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Abstract

Layout generation plays a crucial role in graphic design intel-
ligence. One important characteristic of the graphic layouts is
that they usually follow certain design principles. For exam-
ple, the principle of repetition emphasizes the reuse of simi-
lar visual elements throughout the design. To generate a lay-
out, previous works mainly attempt at predicting the absolute
value of bounding box for each element, where such target
representation has hidden the information of higher-order de-
sign operations like repetition (e.g. copy the size of the previ-
ously generated element). In this paper, we introduce a novel
action schema to encode these operations for better model-
ing the generation process. Instead of predicting the bounding
box values, our approach autoregressively outputs the inter-
mediate action sequence, which can then be deterministically
converted to the final layout. We achieve state-of-the-art per-
formances on three datasets. Both automatic and human eval-
uations show that our approach generates high-quality and
diverse layouts. Furthermore, we revisit the commonly used
evaluation metric FID adapted in this task, and observe that
previous works use different settings to train the feature ex-
tractor for obtaining real/generated data distribution, which
leads to inconsistent conclusions. We conduct an in-depth
analysis on this metric and settle for a more robust and re-
liable evaluation setting. Code is available at this website 1.

1 Introduction
Layout refers to the arrangements (i.e. position and size)
of visual elements on a canvas, which plays an important
role in graphic design. A good layout can create a unified
composition of elements to make the design more organized
and visually appealing. There is a growing interest in the re-
search of automatic layout generation (Li et al. 2019; Jyothi
et al. 2019; Kikuchi et al. 2021; Gupta et al. 2021). With
or without user specification (e.g. category constraint that a
layout must contain one title and two pictures), the goal is
to synthesize reasonable layouts by generating the bounding
boxes of elements. Different from real images at pixel-level,
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Figure 1: An example of the layout generation process. The
actions copy and margin are introduced for encoding the
design principles of repetition and white space. Given state
St−2, our approach generates O2 using four actions: copy
the x-axis and width value from O1 for better alignment,
margin with 0.05 (normalized) white space below O1 in
the y-axis, and generate the absolute values for h2.

graphic layouts are more structured which require higher-
level modeling by considering attributes of the elements as
well as their inter-relations.

Across different graphic design types (e.g. mobile app,
article, slide), the creation of layouts usually follows cer-
tain design principles. For example, the repetition princi-
ple is the act of repeating the same or similar elements and
making them more aligned as a cohesive whole. Meanwhile,
margin is important to create visual distinction between im-
portant elements. These principles provide a very indica-
tive guideline for creating good layouts. However, most of
the previous works directly generate the absolute values of
bounding boxes for elements, which hides the higher-order
design operations such as repetition and margin. Recently
several works try to incorporate beautification constraints
such as alignment and non-overlap with additional training
losses (Lee et al. 2020; Li et al. 2021) or extra penalty func-
tion in the latent space optimization (Kikuchi et al. 2021).



They serve as soft regularization which requires careful de-
sign of the objective functions.

This paper explores a simpler and more direct solution
to encode the design principles by introducing a novel
action schema. Specifically, we define three actions: (1)
generate, to generate the absolute geometry value; (2)
copy, to repeat the value from a previous generated ele-
ment; (3) margin, to position the element by creating a
margin to another element. In this way, layout synthesis can
be viewed as action sequence generation. Instead of directly
generating the bounding boxes, we generate the intermedi-
ate action sequence as output, which can be deterministically
converted to the final layout via post-processing. Similar to
LayoutTransformer (Gupta et al. 2021), our approach adopts
Transformer (Vaswani et al. 2017) as the autoregressive se-
quence decoder. At each timestep, the model inputs the pre-
viously generated sequence and predicts the next token. Dur-
ing inference, we apply nucleus sampling (Holtzman et al.
2019) to synthesize diverse layout samples.

