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In this paper, we present an algorithmic study on how to surpass competitors in popularity by strategic promo-

tions in social networks. We first propose a novel model, in which we integrate the Preferential Attachment

(PA) model for popularity growth with the Independent Cascade (IC) model for influence propagation in

social networks called PA-IC model. In PA-IC, a popular item and a novice item grab shares of popularity

from the natural popularity growth via the PA model, while the novice item tries to gain extra popularity via

influence cascade in a social network. The popularity ratio is defined as the ratio of the popularity measure

between the novice item and the popular item. We formulate Popularity Ratio Maximization (PRM) as the
problem of selecting seeds in multiple rounds to maximize the popularity ratio in the end. We analyze the

popularity ratio and show that it is monotone but not submodular. To provide an effective solution, we devise a

surrogate objective function and show that empirically it is very close to the original objective function while

theoretically, it is monotone and submodular. We design two efficient algorithms, one for the overlapping

influence and non-overlapping seeds (across rounds) setting and the other for the non-overlapping influence

and overlapping seed setting, and further discuss how to deal with other models and problem variants. Our

empirical evaluation further demonstrates that our proposed method consistently achieves the best popularity

promotion compared to other methods. Our theoretical and empirical analyses shed light on the interplay

between influence maximization and preferential attachment in social networks.
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1 INTRODUCTION
Influence maximization (IM) is the problem of finding a subset of nodes (seed nodes) in a social

network that could maximize the spread of influence [18]. It is a well-studied problem with applica-

tions on viral marketing, information propagation monitoring and control, etc (cf. [8, 23]). While

most studies treat influence maximization as a stand-alone problem for viral marketing, in this

paper, we want to explore the means of using influence maximization to boost the popularity of an

item (an idea, a product, etc) and surpass a competitor in a natural growth environment.

Consider the following hypothetical motivating example. Alice opened her new restaurant, Café

Alice, at a local shopping mall. However, a popular restaurant Bob’s Kitchen is in the same mall.

Without promotion, Alice would definitely lose many customers to Bob’s Kitchen. Thus Alice wants

to distribute free-dish coupons to selected people, hoping them to propagate the information about

Café Alice and attract more people to her restaurant, boosting the popularity of her restaurant in a

short period of time to catch up or even surpass Bob’s Kitchen. Similar situations arise in online

social media, such as a new blogger or podcaster trying to increase popularity through promotion in

social networks. Different from pure viral marketing, popularity growth has a natural rich-get-richer

effect independent of the social network, meaning that the popular item would naturally attract

more customers or users. For example, customers typically check nearby restaurants’ popularity

ratings on mobile apps such as Yelp for restaurant selection, making more people visit the popular

restaurant. This effect certainly gives a hard time for the new restaurant to catch up. Thus, incentive

promotion by the new restaurant needs to incorporate this factor when deciding on viral marketing

strategies.

This paper integrates the natural popularity growth with the incentive promotion into one

coherent model to solve the above problem. In particular, the preferential attachment (PA) [1, 28,

36] is a well-known model for the natural rich-get-richer effect of popularity growth, while the

independent cascade (IC) model [18] is a classical model for influence propagation. We integrate

these two models into the novel PA-IC model to characterize the combined effect of natural

popularity growth and incentive promotion. More specifically, in a multi-round setting, we model

the popularity growth of a novice item and a popular item. We use 𝑑
𝑝

𝑡 and 𝑑𝑛𝑡 to denote the

popularity of the popular and novice items respectively, at the end of round 𝑡 . Each round, 𝑧 number

of customers pick from these two items with probability proportional to their popularity, realizing

the preferential attachment model. Meanwhile, the novice item executes a promotion plan, selecting

a set of seeds 𝑆𝑡 in round 𝑡 for 𝑇 consecutive rounds, and the influence spread generated by the

seed set 𝑆𝑡 would add to the popularity measure of the novice item at the end of round 𝑡 . We

define 𝑟𝑡 = 𝑑𝑛𝑡 /𝑑
𝑝

𝑡 as the popularity ratio in round 𝑡 . The promotion task of the novice item is

defined as the following popularity ratio maximization (PRM) problem: Given (a) the social network

and its IC model parameters, (b) the initial popularity measures 𝑑
𝑝

0
and 𝑑𝑛

0
, and (c) a promotion

budget 𝑘 , find 𝑘 seeds and allocate them into 𝑇 consecutive rounds such that the popularity ratio

𝑟𝑇 at the end of round 𝑇 is maximized. Depending on whether we allow overlapping seeds (OS)

across rounds and whether repeated activation of the same nodes in different rounds are repeatedly

counted (overlapping influence, OI), we further consider different settings such as the overlapping

influence and non-overlapping seeds (OINS) and the non-overlapping influence and overlapping

seeds (NIOS).

For both OINS and NIOS settings, we derive the formula for the popularity ratio and show that

it is monotone but not submodular, indicating that direct optimization on this objective function

may be complex. To provide an effective solution, we simplify the objective function and obtain

a surrogate function and show that empirically it is very close to the original objective function

while theoretically, it is monotone and submodular. Based on the reverse influence sampling
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approach [3] and the Influence Maximization via Martingales(IMM) algorithm [32], we design PRM-

IMM algorithms to solve this surrogate problem for the two settings, and prove their theoretical

guarantees. We further discuss how to handle other models and problem variants, such as when

the popular item also conducts promotion, and when the novice item wants to use the minimum

budget to surpass the popular item in a given time limit. Our empirical evaluation demonstrates

that the proposed PRM-IMM method always achieves the best popularity promotion compared to

other methods.

One important point we demonstrate both analytically and empirically is that the seed allocation

of the novice item is tightly dependent on the natural growth of the environment as well as the

popularity of the popular item. This point indicates that the PRM task is quite different from the

classical influence maximization — the promotion of the novice item has to consider the popularity

growth and its relative position against the popular item, while the classical influence maximization

only targets at increasing one’s own influence spread or popularity.

In summary, our contributions include: (a) proposing the PA-IC model that integrates preferential

attachment with independent cascade propagation model; (b) formulating the PRM problem and

studying its properties; and (c) designing an efficient algorithm to solve the PRM problem, and

discussing the extension to other problem variants. To the best of our knowledge, this is the first

study that integrates preferential attachment and an influence propagation model into a coherent

popularity growth model and provides an algorithmic study on such an optimization problems.

2 RELATEDWORKS
Preferential Attachment. Yule firstly considered using the preferential attachment to explain

the power-law distribution of flowering plants [36]. A clearer and more general development of

how preferential attachment leads to a power law was given by Simon [28]. The Barabási-Albert

(BA) model shows that the power-law degree distribution in the real networks can be produced

by the combination of growth and preferential attachment [1]. Preferential attachment is now the

standard model for the rich-get-richer effect.

Influence Maximization. Domingos and Richardson first study influence maximization (IM)

[12, 27]. Then it is formulated as an optimization problem by Kempe et al. [18], who define the

famous independent cascade and linear threshold models, showing that influence maximization

under these models are NP-hard, and connecting the problem to monotone and submodular function

maximization. Influence maximization has been extensively studied (see surveys [8, 23]). One

direction is to improve the scalability of the algorithms [3, 9–11, 14, 17, 19, 21, 35]. The state-of-the-

art scalable solution is based on the reverse influence sampling (RIS) approach first proposed by

Borg et al. [3], and later improved and refined by a series of studies [6, 26, 31–33]. Our algorithms

are also based on the RIS approach and is adapted from the IMM algorithm of [32].

