̃i)− F̂r(x̃j)
)
− (F (x̃i)− F (x̃j))

∣∣∣ < 2(1 + ε) · ∥ϕ(x̃i)− ϕ(x̃j)∥A(ξ,λ∗
r)

−1 ·(√
2 log (2n2V/δr)

N (r)
+
√
ξ∥θ∗∥2

)
≤ 2−r, ∀x̃i, x̃j ∈ B(r)v , ∀v ∈ [V ], ∀1 ≤ r ≤ r∗

}
,

we have
Pr [G] ≥ 1− δ.
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Proof of Lemma 1. Let γr := N (r)ξ. Recall that θ̂r :=
(
γrI +Φ⊤

r Φr

)−1
Φ⊤

r ȳ
(r), Φr :=

[

√
N

(r)
1 ϕ(x̃1)

⊤; . . . ;

√
N

(r)
nV ϕ(x̃nV )

⊤] and ȳ(r) := [

√
N

(r)
1 ȳ

(r)
1 , . . . ,

√
N

(r)
nV ȳ

(r)
nV ]

⊤.

Let η̄(r) := [

√
N

(r)
1 η̄

(r)
1 , . . . ,

√
N

(r)
nV η̄

(r)
nV ]

⊤, where η̄
(r)
i := ȳ

(r)
i − ϕ(x̃i)

⊤θ∗ denotes the average

noise of the N
(r)
i samples on arm x̃i for any i ∈ [nV ].

Then, for any fixed round 1 ≤ r ≤ r∗, x̃i, x̃j ∈ B̃(r)v and v ∈ [V ], we have(
F̂r(x̃i)− F̂r(x̃j)

)
− (F (x̃i)− F (x̃j))

= (ϕ(x̃i)− ϕ(x̃j))
⊤
(
θ̂r − θ∗

)
=(ϕ(x̃i)− ϕ(x̃j))

⊤
((

γrI +Φ⊤
r Φr

)−1
Φ⊤

r ȳ
(r) − θ∗

)
=(ϕ(x̃i)− ϕ(x̃j))

⊤
((

γrI +Φ⊤
r Φr

)−1
Φ⊤

r

(
Φrθ

∗ + η̄(r)
)
− θ∗

)
=(ϕ(x̃i)− ϕ(x̃j))

⊤
((

γrI +Φ⊤
r Φr

)−1
Φ⊤

r Φrθ
∗ +

(
γrI +Φ⊤

r Φr

)−1
Φ⊤

r η̄
(r) − θ∗

)
=(ϕ(x̃i)− ϕ(x̃j))

⊤
( (

γrI +Φ⊤
r Φr

)−1 (
Φ⊤

r Φr + γrI
)
θ∗ +

(
γrI +Φ⊤

r Φr

)−1
Φ⊤

r η̄
(r)

− θ∗ − γr
(
γrI +Φ⊤

r Φr

)−1
θ∗
)

=(ϕ(x̃i)− ϕ(x̃j))
⊤ (

γrI +Φ⊤
r Φr

)−1
Φ⊤

r η̄
(r)︸ ︷︷ ︸

Term 1

−γr (ϕ(x̃i)− ϕ(x̃j))
⊤ (

γrI +Φ⊤
r Φr

)−1
θ∗ (13)

In Eq. (13), the expectation of Term 1 is zero, and the variance of Term 1 is bounded by

(ϕ(x̃i)− ϕ(x̃j))
⊤ (

γrI +Φ⊤
r Φr

)−1
Φ⊤

r Φr

(
γrI +Φ⊤

r Φr

)−1
(ϕ(x̃i)− ϕ(x̃j))

≤ (ϕ(x̃i)− ϕ(x̃j))
⊤ (

γrI +Φ⊤
r Φr

)−1 (
γrI +Φ⊤

r Φr

) (
γrI +Φ⊤

r Φr

)−1
(ϕ(x̃i)− ϕ(x̃j))

= (ϕ(x̃i)− ϕ(x̃j))
⊤ (

γrI +Φ⊤
r Φr

)−1
(ϕ(x̃i)− ϕ(x̃j))

=∥ϕ(x̃i)− ϕ(x̃j)∥2(γrI+Φ⊤
r Φr)

−1 .

Using the Hoeffding inequality, we have that with probability at least 1− δr
n2V ,∣∣∣(ϕ(x̃i)− ϕ(x̃j))

⊤ (
γrI +Φ⊤

r Φr

)−1
Φ⊤

r η̄
(r)
∣∣∣ < ∥ϕ(x̃i)− ϕ(x̃j)∥(γrI+Φ⊤

r Φr)
−1

√
2 log

(
2n2V

δr

)
(14)

Thus, taking the absolute value on both sides of Eq. (13) and using Eq. (14) and the Cauchy–Schwarz
inequality, we have that for any fixed round 1 ≤ r ≤ r∗, x̃i, x̃j ∈ B̃(r)v and v ∈ [V ], with probability
at least 1− δr

n2V ,∣∣∣(F̂r(x̃i)− F̂r(x̃j)
)
− (F (x̃i)− F (x̃j))

∣∣∣
<∥ϕ(x̃i)− ϕ(x̃j)∥(γrI+Φ⊤

r Φr)
−1

√
2 log

(
2n2V

δr

)
+ γr∥ϕ(x̃i)− ϕ(x̃j)∥(γrI+Φ⊤

r Φr)
−1∥θ∗∥(γrI+Φ⊤

r Φr)
−1

≤∥ϕ(x̃i)− ϕ(x̃j)∥(γrI+Φ⊤
r Φr)

−1

√
2 log

(
2n2V

δr

)
+
√
γr · ∥ϕ(x̃i)− ϕ(x̃j)∥(γrI+Φ⊤

r Φr)
−1∥θ∗∥2

(a)
≤
2(1 + ε) · ∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤

λ∗
r
Φλ∗

r
)−1

√
N (r)

√
2 log

(
2n2V

δr

)

+
√

ξN (r) ·
2(1 + ε) · ∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤

λ∗
r
Φλ∗

r
)−1

√
N (r)

· ∥θ∗∥2
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=2(1 + ε) · ∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

√
2 log (2n2V/δr)

N (r)

+ 2(1 + ε)
√
ξ∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤

λ∗
r
Φλ∗

r
)−1∥θ∗∥2

≤2(1 + ε) max
x̃i,x̃j∈B̃(r)

v ,v∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

√
2 log (2n2V/δr)

N (r)

+ 2(1 + ε)
√
ξ max
x̃i,x̃j∈B̃(r)

v ,v∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1∥θ∗∥2,

where (a) follows from the guarantee of rounding procedure (Eq. (6)) and γr := N (r)ξ.