To evaluate the quality and diversity of the generated lay-
outs, Fréchet Inception Distance metric (FID) (Heusel et al.
2017) is commonly reported. It requires a well-trained fea-
ture extractor to obtain the distribution of real/generated
data and calculate the FID between them. Different from
the natural image evaluation where the feature extractor
is a standard model backbone (e.g. Inception-V3 (Szegedy
et al. 2016) or ResNet (He et al. 2016)) pre-trained on Im-
ageNet (Deng et al. 2009) classification, the settings of ex-
tractor (e.g. network architecture, training objective) in lay-
out evaluation vary in previous works. We show that such in-
consistent settings can lead to different FID evaluation con-
clusions. In this paper, we conduct an in-depth analysis on
training the feature extractor and aim to settle for a more
robust and reliable FID evaluation setting.

We conduct experiments on three datasets with different
types of design, including mobile UI, scientific documents,
and slides. Both automatic and human evaluations show that
our approach performs consistently better than the baselines.
To summarize, the contributions of this paper include:
1. We propose a simple but effective action schema to

model the layout generation process with graphic design
principles. Instead of directly generating the absolute val-
ues of bounding boxes, we use the intermediate action
sequence as the target output. Experiment results show
that our approach achieves state-of-the-art performance.

2. We revisit the evaluation metric FID for layout genera-
tion, where we have some interesting findings and it leads
to a more robust evaluation setting.

2 Related Work
2.1 Layout Generation
Nowadays Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014; Brock, Donahue,
and Simonyan 2018; Karras, Laine, and Aila 2019; Karras
et al. 2021), Variational Autoencoders (VAEs) (Kingma
and Welling 2014; Higgins et al. 2017) and autoregressive
models have been the mainstream generative modeling
frameworks, which have been shown promising to generate

high-quality samples of image and natural language and
other modalities. Recently, they have been adapted to layout
generation in graphic design. LayoutGAN (Li et al. 2019)
utilizes self-attention modules to generate layouts and
proposes a differentiable wireframe renderings layer with
a CNN-based discriminator to optimize the layouts in the
image space. But it has been shown to suffer from unstable
training in later works (Arroyo, Postels, and Tombari 2021;
Gupta et al. 2021). LayoutVAE (Jyothi et al. 2019) uses two
conditional VAEs to first predict the element category label
counts and then generate the bounding boxes. VTN (Arroyo,
Postels, and Tombari 2021) follows the VAE framework
with a Transformer backbone. NDN (Lee et al. 2020) treats
the layout as a directed graph where the edge indicates the
relative size and position between two element nodes. They
convert the generation task into a graph completion task and
also adopts VAE for learning. LayoutTransformer (Gupta
et al. 2021) and BLT (Kong et al. 2022) adopt the Trans-
former decoder to (non-)autoregressively generate the
geometry values. The above approaches all use the absolute
values of bounding box as target output, which has hide
some higher-order design operations such as repetition and
margins.

To consider the design principles into learning, previous
works mainly focus on latent space constraints. NDN iter-
atively fine-tunes the predicted bounding boxes with an ad-
ditional alignment loss in the refinement module. Similarly,
Attribute-Conditioned LayoutGAN (Li et al. 2021) adds sev-
eral losses targeted for alignment, non-overlap and margin
area. LayoutGAN++ (Kikuchi et al. 2021), based on a Trans-
former generator and discriminator, satisfies the beautifica-
tion constraints (i.e. alignment and non-overlap) by optimiz-
ing latent codes with a penalty function. Different from pre-
vious works, this paper explores a more direct solution that
uses an intermediate action schema for capturing the design
operations, which works surprisingly well.

2.2 Autoregressive Sequence Generation
Autoregressive models output the target tokens step-by-step
depending on the previous generated sequence.They have
been widely used for generating images (Oord, Kalchbren-
ner, and Kavukcuoglu 2016; van den Oord et al. 2016), nat-
ural languages (Brown et al. 2020) and other modalities.
For example, PixelCNN (van den Oord et al. 2016) sequen-
tially generates one pixel at a time in an image along the
two spatial dimensions. In our task, autoregressive genera-
tion is also favored by many previous works. For example,
LayoutTransformer generates layouts with the flattened se-
quence consisting of the category labels and the bounding
boxes. Though the non-autoregressive models with parallel
decoding enjoy fast inference speed, generally the autore-
gressive ones perform much better due to the conditionally
dependent decoding.