Another related direction is competitive influence maximization for multiple items [4, 8, 15, 16,

22, 24]. However, all these studies focus on the competitive diffusion of multiple items in social

networks. In contrast, the competition in our model stems from the popularity growth dictated by

preferential attachment, and influence maximization is only a tool for the novice item to increase

popularity. To the best of our knowledge, we are the first to consider popular growth via both the

PA effect and network diffusion, and study their nontrivial interplay in an optimization problem.

3 MODEL AND PROBLEM DEFINITION
In this section, we introduce the PA-IC model, which integrates the preferential attachment (PA)

mechanism for popularity growth with the independent cascade (IC) model for influence propaga-

tion. The PAmechanismmodels show two items, a popular item and a novice item, divide the shares

of popularity from the natural growth of the customer base, while the novice item further utilizes
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the IC model propagation to promote its popularity in order to catch up with the popular item.

Based on the PA-IC model, we define the optimization problem of popularity ratio maximization,
which characterizes how to allocate the promotional budget of the novice item to achieve the best

promotion results.

3.1 PA-IC Model
Preferential attachment (PA) [1] is a well-known model to characterize the rich-get-richer effect

in the growth of networks or popularity. The basic form of the PA model is as follows. Let 𝑑𝑖𝑡
be the popularity measure of item 𝑖 at time 𝑡 . When a number of 𝑧 users come at time 𝑡 , each

user selects item 𝑖 with probability proportional to 𝑑𝑖𝑡 . Thus popularity grows proportionally, i.e.,

𝑑𝑖𝑡+1
= 𝑑𝑖𝑡 + 𝑧 · 𝑑𝑖𝑡/

∑
𝑗 𝑑

𝑗
𝑡 , where 𝑧 is the natural growth parameter.

Beyond the natural growth of popularity governed by the PA mechanism, we would like to

incorporate the influence propagation model for popularity promotion. Independent cascade (IC)

model [18] is a classical diffusionmodel widely adopted in the information and influence propagation

literature, and its parameters can be effectively learned in many applications (e.g. [2, 8]). In the

IC model, a social network is modeled as a directed graph 𝐺 = (𝑉 , 𝐸, 𝑝), where 𝑉 is the set of

𝑁 = |𝑉 | nodes representing individuals, 𝐸 is the set of𝑀 = |𝐸 | directed edges representing influence
relationships between pairs of individuals, and 𝑝 : 𝐸 → (0, 1] gives the influence probability on

every edge, i.e., 𝑝 (𝑢, 𝑣) is the influence probability on edge (𝑢, 𝑣) ∈ 𝐸. Nodes have two states,

active and inactive. Nodes that have been activated will always remain active. The propagation

process starts from a seed set 𝑆 ⊆ 𝑉 in discrete time steps. At step 𝜏 = 0, only the nodes in 𝑆

are active. At step 𝜏 ≥ 1, a node 𝑢 activated at step 𝜏 − 1 attempts to activate each of its inactive

out-neighbor 𝑣 with success probability 𝑝 (𝑢, 𝑣). Propagation terminates when no more nodes are

activated. A key measure is the influence spread of the seed set 𝑆 , denoted as 𝜎 (𝑆), which is the

expected number of activated nodes at the end of propagation starting from the seed set 𝑆 . The

IC model has the following equivalent live-edge graph description. A random live-edge graph 𝐿

is sampled from 𝐺 = (𝑉 , 𝐸, 𝑝) such that every edge (𝑢, 𝑣) ∈ 𝐸 has an independent probability

of 𝑝 (𝑢, 𝑣) to be included in 𝐿. Then given a seed set 𝑆 , the set of nodes activated in a stochastic

diffusion from 𝑆 is the set of nodes reachable from 𝑆 in the live-edge graph 𝐿, denoted as Γ(𝑆, 𝐿).
Therefore, we have 𝜎 (𝑆) = E𝐿 [|Γ(𝑆, 𝐿) |].

We integrate the PA model with the IC model in the following PA-IC model to characterize both

the natural growth and the promotional growth of the popularity. For simplicity, this paper focuses

on two competing items: a popular item and a novice item, since all items grow proportionally in

the PA model.

The popular item starts with a higher popularity measure, while the novice item starts with

a lower one. If only natural growth is available, the novice item would never catch up with the

popular item, and the gap would only be widened due to the rich-get-richer effect of the PA model.

To catch up and surpass the popular item, the novice item needs to employ incentive promotion in

the social network to increase its popularity. The technical description of the PA-IC model to cover

the above aspects is given below.

In the PA-IC model, we model 𝑇 rounds of promotion and influence propagation. Let 𝑑
𝑝

𝑡 and 𝑑𝑛𝑡
denote the popularity measure of the popular and novice items respectively, at the end of round 𝑡 .

In each round 𝑡 ∈ [𝑇 ], some customers would naturally select between the novice and popular item.

We use the natural growth parameter 𝑧 to denote the number of customers. These 𝑧 customers

select between novice and popular items according to the PA model.

Besides the natural growth, in each round 𝑡 , the novice item would select a seed set 𝑆𝑡 for its

promotion, and these seeds will propagate influence throughout the social network𝐺 following the
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Fig. 1. A numerical example of the PA-IC model with the overlapping influence setting. In this example, we
show the changes in popularity measure of two items, within two rounds. In this directed graph, every edge’s
activation probability is equal to 1. Black nodes is the "active" nodes in each round.

IC model. Note that in round 𝑡 , the IC model may take multiple steps to propagate the promotion

until the propagation ends. The expected number of influenced nodes 𝜎□ (𝑆𝑡 ) is also added to the

popularity measure of the novice item, where the actual form of 𝜎□ (𝑆𝑡 ) depends on the setting we

consider, and it will be explained shortly after Eq.(1) below.

The natural growth mechanism and propagation mechanism respectively model two different

growth processes of an item’s popularity in reality. Therefore, the natural growth mechanism and

the propagation mechanism together give the following inductive formulation of the popularity

growth of the two items.

𝑑
𝑝

𝑡 = 𝑑
𝑝

𝑡−1
+

𝑧 · 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1

, 𝑑𝑛𝑡 = 𝑑𝑛𝑡−1
+ 𝜎□ (𝑆𝑡 ) +

𝑧 · 𝑑𝑛𝑡−1

𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1

. (1)

In Eq.(1), the notation 𝜎□ needs to be instantiated to a concrete quantity according to the actual

setting used. We mainly consider two settings — the overlapping influence (OI) and the non-

overlapping influence (NI) settings. In the overlapping influence (OI) setting, the influence spread

between different rounds are allowed to be overlapped when they are added to the popularity

measure. In this case, 𝜎□ (𝑆) is instantiated to 𝜎𝑂𝐼 (𝑆), and is simply the standard influence spread

𝜎 (𝑆). In the non-overlapping Influence (NI) setting, the influence spread of 𝑆𝑡 in round 𝑡 cannot

overlap with the influence spread in the previous rounds, and thus it is the marginal influence

spread of 𝑆𝑡 given the seed sets 𝑆1, . . . , 𝑆𝑡−1 of the previous rounds. Hence, in this case 𝜎□ (𝑆) is
instantiated to 𝜎𝑁𝐼 (𝑆𝑡 |𝑆1, . . . , 𝑆𝑡−1), as defined below:

𝜎𝑁𝐼 (𝑆𝑡 |𝑆1 · · · 𝑆𝑡−1) = E𝐿1,...,𝐿𝑡

[�����Γ(𝑆𝑡 , 𝐿𝑡 ) \ 𝑡−1⋃
𝑖=1

Γ(𝑆𝑖 , 𝐿𝑖 )
�����
]
. (2)

where 𝐿𝑖 , 𝑖 ∈ [𝑡] is the random live-edge graph in round 𝑖 . When the context is clear, we use

𝜎𝑁𝐼 (𝑆𝑡 ) as a shorthand for 𝜎𝑁𝐼 (𝑆𝑡 |𝑆1 · · · 𝑆𝑡−1).
One remark to Eq.(1) is that both the natural growth and the social network promotion parts

are represented in the expectation form. One may formulate them as random variables, and take

the expectation in the end. The expectation form is easier to handle, and our empirical evaluation

would show that such representation does not lose fidelity in terms of the solution quality.

