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Abstract

Motivated by cloud computing applications, we study the problem of how to optimally
deploy new hardware subject to both power and robustness constraints. To model the
situation observed in large-scale data centers, we introduce the Online Demand Scheduling
with Failover problem. There are m identical devices with capacity constraints. Demands
come one-by-one and, to be robust against a device failure, need to be assigned to a pair of
devices. When a device fails (in a failover scenario), each demand assigned to it is rerouted to
its paired device (which may now run at increased capacity). The goal is to assign demands to
the devices to maximize the total utilization subject to both the normal capacity constraints
as well as these novel failover constraints. These latter constraints introduce new decision
tradeoffs not present in classic assignment problems such as the Multiple Knapsack problem
and AdWords.

In the worst-case model, we design a deterministic ≈ 1
2 -competitive algorithm, and show

this is essentially tight. To circumvent this constant-factor loss, which in the context of
big cloud providers represents substantial capital losses, we consider the stochastic arrival
model, where all demands come i.i.d. from an unknown distribution. In this model we
design an algorithm that achieves a sub-linear additive regret (i.e. as OPT or m increases,
the multiplicative competitive ratio goes to 1). This requires a combination of different
techniques, including a configuration LP with a non-trivial post-processing step and an
online monotone matching procedure introduced by Rhee and Talagrand.

∗Work done while visiting Microsoft Research Redmond
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1 Introduction

A critical challenge faced by cloud providers is how to optimally deploy new hardware to satisfy
the ever increasing demand for cloud resources, and the main bottleneck in this process is power.
Data centers consist of power devices with limited capacity and each demand for hardware (e.g.,
rack of servers) has a power requirement. The goal is to assign demands to power devices to
fulfill their requirements while using the available power in the data centers efficiently. This
allows cloud providers to maximize their return on investment on existing data centers before
needing to incur large capital expenses for new data centers to accommodate additional demand.

An important consideration that sets this demand assignment process apart from other
applications is reliability. Cloud users are promised a high availability of service which mandates
that cloud capacity can only be unavailable for very short durations (between a few minutes and
a few hours per year). As a result, assigning each demand to a single power device leads to an
unacceptable level of risk; if that device fails, the capacity for the demand becomes unavailable,
leading to potentially millions of dollars in costs for the provider and jeopardizing the cloud
business model that is highly dependent on users’ trust. To this end, power redundancy is built
into the assignment process.

We consider a specific model of redundancy used by large cloud providers [22]. In this
model, each demand gets assigned to two power devices. In normal operations (no device
failure), the demand obtains half of its required power from each device. If one of the devices
fails, the remaining device must provide the full power amount to the demand (see Figure 1
for an example). In these failover scenarios, the remaining devices may run at an increased
capacity temporarily to accommodate their increased load. The provider uses this time to take
ad-hoc corrective actions, for instance, shut down certain workloads and reduce the power of
others in order to bring the power utilization of each device back within its normal limits. As
in [22] we consider a single device failure at a time.

This architecture is favored in practice because it provides strong reliability guarantees with
a small increase in overhead and complexity. One could consider more complex architectures,
where demands could be assigned with a power split other than half-half to each device or
to more than two devices, but this comes at an increased cost in hardware and operational
complexity. Further, a common goal of large cloud providers is to provide statistical guarantees
for high service availability, e.g., 99.99% availability for certain cloud resources or services;
cloud operators have determined that accounting for a single device failure with the described
architecture provides such target guarantees.
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Figure 1: In normal operations (left), each demand (denoted with a different pattern) is assigned
to two devices and gets half of its required power from each device. In the failover scenario
where device c has failed (right), the demands that were assigned to c now get their full power
from the remaining devices that may run at increased capacity.
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We introduce the Online Demand Scheduling with Failover problem (Failover) to model
this issue of assigning demands to power devices with redundancy. Formally, in this problem
there are m identical devices (or machines) and n demands. Each device has two capacities: a
nominal capacity that is normalized to 1 and a failover capacity B ≥ 1. Each demand j has
some size sj ≥ 0, which for convenience is defined as its per-device power requirement (so the
total power requirement of the demand is 2sj). The demands arrive online one-by-one and there
is no knowledge about future demands. The goal is to irrevocably assign the arriving demands
to pairs of devices (or edges, where we consider each device as a node) satisfying:

1. (Nominal Constraints) For every device u, its total load has to be at most 1, namely
Lu :=

∑
v ̸=u Luv ≤ 1, where we define Luv =

∑
j→uv sj to be the total load on edge uv

(i.e., all demands assigned to the pair of devices uv).

2. (Failover Constraints) For every device u, we have Lu +maxv ̸=u Luv ≤ B (i.e., if a device
v ̸= u fails, all demands assigned to uv have to be supplied solely by u, which sees its
load increased by the amount Luv that was formerly supplied to them by device v; the
increased load has to fit the failover capacity B).

We assume that each demand size sj fits on a pair of devices by itself, so sj ∈ [0,min(1, B/2)].
We are not allowed to reject demands, so the algorithm assigns arriving demands to the available
devices until a demand cannot be scheduled, in which case the algorithm terminates. Our
objective is to maximize the total size of all assigned demands (i.e., the utilization). We compare
the algorithm against the optimal offline strategy that knows the demand sequence in advance
(but still subject to the same no-rejection requirement). We use OPT to denote the total
utilization of this optimal offline strategy.

This problem has similarities with several classical packing problems. For example, in
the Multiple Knapsack problem (and related problems such as Generalized Assignment [21],
AdWords [15], etc.) we are given a set of items each with a weight and size, and the goal is to
select a subset of the items to pack in capacitated bins in order to maximize the total weight.
However, one fundamental difference in our setting, besides the need to assign each demand
to a pair of devices instead of a single device, is the failover constraint. Unlike in previously
studied resource allocation problems, here the capacity constraints are not just determined by
the total demand incident to a node, but rather they depend also on how the demands are
arranged across its edges. See the next example.

Example 1. Consider an instance with 4 power devices a, b, c, d with failover capacity B = 1.
There are 6 demands of size 1

4 that arrive sequentially; suppose 4 demands have arrived so far.
One possible assignment has placed 2 demands on each of the pairs ab and cd (see Figure 2a),
while a different one may place each of the 4 demands on a different pair (see Figure 2b, in
solid lines). While in the second option all remaining demands can be placed (dashed lines in
Figure 2b), the first option cannot accommodate more demands due to the Failover capacity.
To see this, suppose we assign another demand to device a, say. If device b fails, then the total
load on a will become at least 5

4 violating its Failover capacity.

The above example suggests that due to the Failover constraints we should “spread out” the
demands by not putting too many demands on one edge, because if one of its endpoints fails
then this edge can have a large contribution to the Failover constraint of the other endpoint.
However, there is a danger in spreading out the demands too much and not leaving enough
devices free.

Example 2. Consider again the same 4 power devices a, b, c, d with failover capacity B = 1.
Now, there are 7 demands; the first 6 have a small size ε > 0 and the last demand has size 0.5.
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Figure 2: Illustration of Example 1.
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Figure 3: Illustration of Example 2.

Assume the first 6 demands have arrived. A first option is to assign one demand of size ϵ per
device pair (see Figure 3a). In this case, the remaining demand of size 0.5 cannot be placed,
as the Failover capacities would be exceeded. The second option groups the first 6 demands on
a single edge (see Figure 3b); in this case, all demands can be fulfilled by assigning the last
demand on a disjoint edge (dashed edge of Figure 3b).

Taking these two examples together, we see that there is a delicate balance between spreading
demands out across edges to minimize their impact in failover scenarios and leaving enough
devices open for future demands, as to not prematurely end up with an unassignable demand.

1.1 Our results

We start by considering the Failover problem in the worst-case and design a deterministic
algorithm with competitive ratio ≈ 1

2 . Since no deterministic algorithm can be better than 1
2 -

competitive (Theorem 10 in Appendix C.1), this result is almost best possible. (For the special
case where demand sizes are small, we adapt our algorithm to obtain an improved competitive
ratio, see Theorem 11.)

Theorem 1. There is a deterministic poly-time online algorithm for Failover in the worst-
case model with competitive ratio 1

2 −O( 1
m1/3 ),

1 where m is the number of devices.

A 1
2 -competitive solution may, roughly speaking, underutilize by a factor of 1

2 the available
power; in the context of big cloud providers, this inefficiency translates to substantial capital
expenses due to the extra data centers required to accommodate the demands. Since such losses
are unavoidable in the worst-case model, we consider the Failover problem in the stochastic
arrival model. Here the demand sizes are drawn i.i.d. from an unknown distribution µ supported
on [0,min(1, B/2)].

We show that in this stochastic model it is possible to obtain sublinear additive regret.
This means that as OPT (or, equivalently, the number of devices) grows, the multiplicative
competitive ratio of our algorithm goes to 1.

Theorem 2. For the Failover problem in the stochastic arrival model, there is a poly-time
algorithm that achieves utilization OPT−O(OPT5/6 logOPT) with probability 1−O( 1

m).

As a subroutine of this algorithm, we need to solve the natural offline minimization variant
of demand scheduling with failover: Given a collection of demands, minimize the number of
devices needed to assign all demands satisfying the Nominal and Failover constraints. We also
design an (offline) algorithm with sublinear additive regret for this problem (Section 4).

1Throughout the paper we use O(x) to mean “≤ cst · x” for some constant cst independent of x.
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1.2 Technical Overview

We illustrate the main technical challenges in the Failover problem in both the worst-case
and stochastic models, as well as in the offline minimization subproblem needed for the latter.

Online Worst-Case (Section 2). The examples from Figure 2 and 3 show that the main
difficulty is dealing with the trade-off between spreading out the demands, which allows for a
better use of the failover budgets, and co-locating demands on fewer edges, keeping some edges
free for future big demands.

To effectively strike this balance and get near optimal guarantees, the main idea is to group
demands based on their sizes using intervals Ik and schedule each group separately on cliques
of size k. That is, we will “open” a set of k unused devices and assign the demands in Ik only
to the edges between these devices (opening new k-cliques as needed). Interestingly, we assign
at most one demand per edge of the clique (other than for tiny demands, which are handled
separately). This means the algorithm tries to co-locate demands in controlled regions, which
allows for the right use of the failover budgets.

Online Stochastic Arrivals (Section 3). First, note that because demands are i.i.d. from a
distribution with bounded support, the total utilization of the first ℓ demands grows as ℓ·ES∼µS.
Thus, it suffices to show that our algorithm “survives” for as many demand arrivals as possible
without needing to reject one due to lack of space. Our approach is to try and assign prefixes of
arrivals to the (approximately) minimum number of devices possible. This ensures that if our
algorithm fails due to needing more than m devices to feasibly assign another demand, then
OPT will fail shorty after.

Our algorithm is based on a learn-and-pack framework, where we use knowledge of the
first ℓ arrivals to compute a good template assignment for the next ℓ arrivals. To compute this
template, we need a subroutine that (approximately) solves the offline minimization subproblem
mentioned above. Concretely, we run the subroutine on the realized sizes of the first ℓ arrivals,
which gives a possible assignment of these demands into, say m′ unused devices. We use the
“slots” of this possible assignment as a template to assign the future ℓ demands by employing
the online monotone matching process of Rhee-Talgrand [19]: For each future arrival, we assign
it to a (carefully-chosen) open slot in the template that has a larger size – if we cannot find
such an open slot, then we assign this demand to its own disjoint edge (using 2 more devices).

It is known that this matching process leaves o(ℓ) unmatched demands with high probability.
Further, our offline minimization subroutine has sublinear additive regret, that is, it uses only
o(ℓ) more devices than the optimal offline assignment. Since these losses are sublinear in the
prefix size, it seems that by repeating this process together with doubling the prefix size we
should obtain a final sublinear regret guarantee.

But there is still a major issue: This strategy uses disjoint sets of devices to fulfill the first ℓ
demands and the next ℓ demands (for each doubling ℓ). But this is possibly very wasteful: even
using the optimal assignment for each of these ℓ demands separately may require many more
devices (up to double) compared to reusing the leftover space from the first batch of ℓ demands
for the next batch (i.e. assigning the batches to a common set of devices). Wasting a constant
fraction of devices would lead to the unwanted constant-competitive loss. To overcome this,
we show that Mℓ, the minimum number of devices to assign ℓ i.i.d. demands, is approximately
linear in ℓ (Section 5), e.g. Mℓ + Mℓ (assigning batches separately) is approximately M2ℓ

(assigning them together). This is a non-trivial task (another Rhee-Talagrand paper [18] is
entirely devoted to doing this for the simpler Bin Packing problem). Perhaps surprisingly, our
proof relies on our algorithm for the offline device minimization problem, which is LP-based.
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The crucial property is that the optimal LP value doubles if we duplicate the items on its input,
which (with additional probabilistic arguments) translates into the additivity of Mℓ.

Offline Minimization (Section 4). Our algorithm for offline minimization of the number of
devices needed to fulfill a set of demands is based on a configuration LP inspired by the classic
Gomory-Gilmore LP for the Bin Packing problem. Consider a fixed assignment of demands to
some number of devices. We want to interpret each device as a configuration, which captures
the arrangement of demands on this device’s edges. Our LP will minimize the number of
configurations needed in order to assign all demands.

There is a tension between two issues in this approach. First, the Failover constraint de-
pends not only on the subset of demands on this device’s edges, but also how they are arranged
within these edges (because the most-loaded edge contributes to the Failover constraint). This
suggests that a configuration should not only specify a subset of demands, but also have enough
information about the edge assignment to control the most-loaded edge. Second, each demand
must be assigned to a pair of devices rather than a single device, so our configurations are not
“independent” of each other. Thus, we need to “match” configurations to ensure that a collec-
tion of configurations can be realized in an edge assignment. In summary, our configurations
should be expressive enough to capture the Failover constraints, but also simple enough so that
we can actually realize them in an actual assignment.

Our solution to this is to define a configuration to be a subcollection, say C, of demands
satisfying

∑
s∈C s ≤ 1 (the Nominal constraint) and

∑
s∈C s+maxs∈C s ≤ B (a relaxed Failover

constraint). Note that this notion of configuration does not capture the arrangement of the
demands C across a device’s edges – we assume the best case that every demand is on its
own edge to minimize their impact in failover scenarios. It is not clear that there even exists
a near-optimal assignment that assigns at most one demand per edge, let alone that we can
obtain one from the LP solution. However, our LP post-processing procedure will show that –
by opening slightly more devices – we can match configurations of this form to realize them in
a near-optimal assignment.