The design of our action tokens is partially inspired from
the copy mechanism widely used in seq2seq models, which
copies the source tokens to the target sentences. Having ob-
served that human tend to repeat entity names or even long
phrases in conversation, CopyNet (Gu et al. 2016) provides
the generation and copy modes in the decoding. Similarly in



graphic design, elements tend to repeat the position/size or
share the same margin value in the layout. Therefore we pro-
pose an action schema to encode such information for better
model generalization.

3 Approach
In this section, we first describe the task and introduce our
proposed action schema. Next, we present our model archi-
tecture and training objective of generating the action se-
quence for layout generation.

3.1 Task Formulation
In general, a graphic layout L contains n visual elements.
Each element ei holds both the semantic and geometric
properties, i.e. (ci, xi, yi, wi, hi). ci ∈ C represents the
element category label such as title and figure, and the re-
maining represent its bounding box, where (xi, yi) are the
center coordinate and (wi, hi) are the width and height. With
or without a set of category labels with counts as input (e.g.
one title plus two figures), the goal is to generate layouts
with the elements’ bounding boxes.

3.2 Action for Layout Generation
Here we give the action definition and how we obtain the
action sequence for the layout generation process.

Action Definition To obtain a well-formatted layout, there
are several design principles to be followed. Our action lan-
guage is mainly motivated by the two widely-used prin-
ciples: (1) Repetition: the reuse of design attributes can
make a layout more unified. For example, copying the x/y-
coordinate or the size of an element produces better align-
ment. (2) White Space: margins between elements create
visual distinction. In a layout, most of the elements are not
overlapped.

Based on the above observations, we propose a schema
with three actions:

• Ag = generate(NULL, arg:value): generate
the absolute geometry value.

• Ac = copy(arg:object, NULL): choose an exist-
ing element as anchor object to copy its geometry value,
which encourages repetition.

• Am = margin(arg:object, arg:value):
choose an existing element as anchor object and create
a margin value with the anchor’s position. For example,
when generating the center xi for the i-th element with
an anchor oj and a margin value v, we can obtain xi as
xj + 0.5 ∗ wj + v + 0.5 ∗ wi. This action encourages
non-overlapping and consistent margins.

We show an example of the layout generation process
with actions in Figure 1, Given the previous layout state
St−1, the position and size of element O3 would be de-
termined by four actions. As we can see, O3 should be
aligned with O2 in the x-axis and thus we apply the ac-
tion copy(O2, NULL) for x3. Meanwhile O3 should be
placed under O2 with the same margin value as O2 to O1,
therefore we use margin(O2, 0.05) to obtain y3. For

Figure 2: The overview of our approach. At each timestep,
the Transformer decoder inputs the previously generated
tokens and predicts the next one. The position and size
(x, y, w, h) of each element are determined by a subse-
quence of 13 tokens (one category label plus four actions).

a consistent representation, we pad the empty argument of
some actions with a NULL token, i.e. generate(NULL,
arg:value) and copy(arg:object, NULL).

Action Sequence Derivation The layout generation pro-
cess can be viewed as an action sequence. The i-th element
is expressed using a sequence of 13 tokens with a category
label and four actions corresponding to x, y, w, h: (ci, axi ,
oxi , vxi , ayi , oyi , vyi , awi , owi , vwi , ahi , ohi , vhi ), where a, o, v in-
dicate the action name, object argument and value argument
respectively. We concatenate all the elements in a flattened
sequence and sort them in ascending order according to their
(x, y) coordinates. The layout can be denoted by a sequence
of 13n+ 2 tokens:

s = (< bos >, c0, a
x
0 , o

x
0 , v

x
0 , · · · , ahn, ohn, vhn, < eos >),

(1)
where < bos > and < eos > denote the beginning and end
of a sequence.