According to the condition of ξ, it holds that

2(1 + ε)
√
ξ max
x̃i,x̃j∈B̃(r)

v ,v∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥(
ξI+Φ⊤

λ∗
r
Φλ∗

r

)−1∥θ∗∥2 ≤
1

2r+1
.

Thus, with probability at least 1− δr
n2V ,∣∣∣(F̂r(x̃i)− F̂r(x̃j)

)
− (F (x̃i)− F (x̃j))

∣∣∣
<2(1 + ε) max

x̃i,x̃j∈B̃(r)
v ,v∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

√
2 log (2n2V/δr)

N (r)
+

1

2r+1

=

√
8(1 + ε)2ρ∗r log (2n

2V/δr)

N (r)
+

1

2r+1

≤ 1

2r+1
+

1

2r+1

=
1

2r

By a union bound over arms x̃i, x̃j , agent v and round r, we have that
Pr [G] ≥ 1− δ.

For any 1 < r ≤ r∗ and v ∈ [V ], let S(r)v = {x̃ ∈ X̃v : F (x̃v,∗)− F (x̃) ≤ 4 · 2−r}.
Lemma 2. Assume that event G occurs. Then, for any round 1 < r ≤ r∗ +1 and agent v ∈ [V ], we
have that x̃v,∗ ∈ B(r)v and B(r)v ⊆ S(r)v .

Proof of Lemma 2. We prove the first statement by induction.

To begin, for any v ∈ [V ], x̃v,∗ ∈ B(1)v trivially holds.

Suppose that x̃v,∗ ∈ B(r)v (1 ≤ r ≤ r∗) holds for any v ∈ [V ], and there exists some v′ ∈ [V ] such
that x̃∗

v′ /∈ B(r+1)
v′ . According to the elimination rule of algorithm CoKernelFC, we have that these

exists some x̃′ ∈ B(r)v such that
F̂r(x̃

′)− F̂r(x̃
∗
v′) ≥ 2−r.

Using Lemma 1, we have
F (x̃′)− F (x̃∗

v′) > F̂r(x̃
′)− F̂r(x̃

∗
v′)− 2−r ≥ 0,

which contradicts the definition of x̃∗
v′ . Thus, we have that for any v ∈ [V ], x̃v,∗ ∈ B(r+1)

v , which
completes the proof of the first statement.

Now, we prove the second statement also by induction.

To begin, we prove that for any v ∈ [V ], B(2)v ⊆ S(2)v . Suppose that there exists some v′ ∈ [V ] such
that B(2)v′ ⊊ S(2)v′ . Then, there exists some x̃′ ∈ B(2)v′ such that F (x̃∗

v′)−F (x̃′) > 4 · 2−2 = 1. Using
Lemma 1, we have that at the round r = 1,

F̂r(x̃
∗
v′)− F̂r(x̃

′) ≥ F (x̃∗
v′)− F (x̃′)− 2−1 > 1− 2−1 = 2−1,

which implies that x̃′ should have been eliminated in round r = 1 and gives a contradiction.
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Suppose that B(r)v ⊆ S(r)v (1 < r ≤ r∗) holds for any v ∈ [V ], and there exists some v′ ∈ [V ]

such that B(r+1)
v′ ⊊ S(r+1)

v′ . Then, there exists some x̃′ ∈ B(r+1)
v′ such that F (x̃∗

v′) − F (x̃′) >

4 · 2−(r+1) = 2 · 2−r. Using Lemma 1, we have that at the round r,
F̂r(x̃

∗
v′)− F̂r(x̃

′) ≥ F (x̃∗
v′)− F (x̃′)− 2−r > 2 · 2−r − 2−r = 2−r,

which implies that x̃′ should have been eliminated in round r and gives a contradiction. Thus, we
complete the proof of Lemma 2.

Now we prove Theorem 1.

Proof of Theorem 1. Assume that event G occurs.

We first prove the correctness.

Recall that r∗ := ⌈log2( 2
∆min

)⌉+ 1. According to Lemma 2, for any v ∈ [V ] and x̃ ∈ B(r
∗+1)

v , we

have F (x̃v,∗) − F (x̃) ≤ 4 · 2−(r∗+1) = 2 · 2−(⌈log2(
2

∆min
)⌉+1)

< 2 · 2− log2(
2

∆min
)
= ∆min, and

thus B(r
∗+1)

v = {x̃v,∗}. Therefore, algorithm CoKernelFC will return the correct answer x̃v,∗ for
all v ∈ [V ] and use at most r∗ := ⌈log2( 2

∆min
)⌉+ 1 rounds.

Next, we prove the sample complexity.

In algorithm CoKernelFC, the computation of λ∗
r , ρ

∗
r and N (r) is the same for all agents, and each

agent v just generates partial samples that belong to her arm set X̃v from the total N (r) samples.
Thus, to bound the overall sample complexity, it suffices to bound

∑r∗

r=1 N
(r), and then we can

obtain the per-agent sample complexity by dividing V .