Another remark concerns the distinction of the natural growth and promotion in our model.

The natural growth follows the preferential attachment and is independent of the social network,

while the promotion follows the influence diffusion model and is dependent on the social network.

One may say that the natural growth may also generate influence diffusion in social networks. The
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Table 1. Four settings of the PRM problem

Overlapping Influence Non-overlapping Influence

Overlapping Seeds OIOS NIOS

Non-overlapping Seeds OINS NINS

reason we do not include the social network diffusion for the natural growth part of the model is

that (a) the natural growth mainly reflects the rich-get-richer effect and models the behavior that

people gets the popularity information from online review platforms such as Yelp or direct offline

observations (e.g., by observing the occupancy of the restaurants) and act accordingly, and this

part is not related to social network diffusion; and (b) inclusion of the influence diffusion for the

natural growth part will further complicate the model, making it less clear in demonstrating the

interaction between the preferential attachment for natural growth and the influence diffusion for

viral promotion.

Fig. 1 is a numerical example to illustrate our PA-IC model in the OI setting. There are two items

in this social network: item p is the popular item with the initial popularity measure 𝑑
𝑝

0
= 8, item

n is the novice item with the initial popularity measure 𝑑𝑛
0
= 2, and the natural growth 𝑧 = 5.

All edges in the social network have probability 1. In round 1, according to the PA mechanism,

the popularity measure of item p will increase by 4, and the popularity measure of item n will

increase by 1. At the same time, the novice item chooses the seed set 𝑆1 = {1, 5} to promote their

product and the influence spread 𝜎 (𝑆1) = 5. So the popularity measure of item n will additionally

increase by 5. At the end of round 1, 𝑑
𝑝

1
= 𝑑

𝑝

0
+ 𝑧 ·𝑑𝑝

0

𝑑
𝑝

0
+𝑑𝑛

0

= 12, 𝑑𝑛
1
= 𝑑𝑛

0
+ 𝑧 ·𝑑𝑛

0

𝑑
𝑝

0
+𝑑𝑛

0

+ 𝜎 (𝑆1) = 8. In round

2, according to the PA mechanism, the popularity measure of item p will increase by 3, and the

popularity measure of item n will increase by 2. In this round, item n chooses the seed set 𝑆2 = {9}
to promote their product, which generates influence spread 𝜎 (𝑆2) = 5. So at the end of round 2,

𝑑
𝑝

2
= 𝑑𝑛

2
= 15, which means that the novice item has caught up with the popular item.

Finally, the model can be further extended to allow different natural growth count 𝑎𝑡 for each

round 𝑡 , or allow the popular item to also have a viral promotionmechanism.We defer the discussion

of these extensions and their impacts on our algorithm to Section 6.

3.2 Popularity Ratio Maximization
We define the popularity ratio between the novice and the popular item at the end of round 𝑡 as

𝑟𝑡 = 𝑑𝑛𝑡 /𝑑
𝑝

𝑡 . Without the promotional mechanism, this ratio would not change. Thus, from the

novice item’s perspective, it wants to increase this ratio as much as possible and as soon as possible

through promotion, but it certainly has budget constraints.

Technically, we model this as a popularity ratio maximization problem under a budget constraint.

We use the pair (𝑣, 𝑡) to denote that the novice item selects 𝑣 in round 𝑡 as a seed, i.e., 𝑣 ∈ 𝑆𝑡 , and

we use S = 𝑆1 × {1} ∪ 𝑆2 × {2} · · · ∪ 𝑆𝑇 × {𝑇 } to represent the overall allocation of seeds over 𝑇

rounds. The novice item has a total budget 𝑘 , restricting the total number of seeds that it can select,

i.e., |S| ≤ 𝑘 . Let the final popularity ratio after 𝑇 rounds promotion be 𝑟𝑇 (S) = 𝑑𝑛
𝑇
/𝑑

𝑝

𝑇
.

Informally, popularity ratio maximization (PRM) is to find a seed allocation S with |S| ≤ 𝑘 for

the novice item so that popularity ratio 𝑟𝑇 (S) at the end of round 𝑇 is maximized. In the seed

allocation S, the seed set for different round may or may not be allowed to overlap, and both

may be reasonable depending on the application scenario. Thus, together with the overlapping or

non-overlapping influence settings, there are four settings as shown in Table 1, where OIOS refers
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to overlapping influence and overlapping seeds and NINS refers to non-overlapping influence and

non-overlapping seeds. The other two settings have been defined before. Formally, we define the

PRM problem below based on these settings.

Definition 1 (Popularity Ratio Maximization). Given (a) a social network 𝐺 = (𝑉 , 𝐸, 𝑝), (b) initial
popularity measures 𝑑𝑛

0
and 𝑑𝑝

0
for the novice and popular items respectively, (c) total round number𝑇 ,

(d) natural growth count 𝑧, (e) budget 𝑘 , the task of popularity ratio maximization (PRM) is to find an
optimal seed set allocation S∗ for the novice item in one of the four settings depicted in Table 1, such
that the total number of seeds does not exceed 𝑘 , and when the popularity measures evolve according
to Eq.(1), the final popularity ratio 𝑟𝑇 (S∗) is maximized. For the OINS setting, it is

S∗ ∈ argmax

S⊆𝑉 ×[𝑇 ], |S |≤𝑘,𝑆𝑡∩𝑆𝑡 ′=∅∀𝑡≠𝑡 ′
𝑟𝑇 (S) .

Other settings can be similarly formulated.

Note that it may not be wise to use all the budget in the first round since too many seeds could

generate redundant activations of the same node, which is only counted once in the popularity

measure. On the other hand, spreading the budget evenly across all 𝑇 rounds may not be a good

choice either, since it would make the popularity growth of the novice item slower and thus

harder to catch up with the popular item. Moreover, even though the objective is to increase the

popularity of the novice item, the problem is still tightly related to the popularity of the popular item,

because the PA mechanism links them together. Therefore, PRM is non-trivial both in considering

seed allocation across multiple rounds and in considering the relationship with the popular item.

Furthermore, PRM needs to consider the impact of different settings. In the following two sections,

we will consider two representative settings — overlapping influence and non-overlapping seeds

(OINS) and non-overlapping influence and overlapping seeds (NIOS). Other settings can be treated

similarly.

PRM can be extended to other variants, and we will consider a number of them in Section 6.