In the absence of ground truth labels for the sequence,
we define several rules to ascertain the labels as follows: the
actions are prioritized in the order of copy, margin and
generate. We would like to encourage the use of copy
and margin, and thus they have higher priorities in our
derivation rules. Specifically, copy is chosen when current
element shares the same value of coordinate (x/y) or size
(w/h) with one of the previous elements. margin is only
applied on the coordinates. It is chosen if the element’s value
in another axis is applied on copy. For example, if the x-
axis of an element ep is copied from eq , then the y-axis of ep
uses the action margin with eq . This heuristic is based on
our observation that elements located on the same horizon-
tal or vertical plane usually are non-overlapped and follow
frequently-used margin values across the design corpus. At
last, when the element does not meet the above conditions,
generate is selected by default. Please note that one lay-
out can be mapped to multiple correct action sequences (e.g.
a sequence consisting of only the generate actions). Dur-
ing the training process, one layout is only mapped to only
one ground truth sequence.



3.3 Model Architecture and Training
The overview of our approach is shown in Figure 2. Fol-
lowing Gupta et al. (Gupta et al. 2021), we adopt the Trans-
former backbone as an autoregressive decoder. The model’s
objective can be now changed to maximize the likelihood
of the action sequence s, which can be factorized into the
following products of conditional distributions:

p(s) =
13n+1∏
i=0

p(si+1|s0:i), (2)

where si is the i-th token in the action sequence.
At each timestep i, an embedding layer sums the action

token embedding ϵi and the position embedding pi to obtain
the hidden state hi, which are then fed to Transformer with
self-attention to include the information of previous tokens
for a contextualized h′

i:

hi = MLP(ϵi + pi; θ)

h′
i =

i∑
j=0

softmax(αij)(WVhj)

αij =
1√
dK

(WQh
′
i)(WKh′

j)
T ,

(3)

where ϵ, p, θ, WQ, WK and WV are learnable model pa-
rameters and dK is the dimensions of WK. On the top is
a classification layer implemented as a MLP (Multi-Layer
Perceptron) with softmax to predict the token si+1:

p(si+1|s0:i) = softmax(MLP(h′
i; θ))

L =

13n+1∑
i=1

− log p(si),
(4)

where L is the cross entropy loss for classification. We use
teacher forcing in the training and validation for a faster and
more stable learning process. The vocabulary for input and
output includes all types of tokens, i.e. element category la-
bels, actions, object indexes, and geometry values. Specifi-
cally, the floating geometry values are discretized using 8-bit
uniform quantization and converted to integers for categori-
cal encoding.

4 Experiments
In this section, we first introduce the experiment settings and
revisit the current FID metric for layout evaluation. Then
we show both the quantitative and qualitative results of our
approach compared against other strong baselines.

4.1 Experiment Setting
Datasets We evaluate on three datasets with different
types of graphic designs:
• Rico (Deka et al. 2017; Liu et al. 2018). The dataset

consists of over 66k unique UI layouts from more than
9.3k Android mobile apps spanning 27 categories. Fol-
lowing previous works, we exclude elements whose la-
bels are not in the 13 most frequent labels and exclude
layouts with more than 9 elements. After filtering there
are 20,507 layouts in total.

• PubLayNet (Zhong, Tang, and Yepes 2019). It is a
large collection of over 360k scientific document images
crawled from PubMed Central™. Each element in the
layout is annotated with its category label (text, title, list,
table, and figure) and bounding box. Similarly, layouts
with more than 9 are excluded, totaling 173,225 layouts
in the final set.