1.3 Related work

Despite a vast literature on assignment-type problems, none of the ones considered addresses
the main issue of redundancy, modeled in the Failover problem. Arguably the Coupled
Placement [11] problem is the closest to Failover. Given a bipartite graph with capacities
at the nodes and a set of jobs, the goal is to assign a subset of the jobs to the edges of the
graph to maximize the total value (each assigned job gives a value that also depends on its
assigned edge), while respecting the capacity of the nodes (each assigned job consumes capacity
from its edge’s endpoints). [11] gives a 1

15 -approximation to the offline version of this problem
(see also [1]). While this problem involves the allocation of jobs to a pair of nodes (albeit on
a bipartite graph) and has the additional difficulty that the value and consumption of a job
depends on which pair of nodes it is assigned, it does not have any Failover type constraints, a
crucial component of our problem.

As already mentioned, several classic assignment problems are related to ours, such as the
Multiple Knapsack [4], Generalized Assignment (GAP) [21], and AdWords problem [15, 7]. The
latter is the closest to our problem: there are m bins (i.e. advertisers) of different capacities,
and jobs (i.e. keyword searches) that come one-by-one and need to be assigned to the bins;
each assignment consumes some of the bin’s capacity and incurs an equal amount of value (i.e.
bid). The goal is maximize total value subject to bin capacities. Despite the similarities,
this problem does not consider critical aspects of our problem, namely the need to assign a

5



job/demand to a pair of bins/devices and the Failover constraints.
There is also a large literature on survivable network design problems, where failures in the

network are explicitly considered [6], but the nature of the problems is quite different from our
assignment problem, as the focus there is typically on routing flows.

Finally, a problem related to our device minimization problem, and from which we borrow
some tools and techniques, is Bin Packing. Here jobs of different sizes need to be assigned
to a minimum number of bins of size 1. Results are known in both offline [9] and online
settings [2, 19]. In the online stochastic setting, [19] obtains an additive +O(

√
OPT·log3/4OPT)

sublinear approximation (see [5, 8, 13] for improvements under different assumptions).

2 Failover Problem in the Online Worst-Case Model

In this section we consider the Failover in the online worst-case model. We design an algorithm
that achieves competitive ratio ≈ 1

2 in this setting (restated from the introduction).

Theorem 1. There is a deterministic poly-time online algorithm for Failover in the worst-
case model with competitive ratio 1

2 −O( 1
m1/3 ),

2 where m is the number of devices.

Recall that in Appendix C we also show the almost matching upper bound of 1
2 on such

competitive ratio, and design another algorithm whose competitive ratio approaches 1 as the
size of the largest demand goes to 0. To convey the main ideas more clearly, here we focus only
on Theorem 1.

2.1 Algorithm

As suggested in the technical overview, our algorithm will group demands by size, and assign
each group of demands to sub-cliques of an appropriate size.

To make this precise, set in hindsight L := m1/3 and for k = 2, . . . , L− 1 define the interval

Ik :=

(
min

{
1

k
,

B

k + 1

}
, min

{
1

k − 1
,
B

k

}]
.

(Notice there is no k = 1, because the upper limit of I2 is the max size of a demand.) This
definition ensures that it is feasible to assign one demand of such size to each edge of a k-clique,
as we argue in the next subsection. Also define the interval of small sizes

I≥L :=

[
0,min

{
1

L− 1
,
B

L

}]
.

The algorithm is then the following:

2Throughout the paper we use O(x) to mean “≤ cst · x” for some constant cst independent of x.
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FailoverWostCase:

1: When a demand arrives, determine the interval Ik (or I≥L) that it belongs to based on its size.

2: If it belongs to an interval Ik with k ∈ {2, . . . , L− 1}, assign the demand to any “empty” edge (i.e.
that has not received any demands) of a k-clique opened for Ik. If no such edge exists, then open a
new k-clique for Ik.

3: Otherwise it belongs to I≥L, so assign it to an edge of one of its L-cliques using first-fit (so here
we can assign multiple demands to the same edge) making sure that the total load on each
edge is at most min{ 1

L−1 ,
B
L }. By first-fit we mean that the edges of the I≥L cliques are arbitrarily

ordered and the demand is assigned to the first possible edge. Open a new L-clique for I≥L if need
be.

4: If the demand cannot fit in the appropriate clique and it is not possible to open a new clique (i.e.
there are not enough unused machines to form a clique of the desired size), then stop.

2.2 Analysis

We first quickly verify that the assignment done by the algorithm is feasible, i.e. satisfies the
Nominal and Failover constraints. Consider a node/machine u on an Ik clique opened by the
algorithm (for machines in an I≥L clique the argument is the analogous). For the Nominal
capacity constraint: Every demand assigned to u is actually assigned to one of the k − 1 edges
in this clique incident on u; each such edge receives at most 1 demand from Ik (and no other
demands), so using the upper limit of this interval we see that u receives total size at most
(k − 1) · min{ 1

k−1 ,
B
k } ≤ 1, so within its Nominal capacity. For the Failover capacity: in a

failover scenario one of these (k − 1) demands has “both ends” assigned to u, so the total size
it receives is now k · min{ 1

k−1 ,
B
k } ≤ B, so within the Failover capacity. Hence the algorithm

produces a feasible assignment.

Now we show that the value obtained by the algorithm is at least
(
1
2 −O( 1

m1/3 )
)
OPT. The

idea is to show that for (essentially) each clique opened by the algorithm, we get on average
value at least ≈ 1

4 per vertex. Given that each node has Nominal capacity 1 and each demand
must be scheduled on two nodes, OPT can only get at most 1

2 value from each node on average,
so this shows that our algorithm is a ≈ 1

2 -approximation. However, there are two exceptions
where we may get less than ≈ 1

4 per vertex on average. The first is the last clique for each Ik,
which may not be “fully used” (but by setting L appropriately there are not too many nodes
involved in this loss). More importantly, the second exception is the “big items” I2, which may
not allow us to get average value 1

4 per node (e.g. when the failover is B = 1, a demand of size
1
3 +ε falls in the group I2 and is put by itself on an edge, giving value 1

6 +
ε
2 ≪ 1

4 per node used).
However, in this case we show that we can obtain a stronger upper bound for these demands
for OPT.

We now make this precise. Assume throughout that the algorithm has stopped before the
end of the input (else it scheduled everything, so it is OPT). We account for the value obtained
on each type of clique separately.

Cliques for I≥L. We will use two observations:

• When the algorithm opens a new I≥L clique, every edge of the previous I≥L cliques has
some demand assigned to it.

• Across all I≥L cliques, out of all edges with some demand assigned to them, at most one
can have total size assigned to it less than α := 1

2 min
{

1
L−1 ,

B
L

}
(i.e. half of its “capacity”).
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Both observations stem from the first-fit strategy to assign these demands. In particular,
the algorithm will only open a new clique when a demand in I≥L does not fit in the edges of the
existing cliques, implying that all of these edges already have some demand assigned; this shows
the first statement. For the second statement, by contradiction assume that at some point there
are at least two edges on I≥L cliques with total load less than α. Then the first demand that
was assigned to the last such edge has size less than α. But this means that it could have been
assigned to an earlier edge with load less than α, contradicting the first-fit procedure.

Let c≥L be the total number of I≥L cliques that the algorithm opened, and m≥L := c≥L ·
L the number of nodes/machines associated with those cliques. Combining the above two
observations, at the end of the execution either: (i) every edge of the first c≥L − 1 of these
cliques has load at least α or; (ii) all but one edge in the first c≥L − 1 cliques has load at least
α and some edge of the last c≥L-th (e.g., the one that “opened” it) has load at least α. In both
cases, the total size of demands assigned by the algorithm to the edges of these cliques is at
least

(c≥L − 1) ·
(
L

2

)
· α = (c≥L − 1) · L

4
·min

{
1,

(L− 1)B

L

}
≥ (c≥L − 1) · L

4

(
1− 1

L

)
= m≥L · 1

4

(
1− 1

L

)
−O(L), (1)

yielding roughly average value 1
4 from each node of these cliques, as claimed.

Cliques for Ik, for k ≥ 3. Consider any clique for Ik except the last one to be opened. All
edges of this clique have some demand from Ik assigned to it; given the lower limit for this
interval, this means that the algorithm has assigned to each such clique total size at least(

k

2

)
·min

{
1

k
,

B

k + 1

}
=

k

2
·min

{
k − 1

k
,
B(k − 1)

k + 1

}
.

Since k ≥ 3 and B ≥ 1, the right-hand side is at least k
4 . Letting again ck denote the number of

cliques for Ik that the algorithm opens and mk the corresponding number of nodes/machines,
we can count the total value of all but the last Ik clique and we see that the algorithm has
assigned to them total size at least

(ck − 1) · k
4

= mk ·
1

4
−O(k). (2)

Cliques for I2. (Recall that there is no k = 1, so this is the last case to consider.) Given
the lower limit of the interval I2, each I2 clique (which being a 2-clique is just an edge) has a
demand of size at least min{1

2 ,
B
3 } assigned to it. So the algorithm assigns total size at least

m2 ·min{1
4 ,

B
6 } to these I2 cliques, where m2 is the number of nodes in these cliques.

Total value of Alg. Since we assumed that the algorithm stops at some point, it means
that it could not open more cliques. This means that all but at most L − 1 nodes belong
to one such clique (the worst case is that it tried to open an L-clique but could not), so
m≥L +

∑L−1
k=3 mk +m2 ≥ m − L. Then adding the above estimates for the values obtained on

each type of clique, we see that the algorithm gets total value at least

Alg ≥ 1

4

(
1− 1

L

)
·
(
m−m2 − L

)
−O(L2) +m2 ·min

{
1

4
,
B

6

}
=

1

4
·
(
m−m2

)
+m2 ·min

{
1

4
,
B

6

}
−O(m2/3)
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where the last inequality uses the fact that L = m1/3.
Notice that if the minimum in the last line is 1

4 , then we obtain Alg ≥
(
1
2 − O( 1

m1/3 )
)
OPT

as desired (recall OPT ≤ m
2 since each machine has Nominal capacity 1 and each demand is

assigned to two machines). So assume this is not the case, namely B < 3
2 . Under this

assumption

Alg
with ass.

≥ 1

4
·
(
m−m2

)
+

B

6
·m2 −O(m2/3) (3)

Value of OPT. We analyze OPT again under the assumption B < 3
2 . The Failover constraints

also ensure that in order to accommodate the demand from I2 in case of failure, any node that
receives a demand from I2 can have total size assigned to it a most

B −min

{
1

2
,
B

3

}
with ass.

=
2B

3
,

the last equation due to the assumption B < 3
2 . For all other nodes, OPT can assign at most size

1 per node due to the Nominal capacity constraint. Let mOPT
2 be the number of nodes where

OPT schedules a demand from I2. Again, since the size of each demand is counted towards the
Nominal capacity of two nodes, the total size scheduled by OPT is

OPT ≤ 1

2

(
mOPT

2 · 2B
3

+ (m−mOPT
2 ) · 1

)
=

1

2
· (m−mOPT

2 ) +
B

3
·mOPT

2 (4)

Notice that since every demand in I2 has size > min{1
2 ,

B
3 } ≥ 1

3 , the Failover constraints
ensure that in OPT (as well as in our algorithm) the demands from I2 that are scheduled
form a matching, i.e. no 2 such demands can share a node/machine. So mOPT

2 (resp. m2)
is just twice the number of I2 demands scheduled by OPT (resp. our algorithm). Moreover,
both Alg and OPT schedule a prefix of the instance. Since OPT gets at least as much value
as Alg, it means that it scheduled a prefix that is at least as long; in particular it schedules
at least as many I2 demands as our algorithm. Together these observations imply that that
mOPT

2 ≥ m2. Then given inequalities (3) and (4), under the assumption B < 3
2 we obtain that

Alg ≥
(
1
2 −O( 1

m1/3 )
)
OPT as desired. This concludes the proof of Theorem 1.

3 Sublinear Additive Regret in the Stochastic Model

We now consider Failover in the online stochastic model, where, instead of being adversarial,
the size St of each demand now comes independently from an unknown distribution µ over
[0,min{1, B2 }]. Again, at time t the algorithm observes the size St of the current demand and
irrevocably assigns it to two of the m machines. We still use OPT = OPT(S1, . . . , Sn) to denote
the value of (sum of the sizes scheduled by) the optimal strategy, which is now a random
quantity.

Our main result is algorithm FailoverStochastic that achieves a sublinear additive loss com-
pared to OPT in this stochastic model (restated from the introduction for convenience).

Theorem 2. For the Failover problem in the stochastic arrival model, there is a poly-time
algorithm that achieves utilization OPT−O(OPT5/6 logOPT) with probability 1−O( 1

m).

The algorithm relies on a learn-and-pack approach that uses previously seen items to com-
pute a template for packing the next items. This process is performed in rounds. Each round
starts by assigning the first demand of the round on a pair of (empty) machines. Then, we
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iteratively create a template for the first nk := 2k items of the round, which we use to schedule
the next nk items. When the number of machines needed for the template (along with some
slack) exceeds the number of available machines, the current round terminates and the next
round begins. The next round maintains no knowledge of the previous demands; it only takes
as input the number of empty machines m̃ which it is allowed to use. A schematic overview of
this process is presented in Figure 4.

S1

S1
S2

S2
S3

S3
S4

S4
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n0
n1

n2
n3

n0
n1

n2

n0
n1

Round 1 Round 2 Round 3

Figure 4: Schematic overview of algorithm FailoverStochastic.

Before describing the algorithm in more detail, an important question that arises is how
to use the templates to schedule the future demands. A crucial component in this process are
monotone matchings, which only match two values if the second is at least as big as the first.

Definition 1 (Monotone matching). Given two sequences x1, . . . , xn ∈ R and y1, . . . , yn ∈ R,
a monotone matching π from the xt’s to the yt’s is an injective function from a subset I ∈
{1, . . . , n} to {1, . . . , n} such that xi ≤ yπ(i) for all i ∈ I. We say that xi is matched to yπ(i) if
i ∈ I, and xi is unmatched otherwise.

Monotone matchings will allow us to match future demands (xi’s) to the demands that are
part of a template (yπ(i)’s) and put the former in the place of the latter (since xt ≤ yπ(i)). A
surprising result of Rhee and Talagrand [19] is that if the two sequences are sampled i.i.d. from
the same distribution, then almost all items can be matched, and moreover such a matching
can be found online (see the paper for a more general result where the sequences may come
form different distributions).

Theorem 3 (Monotone Matching Theorem [19]). Suppose the random variables A1, . . . , An and
B1, . . . , Bn are all sampled independently from a distribution µ. Then there is a constant cst

such that with probability at least 1 − e−cst·log3/2 n there is a monotone matching π of the Ai’s
to the Bi’s where at most cst ·

√
n log3/4 n of the Ai’s are unmatched. Moreover, this matching

can be computed even if the sequence A1, . . . , An is revealed online.