Let ε = 1
10 . Then, we have

r∗∑
r=1

N (r)

≤
r∗∑
r=1

(
32(2r)2(1 + ε)2ρ∗r log

(
2n2V

δr

)
+ 1 + τ(ξ, λ∗

r , ε)

)

=

r∗∑
t=2

32(2r)2
(
4 · 2−r

)2
(1 + ε)2

minλ∈△X̃
max

x̃i,x̃j∈B(r)
v ,v∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥2A(ξ,λ)−1

(4 · 2−r)
2 ·

log

(
4V n2r2

δ

)
+N1 + 2τ(ξ, λ∗

1, ε) · r∗

=

r∗∑
t=2

(
512(1 + ε)2

minλ∈△X̃
max

x̃i,x̃j∈B(r)
v ,v∈[V ]

∥ϕ(x̃i)− ϕ(x̃j)∥2A(ξ,λ)−1

(4 · 2−r)
2 log

(
4V n2(r∗)2

δ

))
+N1 + 2τ(ξ, λ∗

1, ε) · r∗

≤
r∗∑
t=2

(
2048(1 + ε)2

minλ∈△X̃
max

x̃∈B(r)
v \{x̃v,∗},v∈[V ]

∥ϕ(x̃v,∗)− ϕ(x̃)∥2A(ξ,λ)−1

(4 · 2−r)
2 ·

log

(
4V n2(r∗)2

δ

))
+N1 + 2τ(ξ, λ∗

1, ε) · r∗

≤
r∗∑
t=2

(
2048(1 + ε)2 min

λ∈△X̃

max
x̃∈B(r)

v \{x̃v,∗},v∈[V ]

∥ϕ(x̃v,∗)− ϕ(x̃)∥2A(ξ,λ)−1

(F (x̃v,∗)− F (x̃))
2 log

(
4V n2(r∗)2

δ

))
+N1 + 2τ(ξ, λ∗

1, ε) · r∗

≤
r∗∑
t=2

(
2048(1 + ε)2 min

λ∈△X̃

max
x̃∈X̃v\{x̃v,∗},v∈[V ]

∥ϕ(x̃v,∗)− ϕ(x̃)∥2A(ξ,λ)−1

(F (x̃v,∗)− F (x̃))
2 log

(
4V n2(r∗)2

δ

))
+N1 + 2τ(ξ, λ∗

1, ε) · r∗
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≤r∗ ·
(
2048(1 + ε)2 · ρ∗(ξ) · log

(
4V n2(r∗)2

δ

))
+N1 + 2τ(ξ, λ∗

1, ε) · r∗

=O

(
ρ∗(ξ) · log∆−1

min ·
(
log

(
V n

δ

)
+ log log∆−1

min

)
+ d̃(ξ, λ∗

1) · log∆−1
min

)
Thus, the per-agent sample complexity is bounded by

O

(
ρ∗(ξ)

V
· log∆−1

min ·
(
log

(
V n

δ

)
+ log log∆−1

min

)
+

d̃(ξ, λ∗
1)

V
· log∆−1

min

)
.

Since algorithm CoKernelFC has at most r∗ := ⌈log2( 2
∆min

)⌉ + 1 rounds, the number of commu-
nication rounds is bounded by O(log∆−1

min).

D.2 INTERPRETATION OF THEOREM 1

Proof of Corollary 1. Recall that for any λ ∈ △X̃ , Φλ := [
√
λ1ϕ(x̃1)

⊤; . . . ;
√
λnV ϕ(x̃nV )

⊤] and
Kλ := [

√
λiλjk(x̃i, x̃j)]i,j∈[nV ] = ΦλΦ

⊤
λ . Let λ∗ := argmaxλ∈△X̃

log det
(
I + ξ−1Kλ

)
=

argmaxλ∈△X̃
log det

(
I + ξ−1ΦλΦ

⊤
λ

)
. For any ξ ≥ 0 and λ ∈ △X̃ , A(ξ, λ) := ξI +∑

x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)
⊤ = ξI +Φ⊤

λΦλ.

Then, we have

ρ∗(ξ) = min
λ∈△X̃

max
x̃∈X̃v\{x̃v,∗},v∈[V ]

∥ϕ(x̃v,∗)− ϕ(x̃)∥2
(ξI+

∑
x̃′∈X̃ λx̃′ϕ(x̃′)ϕ(x̃′)⊤)

−1

(F (x̃v,∗)− F (x̃))
2

≤ min
λ∈△X̃

max
x̃∈X̃v,v∈[V ]

∥ϕ(x̃v,∗)− ϕ(x̃)∥2
(ξI+

∑
x̃′∈X̃ λx̃′ϕ(x̃′)ϕ(x̃′)⊤)

−1

∆2
min

=
1

∆2
min

· min
λ∈△X̃

max
x̃∈X̃v,v∈[V ]

∥ϕ(x̃v,∗)− ϕ(x̃)∥2
(ξI+

∑
x̃′∈X̃ λx̃′ϕ(x̃′)ϕ(x̃′)⊤)

−1

≤ 1

∆2
min

· min
λ∈△X̃

(
2max

x̃∈X̃
∥ϕ(x̃)∥(ξI+∑

x̃′∈X̃ λx̃′ϕ(x̃′)ϕ(x̃′)⊤)
−1

)2

=
4

∆2
min

· min
λ∈△X̃

max
x̃∈X̃
∥ϕ(x̃)∥2

(ξI+
∑

x̃′∈X̃ λx̃′ϕ(x̃′)ϕ(x̃′)⊤)
−1

≤ 4

∆2
min

·max
x̃∈X̃
∥ϕ(x̃)∥2

(ξI+
∑

x̃′∈X̃ λ∗
x̃′ϕ(x̃

′)ϕ(x̃′)⊤)
−1

(b)
=

4

∆2
min

·
∑
x̃∈X̃

λ∗
x̃∥ϕ(x̃)∥2(ξI+∑

x̃′∈X̃ λ∗
x̃′ϕ(x̃

′)ϕ(x̃′)⊤)
−1 ,

where (b) is due to Lemma 3.