• InfoPPT (Shi et al. 2022). The dataset includes 23,072
information presentations collected from the Internet,
with manually filtering to ensure the diversity and qual-
ity2. Since the slide layouts are more diverse than the
other two datasets, we exclude several categories such as
footnote and decorators (e.g. line, arrow), and exclude
layouts with elements less than 4 elements as well as
more than 20 elements. There are 46,654 final layouts.

For all the datasets, we randomly split the dataset into 85%
train, 5% validation, and 10% test. In this paper, we do
not consider the Magazine dataset (Zheng et al. 2019) as
used in some previous works (Zheng et al. 2019; Lee et al.
2020), since its layouts are highly content-dependent (e.g.
the placement of a title cannot be overlapped with the objects
in the background image) and we currently do not consider
the element contents into modeling.

Baselines We consider the following publicly-available
baselines:

• LayoutVAE (Jyothi et al. 2019). Given a label set of ele-
ment categories, the sub-module CountVAE first predicts
the counts for each category, which is then used as the
input to another sub-module BBoxVAE to generate the
bounding boxes sequentially. We use its BBoxVAE for
comparison, which has the same input as other baselines.

• LayoutGAN++ (Kikuchi et al. 2021). Improved from
LayoutGAN (Li et al. 2019), it adopts two Transformers
as generator and discriminator respectively. Moreover,
the model is coupled with latent code optimization as to
incorporate beautification constraints such as alignment
and non-overlap.

• LayoutTransformer (Gupta et al. 2021). This model au-
toregressively generates the flattened sequence consist-
ing of element category labels and bounding boxes. It
adopts a Transformer decoder and obtains the results via
nucleus sampling (Holtzman et al. 2019).

4.2 Evaluation Metrics
Heuristic Metrics Several metrics are proposed in previ-
ous works3:

• Maximum Intersection over Union (IoU). It measures
the closeness of the generated layouts to the references
using the IoU-based similarity.

• Alignment. The calculation is based on the minimum
distance between any element pairs in a layout via six

2We use the open-source library https://pypi.org/project/
python-pptx/ to parse the slides.

3We use the implementation of Kotaro et al. (Kikuchi et al.
2021) for these metrics.



Model Architecture for ϕ Transformer (Dec) Transformer (Enc-Dec) GMN ResNet-18

Pre-training Objective for ϕ cls. w/ cl. cls. w/ cl. cls. w/ cl. cls. w/ cl.
(cls acc %) (94.26) (97.48) (86.43) (84.07) (89.01) (92.25) (100) (94.87)

LayoutVAE 1221.97 (4) 4121.78 (3) 148.96 (4) 140.79 (4) 679.24 (4) 339.56 (4) 481.40 (4) 36.22 (4)
LayoutGAN++ 1221.01 (3) 4824.31 (4) 30.76 (1) 51.77 (3) 425.28 (3) 187.29 (3) 28.20 (3) 4.16 (3)

LayoutTransformer 39.21 (1) 866.04 (2) 42.80 (3) 46.33 (2) 195.14 (2) 184.07 (2) 13.04 (2) 3.69 (2)
Ours 47.61 (2) 812.74 (1) 36.74 (2) 37.92 (1) 146.29 (1) 124.59 (1) 8.49 (1) 2.38 (1)

Real Data 24.13 405.53 3.61 4.02 96.94 99.09 0.28 1.93
Gauss Neg. 1473.45 1550.76 143.67 97.12 519.87 189.24 141.11 5.93
Shuffle Neg. 1550.76 5378.29 265.04 212.12 464.60 225.75 53.36 35.72

Table 1: Different settings of the feature function ϕ (model architecture, pre-training objective) can lead to different FID com-
parison results. The experiment is conducted on the Rico dataset. cls. means read/fake layout classification training objective.
w/ cl. means auxiliary contrastive learning.