3.1 Algorithm

We are now ready to present the details of the FailoverStochastic algorithm.

FailoverStochastic: The algorithm just repeatedly calls the procedure OneRound below,
passing to it the number of machines that are still available/unopened (e.g. initially it calls
OneRound(m)); it does this for logm

log 4/3 rounds.

OneRound(m̃): This procedure receives as input the number m̃ of machines that it is allowed
to open. It is convenient to rename the demands and use Yt to denote the tth demand seen by
OneRound (which are still sampled i.i.d. from µ). Similar to the work of Rhee and Talagrand [19],
this algorithm works in phases: As mentioned earlier, each phase k sees the previous nk = 2k

items and creates a template based on them, which will then be used to schedule the next nk
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items. To create this template, we define the offline problem OffMinFailover of minimizing
the number of machines that are required to schedule these nk items. To solve this problem,
we design an approximation algorithm OffMinFailoverAlg in Section 4 achieving a sublinear
approximation guarantee. Specifically, let OPTmach(x1, . . . , xn) be the number of machines

that OffMinFailoverAlg (with ε = 1/n
1/6
k ) uses to schedule the demands x1, . . . , xn. OneRound

is then as follows:

OneRound: Given a number of available machines m̃:

1: Assign the first demand Y1 to an empty edge by itself, opening 2 machines.

2: For phases k = 0, 1, 2, . . .

(a) See the first nk items Y1, . . . , Ynk
. Run the algorithm OffMinFailoverAlg from Section 4 (with

ε = 1/n
1/6
k ) to find a solution for them that uses OPTmach(Y1, . . . , Ynk

) machines; let templ(t)
denote the pair of machines that Yt is assigned to. This solution is our template.

(b) If

#{already open machines}+ OPTmach(Y1, . . . , Ynk
)︸ ︷︷ ︸

machines from template

+ cst1 ·
√
nk log3/4 nk︸ ︷︷ ︸

predicted unmatched demand

+2m5/6 > m̃,

then STOP.

(c) Else, open a clique of OPTmach(Y1, . . . , Ynk
) machines. Upon the arrival of each of the next nk

demands Ynk+1, . . . , Y2nk
, assign them to machines based on the template. More precisely, find

the Rhee-Talagrand monotone matching π guaranteed by Theorem 3 from the new to the old
demands (as the new ones arrive online). Schedule each matched new demand Yt to the pair
of machines that Yπ(t) occupied in the template, namely the machine pair templ(π(t)). For
each unmatched new demand, schedule it on an edge by itself (opening two more machines for
each). If at any point the execution tries to open more than m̃ machines, declare FAIL.

3.2 Analysis

We next discuss the main ideas for the analysis of the algorithm FailoverStochastic, leading to
the proof of Theorem 2. We assume throughout that m is at least a sufficiently large constant,
else the success probability 1−O( 1

m) trivially holds.
We need to develop two important components for the analysis that are done in their own

sections. To at least state them, let OPTmach(J) denote the minimum number of devices needed
to assign all demands from set J satisfying the Nominal and Failover constraints.

First component (Section 4): The first component is the aforementioned algorithm OffMin-
FailoverAlg that is called within OneRound. It relies on a novel configuration LP, (LPmach), and
a post-processing algorithm to realize a rounded LP solution as a feasible assignment. It has
the following guarantee:

Theorem 4. There exists a poly-time algorithm, OffMinFailoverAlg, that given ε ∈ (0, 1), finds a
solution for OffMinFailover with at most

(
1+O(ε)

)
LPmach+O( 1

ε5
) ≤

(
1+O(ε)

)
OPTmach+

O( 1
ε5
) machines.

Choosing ε appropriately, we will be able to create a template using at most EOPTmach(Y1, . . . , Ynk
)+

o(nk) devices in expectation for the next nk arrivals.

Second component (Section 5): Recall from the technical overview that a worrisome aspect
of FailoverStochastic is that each call to OneRound does not re-use machines from previous
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rounds. To show this is not too wasteful, we show that EOPTmach(X1, . . . , XT ) is approximately
linear in T . We do so by giving a quantitative convergence theorem of EOPTmach(X1, . . . , XT )
to T · c(µ), where c(µ) is a constant that characterizes the “average number of devices needed
per demand.” That is, we show the following:

Theorem 5. Let µ be a distribution supported on [0,min{1, B2 }]. Then there exists a scalar
c(µ) such that for every T ∈ N, we have

EOPTmach(X1, . . . , XT ) ∈ T · c(µ)±O(T 5/6),

where X1, . . . , XT are i.i.d. samples from µ.

Thus splitting the first 2nk demands into two rounds of nk demands each costs us only an
extra o(nk) devices.

With those two results in hand, the core of the analysis is that OneRound gets good value
density, i.e., the ratio of value over number of machines m. We use ES0 to denote the expected
value of the size of a demand (which is the same as ESt for any t).

Specifically, according to Theorem 5, there is a scalar c(µ) such that OPT is able to fit
roughly 1

c(µ) demands per machine. Each such demand gives value roughly ES0; so the intuition

is that the best possible density value/machine should be around ES0
c(µ) . We first make this formal

in the next lemma.

Lemma 1. With probability at least 1− 2
m2 we have

OPT ≤ m · ES0

c(µ)
+O(m5/6).

Crucially, the next lemma says that OneRound almost achieves this density.

Lemma 2. Let Open be the number of machines opened by OneRound(m̃) (which is a random
variable). Then with probability at least 1 − 1

m2 , the total value of the demands scheduled by
OneRound(m̃) is at least

value of OneRound(m̃) ≥ ES0

c(µ)
·Open−O(m5/6).

Given this lemma, we see that the total value of the FailoverStochastic algorithm (which
repeatedly calls OneRound) is approximately ES0

c(µ) times the total machines opened during the
execution. By showing that the number of machines FailoverStochastic opens is ≈ m, we then
almost match the upper bound on OPT from Lemma 1.

Lemma 3. With probability 1−O( 1
m), FailoverStochastic opens at least m−5cst5 ·m5/6 machines

(where cst5 is the constant from Lemma 14).

These lemmas quickly lead to the proof of Theorem 2.

Proof of Theorem 2. Let L := logm
log 4/3 denote the number of calls to OneRound that Failover-

Stochastic makes, and let vali and Openi be the value obtained and number of machines opened
by the i-th call. Employing Lemma 2 on these L calls, we have that with probability at least
1− L

m2 the total value of FailoverStochastic is

algo value = val1 + . . .+ valL ≥ ES0

c(µ)
·
∑
i≤L

Openi − O(m5/6 logm).
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Moreover, from Lemma 3, with probability at least 1 − O( 1
m) the total number of machines

open
∑

i≤LOpeni is at least m− 5cst5 ·m5/6, in which case we get

algo value ≥ m · ES0

c(µ)
− O(m5/6 logm). (5)

Furthermore, from Lemma 1 we have that OPT ≤ m · ES0
c(µ) +O(m5/6) with probability at least

1 − 2
m2 . So by taking a union bound and combining this with the above lower bound on the

algorithm’s value, we get that with probability 1−O( 1
m)

algo value ≥ OPT − O(m5/6 logm).

Since (5) also implies that OPT ≥ Ω(m), the previous bound is at least OPT−O(OPT5/6 logOPT).
This concludes the proof of Theorem 2.

We conclude this section by proving the lower bound on the value density of OneRound from
Lemma 2. We defer the proofs of Lemma 1 and 3 to Appendix D.

3.2.1 Proof of Lemma 2

First, we control in high-probability the number of phases that OneRound(m̃) executes before
stopping or failing; this will be important to avoid dependencies on the total number of demands
n in the instance, which can be arbitrarily bigger than the scale of the effective instance.

Claim 1. With probability at least 1− 1
m3 the algorithm OneRound performs at most

k̄ := log

(
m̃

c(µ)
+O(m̃5/6) + 3 log

3
2 m

)
(6)

phases.

Proof. Recall that the demands sizes Y1, Y2, . . . that OneRound sees are still i.i.d. samples from
the original distribution µ. In Lemma 13 (with m = m̃ and δ = 1

m3 ) in the appendix we show

that with probability at least 1− 1
m3 OneRound can schedule at most m̃

c(µ) +O(m̃5/6)+ 3 log
3
2 m

many of these demands; for some intuition, Lemma 1 indicates that even OPT cannot schedule
more than roughly these many demands. Since this quantity is exactly nk̄, OneRound cannot
complete phase k̄ (there are 2nk̄ demands by the end of it) and the claim holds.

Next, we need to bound how many machines are opened by OneRound, which in particular
affects the probability of it failing. For a phase k, let Mk := OPTmach(Y1, . . . , Ynk

) denote the
number of machines in the template solution, and let Uk be the number of additional machines
that had to be open to accommodate the unmatched demands among Ynk+1, . . . , Y2nk

, namely
twice the number of unmatched items. Notice that these quantities are well defined even for
phases that the algorithm did not execute. The quantity Mk +Uk is then the number machines
that the algorithm OneRound opens in phase k (if it executes it). We have the following bounds
for the number of machines open, at least for a phase k where the number of items nk is
sufficiently large (but still sublinear in m).

Claim 2. Let k0 := ( 2
cst2

logm)2/3 for a sufficiently small constant cst2. Then there is a
constant cst1 such that:

1. For k ≥ k0, we have Mk ∈ nk · c(µ) ± cst1 · n5/6
k with probability ≥ 1− 1

m3

2. For k ≥ k0, we have Uk ≤ cst1 ·
√
nk log3/4 nk with probability ≥ 1− 1

m3
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3. nk0 ≤ m5/6.

Proof. Consider a phase k ≥ k0. Since the demand sizes Y1, . . . , Y2nk
seen in this phase are

i.i.d. samples from the original distribution µ, we can bound the minimum number of machines

OPTmach(Y1, . . . , Ynk
) (using Corollary 1 in Appendix D.1 with λ = n

1/3
k )

OPTmach(Y1, . . . , Ynk
) ∈ nk · c(µ)±O(n

5/6
k )

with probability at least 1 − 2e−
n
2/3
k
2 . Moreover, employing the guarantee of the algorithm

OffMinFailoverAlg used to build the template (Theorem 4 with ε = 1/n
1/6
k ), we get

Mk ∈ nk · c(µ)± cst1 · n5/6
k

with probability at least 1− 2e−
n
2/3
k
2 for some constant cst1. But since nk = 2k ≥ 2k0 , a quick

calculation shows that this probability is at least 1− 1
m3 , proving the first item of the claim.

To control Uk, we can use the Monotone Matching Theorem (Theorem 3) with the first
sequence of sizes being the demands from the template, i.e., (B1, . . . , Bnk

) = (Y1, . . . , Ynk
), and

the second one being the demands that we attempted to match to them, namely (A1, . . . , Ank
) =

(Ynk+1, . . . , Y2nk
) to obtain that the number of unmatched demands it at most cst·√nk log3/4 nk

with probability at least 1− e−cst·log3/2 nk , and hence with this probability

Uk ≤ 2cst ·
√
nk log3/4 nk.

Again because k ≥ k0, we get that this probability is at least 1 − 1
m3 , proving Item 2 of the

claim (by taking cst1 ≥ 2cst we can just replace the latter by the former).
The last item nk0 ≤ m5/6 of the claim can be directly verified using the fact that we assumed

m is at least a sufficiently large constant.

Recall that OneRound only fails when the number of machines Mk + Uk actually opened in
a phase is bigger than it “predicted” in Line 2.(b), and this prediction is exactly Mk plus the
upper bound Uk from Claim 2 plus a slack of 2m5/6. By considering all phases, it is now easy
to upper bound the probability that OneRound fails (k̄ is defined in (6)).

Claim 3. The probability that OneRound fails is at most k̄+1
m3 .

Proof. Fix any phase k, and we claim that the probability that OneRound fails on this phase is
at most 1

m3 . If OneRound fails on phase k, then it did not STOP in Line 2.(b), so

# [machines open before phase k] +OPTmach(Y1, . . . , Ynk
)+ cst1 ·

√
nk log3/4 nk +2m5/6 ≤ m̃,

but it ran out of machines during phase k, namely

# [machines open before phase k] + (Mk + Uk) > m̃.

Since Mk = OPTmach(Y1, . . . , Ynk
), these observations imply that Uk > cst1 ·

√
nk log3/4 nk +

2m5/6. This is impossible if nk ≤ m5/6, because the number of machines Uk opened for the
unmatched demands is at most twice the number nk of demands considered for the matching.
So we must have nk > m5/6 (and so from Claim 2 k ≥ k0) and at least Uk > cst1 ·

√
nk log3/4 nk;

but again by Claim 2 the latter happens with probability at most 1
m3 . Thus, the probability

that OneRound fails on phase k is at most 1
m3 .

Moreover, by Claim 1, with probability at least 1 − 1
m3 OneRound has at most k̄ phases.

Then taking a union bound, we see that the event that OneRound has at most k̄ phases and in
all of them it does not fail holds with probability at least 1 − k̄+1

m3 ; in particular, with at least
this much probability the algorithm does not fail in its execution, which proves the claim.
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We now finally lower bound the value that OneRound gets. Let τ be the (random) index
of the last phase attempted by OneRound, namely where Line 2.(c) is executed. As long as it
does not fail on the last phase τ (which by the previous claim happens with probability at least

1− k̄+1
m3 ) OneRound gets the value of all items up until this phase, that is

value of OneRound ≥ Y1 + . . .+ Y2nτ ≥ Y1 + . . .+ Y2nmin{τ,k̄} . (7)

Recall that the Yi’s are independent and each has mean ES0. Then employing the Chernoff
bound (Lemma 11) with λ =

√
nk̄ log(m

3 · nk̄), for any fixed t ≤ nk̄ we have that

Y1 + . . .+ Yt ≥ t · ES0 −
√
nk̄ log(m

3 · nk̄) with probability at least 1− 1

m3 · nk̄

.