Since λ∗
x̃∥ϕ(x̃)∥2(ξI+∑

x̃′∈X̃ λ∗
x̃′ϕ(x̃

′)ϕ(x̃′)⊤)
−1 ≤ 1 for any x̃ ∈ X̃ ,∑

x̃∈X̃

λ∗
x̃∥ϕ(x̃)∥2(ξI+∑

x̃′∈X̃ λ∗
x̃′ϕ(x̃

′)ϕ(x̃′)⊤)
−1

≤2
∑
x̃∈X̃

log

(
1 + λ∗

x̃∥ϕ(x̃)∥2(ξI+∑
x̃′∈X̃ λ∗

x̃′ϕ(x̃
′)ϕ(x̃′)⊤)

−1

)
(c)
≤2 log

det
(
ξI +

∑
x̃∈X̃ λ∗

x̃ϕ(x̃)ϕ(x̃)
⊤)

det (ξI)

=2 log det

I + ξ−1
∑
x̃∈X̃

λ∗
x̃ϕ(x̃)ϕ(x̃)

⊤


=2 log det

(
I + ξ−1Φ⊤

λΦλ

)
=2 log det

(
I + ξ−1ΦλΦ

⊤
λ

)
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=2 log det
(
I + ξ−1Kλ∗

)
,

where (c) comes from Lemma 4.

Thus, we have

ρ∗(ξ) ≤ 8

∆2
min

· log det
(
I + ξ−1Kλ∗

)
. (15)

In the following, we interpret the term log det
(
I + ξ−1Kλ∗

)
by maximum information gain and

effective dimension, and then decompose it into components from task similarities and arm features.

Maximum Information Gain. Recall that the maximum information is defined as
Υ = max

λ∈△X̃

log det
(
I + ξ−1Kλ

)
= log det

(
I + ξ−1Kλ∗

)
.

Then, using Eq. (15), we have

ρ∗(ξ) ≤ 8

∆2
min

·Υ. (16)

Combining the bound in Theorem 1 and Eq. (16), the per-agent sample complexity is bounded by

S =O

(
ρ∗(ξ)

V
· log∆−1

min

(
log

(
V n

δ

)
+ log log∆−1

min

)
+

d̃(ξ, λ∗
1)

V
· log∆−1

min

)

=O

(
Υ

∆2
minV

· log∆−1
min

(
log

(
V n

δ

)
+ log log∆−1

min

)
+

d̃(ξ, λ∗
1)

V
· log∆−1

min

)

Effective Dimension. Recall that α1 ≥ · · · ≥ αnV denote the eigenvalues of Kλ∗ in decreasing
order, and the effective dimension is defined as

deff = min

{
j : jξ log(nV ) ≥

nV∑
i=j+1

αi

}
.

Then, it holds that deffξ log(nV ) ≥
∑nV

i=deff+1 αi.

Let ε = deffξ log(nV ) −
∑nV

i=deff+1 αi, and thus ε ≤ deffξ log(nV ). Then, we have
∑deff

i=1 αi =

Trace(Kλ∗)−
∑nV

i=deff+1 αi = Trace(Kλ∗)−deffξ log(nV )+ε and
∑nV

i=deff+1 αi = deffξ log(nV )−
ε.

log det
(
I + ξ−1Kλ∗

)
= log

(
ΠnV

i=1

(
1 + ξ−1αi

))
= log

(
Πdeff

i=1

(
1 + ξ−1αi

)
·ΠnV

i=deff+1

(
1 + ξ−1αi

))
≤ log

((
1 + ξ−1 · Trace(Kλ∗)− deffξ log(nV ) + ε

deff

)deff
(
1 + ξ−1 · deffξ log(nV )− ε

nV − deff

)nV−deff
)

≤deff log

(
1 + ξ−1 · Trace(Kλ∗)− deffξ log(nV ) + ε

deff

)
+ log

(
1 +

deff log(nV )

nV − deff

)nV−deff

=deff log

(
1 + ξ−1 · Trace(Kλ∗)− deffξ log(nV ) + ε

deff

)
+ log

(
1 +

deff log(nV − deff + deff)

nV − deff

)nV−deff

(d)
≤deff log

(
1 + ξ−1 · Trace(Kλ∗)− deffξ log(nV ) + ε

deff

)
+ log

(
1 +

deff log(nV + deff)

nV

)nV

=deff log

(
1 + ξ−1 · Trace(Kλ∗)− deffξ log(nV ) + ε

deff

)
+ nV log

(
1 +

deff log(nV + deff)

nV

)
≤deff log

(
1 +

Trace(Kλ∗)

ξdeff

)
+ deff log(nV + deff)
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≤deff log

(
2nV ·

(
1 +

Trace(Kλ∗)

ξdeff

))
,

where inequality (d) is due to that
(
1 + deff log(x+deff)

x

)x
is monotonically increasing with respect to

x ≥ 1.