Datasets Rico PubLayNet InfoPPT

FID↓ IoU Align Ovp FID↓ IoU Align Ovp FID↓ IoU Align Ovp

LayoutVAE 6.56 0.24 0.98 66.25 36.21 0.28 0.69 8.98 22.03 0.20 1.11 68.07
LayoutGAN++ 4.16 0.36 0.60 59.85 45.77 0.36 0.19 22.80 19.01 0.09 0.32 127.02

LayoutTransformer 3.69 0.36 0.06 71.79 66.37 0.44 0.32 15.40 12.99 0.21 0.36 53.35
Ours 2.38 0.33 0.12 52.31 25.88 0.32 0.10 9.28 12.38 0.16 0.23 45.55

Real data 1.93 0.68 0.27 51.31 1.78 0.53 0.04 0.22 0.40 0.75 0.14 17.20

Table 2: Overall results on three datasets. For the three heuristic metrics (IoU, Align and Overlap), the closer values to real data,
the better is the performance.

types of alignment, including left, x-center, right (x-axis),
top, y-center, and bottom (y-axis). The smaller score in-
dicates the layout is more likely to be well-aligned.

• Overlap. It calculates the overlapping area between any
element pairs by assuming that well-designed layouts
typically avoid overlapping elements.

Please note that the above metrics are based on simple
heuristics, which suffer from different limitations. For exam-
ple, a model good at memorizing all training samples would
score perfectly in terms of the IoU metric since this metric
calculates the maximum IoU between generated layouts and
the training ones.

Seeking for a robust FID Evaluation FID (Heusel et al.
2017) is a popular learning-based metric that measures both
the quality and diversity of the generated results. Given
a feature function ϕ, the metric calculates the Fréchet
distance between two Gaussian distributions ϕ(Pr) and
ϕ(Pg). For natural image evaluation (Karras, Laine, and
Aila 2019), the feature function is by default pre-trained on
the ImageNet (Deng et al. 2009) using the Inception net-
work (Szegedy et al. 2016). While being compared, the set-
ting of pre-training the feature function for layout generation
is rather inconsistent, varying from network architecture to
data set and training objective. In this paper, we conduct an
empirical study to answer the question: What is the rea-
sonable setting for pre-training a robust FID evaluator
for layouts? We explore some most relevant options to pre-
train the feature function ϕ:
• Model architecture: (1) Transformer Decoder, which

is the same as the LayoutTransformer backbone (Gupta
et al. 2021); (2) Transformer Encoder-Decoder, which is
the same as LayoutGAN++ (Kikuchi et al. 2021); (3)
Layout Matching Network (GMN) (Patil et al. 2021),
which uses the graph structure to represent a layout for
similarity learning and retrieval. (4) ResNet-18 (He et al.
2016), a CNN-based model which takes the layout image
as input.

• Negative training data (fake layouts): (1) Gaussian
0.01 noise added to the bounding boxes; (2) In-batch
shuffle that randomly interchanges elements of two lay-
outs in a batch, which has larger perturbation to the lay-
outs than the Gaussian noise.

• Pre-training objective: (1) by default real/fake layout
classification as used in previous works; (2) auxiliary
contrastive learning: we constrain the distance of real
data distribution with the shuffle negatives to be farther
than with the Gaussian negatives (smaller perturbation),
which is well-correlated with human perception.

We pre-train the feature function ϕ with the above differ-
ent settings, which is later used to evaluate the layout gen-
eration systems. Table 1 shows the results on Rico dataset
with the following observations:

1. The classification accuracy (cls. acc) of training ϕ in dif-
ferent settings can all reach over 85% on average, which
means that ϕ can generally capture discriminative repre-
sentations to distinguish real and fake layouts to a certain
degree.



Figure 3: Two examples of attention visualization at a
timestep. Darker color indicates higher attention weight.

Rico PubLayNet InfoPPT

Real data ours Real data ours Real data ours

grammar
correctness (%) 100 99.92 100 100 100 99.98

generate (%) 54.25 53.72 62.98 60.18 40.67 47.78
copy (%) 33.63 34.06 26.06 27.78 49.35 41.98
margin (%) 22.24 24.28 24.92 24.09 19.96 20.44

Table 3: Statistics on the action sequence, including gram-
mar correctness and trigger rate of different actions.