Then taking a union bound over (7), the previous displayed inequality for all t ≤ nk̄, and over
the event that OneRound has at most k̄ phases (which holds with probability at least 1 − 1

m3 )
we get that

value of OneRound ≥ 2nmin{τ,k̄} · ES0 −
√
nk̄ log(m

3 · nk̄)

= 2nτ · ES0 −
√

nk̄ log(m
3 · nk̄)

≥ 2nτ · ES0 −O(m5/6) with probability ≥ 1− k̄ + 3

m3
. (8)

To conclude the proof of Lemma 2 we just need to relate this quantity to the number of
machines opened by OneRound. Let Openℓ be the number of machines opened until (including)
phase ℓ, and recall that Open is the number of machines opened over all phases. Since the
number of machines opened on phase k is Mk+Uk (plus two machines for the first demand Y1),
we have

Openℓ = 2 + (M1 + U1) + . . .+ (Mℓ + Uℓ) (9)

To upper bound the right-hand side, for the phases k < k0 we just use the fact thatMk+Uk ≤
2nk + 2nk = 4nk, since both in the template and for the unmatched demands we never open
more than 2 machines per demand considered (and nk demands are considered in each part).
For each phase k = k0, . . . , k̄ we can use Claim 2 to upper bound Mk + Uk with probability at
least 1− 2

m3 by

Mk + Uk ≤ nk · c(µ) + cst1 · n5/6
k + cst1 ·

√
nk log3/4 nk

≤ nk · c(µ) + cst3 · n5/6
k

for some constant cst3. Together these bounds give that with probability at least 1− 2ℓ
m3

Openℓ ≤ 2 +
∑
k<k0

4nk +

ℓ∑
k=k0

(
nk · c(µ) + cst3 · n5/6

k

)
.

To further upper bound the first summation on the right-hand side, because of the exponential
relationship nk = 2k, we have

∑
k<k0

4nk ≤ 8nk0−1 ≤ O(m5/6), the last inequality coming from

Claim 2; for the second summation, we analogously have
∑ℓ

k=k0
nk ≤ 2nℓ and

∑ℓ
k=k0

n
5/6
k ≤

O(n
5/6
ℓ ). Therefore,

Openℓ ≤ 2nℓ · c(µ) +O(n
5/6
ℓ ) +O(m5/6) with probability at least 1− 2ℓ

m3
. (10)
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Finally, since by Claim 1 the number of phases τ performed by OneRound is at most k̄ with
probability at least 1− 1

m3 , the total number of machines open can be upper bounded

Open ≤ Openmin{τ,k̄} ≤ 2nτ · c(µ) +O(n
5/6

k̄
) +O(m5/6) ≤ 2nτ · c(µ) +O(m5/6)

with probability at least 1− 2k̄+1
m3 .

Finally, taking a union bound to combine this inequality with (8), we get that

value of OneRound ≥ ES0

c(µ)
·Open−O(m5/6)

with probability at least 1 − 3k̄+4
m3 . Since m is at least a sufficiently large constant, we have

m ≥ 3k̄+4, and the bound from the displayed inequality holds with probability at least 1− 1
m2 .

This finally concludes the proof of Lemma 2.

4 Offline Machine Minimization

In this section we consider the aforementioned (offline) minimization version of Failover, which
we call OffMinFailover: Given a failover capacity B ≥ 1 and a collection of demands such
that demand j has size sj ∈ [0,min{1, B2 }], we need to assign all demands to pairs of machines
while satisfying the Nominal and Failover constraints, and the goal is to minimize the number
of machines used. As before, we use OPTmach = OPTmach(s1, . . . , sn) to denote the cost of (i.e.
number of machines in) the optimal solution.

The main result of this section (Theorem 4, restated) is an efficient algorithm with a sublinear
additive regret for this problem (when ε is set appropriately). We remark that a sublinear regret
(compared to, say, a constant approximation) is necessary due to its use in Section 3. In fact,
the algorithm compares against the stronger optimum of an LP relaxation for the problem
(denoted by (LPmach), and defined below), which will be crucially used in Section 5. We let
LPmach denote the optimal value of this LP.

Theorem 4. There exists a poly-time algorithm, OffMinFailoverAlg, that given ε ∈ (0, 1), finds a
solution for OffMinFailover with at most

(
1+O(ε)

)
LPmach+O( 1

ε5
) ≤

(
1+O(ε)

)
OPTmach+

O( 1
ε5
) machines.

As hinted above, our algorithm is based on converting a solution of a configuration LP into
a good assignment of demands to pairs of machines. But crucially, while the configuration
of each machine controls the total size of demands serviced by it, it has no information how
these demands are distributed over the “edges” incident to the machine, which is important for
adequately handling the Failover constraints. The post-processing of the LP solution is the one
in charge of creating a feasible (and low-cost) assignment from this limited control offered by
the LP.

4.1 Configuration LP

Consider an assignment of the demands into some number of machines. We can view the
collection of demands assigned to (the edges incident to) a given machine as a configuration.
Precisely, we define a configuration C to be a subset of the demands such that

∑
s∈C s ≤ 1 and∑

s∈C s+maxs∈C s ≤ B. Note that the first constraint is exactly the Nominal constraint, while
the second is a relaxation of the Failover constraint, because the most-loaded edge incident on
some machine can be larger than the single largest demand assigned to that machine. Thus,
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our notion of configuration does not take in to account how the demands are assigned to the
respective edges incident on each machine.

To define our configuration LP, we suppose the input collection of demands is partitioned
into T demand types such that type t consists of nt-many demands each with size st. Thus
each configuration C can be represented by a number nt(C) ∈ N of demands for each type t
such that

∑
t nt(C) · st ≤ 1 and

∑
t nt(C) · st +maxt|nt(C)>0 st ≤ B. We are ready to define our

configuration LP:

min
∑

C xC
s.t.

∑
C nt(C) · xC ≥ 2nt ∀t

x ≥ 0
(LPmach)

Note that the definition of (LPmach) depends on how the demands are partitioned into types.
We show in Appendix E.1 that the optimal value of (LPmach) does not depend on the particular
type partition. Thus, throughout the analysis, we will use whichever type partition is convenient
(unless a particular one is specified).

It is immediate that (LPmach) is a relaxation of OffMinFailover by taking the natural
setting of the x-variables defined by a feasible assignment to machines: just let xC be the
number of machines whose collection of demand sizes assigned to its edges are exactly those in
C. In particular, we have that LPmach ≤ OPTmach.

Although (LPmach) has exponentially many variables in general, we can approximately solve
it via column generation similar to the standard bin packing configuration LP [10, 20] (see
Appendix E.2).

Lemma 4. We can find in poly-time an extreme point solution of (LPmach) with objective value
at most LPmach + 1.

Further, observe that (LPmach) only has T non-trivial constraints, so by the standard rank
argument (see for example Lemma 2.1.3 of [12]) any extreme point solution of (LPmach) has at
most T non-zero variables. Thus, the next lemma follows immediately by rounding up all the
fractional variable of an extreme point solution.

Lemma 5. Given an extreme point of (LPmach) with objective value Val, rounding up all
fractional variables to the next largest integer gives an integral solution to (LPmach) with objective
value at most Val+ T .

To summarize this section, we can efficiently obtain a collection of configurations, each
corresponding to a machine, that “covers” all the demands. However, these configurations do
not specify how to actually assign the demands to the edges incident on the corresponding
machine. This is the goal of the next section.

4.2 Matching configurations

We say that a collection C of configurations is feasible if it comes from an integer solution for
(LPmach), i.e. setting xC to be the number of times C appears in C gives a feasible solution for
(LPmach). Our goal in this section is to realize such collection by actually assigning demands to
edges. The main challenge is satisfying the actual Failover constraints.

For simplicity assume
∑

C∈C nt(C) = 2nt for all types t, i.e. each demand appears on exactly
2 configurations (drop from the configurations what is extra). We can think of C (with, say, N
configurations) as a graph on N nodes/machines, where node/machine C ∈ C has nt(C) “slots”
for demands of type t. While this gives the right number of slots 2nt to accommodate the
demands of each type t, we still need to specify to which edge (pair of machines) each of the nt
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demands of type t is assigned in a way that satisfies the Nominal and Failover constraints. (We
can alternatively see this as a graph realization problem: each node C as having a requirement
nt(C) of “edges of type t” (which we call its t-degree) and we want to create edges of different
types (i.e., assignment of demands to pairs of nodes) to satisfy these requirements while also
satisfying the Nominal and Failover constraints.)

To see the challenge, consider a fixed node/configuration C. Regardless of how we assign
demands to edges (as long as it is consistent with the slots of the configurations), the Nominal
constraint of C is satisfied: it will receive total size

∑
t nt(C) · st =

∑
s∈C s, which is at most

1 by definition of a configuration. This is not the case for the Failover constraint. This is
again because the definition of configuration only gives us the relaxed version of the Failover
constraint

∑
s∈C s + maxs∈C s ≤ B, In particular, the blue term only considers the largest

demand assigned to machine C instead of the most-loaded edge incident to C. However, these
two quantities are the same if we are able to assign at most one demand per edge. (In the graph
realization perspective, it means that it suffices to construct a simple graph with the desired
t-degrees.) But it is not clear that such an assignment should even exist, let alone be found
efficiently.

The main result of this section is that – by opening slightly more machines – we can find such
an assignment that realizes any given collection of configurations satisfying both the Nominal
and Failover constraints.

Theorem 6. Consider an instance of OffMinFailover with T demand types. Given a col-
lection C of N configurations that is feasible for (LPmach), we can find in poly-time a feasible
solution for OffMinFailover that uses at most N +O(DT ) machines, where D is the maxi-
mum number of demands in any configuration in C.

For that, we will need the following subroutine to assign some demands outside of their
respective configurations.

Lemma 6. There is a poly-time algorithm for OffMinFailover that uses at most 8 · S + 2
machines, where S is the sum of the size of the demands in the instance.

Proof. Our algorithm will only open edges – that is, we will open machines in pairs and will only
assign demands to the edges of the paired machines. Our algorithm is the following: Consider
the demands in any order. Assign each demand to already-opened edge as long as the Nominal
and Failover constraints remain satisfied. Else open a new edge and assign the demand there.

It is clear that the algorithm is efficient and satisfies the constraints. We claim this algorithm
opens at most 8 ·S+2 machines (i.e. 4 ·S+1 edges). To see this, note that every edge except at
most one has load at least 1

4 . If not, then consider the first time that there are two open edges
with load less than 1

4 . It must be the case that the last demand sj the algorithm considered up to
this point had size less than 1

4 , but the algorithm decided to open a new edge for this demand
rather than assign it to a previous edge (u, v) that already had load less than 1

4 . However,
assigning demand sj to the edge (u, v) is feasible; the left-hand side of the Failover constraint
for machine u, say, would be at most 1

2 (total size assigned to machine u) plus 1
2 (total size

assigned to the edge (u, v), the only one incident to u), which is at most the Failover capacity
B ≥ 1.) This contradicts the definition of the algorithm.

The algorithm guaranteed by Theorem 6 is the following. In order to simplify the notation,
as before we assume without loss of generality that C has

∑
C∈C nt(C) = 2nt for all types t.

Proof of Theorem 6. It is clear that MatchConfigs runs in polynomial time, and assigns all
demands to edges. Further, this assignment satisfies both the Nominal and Failover constraints,
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MatchConfigs: Given a collection C of N configurations:

1: Open N machines – one corresponding to each configuration in C.

2: Consider demand types in arbitrary order t = 1, . . . , T .

3: When considering demand type t, partition the collection C into two collections Lt and Rt such that
their total t-degrees

∑
C∈Lt

nt(C) and
∑

C∈Rt
nt(C) differ by at most Dt, where Dt is the maximum

number of type t demands in any configuration. (This can be achieved, e.g., by initializing Lt,Rt = ∅,
and adding configurations one-by-one to the set with minimum total t-degree.)

4: Given this partition, as long as there exists a configuration C ∈ Lt that is currently assigned less
than nt(C) demands of type t, we pick such a configuration and assign a demand of type t to an
arbitrary edge (C,C ′) (for C ′ ∈ Rt) that has not yet been assigned a demand of any type and such
that C ′ is currently assigned less than nt(C

′) demands of type t. If no such edge exists, then we stop
and move on to the next demand type.

5: Once we are done considering all demand types, assign all the currently unassigned demands to new
machines using Lemma 6.

because we assign at most one demand per edge in Step 4 (see discussion in the beginning of
this section) , and Step 5 guarantees a feasible assignment for the remaining demands.

It remains to show that it opens N+O(DT ) machines. In particular, by Lemma 6 it suffices
to show that the total size of all unassigned demands that reach Step 5 is O(DT ). When
considering demand type t, there are two possibilities:

Case 1: Step 4 assigns nt(C) type t demands to each C ∈ Lt. In this case it assigns∑
C∈Lt

nt(C) type t demands to edges between Lt and Rt, while the total number of type
t demands is

nt =
1

2

( ∑
C∈Lt

nt(C) +
∑
C∈Rt

nt(C)

)
≤
∑
C∈Lt

nt(C) +
Dt

2
, (11)

where the inequality uses the fact that the t-degree of Rt is at most that of Lt plus Dt. Thus,
at most Dt

2 demands of type t remain unassigned and reach Step 5. The total size of these
demands it at most 1

2 , since Dt demands of type t are in a valid configuration. Hence the total
size of the unassigned demands of all types is at most T

2 ≤ O(DT ).

Case 2: Step 4 fails to assign nt(C̄) to a configuration C̄ ∈ Lt. In this case, for each C ′ ∈ Rt,
either the edge (C̄, C ′) is already assigned some demand (call such C ′ blocked) or C ′ has already
been assigned nt(C

′) demands of type t. But there are at most D blocked C ′’s, since the
configuration C̄ has at most D slots to receive demands. Thus the total number of type-t
demands assigned is at least∑

C′∈Rt\blocked

nt(C
′) ≥

∑
C′∈Rt

nt(C
′) − D · max

C′∈blocked
nt(C

′) ≥
∑

C′∈Rt

nt(C
′) − D ·Dt.

Moreover, exchanging the roles of Lt andRt in the argument from (11) we get that
∑

C′∈Rt
nt(C

′) ≥
nt − Dt

2 , and thus at least nt −D ·Dt − Dt
2 demands of type t are assigned by Step 4. Thus at

most O(D ·Dt) demands (hence total size O(D)) of this type remain unassigned and reach Step
5. This a total size of O(DT ), over all demand types, that reach the latter step, as desired.

We summarize the main results of this section and the previous with the next theorem:
By approximately solving (LPmach) (Lemma 4), rounding the solution (Lemma 5), and using
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the above algorithm to obtain an assignment of demands to edges (Theorem 6), we obtain the
following.

Theorem 7. Consider an instance of OffMinFailover that has most T demands types and
where each configuration has at most D demands. Then there is a poly-time algorithm that finds
a feasible solution that uses at most LPmach +O(DT ) machines.

To use this procedure for obtaining our main result, Theorem 4, we need to modify the
input instance to make D and T small enough, which is the goal of the next section.

4.3 Reducing the number of types and demands in a configuration

Given an arbitrary set of demands J , we will convert this into another set of demands J̃ with
small parameters T and D such that: 1) The optimal LP value for J and J̃ are similar; 2)
We can convert an assignment of the demands J̃ into an assignment of the original demands J
without using many extra machines.