4 RESULTS ON THE OINS SETTING
We study the OINS setting in this section. We first derive the exact formula for the objective function

of the PRM problem. We show that the exact objective function is not submodular, implying a

rather difficult optimization task. To tackle this problem, we provide a heuristic simplification of

the objective function, resulting in a round-weighted influence objective function 𝜌𝑇 (S), and its

corresponding surrogate optimization task called round-weighted influence maximization (RWIM).
We show that function 𝜌𝑇 (S) is monotone and submodular, which allows us to design an efficient

approximation algorithm PRM-IMM based on the IMM algorithm [32]. The technical novelty of

PRM-IMM includes properly defining the pair-wise reverse reachable set (PW-RR set) to estimate

the seed set’s influence in the different rounds with different weights, and calculating the number

of PW-RR sets needed to satisfy the approximate ratio. Although our approximation guarantee is

on the surrogate RWIM algorithm, our experimental evaluation will demonstrate that it also solves

the original PRM problem with the best performance compared to other baselines.

4.1 Objective Function under the OINS Setting
The following lemma states the exact formula for the objective function 𝑟𝑂𝐼

𝑇
(S) of PRM under the

overlapping influence (OI) setting, which is derived recursively.
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Lemma 1. For the OINS setting, the popularity ratio function at the end of round 𝑇 is:

𝑟𝑂𝐼
𝑇 (S) = (𝑟0 + 1)

𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
− 1, (3)

where 𝑟0 = 𝑑𝑛
0
/𝑑𝑝

0
is the initial popularity ratio, S =

⋃𝑇
𝑡=1

𝑆𝑡 × {𝑡}.

Proof. We show Eq.(3) by deriving the recursive formula for 𝑟𝑡 , 𝑡 ≥ 1. Suppose at the end of

round 𝑡 − 1 the popularity ratio is 𝑟𝑡−1, and the popularity measures for the novice and popular

items are 𝑑𝑛𝑡−1
and 𝑑

𝑝

𝑡−1
, respectively. By definition, we have

𝑟𝑡 + 1 =
𝑑𝑛𝑡 + 𝑑𝑝𝑡
𝑑
𝑝

𝑡

=
𝑑
𝑝

𝑡−1
+ 𝑑𝑛𝑡−1

+ 𝜎𝑂𝐼 (𝑆𝑡 ) + 𝑧

𝑑
𝑝

𝑡−1
+ 𝑧 · 𝑑

𝑝

𝑡−1

𝑑
𝑝

𝑡−1
+𝑑𝑛

𝑡−1

(4)

=
𝑑
𝑝

𝑡−1
+ 𝑑𝑛𝑡−1

+ 𝜎𝑂𝐼 (𝑆𝑡 ) + 𝑧

𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1
+ 𝑧

·
𝑑
𝑝

𝑡−1
+ 𝑑𝑛𝑡−1

𝑑
𝑝

𝑡−1

=

(
1 + 𝜎𝑂𝐼 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎𝑂𝐼 (𝑆𝑖 )

)
(𝑟𝑡−1 + 1), (5)

where the second equality in (4) is from Eq.(1), and Eq.(5) uses the fact that 𝑑
𝑝

𝑡−1
+ 𝑑𝑛𝑡−1

is the total

popularity measure of the two items at the end of round 𝑡 − 1, which is accumulated from 𝑑𝑛
0
+ 𝑑𝑝

0

by 𝑡 − 1 rounds of natural growth (𝑡 · 𝑧) and the promotion effect (

∑𝑡−1

𝑖=1
𝜎𝑂𝐼 (𝑆𝑖 )). Eq. (3) can be

obtained immediately with the above recursive formula and the fact that 𝜎𝑂𝐼 (𝑆𝑖 ) = 𝜎 (𝑆𝑖 ).
□

One feature of Eq. (3) is that the popularity ratio depends on the interplay among the parameters

of the novice item (𝑑𝑛
0
), the popular item (𝑑

𝑝

0
), the natural growth (𝑧) and the total influence effect

𝜎 (𝑆𝑡 ), which makes the seed selection more complicated in the PRM task than the classical influence

maximization task.

A set function 𝑓 : 2
𝑉 → R is monotone if 𝑓 (𝑆) ≤ 𝑓 (𝑄) whenever 𝑆 ⊆ 𝑄 ⊆ 𝑉 , and 𝑓 is

submodular if, for any 𝑆 ⊆ 𝑄 ⊆ 𝑉 and any 𝑥 ∈ 𝑉 \𝑄 , 𝑓 (𝑆 ∪ {𝑥}) − 𝑓 (𝑆) ≥ 𝑓 (𝑄 ∪ {𝑥}) − 𝑓 (𝑄).
Submodularity means that the marginal value of an element with respect to a set 𝑆 decreases as 𝑆

grows. Maximizing a monotone and submodular set function with a cardinality constraint can be

achieved by a simple greedy algorithm with an approximation ratio of 1 − 1/𝑒 [25]. Unfortunately,
the exact popularity ratio function in Eq. (3) is not submodular, as shown below.

Lemma 2. The popularity ratio function 𝑟𝑂𝐼
𝑇

(S) is monotone but not submodular.

The proof is omitted, and the non-submodularity is due to the multiplication of submodular

functions in Eq.(3).

4.2 Round-Weighted Influence Maximization
Due to the non-submodularity of the popularity ratio function, it is challenging to design a good

algorithm for the PRM problem directly. In this section, we simplify the popularity ratio function

to obtain a surrogate function and show that this surrogate function is monotone and submodular.

As indicated in the proof sketch of Lemma 2, the complication of the original objective function

of Eq.(3) is the series of multiplications, and thus this is the target of our simplification. In particular,

our simplification consists of two steps: (a) expanding the multiplication series of Eq.(3) and only

keeping the first-order terms; (b) removing the 𝜎 (𝑆1), . . . , 𝜎 (𝑆𝑇−1) in the denominator of each term

left after step (a). Step (a) decreases the objective value, while step (b) increases the objective
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value, compensating the effect of step (a). Our experimental evaluation (Section 7.2) shows that

the surrogate function we develop is reasonably close to the original function in all the test cases.

The following is the formula for the surrogate function (ignoring the constant factor 𝑟0 + 1 and the

additive terms in Eq.(3)):

𝜌𝑂𝐼
𝑇 (S) = 𝜎 (𝑆1)

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧

+ 𝜎 (𝑆2)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 2𝑧

+ · · · + 𝜎 (𝑆𝑇 )
𝑑𝑛

0
+ 𝑑𝑝

0
+𝑇 · 𝑧

.

In the above formula, we can set

𝑤𝑡 =
1

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑡 · 𝑧

(6)

as the weight for 𝜎 (𝑆𝑡 ) for every round 𝑡 , and turn the objective function into the following more

general objective function:

𝜌𝑂𝐼
𝑇 (S) =

𝑇∑︁
𝑡=1

𝑤𝑡 · 𝜎𝑂𝐼 (𝑆𝑡 ) =
𝑇∑︁
𝑡=1

𝑤𝑡 · 𝜎 (𝑆𝑡 ). (7)

Function 𝜌𝑂𝐼
𝑇

(S) means that we need to find an allocation of seeds of 𝑇 rounds and each round

𝑡 ∈ [𝑇 ] has its own importance weight𝑤𝑡 , which is non-negative and decreasing, i.e.,𝑤1 ≥ 𝑤2 ≥
· · · ≥ 𝑤𝑇 ≥ 0. We call 𝜌𝑂𝐼

𝑇
(S) the round-weighted influence function.

The relationship between the popularity ratio function and round-weighted influence function

is 𝑟𝑂𝐼
𝑇

(S) ≈ (1 + 𝜌𝑂𝐼
𝑇

(S))(𝑟0 + 1) − 1. The surrogate function is summarized below as the round-

weighted influence maximization problem.