2. We observe similar performance rankings of systems un-
der almost all FID settings: LayoutVAE performs the
worst and our model performs the best. This indicates
the robustness of the FID measurement, and our model
does perform consistently better than the baselines.

3. FID can be biased when ϕ has the same model ar-
chitecture with the system to be evaluated. FID using
pre-trained Transformer (Dec) is biased to LayoutTrans-
former as they share the same backbone. Similar bias oc-
curs for the FID using Transformer (Enc-Dec) to Lay-
outGAN++. This is likely because ϕ and the system to
be evaluated obtain similar feature distributions with the
same model architecture, which is not fair to other sys-
tems.

4. Contrastive learning (w/ cl.) helps regularize the learned
distribution of ϕ. In the last two rows, the FID score of
the Gaussian negatives is higher than the shuffle nega-
tives using the model architecture of GMN and ResNet-
18, which is counter-intuitive since the Gaussian noise
has smaller perturbation than shuffling and its data distri-
bution should be closer to the real data. After adding the
contrastive loss, the FID scores become more reasonable.

Based on the above findings, we use the pre-trained fea-
ture function ϕ using ResNet-18 with the auxiliary con-
trastive learning for the FID evaluation in the following ex-
periments.

4.3 Implementation Details
We set the Transformer with 6 layers of hidden size 512.
The number of attention heads is set to 8. We use AdamW
optimizer (Loshchilov and Hutter 2017) with initial learning

Rico PubLayNet InfoPPT

ranking↓ Kappa ranking↓ Kappa ranking↓ Kappa

LayoutVAE 6 -0.069 5 0.175 5 0.068
LayoutGAN++ 4 -0.069 4 0.168 4 0.147

LayoutTransformer 2 0.026 2 0.2 2 0.131
Ours 1 0.016 1 0.228 1 0.249

Gaussian Neg. 2 0.012 3 0.145 3 0.273
Shuffle Neg. 5 -0.04 6 0.139 6 0.141

Table 4: Human evaluation results: rankings by merging the
annotators’ results.

rate of 3e-4, β1 = 0.9, β1 = 0.95 and l2 weight decay of 5e-
4. We also apply early stopping, gradient clipping (Pascanu,
Mikolov, and Bengio 2013), and warm up over the initial 1%
training iterations. The dropout rate is set to 0.1. Models are
trained with maximum of 50 epochs with batch size 64. Dur-
ing inference, we sample from the multinomial distribution
and the top-k sampling (k = 5) for all models.

4.4 Quantitative Results
Overall Performance We show the overall system per-
formances on all three datasets in Table 2. Regarding FID,
the classification accuracy of pre-training the feature func-
tion on Rico, PubLayNet, and InfoPPT are 94.87%, 99.92%,
and 84.25% respectively. As we can see, our approach per-
forms consistently better than the baselines on three datasets.
Meanwhile, we use a separate set of real data to compute the
metrics, which are displayed in the last row. For the three
heuristic metrics (i.e. IoU, Align, and Ovp), we expect a
good system to be closer to the real data performance, fol-
lowing Gupta et al. (Gupta et al. 2021). The results show
that our method outperforms all baselines in terms of FID
and alignment. For overlap, we are the best on Rico and In-
foPPT, while achieving comparable results with LayoutVAE
that exceeds the other two baselines by a large margin. For
IoU, our scores are slightly lower than other methods. We ar-
gue that this metric mainly measures the closeness to the ref-
erences but ignores diversity, since high IoU may be likely
due to the model being good at memorizing training data. To
summarize, our approach achieves state-of-the-art results in
most of the metrics, which demonstrates the effectiveness of
our proposed action schema.