Given a parameter ε ∈ (0, 1), the instance J̃ is constructed as follows. First, partition
J = S ∪ M into small (sj < ε2) and medium demands (sj ≥ ε2), respectively. To reduce the
number of types of medium demands we apply linear grouping, a transformation used in the
context of Bin Packing [10]: Let n := |M |. Partition M into 1

ε3
groups, consisting of the ε3n

largest demands, the next ε3n largest demands, and so on. Note every group has size exactly ε3n
except possibly the last group, corresponding to the smallest demands. At this point, let L be
the first group, corresponding to the largest demands. We can now partition J = S∪(M \L)∪L.
For the remaining groups of demands in M \L, let M̃ denote the modified set of demands, where
we round the size of each demand in M \ L up to the largest size in its group. (The demands
L will not be part of the final instance J̃ and have to be handled separately.)

For the small demands S, we want to both reduce the number of types but also ensure that
none of them are too small (in order to limit the max number of demands in a configuration).
Simply rounding all of them to the threshold ε2 may increase the LP value too much, and
rounding down to 0 is effectively ignoring these demands, which makes it difficult to produce
an assignment for the original instance J . So instead the idea is to group the small items S into
“blocks” of size exactly ε. Since no set of small items may add to exactly this size, we actually
just create the appropriate amount of “blocks”: let S̃ be a collection of ⌈1ε

∑
s∈S s⌉ demands of

size ε.
Then the transformed instance is given by the modified medium and small items, that is,

J̃ = S̃∪M̃ . The parameters T and D are indeed controlled: there are T = 1
ε3
+1 = O( 1

ε3
) types,

and since all demands have size at least ε2 the max number of demands in a configuration is
D = 1

ε2
. (Also note that the large demands L, which are treated separately, have sizes at least

ε2 and there are at most ε3|M | of them.) The next lemma states that our modifications did not
increase LPmach by much. For any set of demands J , we let LPmach(J) be the optimal LP value
for this set of demands (recall that this is well-defined regardless of the partition of demands
into types Appendix E.1).

Lemma 7. For any set of demands J and ε ∈ (0, 1), let the modified set of demands J̃ = S̃∪M̃
be defined as above. Then

LPmach(J̃) ≤
(
1 +O(ε)

)
LPmach(J) +O(1).

Proof. We first claim that LPmach(S ∪ M̃) ≤ LPmach(J). To see this, recall that M̃ is obtained
from M by excluding L (the group of the largest ε3n demands) and rounding up all remaining
groups. Thus, for every group G in M except L, there exists a next-larger group G′ in M with
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at least as many demands and such that every demand in G′ has size greater than or equal to
every demand in G. This still holds after rounding up all demand sizes in G to largest demand
in G, which is how we obtain M̃ . Thus, we can monotonely match every item in S∪M̃ to items
in S ∪M = J , and with this it is not hard to see that LPmach(S ∪ M̃) ≤ LPmach(J).

Given this inequality, it suffices to show LPmach(S̃ ∪ M̃) ≤
(
1 + O(ε)

)
LPmach(S ∪ M̃) +

O(1). We will use an optimal solution for LPmach(S ∪ M̃) to construct a feasible solution to
LPmach(S̃∪M̃) without increasing the objective value by much. It is convenient to consider the
type partition of S ∪ M̃ where every small job is its own type, and there is one type for each
group in M̃ . Similarly, for S̃ ∪ M̃ , we consider the type partition with one demand type for all
demands in S̃ and one for each group in M̃ .

To achieve this, we map each configuration C of demands S∪M̃ to a configuration C ′ using
demands S̃ ∪ M̃ as follows: Starting from C, we keep all of its M̃ demands. For the S (small)
demands, let k be an integer such that the total size of all small demands in the configuration
is in the interval [k · ε, (k+1) · ε). We arbitrarily remove small demands from this configuration
until the total size of the remaining small demands lies in the interval [k · ε− ε2, k · ε]. In doing
so, we remove at most ϵ + ϵ2 units of small demands (using the fact that every small demand
has size at most ϵ2.) Then we replace the S demands in this configuration C with max(0, k−1)
blocks of small demands (i.e. demands in S̃), obtaining a configuration C ′ of demands S̃ ∪ M̃ .

Proposition 1. The configurations C ′ created by the above procedure are valid configuration.

Proof. Let C be the input configuration of demands S ∪ M̃ and C ′ the resulting configuration
of demands S̃ ∪ M̃ (and throughout, let k be the one used in the transformation). We need to
show that

∑
s∈C′ s ≤ 1 and

∑
s∈C′ s +maxs∈C′ s ≤ B. For the first inequality, both C and C ′

have the same M̃ demands and the total size of S demands in C is at least k · ε and the total
size of S̃ demands in C is max{0, (k−1) ·ε}; thus

∑
s∈C′ s ≤

∑
s∈C s ≤ 1, the last step following

from the validity of C.
It remains to show the second inequality. There are two cases to consider:

1. If k ≤ 1 then C ′ contains no blocks of small demands but only the M̃ demands that are
also present in C. Then we have∑

s∈C′

s+max
s∈C′

s ≤
∑
s∈C

s+max
s∈C

s ≤ B, (12)

as desired (the last inequality following from the validity of C).

2. Otherwise k ≥ 2. In this case, C ′ contains k−1 ≥ 1 blocks and the total size of S̃ demands
in C ′ is (k − 1) · ε, while the total size of S demands in C is at least k · ε. Since both
configurations have the same M̃ demands, this gives

∑
s∈C′ s ≤

∑
s∈C s − ε. Further,

because S̃ demand has size exactly ε, we have

max
s∈C′

s ≤ max

{
ε , max

s∈C′∩M̃
s

}
= max

{
ε , max

s∈C∩M̃
s

}
≤ ε+max

s∈C
s.

Combining both bounds gives the desired inequality (as in (12)).

Thus C ′ is a valid configuration, concluding the proof of the proposition.

Finally, we construct a feasible setting of the x-variables for (LPmach(S̃∪M̃)) with objective
value at most

(
1 + O(ϵ)

)
LPmach(S ∪ M̃) + O(1), completing the proof. Let x∗ be an optimal

solution for (LPmach(S ∪ M̃)). Let C be the collection of all possible configurations for demands
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S∪M̃ and C′ the collection of all possible configurations for demands S̃∪M̃ . For every C ′ ∈ C′,
we define x̄C′ =

∑
C∈C|C→C′ x∗C , where C → C ′ denotes the event that the above procedure maps

configuration C to C ′. In words, we map the configurations chosen by x∗ in C to configurations
in C ′. At this point, the objective value of x̄ is

∑
C′∈C′ x̄C′ = LPmach(S ∪ M̃). It remains to

modify x̄ so that it is feasible.
Note that LPmach(S̃ ∪ M̃) and LPmach(S ∪ M̃) have the same constraints for the demands

in M̃ , and the mapping C → C ′ preserves the number of each type of medium demand. Thus,
x̄ satisfies all medium demand constraints. It remains to satisfy the constraint for the demands
in S̃.

This constraint says that the total number of demands from S̃ in the configurations picked
by the solution has to be at least twice the number of demands in S̃. Since every demand in
S̃ has exactly the same size ε, this constraint can be equivalently written in terms of sizes as
follows (let size(A) :=

∑
s∈A s for A ⊆ R+):

1

ε

∑
C′∈C′

xC′ · size(C ′ ∩ S̃) ≥ 2|S̃|. (13)

We modify x̄ to satisfy this.
We know that since x∗ is feasible for (LPmach(S ∪ M̃)), the total size of S demands it picks

up is at least twice size(S), that is,∑
C∈C

x∗C · size(C ∩ S) ≥ 2size(S). (14)

Also, notice that for every mapped configurations C → C ′ we have size(C∩S) ≤ size(C ′∩S̃)+2ε
(since size(C ∩ S) ≤ (k + 1) · ε and size(C ′ ∩ S̃) ≥ (k − 1) · ε for some k). Then using the
definition of x̄ we get∑
C′∈C′

x̄C′ · size(C ′ ∩ S̃) =
∑
C′∈C′

∑
C∈C|C→C′

x∗C · size(C ′ ∩ S̃) ≥
∑
C∈C

x∗C · size(C ∩ S)− 2ε
∑
C∈C

x∗C

≥ 2size(S)− 2ε LPmach(S ∪ M̃),

where the last inequality uses (14). Thus, it suffices to increase the S̃ size of the demands picked
up by x̄ by 2ε · (1 + LPmach(S ∪ M̃)) for it to satisfy (13). Dividing through by ε and using

|S̃| = ⌈1ε
∑

s∈S s⌉ ≤ size(S)
ε + 1 we get

1

ε

∑
C′∈C′

x̄C′ · size(C ′ ∩ S̃) ≥ 2|S̃| − 2− 2LPmach(S ∪ M̃).

For x̄ to satisfy (13) we just need to increase it so it covers ⌈2+2LPmach(S∪M̃)⌉ extra demands
of (type) S̃. For that, use Lemma 6 to assign these additional demands to at most O(ε) · (1 +
LPmach(S ∪ M̃)) + O(1) many machines, and add to x̄ the configurations of these machines.
Now x̄ satisfies (13), and has objective value at most

(
1 +O(ε)

)
LPmach(S ∪ M̃) +O(1).

4.4 Putting it all together

We finally obtain the complete algorithm for assigning the original demands J . At a high-level,
we schedule the large demands L in edges by themselves, use the configuration LP plus rounding
and realization of the configurations into an edge assignment (Theorem 7) for the instance J̃
with modified small and medium demands to create a template, and finally replace them by
the original small and (non-large) medium items S and M \ L. The precise algorithm is the
following:
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OffMinFailoverAlg: Given a collection J of demands, failover capacity B ≥ 1, and parameter
ε ∈ (0, 1):

1: Construct the sets of small, medium, and large demands J = S∪M ∪L as well as the blocks of small
demands and grouped medium demands S̃ and M̃ , respectively as in Section 4.3.

2: For each large demand, open a new edge (two machines) for that demand and assign it there.

3: For the blocks and grouped medium demands S̃ ∪ M̃ , there is a total of T = O( 1
ε3 ) demand types

and each configuration can have at most D = O( 1
ε2 ) demands. So run the algorithm guaranteed by

Theorem 7 to obtain an assignment of S̃ ∪ M̃ into at most LPmach(S̃ ∪ M̃) + O( 1
ε5 ) machines. We

open this many machines and use the above assignment as a template to actually assign S and M \L

4: Recall that we only increased the size of each demand from M \ L to M̃ , so we can assign each
demand in M \ L in the place of its corresponding demand in M̃ .

5: For the demands in S, we consider them in arbitrary order. When considering a demand s ∈ S, if
there exists a block in the template (i.e. relative to a demand from S̃) assignment with less than
ε − s units of small demands assigned there, then assign demand s in this block. If no such block
exists, then we assign all remaining small demands using Lemma 6.

Proof of Theorem 4. It is immediate that OffMinFailoverAlg runs in polynomial time and assigns
all demands. Further, this assignment satisfies the Nominal and Failover constraints: it puts
each large demand on its own matching edge, our template assignment of S̃ ∪ M̃ is feasible by
Theorem 7, we only assign smaller demands in S∪M than in the template, and our assignment
of the remaining small demands is feasible by Lemma 6.

It remains to show that the number of machines used is at most
(
1+O(ϵ)

)
LPmach(J)+O( 1

ϵ5
).

We account the machines for the large, medium, and small demands separately.

1. For the large demands, we open O(|L|) = O(ε3|M |) machines. Moreover, every demand
in M has size at least ε2, so every feasible configuration for the demands J has at most
1
ε2

such medium demands; since LPmach(J) needs to pick enough configurations to cover
twice the medium demands, we get that 2|M | ≤ LPmach(J) · 1

ε2
. Thus, O(ε) · LPmach(J)

machines are opened for the large demands.

2. For the medium demands, our template assignment of S̃ ∪ M̃ opens LPmach(S̃ ∪ M̃) +
O( 1

ε5
) ≤

(
1 + O(ε)

)
LPmach(J) + O( 1

ε5
), using Lemma 7. We assign all medium demands

in these machines.

3. For the small demands, it suffices to bound the number of extra machines needed for the
remaining small demands that do not fit in the blocks. Consider the first time that we
consider a small demand that cannot be assigned to any block. It must be the case that
each block is already assigned at least (ε − ε2) units of small demands. Recall that the
number of blocks is ⌈1ϵ

∑
j∈S sj⌉. Thus the total size of already assigned small demands is

at least (ε−ε2)⌈1ε
∑

s∈S s⌉ ≥ (1−ε)
∑

j∈S sj . We conclude that the total size of remaining
unassigned small demands is at most ε·

∑
s∈S s = O(ε)·LPmach(J) (again LPmach(J) needs

to cover twice all demands in S and each unit of configuration picked by J can cover at
most 1 unit of size of these demands); this requires O(ε)·LPmach(J) machines by Lemma 6.

In total, we see that the algorithm uses at most
(
1 + O(ϵ)

)
LPmach(J) + O( 1

ϵ5
) machines as

claimed. This concludes the proof of Theorem 4.
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5 Rate of Convergence of the Minimum Number of Machines

The goal of this section is to understand the minimum number of machines needed to as-
sign T items drawn i.i.d. from distribution µ. Recall we denote this random variable by
OPTmach(X1, . . . , XT ). Our main result here (Theorem 5, restated) is that in expectation, this
random variable is approximately linear in T .

Theorem 5. Let µ be a distribution supported on [0,min{1, B2 }]. Then there exists a scalar
c(µ) such that for every T ∈ N, we have

EOPTmach(X1, . . . , XT ) ∈ T · c(µ)±O(T 5/6),

where X1, . . . , XT are i.i.d. samples from µ.

One should interpret the constant c(µ) as the average number of machines needed per
demand as the number of demands goes to infinity. Thus, by dividing both sides of the theorem
by T , we have a quantitative convergence for the expected average number of machines needed
per demand for T demands, 1

T EOPTmach(X1, . . . , XT ) , to the limiting value c(µ).
The main idea to prove Theorem 5 is to consider a deterministic proxy for OPTmach(X1, . . . , XT ).

To construct this proxy we follow the approach of [13] that proves a similar result for the Bin
Packing problem: for any distribution µ supported on [0, 1], we define its quantile function µ−1

µ−1(p) := inf{x ∈ [0, 1] : µ([0, x]) ≥ p}.

For example, if µ is a continuous distribution, then µ−1(p) is the unique value x such that
µ([0, x]) = p. Then, let µT denote the instance that has T demands whose sizes are given by{

µ−1

(
0

T

)
, µ−1

(
1

T

)
, . . . , µ−1

(
T − 1

T

)}
.