Then, using Eq. (15), we have

ρ∗(ξ) ≤ 8

∆2
min

· deff log

(
2nV ·

(
1 +

Trace(Kλ∗)

ξdeff

))
. (17)

Combining the bound in Theorem 1 and Eq. (17), the per-agent sample complexity is bounded by

S =O

(
ρ∗(ξ)

V
· log∆−1

min

(
log

(
V n

δ

)
+ log log∆−1

min

)
+

d̃(ξ, λ∗
1)

V
· log∆−1

min

)

=O

(
deff

∆2
minV

· log
(
nV ·

(
1 +

Trace(Kλ∗)

ξdeff

))
· log∆−1

min

(
log

(
V n

δ

)
+ log log∆−1

min

)

+
d̃(ξ, λ∗

1)

V
· log∆−1

min

)

Decomposition. Recall that Kλ∗ = [
√
λ∗
i λ

∗
jk(x̃i, x̃j)]i,j∈[nV ], KZ = [kZ(zv, zv′)]v,v′∈[V ] and

KX ,λ∗ = [
√

λ∗
i λ

∗
jkX (x̃i, x̃j)]i,j∈[nV ]. Let K̃Z = [kZ(zvi , zvj )]i,j∈[nV ], where for any i ∈ [nV ], vi

denotes the index of the task for the i-th arm x̃i in the arm set X̃ and zvi denotes its task feature. It
holds that rank(K̃Z) = rank(KZ).

Since Kλ∗ is a Hadamard composition of K̃Z and KX ,λ∗ , we have that rank(Kλ∗) ≤ rank(K̃Z) ·
rank(KX ,λ∗) = rank(KZ) · rank(KX ,λ∗).

log det
(
I + ξ−1Kλ∗

)
= log

(
ΠnV

i=1

(
1 + ξ−1αi

))
= log

(
Π

rank(Kλ∗ )
i=1

(
1 + ξ−1αi

))
≤ log

(∑rank(Kλ∗ )
i=1

(
1 + ξ−1αi

)
rank(Kλ∗)

)rank(Kλ∗ )

=rank(Kλ∗) log

(∑rank(Kλ∗ )
i=1

(
1 + ξ−1αi

)
rank(Kλ∗)

)

≤rank(KZ) · rank(KX ,λ∗) log

(
Trace

(
I + ξ−1Kλ∗

)
rank(Kλ∗)

)
Then, using Eq. (15), we have

ρ∗(ξ) ≤ 8

∆2
min

· rank(KZ) · rank(KX ,λ∗) log

(
Trace

(
I + ξ−1Kλ∗

)
rank(Kλ∗)

)
. (18)

Combining the bound in Theorem 1 and Eq. (18), the per-agent sample complexity is bounded by

O

(
ρ∗(ξ)

V
· log∆−1

min

(
log

(
V n

δ

)
+ log log∆−1

min

)
+

d̃(ξ, λ∗
1)

V
· log∆−1

min

)

=O

(
rank(KZ) · rank(KX ,λ∗)

∆2
minV

· log

(
Trace

(
I + ξ−1Kλ∗

)
rank(Kλ∗)

)
·
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log∆−1
min

(
log

(
V n

δ

)
+ log log∆−1

min

)
+

d̃(ξ, λ∗
1)

V
· log∆−1

min

)
Hence, we complete the proof of Corollary 1.

E PROOFS FOR THE FIXED-BUDGET SETTING

E.1 PROOF OF THEOREM 2

Proof of Theorem 2. Our proof of Theorem 2 adapts the error probability analysis in (Katz-Samuels
et al., 2020) to the multi-agent setting.

Since the number of samples used over all agents in each round is N = ⌊TV/R⌋, the total number
of samples used by algorithm CoKernelFB is at most TV and the total number of samples used per
agent is at most T .

Now we prove the error probability upper bound.

Recall that for any ξ ≥ 0 and λ ∈ △X̃ , A(ξ, λ) := ξI +
∑

x̃∈X̃ λx̃ϕ(x̃)ϕ(x̃)
⊤ = ξI + Φ⊤

λΦλ.
For any λ ∈ △X̃ , Φλ = [

√
λ1ϕ(x̃1)

⊤; . . . ;
√
λnV ϕ(x̃nV )

⊤]. The regularization parameter ξ in
algorithm CoKernelFB satisfies ξ ≤ 1

16(1+ε)2(ρ∗(ξ))2∥θ∗∥2 .

For any r ∈ [R], x̃i, x̃j ∈ B(r)v and v ∈ [V ], define reward gap

∆r,x̃i,x̃j
= inf

∆>0


∥ϕ(x̃i)− ϕ(x̃j)∥2(ξI+Φ⊤

λ∗
r
Φλ∗

r
)−1

∆2
≤ 8ρ∗(ξ)

 ,

and event
Jr,x̃i,x̃j

=
{∣∣∣(F̂r(x̃i)− F̂r(x̃j)

)
− (F (x̃i)− F (x̃j))

∣∣∣ < ∆r,x̃i,x̃j

}
.

In the following, we prove Pr
[
¬Jr,x̃i,x̃j

]
≤ 2 exp

(
− N

32(1+ε)ρ∗(ξ)

)
.

Similar to the analysis for Eq. (13) in the proof of Lemma 1, we have that for any r ∈ [R], x̃i, x̃j ∈
B(r)v and v ∈ [V ],(

F̂r(x̃i)− F̂r(x̃j)
)
− (F (x̃i)− F (x̃j))

= (ϕ(x̃i)− ϕ(x̃j))
⊤ (

NξI +Φ⊤
r Φr

)−1
Φ⊤

r η̄
(r)︸ ︷︷ ︸

Term 1

− ξN (ϕ(x̃i)− ϕ(x̃j))
⊤ (

NξI +Φ⊤
r Φr

)−1
θ∗︸ ︷︷ ︸

Term 2

.

(19)
Here, the expectation of Term 1 in Eq. (19) is zero, and the variance of Term 1 is bounded by

∥ϕ(x̃i)− ϕ(x̃j)∥2(NξI+Φ⊤
r Φr)

−1

(a)
≤

2(1 + ε) · ∥ϕ(x̃i)− ϕ(x̃j)∥2(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

N
,

where (a) comes from the guarantee of rounding procedure (Eq. (6)).