Definition 2 (Round-weighted Influence Maximization in the OINS Setting). Given (a) a social
network 𝐺 = (𝑉 , 𝐸, 𝑝), (b) initial popularity measures 𝑑𝑛

0
and 𝑑𝑝

0
for the novice and popular items

respectively, (c) total round number𝑇 , (d) natural growth count 𝑧, (e) budget 𝑘 , (f) the non-negative and
non-increasing weight sequence𝑤1,𝑤2, . . . ,𝑤𝑇 , the task of round-weighted influence maximization

(RWIM) in the OINS setting is to find an optimal seed set allocation S∗ for the novice item under the
constraints that the seeds selected for each round are disjoint, and the total number of seeds does not
exceed 𝑘 , such that the round-weighted influence 𝜌𝑂𝐼

𝑇
(S∗) is maximized. That is,

S∗ ∈ argmax

S⊆𝑉 ×[𝑇 ], |S |≤𝑘,𝑆𝑡∩𝑆𝑡 ′=∅∀𝑡≠𝑡 ′
𝜌𝑂𝐼
𝑇 (S) .

Lemma 3. For any influence graph 𝐺 = (𝑉 , 𝐸, 𝑝), under the PA-IC model, the round-weighted
influence function 𝜌𝑂𝐼

𝑇
(S) defined in Eq.(7) is monotone and submodular.

4.3 Pair-wise Reverse Reachable Sets
State-of-the-art IM algorithms, including IMM, use the reverse influence sampling (RIS) approach

governed by reverse reachable (RR) sets. An RR set is a random set of nodes sampled from the

graph by (a) first selecting a node 𝑣 uniformly at random from the graph, and (b) simulating the

reverse propagation of the model (e.g., IC model) and adding all visited nodes into the RR set. The

main property of a random RR set R is that: influence spread 𝜎 (𝑆) = 𝑁 · E [I{𝑆 ∩ 𝑅 ≠ ∅}] for any
seed set 𝑆 , where I is the indicator function, 𝑁 is the number of nodes in graph 𝐺 . After finding

a large enough number of RR sets, the original influence maximization problem is turned into a

𝑘-max coverage problem — finding a set of 𝑘 nodes that covers the most number of RR sets, where

a set 𝑆 covers an RR set 𝑅 means that 𝑆 ∩ 𝑅 ≠ ∅. All RIS algorithms have the following two steps: 1.

Generate a sufficiently large set of random RR sets, called Sampling step. 2. Find 𝑘 nodes that cover

the most number of RR sets, called NodeSelection step.

We now introduce our adaptation of the RR set to the PRM setting, particularly, the pair-wise

reverse reachable (PW-RR) set.
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PW-RR set and its generation process. Since the RR set is not designed to estimate the

influence of nodes in different rounds, we define the pair-wise reverse reachable (PW-RR) set for the

PRM problem and denote it as 𝑅 (𝑡 )
. PW-RR can distinguish between different rounds of RR set, and

it also corresponds to different weights for different rounds of RR sets so that the round-weighted

influence of nodes in different rounds can be calculated. A (random) pair-wise RR set 𝑅 (𝑡 )
is an RR

set 𝑅 rooted at a node picked uniformly at random from 𝑉 , and 𝑡 is picked uniformly at random

from [𝑇 ], and 𝑅 (𝑡 ) = 𝑅 × {𝑡}.
Property of PW-RR set The main property of random PW-RR set 𝑅 (𝑡 )

’s is that we can use

them to estimate the round-weighted influence spread 𝜌𝑂𝐼
𝑇

(S).

Lemma 4. For any set of node-round pairs S, we have

𝜌𝑂𝐼
𝑇 (S) = 𝑁 ·𝑇 · E

[
𝑤𝑡 · I

[
S ∩ 𝑅 (𝑡 ) ≠ ∅

] ]
, (8)

where 𝑅 (𝑡 ) is a random PW-RR set, and the expectation is taken from the randomness of (a) the root of
a PW-RR set 𝑅 (𝑡 ) uniformly chosen at random, (b) the randomly generated RR set from the root, and
(c) round number 𝑡 uniformly chosen at random.

Proof. The lemma is shown by the following:

E
[
𝑤𝑡 · I

[
S ∩ 𝑅 (𝑡 ) ≠ ∅

] ]
=

1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 · E [I{𝑆𝑡 ∩ 𝑅 ≠ ∅}] (9)

=
1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 ·
1

𝑁
𝜎 (𝑆𝑡 ) =

1

𝑁 ·𝑇 𝜌𝑂𝐼
𝑇 (S), (10)

where the 𝑅 in Eq.(9) is a random RR set as defined at the beginning of this section, the first equality

in (10) is by the property of the RR set as given at the beginning of this section, and the second

equality in (10) is by Eq.(7).

□

Lemma 4 reflects the overlapping influence (OI), and it is clearly seen in Eq.(10) where influence

spread of different rounds are summed up, allowing overlapping influence.

4.4 Popularity Ratio Maximization IMM
We could base the key formula of Eq.(8) to estimate the overlapping influence spread 𝜌𝑂𝐼

𝑇
(S). Let

R be a collection of \ PW-RR sets we generated independently, R = {𝑅 (𝑡1 )
1

, 𝑅
(𝑡2 )
2

, . . . , 𝑅
(𝑡\ )
\

}. Define
random variable 𝑌 R

𝑖
(S) = 𝑤𝑡𝑖 · I

[
S ∩ 𝑅

(𝑡𝑖 )
𝑖

≠ ∅
]
. We can estimate 𝜌𝑂𝐼

𝑇
(S) using the following

estimator 𝜌𝑂𝐼
𝑇

(S,R):

𝜌𝑂𝐼
𝑇 (S,R) = 𝑁 ·𝑇

\

\∑︁
𝑖=1

𝑌 R
𝑖 (S).

Estimator 𝜌𝑂𝐼
𝑇

(S,R) can be viewed as a weighted coverage function on a bipartite graph with

𝑉 × [𝑇 ] on the one side and PW-RR sets R on the other side.

Our PRM-IMM algorithm follows the IMM structure [32] and consists of two components: PRM-

NodeSelection for selecting top 𝑘 pairs from the above bipartite graph, and PRM-Sampling for

generating enough PW-RR set samples. We now explain the main adaption of these two components

to our PRM settings.
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Algorithm 1 PRM-NodeSelection-OINS

Input: PW-RR sets R, budget 𝑘 , weights (𝑤𝑡 )𝑡 ∈[𝑇 ] (Eq.(6))

Output: seed set
ˆS𝑔

1: 𝑅𝑅 [(𝑣, 𝑡)] = {𝑅 ∈ R|(𝑣, 𝑡) ∈ 𝑅}, 𝑐 [(𝑣, 𝑡)] = 𝑤𝑡 · |𝑅𝑅 [(𝑣, 𝑡)] |, ∀(𝑣, 𝑡) ∈ 𝑉 × [𝑇 ] /* 𝑅𝑅 [(𝑣, 𝑡)]’s
and 𝑐 [(𝑣, 𝑡)]’s can be constructed during the generation of R */

2: for all 𝑅 ∈ R, 𝑡 ∈ [𝑇 ], 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑅] = false
3: S = ∅ /* the element of S is (𝑣, 𝑡) */
4: for 𝑖 = 1 to 𝑘 do
5: (𝑣, 𝑡) = argmax(𝑣,𝑡 ) ∈ (𝑉 \Snode )×[𝑘 ] 𝑐 [(𝑣, 𝑡)]
6: /*S𝑛𝑜𝑑𝑒 is the node set of S */