Note that µT is a deterministic instance. Roughly, in the stochastic instance {X1, . . . , XT }, we
“expect” one demand to fall into each quantile [µ−1( kT ), µ

−1(k+1
T )] for each k = 0, . . . , T − 1.

Thus, our deterministic proxy for OPTmach(X1, . . . , XT ) is OPTmach(µT ).
Keeping in mind our interpretation for the constant c(µ) from before (the average number of

machines needed per demand) and our deterministic proxy, we take c(µ) := lim supn→∞
1
nOPT(µn).

We will show that this choice of c(µ) has the desired property.
There are two main steps to prove Theorem 5. We first show that OPTmach(µT ) is a

good proxy for EOPTmach(X1, . . . , XT ). The proof of the next lemma relies on another Rhee-
Talgrand-like monotone matching argument, where we construct a matching between the Xt’s
and µ−1( t

T )’s such that few demands are left unmatched.

Lemma 8. For every T ∈ N, we have

EOPTmach(X1, . . . , XT ) ∈ OPTmach(µT )±O(
√
T ),

where X1, . . . , XT are i.i.d. samples from µ.

Second, we show that OPTmach(µT ) has the desired approximate linearity property. This
relies on relating OPTmach(µT ) to its LP relaxation, (LPmach(µT )), whose optimal value is
approximately linear in T .

Lemma 9. For every T ∈ N, we have OPTmach(µT ) ∈ T · c(µ)±O(T 5/6).

Theorem 5 follows immediately from the above two lemmas, which we prove in the subse-
quent sections.
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5.1 Proof of Lemma 8: OPTmach(µT ) is a good proxy

For convenience, we let µT = {s0, . . . sT−1}, where sj = µ−1(j/T ). There are two analogous
directions to prove: EOPTmach(X1, . . . , XT ) ≤ OPTmach(µT ) + O(

√
T ), and OPTmach(µT ) ≤

EOPTmach(X1, . . . , XT )+O(
√
T ). For the former, we use the assignment of µT into OPTmach(µT )

devices as a template to assign X1, . . . , XT using only O(
√
T ) extra devices. To do so, we show

that there exists a large monotone matching from the Xi’s to the sj ’s such that if Xi is matched
to sj , then Xi ≤ sj . We can bound the number of unmatched Xi’s using a quantitative version
of Hall’s theorem (Theorem 1.3.1 of [17]):

Theorem 8. Let G = (L ∪ R,E) be a bipartite graph. For any subset U ⊆ L, we define its
deficiency by def(U) := |U |− |N(U)|, where N(U) ⊆ R is the set of neighbors of U . Then there
exists a matching in G that leaves at most maxU⊆L def(U) vertices of L unmatched.

For all matchedXi’s, we can assign them to the same position as their matched sj-counterpart
using OPTmach(µT ) machines as a template. For the unmatched ones, we assign them each to
their own disjoint edge (opening 2 extra devices). To complete the proof, we need to show that
in expectation, few of the Xi’s are unmatched. To do so, we use the Dvoretzky-Kiefer-Wolfowitz
Inequality (Theorem 9 in Appendix A) to quantify the deviation of the empirical quantiles of
the Xi’s with the “true” quantiles µ−1(j/T ). We now proceed formally.

Proposition 2. We have EOPTmach(X1, . . . , XT ) ≤ OPTmach(µT ) +O(
√
T ).

Proof. Consider the (random) bipartite graph G with T vertices on each side such that the left
side vertices correspond to the Xi’s and the right to the sj ’s. We have an edge (Xi, sj) exactly
when Xi ≤ sj .

Note that the maximum deficiency subset of the Xi’s (as defined in Theorem 8) must cor-
respond to the random subset of all Xi’s that are strictly larger than some sj−1 for some j =
1, . . . , T . The deficiency of the jth such subset is def(j) := #{Xi’s strictly larger than sj−1}−
(T − j). Thus, a maximum matching in G leaves at most maxj def(j) of the Xi’s unmatched
by Theorem 8. Fix some such maximum matching. We use it to assign the Xi’s as follows:

1. Open OPTmach(µT ) many devices. Consider the tentative assignment of µT to these
devices.

2. For each matched Xi, we assign it to the pair of devices that its matched sj is tentatively
assigned to.

3. For each unmatched Xi, we open two more devices and assign Xi to the edge between
them.

This is a feasible assignment of all Xi’s (because we assign each matched Xi to a slot for a
larger sj and each Xi fits on an edge by itself) using at most OPTmach(µT ) + 2 ·maxj def(j)
devices. It remains to show E maxj def(j) = O(

√
T ). We re-write def(j) using Claim 4 from

Appendix B in terms of the tails of µ:

def(j) = #{Xi’s strictly larger than sj−1} − (T − j)

≤ #{Xi’s strictly larger than sj−1} − T · µ((sj−1, 1]) + 1.

Moreover, using the Dvoretzky-Kiefer-Wolfowitz Inequality (Theorem 9) we have for any λ > 1
T

Pr

(
1

T
max

j
def(j) ≥ λ

)
≤ Pr

(
max
v∈[0,1]

(
1

T
#{Xi’s strictly bigger than v} − µ((v, 1])

)
≥ λ− 1

T

)
≤ 2e−2T (λ− 1

T
)2 .
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Integrating the tail gives:

E
1

T
max

j
defj ≤ O

(
1√
T

)
+

∫ ∞

2/
√
T
Pr

(
1

T
max

j
def(j) ≥ λ

)
dλ

≤ O

(
1√
T

)
+

∫ ∞

2/
√
T
2e−2T (λ− 1

T
)2dλ = O

(
1√
T

)
,

where the last inequality can be seen, for example, by noticing that the integral is at most a
constant times the mean of a folded normal distribution with standard deviation 1/

√
2T , which

is O(1/
√
T ). Re-arranging gives Emaxj(def(j)) ≤ O(

√
T ), as required.

The proof of the other direction is analogous.

Proposition 3. We have OPTmach(µT ) ≤ EOPTmach(X1, . . . , XT ) +O(
√
T ).

Proof. We again consider a random bipartite graph G on the same vertices but we switch
the roles of the Xi’s and sj ’s. That is, now we have an edge (sj , Xi) exactly when sj ≤ Xi.
Analogously, the maximum deficiency subset of the sj ’s corresponds to some set {sj , . . . , sT−1}
for some j = 0, . . . , T − 1 with deficiency def(j) := T − j −#{Xi’s at least sj}.

As before, we use the tentative assignment of demandsX1, . . . , XT into OPTmach(X1, . . . , XT )
devices and a maximum matching of G that leaves at most maxj def(j) of the sj ’s unmatched to
assign µT . In particular, we open OPTmach(X1, . . . , XT ) devices and assign each matched sj to
the slot of its matched Xi. For all remaining unmatched sj ’s, we assign them to disjoint edges.
This gives a feasible assignment of the sj ’s into at most OPTmach(X1, . . . , XT )+2 ·maxj def(j)
devices. It remains to show E maxj def(j) = O(

√
T ).

Again using Claim 4 we have

def(j) ≤ T · µ([sj , 1])−#{Xi’s at least sj},

and so again using the DKW Inequality we get Pr( 1
T maxj def(j) ≥ λ) ≤ 2e−2Tλ2

for any λ > 0.

An analogous calculation by integrating the tail gives E maxj def(j) = O(
√
T ), as required.

To summarize, in both directions (from the Xi’s to sj ’s and the reverse), we can use a
monotone matching and template assignment to find a good assignment of one type of demands
from the other. Combining both propositions proves Lemma 8.

5.2 Proof of Lemma 9: Approximate linearity of OPTmach(µT )

Now we relate the optimum of the finite deterministic instances µT and the limit optimum
c(µ) = lim supn→∞

1
nOPT(µn). Again we have two directions to prove. For the first (more

difficult) direction, we relate OPTmach(µT ) with its LP relaxation, OPT(LPmach(µT )).

Proposition 4. For all T ∈ N we have

OPTmach(µT ) ≤ T · c(µ) +O(T 5/6).

Proof. It suffices to prove for ε ∈ (0, 1):

OPTmach(µT ) ≤ (1 +O(ε))T · OPTmach(µkT )

kT
+O

(
1

ε5

)
(15)

for all integers k ≥ 1. Then taking lim supk→∞ on both sides and noticing

lim sup
k→∞

1

kT
OPTmach(µkT ) ≤ lim sup

n→∞

1

n
OPTmach(µn) = c(µ)
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gives OPTmach(µT ) ≤ (1 + O(ε))T · c(µ) + O( 1
ε5
) (recall that passing to a subsequence cannot

increase a lim sup). Setting ε = 1
T 1/6 to optimize the bound gives

OPTmach(µT ) ≤ T · c(µ) +O(T 5/6)

as desired.
It remains to prove (15). Recall that OPT(LPmach(J)) denotes the optimal value of the

configuration LP (LPmach) for the set of demands J . Then Theorem 4 allows us to bound the
gap between OPTmach(µT ) and OPT(LPmach(µT )).

OPTmach(µT ) ≤ (1 +O(ε))OPT(LPmach(µT )) +O

(
1

ε5

)
. (16)

Moreover, notice that OPT(LPmach) is linear with respect to duplicating items. That is, for
every integer k we have

OPT(LPmach(k · µT )) = k · OPT(LPmach(µT )), (17)

where k · µT denotes the instance that has k copies of each item in µT .
It remains to relate k ·µT with µkT . Because the inverse CDF function µ−1 is non-decreasing,

we can relate these two sets of demand as follows.

k · µT =

{
µ−1

(
0
T

)
, . . . , µ−1

(
0
T

)︸ ︷︷ ︸
k times

, µ−1
(
1
T

)
, . . . , µ−1

(
1
T

)︸ ︷︷ ︸
k times

, . . . , µ−1
(
T−1
T

)
, . . . , µ−1

(
T−1
T

)︸ ︷︷ ︸
k times

}
µkT =

{
µ−1

(
0
kT

)
, . . . , µ−1

(
k−1
kT

)︸ ︷︷ ︸
first k items

, µ−1
(

k
kT

)
, . . . , µ−1

(
2k−1
kT

)︸ ︷︷ ︸
next k items

, . . . , µ−1
( (T−1)k

kT

)
, . . . , µ−1

(
Tk−1
kT

)︸ ︷︷ ︸
next k items

}

we see that the sizes in µkT dominate those in k ·µT (i.e., there is a perfect monotone matching
from k · µT to µkT ). Then one can see that the optimal LP values for these instances satisfy
the expected relationship OPT(LPmach(k · µT )) ≤ OPT(LPmach(µkT )). Together with (17) this
gives

OPT(LPmach(µT )) =
1

k
OPT(LPmach(k · µT )) ≤

1

k
OPT(LPmach(µkT )).

Combining this bound with (16) completes the proof.

Finally, we need a converse to the above proposition

Proposition 5. For every T ∈ N we have

OPTmach(µT ) ≥ T · c(µ)− 2.

Proof. It suffices to show that for every n we have

OPTmach(µT ) ≥ T · OPTmach(µn)

n
− 2− 2T 2

n
. (18)

Taking the lim supn→∞ gives the desired result.
To prove (18), we fix n and write it as n = kT + r for non-negative integers k, r with

remainder r < k. We will upper bound OPTmach(µn) as a function of OPTmach(µT ). To do so,
we first construct the intermediate instance S obtained by increasing the size of the demands
in µn as follows (recall that µn has items µ−1( j

kT+r ) for j = 0, . . . , kT + r − 1):
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• For every j = 0, . . . , Tk − 1, let ĩ be such that j ∈ [(̃i − 1)k, ĩk); then take the item

µ−1( j
kT+r ) of µn and increase its size to µ−1( ĩk

kT ), and add the latter to S.

• For every j = Tk, . . . , Tk + r − 1, take the item µ−1( j
kT+r ) of µn and increase its size to

µ−1(1), and add the latter to S.

We have only increased demand sizes from µn to S, so we have OPTmach(µn) ≤ OPTmach(S).
To further upper bound OPTmach(S), notice that S has the structure

S =

{
µ−1

(
k
kT

)
, . . . , µ−1

(
k
kT

)︸ ︷︷ ︸
k times

, µ−1
(
2k
kT

)
, . . . , µ−1

(
2k
kT

)︸ ︷︷ ︸
k times

, . . . , µ−1
(
Tk
kT

)
, . . . , µ−1

(
Tk
kT

)︸ ︷︷ ︸
k times

, µ−1(1), . . . , µ−1(1)︸ ︷︷ ︸
r times

}
,

which is exactly the union of k copies of the instance µT := (µT ∪ {µ−1(1)}) \ {µ−1(0)} and
the instance of “big” demands B that has r items of size µ−1(1), i.e. S = (k · µT ) ∪ B. Next,
observe the subadditivity relation

OPTmach(S) ≤ k · OPTmach(µT ) + OPTmach(B),

since the optimal solutions of each of the instances µT and B can be concatenated, giving a
feasible solution for S with k ·OPTmach(µT )+OPTmach(B) machines. Moreover, we claim that

OPTmach(µT ) ≤ OPTmach(µT ) + 2 and OPTmach(B) ≤ 2r :

The first inequality is because we can assign all demands µT \{µ−1(0)} using at most OPTmach(µT )
machines and then assign the remaining demand µ−1(1) using 2 extra machines; the second in-
equality is because a feasible solution for B is to assign each demand to 2 separate machines.

Putting all of these bounds together we obtain

OPTmach(µn) ≤ OPTmach(S) ≤ kOPTmach(µT ) + 2k + 2r.

Dividing though by n and using the facts k
n ≤ 1

T and r
n ≤ T

n we get

1

n
OPTmach(µn) ≤

1

T
OPTmach(µT ) +

2

T
+

2T

n
,

which is equivalent to the desired inequality (18). This concludes the proof.

Combining the above two propositions completes the proof of Lemma 9. To summarize,
for both propositions we needed the approximate linearity of OPTmach(µn). In the former, we
argued via LP relaxations, and in the latter by concatenating sub-instances.
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Appendix

A Concentration Inequalities

We also need a couple of concentration inequalities, starting with McDiarmid’s Inequality (The-
orem 6.2 of [3]).

Lemma 10 (McDiarmid’s Inequality). Let g : Zn → R be a function with the bounded differ-
ences property, i.e. for every two vectors z, z′ ∈ Zn that only differ in 1 coordinate we have
|g(z)−g(z′)| ≤ M . If Z1, . . . , Zn are independent random variables taking values in Z, then for
all α > 0

Pr(|g(Z)− Eg(Z)| ≥ α) ≤ 2e−
2α2

nM2 ,

The next classical inequality can be found for example in Theorem 2.8 of [3].