Using the Hoeffding inequality, we have

Pr

[∣∣∣(ϕ(x̃i)− ϕ(x̃j))
⊤ (

NξI +Φ⊤
r Φr

)−1
Φ⊤

r η̄
(r)
∣∣∣ ≥ 1

2
∆r,x̃i,x̃j

]

≤2 exp

−2 · 1
4∆

2
r,x̃i,x̃j

2(1+ε)·∥ϕ(x̃i)−ϕ(x̃j)∥2

(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

N



≤2 exp

−1

2
· N

2(1+ε)·∥ϕ(x̃i)−ϕ(x̃j)∥2

(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

∆2
r,x̃i,x̃j
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≤2 exp
(
− N

32(1 + ε)ρ∗(ξ)

)
Thus, with probability at least 1− 2 exp

(
− N

32(1+ε)ρ∗(ξ)

)
, we have∣∣∣(ϕ(x̃i)− ϕ(x̃j))

⊤ (
NξI +Φ⊤

r Φr

)−1
Φ⊤

r η
(r)
v

∣∣∣ < 1

2
∆r,x̃i,x̃j

. (20)

Since ξ satisfies ξ ≤ 1
16(1+ε)2(ρ∗(ξ))2∥θ∗∥2 , we have 4(1 + ε)

√
ξρ∗(ξ)∥θ∗∥ ≤ 1. Then, for any

r ∈ [R], x̃i, x̃j ∈ B(r)v and v ∈ [V ], we have

4(1 + ε)
√
ξ ·
∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤

λ∗
r
Φλ∗

r
)−1

∆r,x̃i,x̃j

· ∥θ∗∥ ≤ 1,

and thus,

2(1 + ε)
√
ξ∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤

λ∗
r
Φλ∗

r
)−1∥θ∗∥ ≤

1

2
∆r,x̃i,x̃j .

Then, we can bound the bias term (Term 2 in Eq . (19)) as∣∣∣ξN (ϕ(x̃i)− ϕ(x̃j))
⊤ (

NξI +Φ⊤
r Φr

)−1
θ∗
∣∣∣

≤ξN∥ϕ(x̃i)− ϕ(x̃j)∥(NξI+Φ⊤
r Φr)

−1∥θ∗∥(NξI+Φ⊤
r Φr)

−1

≤
√
ξN · ∥ϕ(x̃i)− ϕ(x̃j)∥(NξI+Φ⊤

r Φr)
−1∥θ∗∥2

≤
√
ξN ·

2(1 + ε) · ∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

√
N

· ∥θ∗∥2

=2(1 + ε)
√
ξ∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤

λ∗
r
Φλ∗

r
)−1∥θ∗∥2

≤1

2
∆r,x̃i,x̃j (21)

Plugging Eqs. (20) and (21) into Eq. (19), we have that with probability at least 1 −
2 exp

(
− N

32(1+ε)ρ∗(ξ)

)
, for any r ∈ [R], x̃i, x̃j ∈ B(r)v and v ∈ [V ],∣∣∣(F̂r(x̃i)− F̂r(x̃j)
)
− (F (x̃i)− F (x̃j))

∣∣∣
≤
∣∣∣(ϕ(x̃i)− ϕ(x̃j))

⊤ (
NξI +Φ⊤

r Φr

)−1
Φ⊤

r η
(r)
v

∣∣∣+ ∣∣∣ξN (ϕ(x̃i)− ϕ(x̃j))
⊤ (

NξI +Φ⊤
r Φr

)−1
θ∗
∣∣∣

<∆r,x̃i,x̃j
,

which completes the proof of Pr
[
¬Jr,x̃i,x̃j

]
≤ 2 exp

(
− N

32(1+ε)ρ∗(ξ)

)
.

Define event
J =

{∣∣∣(F̂r(x̃i)− F̂r(x̃j)
)
− (F (x̃i)− F (x̃j))

∣∣∣ < ∆r,x̃i,x̃j
, ∀x̃i, x̃j ∈ B(r)v ,∀v ∈ [V ],∀r ∈ [R]

}
,

Let ε = 1
10 . By a union bound over x̃i, x̃j ∈ B(r)v , v ∈ [V ] and r ∈ [R], we have

Pr [¬J ] ≤2n2V log(ω(ξ, X̃ )) · exp
(
− N

32(1 + ε)ρ∗(ξ)

)
=O

(
n2V log(ω(ξ, X̃ )) · exp

(
− TV

ρ∗(ξ) · log(ω(ξ, X̃ ))

))
In order to prove Theorem 2, it suffices to prove that conditioning on event J , algorithm
CoKernelFB returns the correct answers x̃v,∗ for all v ∈ [V ].

Suppose that there exist some r ∈ [R] and some v ∈ [V ] such that x̃v,∗ is eliminated in round r.
Define

B′(r)v = {x̃ ∈ B(r)v : F̂r(x̃) > F̂r(x̃v,∗)},

26



Published as a conference paper at ICLR 2023

which denotes the set of arms in B(r)v which are ranked before x̃v,∗ according to the estimated
rewards. According to the elimination rule (Line 12 in Algorithm 2), we have

ω(ξ,B′(r)v ∪ {x̃v,∗}) >
1

2
ω(ξ,B(r)v ) =

1

2
max

x̃i,x̃j∈B(r)
v

∥ϕ(x̃i)− ϕ(x̃j)∥(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1 (22)

Define x̃0 = argmax
x̃∈B′(r)

v
∆x̃. We have

1

2

∥ϕ(x̃v,∗)− ϕ(x̃0)∥2(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

∆2
x̃0

≤1

2
max

x̃i,x̃j∈B(r)
v

∥ϕ(x̃i)− ϕ(x̃j)∥2(ξI+Φ⊤
λ∗
r
Φλ∗

r
)−1

∆2
x̃0

(a)
<
ω(ξ,B′(r)v ∪ {x̃v,∗})

∆2
x̃0

(b)
= min

λ∈△X̃
max

x̃i,x̃j∈B′(r)
v ∪{x̃v,∗}

∥ϕ(x̃i)− ϕ(x̃j)∥2(ξI+Φ⊤
λ Φλ)

−1

∆2
x̃0

(c)
≤4 min

λ∈△X̃
max

x̃∈B′(r)
v

∥ϕ(x̃v,∗)− ϕ(x̃)∥2
(ξI+Φ⊤

λ Φλ)
−1

∆2
x̃

≤4 min
λ∈△X̃

max
x̃∈X̃v\{x̃v,∗},v∈[V ]

∥ϕ(x̃v,∗)− ϕ(x̃)∥2
(ξI+Φ⊤

λ Φλ)
−1

∆2
x̃

=4ρ∗(ξ),

where (a) follows from Eq. (22), (b) comes from the definition of ω(·, ·), and (c) is due to the
definition of x̃0.