7: S = S ∪ {(𝑣, 𝑡)}
8: for 𝑅 ∈ 𝑅𝑅 [(𝑣, 𝑡)] ∧ 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑅] == false do
9: 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑅] = 𝑡𝑟𝑢𝑒

10: for (𝑢, 𝑡) ∈ 𝑅 ∧ 𝑢 ≠ 𝑣 do
11: 𝑐 [(𝑢, 𝑡)] = 𝑐 [(𝑢, 𝑡)] −𝑤𝑡

12: end for
13: end for
14: end for
15: return ˆS𝑔 = S

PRM-NodeSelection-OINS Algorithm 1 provides the pseudocode for the PRM-NodeSelection

under the OINS setting, which is patterned from the similar algorithms in [7, 32]. It mainly imple-

ments a greedy selection of 𝑘 pairs to cover the PW-RR sets. Several points worth mentioning are:

(a) the greedy algorithm works on PW-RR sets for (𝑣, 𝑡) pairs, as described in Section 4.3; (b) the

overlapping influence (OI) aspect is reflected in the PW-RR set design and Lemma 4; and (c) the

non-overlapping seed (NS) aspect is reflected in line 5, where nodes already selected, Snode, are

removed from further consideration in seed selection.

Due to the NS requirement, the feasible solutions for the bipartite coverage problem actually

form a partition matroid.
1
The greedy algorithm on the partition matroid gives a 1/2 approximation

of the optimal solution.
2

PRM-Sampling The sampling procedure also follows the IMM structure (Algorithm 2), in that

it uses iterative halving to estimate a lower bound 𝐿𝐵 of the optimal solution OPT , and then use

𝐿𝐵 to determine the final number of PW-RR sets needed. The parameters 𝛼, 𝛽 are defined below:

𝛼 =
√
𝑙 ln𝑁 + ln 4 , 𝛽 =

√︄
1

2

·
(
ln

(
𝑁

𝑘

)
+ 𝛼2 + 𝑘 ln𝑇

)
. (11)

There are a few differences compared to the classical IMM. First, the \𝑖 (line 4) and ˜\ (line 12)

have additional coefficients𝑤1 and 𝑇 in the numerator. Factor 𝑇 is because we allocate seeds in 𝑇

rounds. Factor𝑤1 is technically because random variable 𝑌 R
𝑖
(S)/𝑤1 is bounded within [0, 1], so

1
A matroid (𝐸, I) on a finite ground element set 𝐸 is a collection I of subsets of 𝐸, each called an independent set, with

the following two properties: (a) a subset of an independent set is still an independent set; and (b) for two independent

sets 𝐼1, 𝐼2 ∈ I, if |𝐼1 | < |𝐼2 | , then there is at least one element 𝑒 ∈ 𝐼2 \ 𝐼1 such that 𝐼1 ∪ {𝑒 } is also an independent set.

A partition matroid is a matroid where the ground set 𝐸 is partitioned into disjoint sets 𝐸1, 𝐸2, . . . , 𝐸𝑠 , and each 𝐸𝑖 has a

capacity constraint 𝑏𝑖 such that for all 𝐼 ∈ I, |𝐼 ∩ 𝐸𝑖 | ≤ 𝑑𝑖 .
2
We are aware that there is a polynomial-time algorithm that achieves (1−1/𝑒 )-approximation for submodular maximization

under a matroid constraint [5], but the algorithm is highly inefficient, and thus we choose the simple greedy algorithm for

our implementation.
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Algorithm 2 PRM-IMM-OINS algorithm

Input: directed graph 𝐺 = (𝑉 , 𝐸), round number 𝑇 , budget 𝑘 ,

weights (𝑤𝑡 )𝑡 ∈[𝑇 ] (Eq.(6)), approximate ratio parameter Y,

Error probability parameter 𝑙 .

Output: ˆS𝑔

1: R = ∅, 𝐿𝐵 = 𝑤1, Y
′ =

√
2, \0 = 0

2: for 𝑖 = 1 to

⌊
log

2
𝑁

⌋
− 1 do

3: 𝑥𝑖 =
∑𝑇

𝑡=1
𝑤𝑡 ·𝑁

2
𝑖

4: \𝑖 =

⌈
𝑤1 ·𝑁 ·𝑇 (2+ 2

3
Y′) (ln log

2
𝑁+2𝛽2)

Y′2𝑥𝑖

⌉
5: independently generate \𝑖 − \𝑖−1 PW-RR sets into R:
6: S = PRM-NodeSelection-OINS(R, 𝑘, (𝑤𝑡 )𝑡 ∈[𝑇 ])
7: if 𝜌𝑇 (S,R) ≥ (1 + Y′) 𝑥𝑖 then
8: 𝐿𝐵 =

𝜌𝑇 (S,R)
1+Y′

9: break
10: end if
11: end for

12:
˜\ =

⌈
2𝑤1 ·𝑁 ·𝑇 ( 1

2
𝛼+𝛽)2

𝐿𝐵 ·Y2

⌉
/* 𝛼 and 𝛽 is defined in Eq.(11).*/

13: clear the R, and regenerate
˜\ PW-RR sets into R

14:
ˆS𝑔

= PRM-NodeSelection-OINS(R, 𝑘, (𝑤𝑡 )𝑡 ∈[𝑇 ])
15: return

ˆS𝑔

that we can apply the Chernoff bound on it to obtain the desired result. Second, the parameter 𝛽

also adds an extra 𝑘 ln𝑇 , because in our problem, the number of possible solutions is upper bounded

by

(
𝑁
𝑘

)
·𝑇𝑘

, which means that 𝑘 nodes are selected among 𝑁 nodes and each selected node may

be placed in any of the 𝑇 rounds. Of course, our approximation guarantee is also changed from

1 − 1/𝑒 − Y to 1/2 − Y, because we are dealing with a more general partition matroid constraint. The

regeneration of PW-RR sets in line 13 ensures that all PW-RR sets in R are mutually independent

[6].

The following theorem summarizes the correctness and time complexity of our algorithm PRM-

IMM.

Theorem 5. Let ˆS𝑔 be the output of PRM-IMM-OINS and S∗ be the optimal solution of round-
weighted influence maximization problem. We have that with the probability at least (1 − 1

𝑁 𝑙 ),

𝜌𝑂𝐼
𝑇 ( ˆS𝑔) ≥

(
1

2

− Y

)
𝜌𝑂𝐼
𝑇 (S∗),

where Y > 0, 𝑙 > 0. The expected running time of PRM-IMM-OINS is𝑂 ((𝑘 +𝑙) (𝑀 +𝑁 )𝑇 log(𝑁 ·𝑇 )/Y2).

The proof of the theorem follows the analysis structure of IMM [32], and utilizes the key result

in Lemma 4.

We can see that PRM-IMM-OINS provides the approximation guarantee while still runs in time

near linear to the graph size. Compared to the original IMM, the running time is increased by a

factor of 𝑇 , caused by the spreading of search of seeds across 𝑇 rounds rather than in one round.
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5 RESULTS ON THE NIOS SETTING
We now turn to the non-overlapping influence with overlapping seeds (NIOS) setting. The NI

setting causes important changes to the objective function and the algorithm design, as we will

describe in this section.

5.1 Objective Function under the NIOS Setting
Similar to Eq.(3) for the OINS setting, we have

𝑟𝑁𝐼
𝑇 (S) = (𝑟0 + 1)

𝑇∏
𝑡=1

(
1 + 𝜎𝑁𝐼 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎𝑁𝐼 (𝑆𝑖 )

)
− 1.