Model Analysis To better understand the behavior of our
model, we conduct the following analyses. We first visual-
ize the attention weight (Equation 3) in the last Transformer
layer. It measures the importance degree of the current i-th
token attending to the previous j-th token. As we can see
from Figure 3(a), when choosing the object index for the
action margin of y2, the model is highly attended to the
correct token related to y1. Similarly in Figure 3(b), the at-
tention weight is correctly distributed to the relevant tokens
to copy x1 for x3. Moreover, Table 3 shows some statistics
on the action sequences derived from real data as well as our
model outputs. The grammar correctness indicates whether
the sequence complies with the grammar rules (i.e. action



token followed by the object index token and the value to-
ken). The accuracy of our model outputs is all over 99.9% in
these datasets. Meanwhile, we calculate the triggering rate
of generate, copy and margin. In real data, the action
copy is about 30% in average use while the rate of margin
is approximately 20%. In our predictions, the rates of actions
are in similar distribution, which indicates our model’s ca-
pability to leverage the actions of copy and margin for
modeling design principles in the generation process.

4.5 Qualitative Results
To further compare the generation qualities, here we conduct
a human evaluation and show some cases.

Human Evaluation We recruit 5 human annotators to rate
the generated results. Given the same label set input, we ran-
domly select the output from each system to form a group.
For a better comparison, we also include two distorted lay-
outs with Gaussian and shuffle noise (described in Sec-
tion 4.2) respectively. There are 30 groups per dataset. We
ask the annotators to rank the samples based on the design
principles4 and the degree of visual aesthetic, with the sys-
tem information hidden. Table 4 reports the human evalu-
ation results. As we can see, our approach is consistently
ranked as the highest in three datasets, while LayoutVAE
is ranked as the lowest. The rankings are well aligned with
the quantitative results in Table 1 and Table 2. Also, most
systems are ranked higher than the shuffle negatives, which
ensures the lower bound of the generated outputs is better
than the shuffle noise. As for the agreement between anno-
tators, we calculate the Kappa (Randolph 2010)5. The Kappa
on our system is relatively high compared to other baselines,
indicating stronger agreement among annotators for voting
our approach as the best.

Case Study We show some generated samples in Figure 4.
Given the same category label input, we can see our gener-
ated samples are more visually aesthetic. Elements are bet-
ter aligned and non-overlapped, and the widths/heights of
some elements are repeatedly used. This further proves the
effectiveness and generalization ability of our approach to
capture the graphic design principles. Figure 5 demonstrates
the diversity of our generated layouts. For one label set in-
put, our approach can generate different layouts with good
quality (1st row in each subfigure). In Figure 5, given the
input condition of one picture and five textboxes, the three
generated slide layouts are visually pleasing with alignments
and appropriate margins. The pictures in the last two sam-
ples are considered as background images instead of unde-
sired wrong overlapping. Moreover, the real layouts from
the references with maximum IoU to our generated layouts
(2nd row in each subfigure) are not identical to ours, which
indicates that our approach can generate novel and diverse
layouts instead of only memorizing the training data.

4https://en.wikibooks.org/wiki/Graphic Design/Principles of
Design

5As the number of categories and subjects will affect the mag-
nitude of the Kappa, the absolute values here are less meaningless.
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Figure 5: Diversity results given the same label set. The row
with IoU indicators contains real layouts of max. IoU in the
training data with our generated samples.

5 Conclusions
In this paper, we design an action schema to explicitly en-
code the graphic design principles such as repetition and
white space. The layout generation process can be viewed as
an action sequence. Instead of directly generating the abso-
lute values of bounding boxes, our approach outputs the in-
termediate action sequence and obtains the final layout with
deterministic post-processing. Moreover, we revisit the FID
metric for layout evaluation with respect to the settings of its
pre-trained feature function and obtain a more robust and re-
liable conclusion. Experiment results on three datasets show
that our approach can synthesize layouts with higher quality
and diversity. In the future, we will refine and expand the ac-
tion schema to better include more design principles. Also,
we would like to explore and propose more robust metrics
for layout evaluation beyond current simple heuristics.
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