According to the definition

∆r,x̃v,∗,x̃0 = inf
∆>0


∥ϕ(x̃v,∗)− ϕ(x̃0)∥2(ξI+Φ⊤

λ∗
r
Φλ∗

r
)−1

∆2
≤ 8ρ∗(ξ)

 ,

we have ∆r,x̃v,∗,x̃0
≤ ∆x̃0

.

Conditioning on J , we have
∣∣∣(F̂r(x̃v,∗)− F̂r(x̃0)

)
− (F (x̃v,∗)− F (x̃0))

∣∣∣ < ∆r,x̃v,∗,x̃0 ≤ ∆x̃0 .
Then, we have

F̂r(x̃v,∗)− F̂r(x̃0) > (F (x̃v,∗)− F (x̃0))−∆x̃0 = 0,

which contradicts the definition of x̃0 that satisfies F̂r(x̃0) > F̂r(x̃v,∗). Thus, for any round r ∈ [R]
and task v ∈ [V ], x̃v,∗ will never be eliminated.

Since ω(ξ, {x̃v,∗, x̃}) ≥ 1 for any x̃ ∈ X̃v \ {x̃v,∗}, v ∈ [V ] and R = ⌈log2(ω(ξ, X̃ ))⌉ ≥
⌈log2(ω(ξ, X̃v))⌉ for any v ∈ [V ], we have that conditioning on J , algorithm CoKernelFB will
return the correct answers x̃v,∗ for all v ∈ [V ] using at most R rounds. Therefore, we complete the
proof of the error probability guarantee.

For communication rounds, since algorithm CoKernelFB has at most R := ⌈log2(ω(ξ, X̃ ))⌉ rounds,
the number of communication rounds is bounded by O(log(ω(ξ, X̃ ))).

E.2 INTERPRETATION OF THEOREM 2

In the following, we interpret the error probability for algorithm CoKernelFB with maximum infor-
mation gain and effective dimension, and decompose it into two parts with respect to task similarities
and arm features.
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Corollary 2. The error probability of algorithm CoKernelFC, denoted by Err, can also be bounded
as follows:

(a)Err = O

(
exp

(
− TV∆2

min

Υ log(ω(ξ, X̃ ))

)
· n2V log(ω(ξ, X̃ ))

)
,

where Υ is the maximum information gain.

(b)Err = O

exp

− TV∆2
min

deff log
(
nV ·

(
1 + Trace(Kλ∗ )

ξdeff

))
log(ω(ξ, X̃ ))

 · n2V log(ω(ξ, X̃ ))

 ,

where deff is the effective dimension.

(c)Err = O

(
exp

− TV∆2
min

rank(KZ) · rank(KX ,λ∗) log
(
Trace(I+ξ−1Kλ∗ )

rank(Kλ∗ )

)
log(ω(ξ, X̃ ))

 ·
n2V log(ω(ξ, X̃ ))

)
.

Corollaries 2(a),(b) bound the error probability by maximum information gain and effective dimen-
sion, respectively, which capture essential structures of tasks and arm features and only depend on
the effective dimension of kernel space.

Corollary 2(c) reveals how task similarities impact the error probability performance. Specifically,
when tasks are the same, i.e., rank(KZ) = 1, the error probability enjoys an exponential decay fac-
tor of V compared to single-agent algorithm (Katz-Samuels et al., 2020), and achieves the maximum
V -speedup. Conversely, when tasks are totally different, i.e., rank(KZ) = V , the error probability
is similar to single-agent results (Katz-Samuels et al., 2020), since in this case information sharing
brings no benefit.

Proof of Corollary 2. Recall that λ∗ := argmaxλ∈△X̃
log det

(
I + ξ−1Kλ

)
.

Recalling Eq. (15), we have

ρ∗(ξ) ≤ 8

∆2
min

· log det
(
I + ξ−1Kλ∗

)
.

Maximum Information Gain. Recall that the maximum information gain over all sample allocation
λ ∈ △X̃ is defined as

Υ = max
λ∈△X̃

log det
(
I + ξ−1Kλ

)
= log det

(
I + ξ−1Kλ∗

)
.

Recall Eq (16), we have

ρ∗(ξ) ≤ 8

∆2
min

·Υ.

Combining the bound in Theorem 2 and the above equation, the error probability is bounded by

Err =O

(
n2V log(ω(ξ, X̃ )) · exp

(
− TV

ρ∗(ξ) · log(ω(ξ, X̃ ))

))
=O

(
n2V log(ω(ξ, X̃ )) · exp

(
− TV∆2

min

Υ · log(ω(ξ, X̃ ))

))
Effective Dimension. Recall that α1 ≥ · · · ≥ αnV denote the eigenvalues of Kλ∗ in decreasing
order. The effective dimension of Kλ∗ is defined as

deff = min

{
j : jξ log(nV ) ≥

nV∑
i=j+1

αi

}
.
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Recalling Eq. (17), we have

ρ∗(ξ) ≤ 8

∆2
min

· deff log

(
2nV ·

(
1 +

Trace(Kλ∗)

ξdeff

))
.