The main difference is that it uses the marginal influence 𝜎𝑁𝐼 (𝑆𝑡 ) as defined in Eq.(2), because

influence cannot be overlapping under NIOS. With a similar heuristic simplification, we obtain the

round-weighted influence function with𝑤𝑡 defined in (6):

𝜌𝑁𝐼
𝑇 (S) =

𝑇∑︁
𝑡=1

𝑤𝑡 · 𝜎𝑁𝐼 (𝑆𝑡 ).

One can show that 𝜌𝑁𝐼
𝑇

(S) has the following equivalent form:

𝜌𝑁𝐼
𝑇 (S) =

∑︁
𝑣∈𝑉
E𝐿1,...,𝐿𝑇

[
max

𝑡 ∈[𝑇 ]
𝑤𝑡 · I{𝑣 ∈ Γ(𝑆𝑡 , 𝐿𝑡 )}

]
. (12)

This is because for any node 𝑣 ∈ 𝑉 , it may be influenced by some pair (𝑢, 𝑡) ∈ S in round 𝑡 , and

when multiple seed-round pairs occur, the one with the largest weight among these pairs is taken

to calculate the final influence to 𝑣 . Based on Eq.(12), one can show that 𝜌𝑁𝐼
𝑇

(S) is monotone and

submodular.

5.2 Efficient Algorithm for NIOS setting
The PRM-IMM-NIOS algorithm follows the same structure as the PRM-IMM-OINS algorithm, but

due to the non-overlapping influence requirement and the round-based weights nature, the RR set

and the node selection procedure has significant difference, as we now explain.

For the RR set, for each randomly selected root 𝑣 ∈ 𝑉 , we need to generate 𝑇 RR sets rooted at 𝑣 ,

denoted as 𝑅𝑣,𝑡 , 𝑡 ∈ [𝑇 ] in pair notation. The multi-round RR set (MR-RR set) is the union of all 𝑇

RR sets, as 𝑅𝑣 =
⋃𝑇

𝑡=1
𝑅𝑣,𝑡 . This is because in the NI setting a node 𝑣 is only influenced once in all 𝑇

rounds. The MR-RR set is similar to the one used in [29], but here different rounds have different

weights, leading to a more complicated node selection procedure.

In the PRM-NodeSelection-NIOS procedure (Algorithm 3), we maintain a variable 𝑡𝑅 for each

MR-RR set 𝑅, and it denotes the lowest round number 𝑡 in which the root 𝑣𝑅 of 𝑅 has been influenced

by some already selected seed nodes. Initially, 𝑡𝑅 = 𝑇 +1, since no seed has been selected and thus no

node is influenced. We also use variable 𝑐 [(𝑢, 𝑡)] to store the remaining marginal influence of pair

(𝑢, 𝑡) on all MR-RR sets. Variables 𝑡𝑅 and 𝑐 [(𝑢, 𝑡)] are used to keep track of the marginal influence

to 𝑣𝑅 when some additional pair (𝑣, 𝑡) is selected as a seed (lines 7– 16): when 𝑡 < 𝑡𝑅 , this means

that the root 𝑣𝑅 is now influenced at the lowest round 𝑡 , and thus for any other pair (𝑢, 𝑡 ′) ∈ 𝑅

with 𝑡 ′ < 𝑡𝑅 , if 𝑡
′ ≥ 𝑡 , it no long generates any marginal influence to 𝑣𝑅 (the marginal influence is

reduced by𝑤𝑡 ′ −𝑤𝑡𝑅 , line 10); and if 𝑡
′ < 𝑡 , the remaining marginal influence (𝑢, 𝑡 ′) could generate

to 𝑣𝑅 through 𝑅 is𝑤𝑡 ′ −𝑤𝑡 (the marginal influence is reduced by𝑤𝑡 −𝑤𝑡𝑅 , line 12). This makes this

node selection procedure more complicated than the OINS setting. Note that in line 5, we select the

next seed from 𝑉 × [𝑘]\S, reflecting that we allow overlapping seeds in different rounds.
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Algorithm 3 PRM-NodeSelection-NIOS

Input: the set of MR-RR sets R, seeds budget 𝑘 ,
weights (𝑤𝑡 )𝑡 ∈[𝑇 ] (Eq.(6)). particularly, the value of𝑤𝑇+1 is 0.

Output: 𝑘 size seed set
ˆS𝑔
.

1: 𝑅𝑅 [(𝑣, 𝑡)] = {𝑅 ∈ R|(𝑣, 𝑡) ∈ 𝑅}, 𝑐 [(𝑣, 𝑡)] = 𝑤𝑡 · |𝑅𝑅 [(𝑣, 𝑡)] |, ∀(𝑣, 𝑡) ∈ 𝑉 × [𝑇 ] /* 𝑅𝑅 [(𝑣, 𝑡)]’s
and 𝑐 [(𝑣, 𝑡)]’s can be constructed during the generation of R */

2: for all 𝑅 ∈ R, 𝑡𝑅 = 𝑇 + 1;𝑤𝑇+1 = 0

3: S = ∅ /* the element of S is (𝑣, 𝑡) */
4: for 𝑖 = 1 to 𝑘 do
5: (𝑣, 𝑡) = argmax(𝑣,𝑡 ) ∈𝑉 ×[𝑘 ]\S 𝑐 [(𝑣, 𝑡)]
6: S = S ∪ (𝑣, 𝑡)
7: for 𝑅 ∈ 𝑅𝑅 [(𝑣, 𝑡)] ∧ 𝑡 < 𝑡𝑅 do
8: for (𝑢, 𝑡 ′) ∈ 𝑅 ∧ (𝑢, 𝑡 ′) ≠ (𝑣, 𝑡) ∧ 𝑡 ′ < 𝑡𝑅 do
9: if 𝑡 ′ ≥ 𝑡 then
10: 𝑐 [(𝑢, 𝑡 ′)] = 𝑐 [(𝑢, 𝑡 ′)] − (𝑤𝑡 ′ −𝑤𝑡𝑅 )
11: else
12: 𝑐 [(𝑢, 𝑡 ′)] = 𝑐 [(𝑢, 𝑡 ′)] − (𝑤𝑡 −𝑤𝑡𝑅 )
13: end if
14: end for
15: 𝑡𝑅 = 𝑡

16: end for
17: end for
18: return ˆS𝑔 = S

In the sampling part, similar to OINS setting, we can iteratively guess the lower bound 𝑥𝑖 by halv-

ing and verifying throughNodeSelection.We only need tomodify parameter 𝛽 to

√︂
1

2
·
(
ln

(
𝑁𝑇
𝑘

)
+ 𝛼2

)
,

and the

(
𝑁𝑇
𝑘

)
is due to selecting 𝑘 pairs from all 𝑁𝑇 pairs in the overlapping seeds setting. All other

aspects of sampling part remains the same, and thus we ignore the pseudocode here. For the other

two problems mentioned in Section 3.2, NINS and OIOS, we can plug in different components in

OINS and NIOS to achieve the goal, and we omit the details here.

6 OTHER VARIANTS OF PRM PROBLEM
In this section, we show that our object function analysis and algorithm design are robust in that

they can be adapted to a number of variants of the PRM problem.