Lemma 11 (Chernoff’s Inequality). Let Z1, . . . , Zn be independent random variables in [0, 1].
Then for all λ > 0

Pr

(∑
t≤n

Zt − E
∑
t≤n

Zt ≥ λ

)
≤ e−

2λ2

n ,

and the same holds for the lower tail, i.e. replacing “≥ λ” for “≤ −λ”.

We also need the Dvoretzky-Kiefer-Wolfowitz inequality that bounds the rate of uniform
convergence of the empirical cdf to the true cdf. To state it, given a distribution µ over the
reals, let cdf(x) = PrX∼µ(X ≤ x) denote its cdf, and given i.i.d. samples X1, . . . , Xn ∼ µ let
cdfn(x) =

1
n

∑
i≤n 1(Xi ≤ x) be the empirical cdf. The following version of the DKW inequality

is Corollary 1 of [14].

Theorem 9 (DKW Inequality). For any distribution µ, any number of samples n, and all
λ > 0,

Pr

(
max
x∈R

|cdfn(x)− cdf(x)| ≥ λ

)
≤ 2e−2nλ2

.

B Auxiliary Results

Claim 4. Consider any probability measure µ over [0, 1]. Letting sj = µ−1(j/T ), we have for
j = 0, . . . , T − 1:

• T − j ≥ T · µ((sj−1, 1])− 1

• T − j ≤ T · µ([sj , 1]).

Proof. For the first item, by definition of sj−1 we have (using continuity of measures w.r.t.
decreasing sets) µ([0, sj−1]) ≥ j−1

T , which reorganizing gives j ≤ T ·µ([0, sj−1]) + 1; this implies
T − j ≥ T (1− µ([0, sj−1])− 1, which is the desired bound.

For the second item, we have (using continuity of measures for increasing sets) µ([0, sj)) ≤ j
T ,

which gives T − j ≤ T (1− µ([0, sj))), which is exactly what we need.

Lemma 12. Consider non-negative constants c, d and α ∈ (0, 1). If m, t > 0 satisfy m ≥
ct− (dt)α, then

t ≤ max

{
1

c

(
m+

(
m(d+ 1)

c

)α)
,

(
(d+ 1)dα

c

) 1
1−α
}
. (19)
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Proof. Assume t1−α > (d+1)dα

c , otherwise we are done by the second term in the max. Multi-

plying through by tα we obtain t > (d+1)(dt)α

c . Rewriting the left-hand-side as t =
( (d+1)c

c −d
)
· t

and reorganizing gives
d+ 1

c

(
ct− (dt)α

)
> dt.

Then the first term in the max in (19) multiplied by c is

m+

(
m(d+ 1)

c

)α ⋆
≥ ct− (dt)α +

(
d+ 1

c

(
ct− (dt)α

))α

≥ ct− (dt)α + (dt)α = ct,

where the inequality ⋆ follows from the assumption m ≥ ct − (dt)α. Dividing through by c
proves (19) (using the first term in the max).

C Additional Results for Online Worst-Case

C.1 Upper bound

In this section, we show an upper bound of 1
2 for deterministic online algorithms for the

Failover problem in the worst-case, proving that the algorithm we design in Section 2 is
essentially tight.

Theorem 10. No deterministic online algorithm can obtain competitive ratio better than 1
2 for

the Failover problem in the worst-case model, even when B = ∞.

Proof. Consider an instance with 4 devices and let ε > 0 be a parameter. Then, the demands
arrive as follows:

• The first 2 demands have size ε.

• If the first 2 demands are placed on the same edge, then there are 2 more demands of size
1− ε.

• If the first 2 demands are not placed on the same edge, then there is one more demand of
size 1.

Case 1: the first 2 demands go on the same edge. In this case, we can only fulfill one
of the demands of size 1− ε that can be placed on the two devices with no existing load, giving
the algorithm total value of at most 1 + ε. OPT can place all 4 demands, e.g., by placing the ε
and 1− ε demands alternatively on edges of a fixed 4-cycle. This gives optimal value 2. So, the
competitive ratio of the algorithm is 1+ε

2 .

Case 2: either the first 2 demands go on disjoint edges or on edges that share an
endpoint. In this scenario, the algorithm cannot place the demand of size 1, while OPT can
place it by putting the two demands of size ε on a single edge. The competitive ratio in this
case is 2ε

1+2ε .

Taking ε → 0 gives the desired result.
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C.2 Algorithm for small demands

We assume there is L ∈ N such that all demands have size ≤ 1
L . We will show that there exists

an online algorithm with competitive ratio that goes to 1 as the size of the largest demand goes
to 0. In particular, the claim is the following:

Theorem 11. If for some L ∈ N that is a square all demands have size at most 1
L , there is

an online algorithm for Failover in the worst-case model that has competitive ratio at least(
1−min

{
3√
L
, mL
})

.

C.2.1 Algorithm

The algorithm opens cliques of machines and schedules the demands on their edges using first-
fit. In particular, for each demand, the algorithm first considers all edges of the first clique in
order before continuing on the edges of the second clique (if one exists) and so on.

Specifically, the algorithm is the following:

1. If m < 3
√
L, open a single clique containing all m machines. Otherwise, when a new

clique is needed, open a clique of size
√
L; if only

√
L′ <

√
L vertices remain, then open

a
√
L′-clique.

2. When a demand arrives, assign it to an edge of an opened clique using first-fit making
sure that for each clique of size m′ the total load on each edge is at most

αm′ = min

{
B

m′ ,
1

m′ − 1

}
If needed, open a new clique if possible.

3. If the demand cannot be scheduled, then stop.

C.2.2 Analysis

Given the capacities αm′ on each edge of a m′-clique, it is easy to check that the algorithm
creates a valid placement that satisfies both Nominal and Failover capacities.

Assume that the algorithm was not able to place everything (otherwise it is OPT). Upon
termination, there is a demand of size at most 1

L that could not be scheduled, therefore for each
clique of size m′ that the algorithm opened, all edges have load at least

αm′ − 1

L

As a result, the total load on all edges of a m′-clique is at least

1

2
·m′ · (m′ − 1)

(
αm′ − 1

L

)
(20)

We also know that OPT can achieve at most

1

2
·min{m, (m− 1)B}. (21)

We now consider the following cases:
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Case 1: m < 3
√
L. In this case, the algorithm opens a single clique of size m and schedules

load at least

1

2
·m · (m− 1)

(
αm − 1

L

)
(22)

Depending on the value of B and m, we have the following cases:

• If m < (m− 1)B, then OPT ≤ m
2 , and αm = 1

m−1 . From (22), we have:

Alg ≥ 1

2
·m · (m− 1)

(
1

m− 1
− 1

L

)
=

m

2

(
1− m− 1

L

)
≥ OPT

(
1− m

L

)
.

• If m ≥ (m− 1)B, then OPT ≤ 1
2(m− 1)B, and αm = B

m . From (22), we have:

Alg ≥ 1

2
·m · (m− 1)

(
B

m
− 1

L

)
=

(m− 1)B

2

(
1− m

BL

)
≥ OPT

(
1− m

L

)
.

In both cases, Alg ≥ OPT
(
1− m

L

)
≥ OPT

(
1−min

{
3√
L
, mL

})
.

Case 2: m ≥ 3
√
L. Let C denote the number of

√
L-cliques that the algorithm opens. By

construction, C ·
√
L+

√
L′ = m.

√
L-cliques. From (20), the overall load that the algorithm scheduled successfully on these

cliques is at least

C · 1
2
·
√
L · (

√
L− 1)

(
α√

L − 1

L

)
≥ C

√
L · (

√
L− 1)

2

(
1√
L

− 1

L

)
≥ 1

2
C
√
L

(
1− 2√

L

)
.

(23)

√
L′-clique. Similarly, for the

√
L′-clique, the total load that is scheduled on this clique is at

least

1

2
·
√
L′ · (

√
L′ − 1)

(
α√

L′ −
1

L

)
≥

√
L′ · (

√
L′ − 1)

2

(
1√
L′

− 1

L

)
≥ 1

2

√
L′

(
1−

√
L′

L
− 1√

L′

)
.

(24)

Combining the above, the algorithm gets value at least

Alg ≥ 1

2
C
√
L

(
1− 2√

L

)
+

1

2

√
L′

(
1−

√
L′

L
− 1√

L′

)

=
1

2

(
m− 2

m√
L

+ 2

√
L′

√
L

− L′

L
− 1

)

≥ 1

2

(
m− 2

m√
L

− 1

)
≥ m

2

(
1− 3√

L

)
≥ OPT

(
1− 3√

L

)
≥ OPT

(
1−min

{ 3√
L
,
m

L

})
where we used the fact that C ·

√
L+

√
L′ = m ⇔ C = m−

√
L′√

L
, L′ < L, and m√

L
≥ 1.
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D Omitted Proofs from Section 3

D.1 Proof of Lemma 1

In order to upper bound the utilization that OPT can achieve, the first step is to bound the
minimum number of machines that are required to schedule a set of demands (with high prob-
ability). This allows us to generate bounds for the number of demands that can be scheduled
(with high probability) when the number of machines is fixed. Connecting this number of
demands with their sizes produces the desired bounds for OPT’s utilization.

In particular, recall that OPTmach(s1, . . . , sn) denotes the minimum number of devices
needed to schedule all the demands s1, . . . , sn satisfying the Nominal and Failover constraints.
Also recall that Theorem 5 shows that there exists a scalar c(µ) such that for every T , we have

EOPTmach(S1, . . . , ST ) ∈ T · c(µ)±O(T 5/6).

However, for proving Lemma 1, we need the observation that this bound holds not only in
expectation but with high probability (with a negligible additional loss). To see that, notice that
the function OPTmach(s1, . . . , sn) has bounded differences: changing the size of any demand i
from si to s′i (both in the range [0,min{1, B2 }]) can change the minimum number of machines
required by at most 2, i.e.,

|OPTmach(s1, . . . , si, . . . , sn)− OPTmach(s1, . . . , s
′
i, . . . , sn)| ≤ 2,

since we can always schedule the demand i on an edge by itself (using 2 new machines) if needed.
Then as a consequence of McDiarmid’s Inequality (Lemma 10) with α = λ

√
T we directly obtain

the following.

Corollary 1. For every T we have

OPTmach(S1, . . . , ST ) ∈ T · c(µ)±O(T 5/6)± λ
√
T

with probability at least 1− 2e−
λ2

2 .

Then by essentially inverting this bound, we can upper bound how many demands are
scheduled by the optimal solution OPT(S1, . . . , Sn) for our original problem.

Lemma 13. Consider the original problem Failover with m machines. For every δ > 0, with
probability at least 1 − δ the optimal solution to the instance S1, . . . , Sn ∼ µ schedules at most
m
c(µ) +O(m5/6) + log3/2 1

δ demands.

Proof sketch. Using Corollary 1 with λ =
√
2 log 2

δ , one can see that there is a positive constant

d such that with probability at least 1− δ

OPTmach(S1, . . . , ST ) ≥ T · c(µ)− d5/6 · T 5/6 (25)

for every number of demands T ≥ log3/2 1
δ .

A bit of algebra shows that there is a value T̄ = m
c(µ) + O(m5/6) + log3/2 1

δ such that the

right-hand side of (25) is strictly more than m (the term + log3/2 1
δ being present just to ensure

T̄ ≥ log3/2 1
δ ); in fact, taking

T̄ := max

{
1

c(µ)

(
m+

(
m(d+ 1)

c(µ)

)5/6)
,
(d+ 1) d5/6

c(µ)
, log3/2

1

δ

}
+ 1
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suffices, which can be verified by applying the contrapositive of Lemma 12). This means that
with probability at least 1 − δ, the demands S1, . . . , ST̄ cannot all be scheduled within m
machines; in such scenarios the optimal solution then schedules at most T̄−1 = m

c(µ)+O(m5/6)+

log3/2 1
δ demands, as claimed.

We can now show that with high probability OPT(S1, . . . , Sn) ≤ m · ES0
c(µ) + O(m5/6) and

conclude the proof of Lemma 1. Setting δ = 1
m2 and letting T̄ = m

c(µ) + O(m5/6) be the

above upper bound on the number of demands scheduled by OPT(S1, . . . , Sn), with probability
≥ 1− 1

m2 we have that OPT(S1, . . . , Sn) ≤
∑

t≤T̄ St. Moreover, employing the Chernoff bound

(Lemma 11) with λ =
√
T̄ logm, with probability at least 1− 1

m2 this sum can be upper bounded
as ∑

t≤T̄

St ≤ T̄ · ES0 +

√
T̄ logm ≤ m · ES0

c(µ)
+O(m5/6).

Taking a union bound to combine the two previous bounds, with probability at least 1− 2
m2 we

have that OPT(S1, . . . , Sn) ≤ m · ES0
c(µ) + O(m5/6), as desired. This concludes the proof of the

Lemma 1.

D.2 Proof of Lemma 3

To prove Lemma 3 it will suffice to show that with high probability OneRound consumes a
quarter of the machines available, unless there are already few machines available.

Lemma 14. There is a constant cst5 such that whenever m̃ ≥ 4cst5 · m5/6 + 8, we have that
OneRound(m̃) opens at least m̃

4 machines with probability at least 1− log(m/c(µ))
m2 .

Proof. The main element of the proof is a converse to Claim 1, that is, a lower bound on the
number of phases performed by OneRound. To argue that it has not ran out of machines on an
initial phase, let UBℓ be the upper bound on the number of machines opened by the OneRound
until phase ℓ given by (10), namely

UBℓ = 2nℓ · c(µ) + cst4 · n5/6
ℓ + cst4 ·m5/6

for a sufficiently large constant cst4. Here is the desired bound on the number of phases
performed.

Claim 5. Let k be the largest integer ℓ such that UBℓ + 2m5/6 ≤ m̃. Then with probability at
least 1− k/m2 the algorithm OneRound(m̃) performs at least k phases.

Proof. From (10) and the fact that cst4 and m are at least a sufficiently large constant, we have
with probability at least 1− k/m2

Openk + cst1 ·
√
nk log3/4 nk ≤ UBk . (26)

Under this event we see that OneRound starts phase k, that is, it does not STOP in Step (b) in
the beginning of this iteration, since at that point

#already open machines + OPTmach(Y1, . . . , Ynk
) + cst1 ·

√
nk log3/4 nk + 2m5/6

= Openk−1 + Mk + cst1 ·
√
nk log3/4 nk + 2m5/6

≤ Openk + cst1 ·
√
nk log3/4 nk + 2m5/6

≤ UBk + 2m5/6 ≤ m̃,
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where the last inequality follows from the definition of k. Moreover, under this event the
algorithm also does not run out of machines (i.e. fails) on this phase k, since again Openk ≤
UBk ≤ m̃. The claim then follows.