Combining the bound in Theorem 2 and the above equation, the error probability is bounded by

Err =O

(
n2V log(ω(ξ, X̃ )) · exp

(
− TV

ρ∗(ξ) · log(ω(ξ, X̃ ))

))

=O

n2V log(ω(ξ, X̃ )) · exp

− TV∆2
min

deff · log
(
nV ·

(
1 + Trace(Kλ∗ )

ξdeff

))
· log(ω(ξ, X̃ ))


Decomposition. Recall that Kλ∗ = [

√
λ∗
i λ

∗
jk(x̃i, x̃j)]i,j∈[nV ], KZ = [kZ(zv, zv′)]v,v′∈[V ] and

KX ,λ∗ = [
√

λ∗
i λ

∗
jkX (x̃i, x̃j)]i,j∈[nV ]. Let K̃Z = [kZ(zvi , zvj )]i,j∈[nV ], where for any i ∈ [nV ], vi

denotes the index of the task for the i-th arm x̃i in the arm set X̃ and zvi denotes its task feature. It
holds that rank(K̃Z) = rank(KZ).

Since Kλ∗ is a Hadamard composition of K̃Z and KX ,λ∗ , we have that rank(Kλ∗) ≤ rank(K̃Z) ·
rank(KX ,λ∗) = rank(KZ) · rank(KX ,λ∗).

Recalling Eq. (18), we have

ρ∗(ξ) ≤ 8

∆2
min

· rank(KZ) · rank(KX ,λ∗) log

(
Trace

(
I + ξ−1Kλ∗

)
rank(Kλ∗)

)
.

Combining the bound in Theorem 2 and the above equation, the error probability is bounded by

Err =O

(
n2V log(ω(ξ, X̃ )) · exp

(
− TV

ρ∗(ξ) · log(ω(ξ, X̃ ))

))
=O

(
n2V log(ω(ξ, X̃ ))·

exp

(
− TV∆2

min

rank(KZ) · rank(KX ,λ∗) · log
(
Trace(I+ξ−1Kλ∗ )

rank(Kλ∗ )

)
· log(ω(ξ, X̃ ))

))

Therefore, we complete the proof of Corollary 2.

F TECHNICAL TOOLS

In this section, we provide some useful technical tools.

Lemma 3 (Lemma 15 in (Camilleri et al., 2021)). For λ∗ =
argmaxλ∈△X̃

log det
(
I + ξ−1

∑
x̃′∈X̃ λx̃′ϕ(x̃′)ϕ(x̃′)⊤

)
, we have

max
x̃∈X̃
∥ϕ(x̃)∥2

(ξI+
∑

x̃′∈X̃ λ∗
x̃′ϕ(x̃

′)ϕ(x̃′)⊤)
−1 =

∑
x̃∈X̃

λ∗
x̃∥ϕ(x̃)∥2(ξI+∑

x̃′∈X̃ λ∗
x̃′ϕ(x̃

′)ϕ(x̃′)⊤)
−1

Lemma 4. For λ∗ = argmaxλ∈△X̃
log det

(
I + ξ−1

∑
x̃′∈X̃ λx̃′ϕ(x̃′)ϕ(x̃′)⊤

)
, we have∑

x̃∈X̃

log

(
1 + λ∗

x̃∥ϕ(x̃)∥2(ξI+∑
x̃′∈X̃ λ∗

x̃′ϕ(x̃
′)ϕ(x̃′)⊤)

−1

)
≤ log

det
(
ξI +

∑
x̃∈X̃ λ∗

x̃ϕ(x̃)ϕ(x̃)
⊤)

det (ξI)

Proof of Lemma 4. This proof is inspired by Lemma 11 in (Abbasi-Yadkori et al., 2011), and uses
a similar analytical procedure as that of Lemma 16 in (Camilleri et al., 2021). However, different
from the analysis of Lemma 16 in (Camilleri et al., 2021), we do not include the number of samples
N (r) in the det(·) operator in this proof.
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For any j ∈ [nV ], let Mj = det
(
ξI +

∑
i∈[j] λ

∗
iϕ(x̃i)ϕ(x̃i)

⊤
)

.

det

ξI +
∑
x̃∈X̃

λ∗
x̃ϕ(x̃)ϕ(x̃)

⊤


=det

ξI +
∑

i∈[nV−1]

λ∗
iϕ(x̃i)ϕ(x̃i)

⊤ + λ∗
nV ϕ(x̃nV )ϕ(x̃nV )

⊤


=det (MnV−1) det

(
I + λ∗

nV ·M
− 1

2

nV−1ϕ(x̃nV )
(
M

− 1
2

nV−1ϕ(x̃nV )
)⊤)

=det (MnV−1) det
(
I + λ∗

nV · ϕ(x̃nV )
⊤M−1

nV−1ϕ(x̃nV )
)

=det (MnV−1)
(
1 + λ∗

nV ∥ϕ(x̃nV )∥2M−1
nV −1

)
=det (ξI)

nV∏
i=1

(
1 + λ∗

i ∥ϕ(x̃i)∥2M−1
i−1

)
Thus,

det
(
ξI +

∑
x̃∈X̃ λ∗

x̃ϕ(x̃)ϕ(x̃)
⊤)

det (ξI)
=

nV∏
i=1

(
1 + λ∗

i ∥ϕ(x̃i)∥2M−1
i−1

)
Taking logarithm on both sides, we have

log
det
(
ξI +

∑
x̃∈X̃ λ∗

x̃ϕ(x̃)ϕ(x̃)
⊤)

det (ξI)

=

nV∑
i=1

log
(
1 + λ∗

i ∥ϕ(x̃i)∥2M−1
i−1

)
≥

nV∑
i=1

log
(
1 + λ∗

i ∥ϕ(x̃i)∥2M−1
nV

)
,

which completes the proof of Lemma 4.
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