Using this claim plus the lower bound on the number of machines Mk open on a round k
from Claim 2, we have that with probability at least 1− (k + 1)/m2

Open ≥ Openk ≥
k∑

k=k0

Mk ≥
k∑

k=k0

(
nk · c(µ) − 2cst1 · n5/6

k

)

≥
k∑

k=1

nk · c(µ)−
k0∑
k=1

nk · c(µ)−
k∑

k=1

2cst1 · n5/6
k

≥ (2nk − 1) c(µ)− 2nk0 − 5cst1 · n5/6

k

≥ (2nk − 1) c(µ)− 2m5/6 − 5cst1

c(µ)5/6
·m5/6, (27)

where the next-to-last equality follows from the definition nk = 2k, and the last inequality uses
Claim 2 and that the definition of k implies nk ≤ m̃

c(µ) ≤
m
c(µ) .

To further lower bound this quantity, from the maximality of k we have UBk+1+2m5/6 > m̃,
which expanding the definition of UBk+1 and again using nk ≤ m

c(µ) gives

2nk · c(µ) > 1

2

(
m̃− cst4 · n5/6

k+1
− (cst4 + 2)m5/6

)
≥ m̃

2
−
(

cst4

21/6c(µ)5/6
+

cst4
2

+ 1

)
m5/6.

Employing this on inequality (27) we get that with probability at least 1− 2k/m2

Open ≥ m̃

2
−
(
cst4/(2

1/6) + 5cst1

c(µ)5/6
+

cst4
2

+ 3

)
︸ ︷︷ ︸

=:cst5

m5/6 − 2.

Under the assumption m̃ ≥ 4cst5 · m5/6 + 8 of Lemma 14, we get Open ≥ m̃
4 as desired. To

finalize, again since nk ≤ m
c(µ) , we have k ≤ log m

c(µ) , and so this happens with probability at

least 1− log(m/c(µ))
m2 . This concludes the proof of Lemma 14.

We now turn to the proof of the main lemma.

Proof of Lemma 3. We assume that m is at least a sufficiently large constant, otherwise the
result directly holds (with an appropriate constant in the term O( 1

m)); in particular, we assume

that 5cst5 ·m5/6 ≥ 4cst5 ·m5/6 + 8, which will be useful to clean up the bounds.
Let m̃i denote the number of unopened machines right before the i-th call to OneRound

made by the main algorithm (i.e., at this call m̃i is the parameter passed to OneRound). Define
the (bad) event Ei that in the beginning of round i we still have more than 5cst5 ·m5/6 unopened
machines but (unlike what is prescribed by Lemma 14 above) we did not consume open at least
a quarter of these machines, i.e.

Ei ≡ (m̃i > 5cst5 ·m5/6) and (m̃i+1 >
3
4m̃i).

We claim that when neither of the events E1, . . . , Er̄ holds (for r̄ := logm
log 4/3), then the total

number of machines opened by the main algorithm is at least m − 5cst5 ·m5/6, which is what
we want. To see this claim, notice that in this situation there are two cases:
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Case 1: There is an event Ei (i ≤ r̄) which does not hold because m̃i ≤ 5cst5 · m5/6. But
this means that at the beginning of round i the main algorithm has already opened m− m̃i ≥
m− 5cst5 ·m5/6 machines, and the claim holds.

Case 2: All the events {Ei}i≤r̄ do not hold because m̃i+1 ≤ 3
4m̃i for all of them. But this

means that in beginning of the last round r̄ there are

m̃r̄ ≤ (34)
r̄−1 · m̃1 = (34)

r̄−1 ·m = 4
3 ≤ 5cst5 ·m5/6

unopened machines, and so the claim also holds.
So to prove Lemma 3 it suffices to show that the probability that an event {Ei}i≤r̄ holds is

at most O( 1
m). This probability is

Pr

(∨
i≤r̄

Ei

)
≤
∑
i≤r̄

Pr(Ei). (28)

To upper bound the right-hand side, we have

Pr(Ei) = Pr(m̃i+1 >
3
4m̃i | m̃i > 5cst5 ·m5/6) Pr(m̃i > 5cst5 ·m5/6).

But conditioning on m̃i > 5cst5 ·m5/6 (or more precisely, conditioning on the demands up to
the beginning of round i so that this event holds) and applying Lemma 14 (notice that even
with this conditioning the items within round i are still sampled i.i.d. from µ) we have that

the first term in the right-hand side is at most log(m/c(µ))
m2 ; so this gives Pr(Ei) ≤ log(m/c(µ))

m2 .
Employing this on (28) gives

Pr

(∨
i≤r̄

Ei

)
≤ r̄ · log(m/c(µ))

m2
= O

(
log2m

m2

)
= O

(
1

m

)
.

This concludes the proof of Lemma 3.

E Properties of (LPmach)

E.1 Consistency of LPmach with respect to type partitions

In principle, the definition of (LPmach) depends on how the demands are partitioned into types.
However, we show that this is not actually the case.

Lemma 15. The optimal value LPmach is the same for every possible type partition of the
demands.

In particular, the optimal value LPmach is well-defined. To prove the lemma, it suffices to
show that merging two demand types (that can be merged) does not change the optimal value.

Lemma 16. Consider an instance S = (s1, . . . , sk) and a valid assignment of types type :
S → {0, 1, . . . , k} (i.e. s = s′ whenever type(s) = type(s′)) and such that types 0 and 1 have
items of the same size (i.e. s = s′ whenever type(s), type(s′) ∈ {0, 1}). Let t̃ype be the type
assignment that merges types 0 and 1, i.e. t̃ype(s) = 1 for all s such that type−1(s) ∈ {0, 1}
and t̃ype(s) = type(s) for the other s’s.

Then the optimal value of LPmach based on type and t̃ype are the same.

Proof. Let nj = |type−1(S)| be the number of items of type j under the assignment type and
define ñj analogously w.r.t. t̃ype; notice ñ1 = n0 + n1 and ñj = nj for all j ≥ 2. Further, for
any configuration C w.r.t. type, we define nt(C) to be the number of demands of type t in C.
We define ñt(C̃) analogously for a configuration C̃ w.r.t t̃ype. The LP values are then given by
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LP := min
∑
C

xC

st
∑
C

nt(C) · xC ≥ 2nt ∀t

x ≥ 0

L̃P := min
∑
C̃

xC̃

st
∑
C̃

ñt(C̃) · xC̃ ≥ 2ñt ∀t ≥ 1

x ≥ 0,

where the configurations C and C̃ are respectively in Rk+1 and Rk.
The second LP is a relaxation of the first, since it follows by adding the first two inequalities

(t = 0 and t = 1) of the first LP. Thus, L̃P ≤ LP .

Now we prove that LP ≤ L̃P . Consider an optimal solution x̃ for the second LP. Given a
valid configuration C̃ for the second LP, define the configurations C0 = (C̃1, 0, C̃2, . . . , C̃n) and
C1 = (0, C̃1, C̃2, . . . , C̃n) that respectively assign all the items of t̃ype to type 0 and 1. Consider
the solution x for the first LP given by

xC0 =
n0

n0 + n1
x̃C̃ , xC1 =

n1

n0 + n1
x̃C̃ for all C̃

and x(C) = 0 for all other configurations.

We claim that x is a feasible solution for the first LP with value L̃P . For its value∑
C

xC =
∑
C̃

(xC0 + xC1) =
∑
C̃

x̃C̃ = L̃P ,

as claimed. For its feasibility, for any t ∈ {0, . . . , k} we have∑
C

nt(C) · xC =
∑
C̃

(nt(C
0) · xC0 + nt(C

1) · xC1) =
∑
C̃

(
n0

n0 + n1
nt(C

0) +
n1

n0 + n1
nt(C

1)

)
· x̃C̃ .

When t ∈ {0, 1}, we see that nt(C
t) = ñ1(C̃) and the other term nt(C

1−t) is zero. Hence∑
C

nt(C) · xC =
nt

n0 + n1

∑
C̃

ñ1(C̃) · x̃C̃ ≥ nt

n0 + n1
· 2ñ1 = 2nt,

where the first inequality is from the feasibility of x̃. So x satisfies the constraints of the first
LP when t = 0, 1. For the remaining constraints t ≥ 2 we have that nt(C

0) = nt(C
1) = ñt(C̃),

so ∑
C

nt(C) · xC =
∑
C̃

ñt(C̃) · x̃C̃ ≥ 2ñt = 2nt,

which are then satisfied as well. This proves that x feasible for the first LP.
We conclude, the optimal value of this LP is at most that of this solution x, which then

gives LP ≤ L̃P as desired.

E.2 Solving (LPmach)

In this section, we show how to efficiently solve LPmach up to small additive error. We need
the following theorem of Rothvoss (stated in simplified form) [20], which relies on the Plotkin-
Shmoys-Tardos algorithm to solve implicit fractional covering problems [16].
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Theorem 12. Let S ⊂ 2[n] be a set family. Suppose that we can solve the following Sub-
problem: Given parameter ϵ ∈ (0, 1) and y ∈ Qn

+, output a set S∗ ∈ S with
∑

i∈S∗ yi ≥
(1− ϵ) ·maxS∈S

(∑
i∈S yi

)
in time T (n, ϵ).

Then for any δ ∈ (0, n/2], we can find a basic solution of the following LP:

min
∑

S∈S xS
s.t.

∑
S∈S 1j∈S · xS ≥ 1 ∀j ∈ [n]

x ≥ 0
(LP )

with objective value at most LP + δ in time poly(n, 1/δ) · T (n,Ω(δ/n)).

Subproblem is an approximate dual separation problem for LP . To apply this theorem,
we relate (LPmach) to a “per-demand” configuration LP, which we can apply the theorem to.

Lemma 17. Given (LPmach) defined on n demands (with some partition into demands types)
and a parameter δ ∈ (0, n/2], we can efficiently find a basic solution of (LPmach) with objective
value at most LPmach + δ in time poly(n, 1/δ).

Proof. We let C be the collection of feasible configurations with respect to that partition into
demand types in (LPmach) (i.e. C indexes all variables used by this LP.) We first define the
natural “per-demand” configuration LP by taking each demand as its own type. Indexing the
demands by j ∈ [n], this LP is:

min
∑

c′∈CJ
xc′

s.t.
∑

c′∈CJ
1j∈c′ · xc′ ≥ 2 ∀j ∈ [n]

x ≥ 0,

(LPJ)

where CJ is the collection of all configurations where each demand is its own type. By Lemma 15,
we have LPmach = LPJ . To apply the theorem, we re-scale the right hand side of LPJ by dividing
by 2. Let LP ′

J be the resulting LP. Note that the extreme points and optimal solutions of LPJ

and LP ′
J are also related by a multiplicative 2-factor.

We now show how to solve Subproblem for LP ′
J . We are given parameter ϵ ∈ (0, 1) and

y ∈ Qn
+, we must find a configuration in C∗ ∈ CJ with

∑
j∈C∗ yj ≥ (1−ϵ) ·maxC∈CJ

(∑
j∈C yj

)
.

Recall that the configurations in Cj are exactly the subsets of demands C ⊂ [n] with
∑

j∈C sj ≤ 1
and

∑
j∈C sj +maxj∈C sj ≤ B. Our algorithm for the subproblem is the following:

1. Guess the index j∗ of the largest-sized item used by the configuration achieving the max-
imum maxC∈CJ

(∑
j∈C yj

)
.

2. Define the knapsack instance with demands of size at most sj∗ in [n]−{j∗} such that each
remaining demand j has size sj and value yj . The knapsack size is min(1− sj∗ , B− 2sj∗).
Let v∗ be the optimal value of this knapsack instance. Run the knapsack FPTAS to obtain
a subset of demands C̄ ⊂ [n]− {j∗} with value at least (1− ϵ) · v∗ in time poly(n, 1/ϵ).

3. Output the demands C̄ ∪ {j∗}.

There are n guesses for j∗, so the algorithm runs in time poly(n, 1/ϵ). For correct guess of j∗,
the algorithm outputs C̄ ∪ {j∗}, which is a feasible configuration by definition of the residual
knapsack instance (we only use demands of size at most sj∗ =, so maxj∈C̄∪{j∗}sj = sj∗ and
the knapsack budget ensures the required constraints.) Further, we have

∑
j∈C̄∪{j∗} ≥ (1− ϵ) ·

v∗ + yj∗ ≥ (1 − ϵ) · maxC∈CJ

(∑
j∈C yj

)
. Thus, we can solve Subproblem for LP ′

J in time
T (n, ϵ) = poly(n, 1/ϵ).

40



Now we can apply the theorem to LP ′
J to obtain an extreme point of LP ′

J , say x∗, with∑
c′∈CJ

x∗ ≤ LP ′
J + δ in time poly(n, 1/δ). It follows, 2x∗ is an extreme point of LPJ with

objective value at most 2 · LP ′
J + δ = LPJ + δ.

Because 2x∗ is an extreme point of LPJ , which has n non-trivial constraints, 2x∗ has at
most n non-zero variables. Let C̄J = {c′ ∈ CJ | 2x∗c′ > 0} be the sub-collection of configurations
used by this extreme point. Then |C̄J | ≤ n. Now, consider modifying LPJ by keeping only
the variables indexed by C̄J . Let the resulting LP be LPJ(C̄J). We have LPJ(C̄) ≤ LPJ + δ
because they share the solution 2x∗.

Finally, we relate LPJ(C̄J) with LPmach. First, we map the “per-demand” configurations
of C̄J to the “per-type” configurations of C as follows: Suppose the demands J are partitioned
into types J = ∪tJt. Then For each configuration c′ ∈ C̄J , we map c′ to a configuration in C
with |c′ ∩ Jt|-many demands of type t for every type t. Note that this can be done efficiently
because we |C̄J | ≤ n. By definition, the mapped configuration is feasible. Let C̄ ⊂ C be the
all per-type configurations that are mapped to by some configuration in C̄J . Then |C̄| ≤ n.
Further, we have LPmach(C̄) = LPJ(C̄J) by an analogous argument as in Lemma 15.

To conclude, let LPmach(C̄) be obtained from LPmach by keeping only variables indexed by
C̄. Then, LPmach(C̄) has polynomially many variables and constraints, so we can explicitly
solve LPmach(C̄) to obtain an optimal extreme point, which is also an extreme point of LPmach

with objective value LPmach(C̄) = LPJ(C̄J) ≤ LPJ + δ = LPmach + δ, as required.
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