6.1 Per-round Budget
In the PRM definition (Definition 1), the budget 𝑘 is over all 𝑇 rounds. One variant is that every

round has its own budget 𝑘 , similar to [29]. It also has four settings as in Table 1. Among them, the

OIOS setting is the same as solving the traditional IM problem and then using the same seed set for

all rounds. Other settings can be solved following the similar technique as the overall budget case,

but when selecting next node-round pair as a seed, it needs to respect the per-round budget rather

than the overall budget.
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6.2 Variable Natural Growth Count
We can relax the assumption that the natural growth count 𝑧 is constant for all rounds to allow a

natural growth vector 𝒛 = [𝑧1, 𝑧2, · · · , 𝑧𝑇 ] with 𝑧𝑡 denoting the natural customer count in round

𝑡 . Then, similar to the derivation process in Section 4.1, we can obtain the formula for 𝑟𝑂𝐼
𝑇

(S) as
follows:

𝑟𝑂𝐼
𝑇 (S) = (𝑟0 + 1)

𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ ∑𝑡

𝑖=1
𝑧𝑖 +

∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
− 1.

The derivation of the surrogate function 𝜌𝑂𝐼
𝑇

(S) and the rest algorithm design is the same, and we

just need to redefine the weight𝑤𝑡 = 1/(𝑑𝑛
0
+ 𝑑𝑝

0
+ ∑𝑡

𝑖=1
𝑧𝑖 ).

6.3 Popular Item Engages in Promotion
Our PRM problem considers passive popular item that does not engage in promotion. When

popular item also engages in promotion, the situation is more complicated. Here we assume that

the promotion of the popular item in all rounds are known, and the promotional result on round 𝑡

is given as 𝑝𝑡 , 𝑡 ∈ [𝑇 ].
The case of unknown popular item promotions would lead the problem into the game-theoretic

setting, which is beyond the scope of this paper. When 𝑝1, . . . , 𝑝𝑇 are known, in the OINS setting,

the close form of the objective function 𝑟𝑂𝐼
𝑇

(S) is not easily derived as in Lemma 1. Instead we can

obtain its upper and lower bound as follows.

𝑟𝑇 ≤ (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧𝑡 + ∑𝑡−1

𝑖=1
(𝜎 (𝑆𝑖 ) + 𝑝𝑖 )

)
− 1, (13)

𝑟𝑇 ≥ (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧𝑡 + ∑𝑡−1

𝑖=1
(𝜎 (𝑆𝑖 ) + 𝑝𝑖 ) + 𝑝𝑡

)
− 1. (14)

Eq.(13) can be viewed as treating 𝑝𝑡 as the additional natural growth in round 𝑡 , and thus disfavor

of the popular item and in favor of the novice item. Eq.(14) works when 𝑑𝑡𝑝 ≥ 𝑑𝑡𝑛 , i.e. popular item

is still the majority in popularity. These bounds lead to two weight settings:

𝑤𝑡 =
1

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑡 · 𝑧 + ∑𝑡

𝑖=1
𝑝𝑖
, 𝑤

𝑡
=

1

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑡 · 𝑧 + ∑𝑡

𝑖=1
𝑝𝑖 + 𝑝𝑡

.

Then following the sandwich approximation strategy [24], we can apply the two sets of weights to

the corresponding PRM-IMM algorithm, and obtain two seed allocations, and compare their results

to find the better one. The approximation ratio for the surrogate objective would have an extra

factor of max𝑡 ∈𝑇 𝑤𝑡
/𝑤𝑡 .

6.4 Two Other Optimization Objectives
Beyond the fundamental problem of maximizing the popularity ratio, it is natural to investigate

two other variants of the PRM problem in surpassing the competitor: minimizing seed budget and

minimizing the number of rounds needed.

• Seed Minimization: Given a round budget 𝑇 , minimize the number of seeds in S such that

the final popularity ratio is at least 1, i.e., 𝑟𝑇 (S) ≥ 1.

• Round Minimization: Given a seed budget 𝑘 , minimize the round number 𝑇 such that the

final popularity ratio is at least 1, i.e., 𝑟𝑇 (S) ≥ 1.

Note that 𝑟𝑇 (S) ≥ 1 means that the novice item has successfully caught up or surpassed the

popular item at the end of the promotional period. For the seed minimization problem, we first find
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Table 2. Datasets

DM LastFM FX01/02 HEPT Yelp DBLP LJ

nodes 0.6K 1.8K 29.3K 27.7K 110K 650K 4800K

edges 3.3K 12.7K 212.6K 352.8K 950K 1900K 42800K

avg.degree 4.96 13.44 7.24 12.70 15.92 3.04 8.83

Table 3. Parameter Settings

DM LastFM FX01 FX02 HEPT Yelp DBLP LJ

𝑟0 0.25 0.067 0.13 0.067 0.25 0.02 0.025 0.025

𝑑0 900 1600 1700 1600 5000 51000 20500 205000

𝑧 10 100 50 100 150 2000 2500 25000

the range of minimum budget by doubling the budget from 1, and then determine the minimum

budget that would make 𝑟𝑇 ≥ 1 by a binary search on the budget, and for each budget tried, we

use the PRM-IMM algorithms developed. Same binary search idea can be applied to the round

minimization problem.

6.5 Multiple Items
In this section, we discuss the PRM problem when there are multiple items in the system.

The Novice Item View Point, with Multiple Promotional Items We first focus on the view

point from the targeted novice item, which is trying to increase its popularity compared with other

items. Other competing items may or may not have their own promotions. We denote other items

as items 1, . . . , 𝑠 , and the popularity of item 𝑗 ∈ [𝑠] at the end of round 𝑡 is 𝑑
𝑗
𝑡 .

We do not need to distinguish between popular and novice items among other items, and only

need to denote whether an item conducts promotion or not. Each item 𝑗 ∈ [𝑠] may conduct

promotion 𝑝
𝑗
𝑡 in round 𝑡 , and 𝑝

𝑗
𝑡 = 0 means no promotion. The popularity ratio of our targeted

novice item, 𝑟𝑡 , is defined as 𝑟𝑡 = 𝑑𝑛𝑡 /(
∑𝑠

𝑗=1
𝑑
𝑗
𝑡 ). The following theorem demonstrates that, even in

the multiple-item case, we are able to derive the upper and lower bounds for the popularity ratio

𝑟𝑇 , similar to the results presented in Section 6.3.

Theorem 6. In the setting of multiple items with promotions, we can bound 𝑟𝑇 as follows:

𝑟𝑇 ≤ (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

Z

)
− 1, (15)

𝑟𝑇 ≥ (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 +

𝜎 (𝑆𝑡 ) −
∑𝑠

𝑗=1
𝑝
𝑗
𝑡

Z + ∑𝑠
𝑗=1

𝑝
𝑗
𝑡

)
− 1, (16)

where Z = 𝑑𝑛
0
+∑𝑠

𝑗=1
(𝑑 𝑗

0
) + 𝑧𝑡 +∑𝑡−1

𝑖=1
(𝜎 (𝑆𝑖 ) +

∑𝑠
𝑗=1

𝑝
𝑗

𝑖
), and Inequality (16) holds when 𝑑𝑛𝑡 ≤ ∑𝑠

𝑗=1
𝑑
𝑗
𝑡 ,

for 𝑡 < 𝑇 .

The implication of the above theorem is that, from the perspective of the targeted novice item,

all other items can be treated as one single composite item — as long as we know the combined

promotional effect of all other items, namely

∑𝑠
𝑗=1

𝑝
𝑗
𝑡 , we can treat all other items as one single

item and compute the promotion to the novice item in the same way as described in Section 6.3.

Moreover, it is easy to verify that if none of the other items conduct promotion, i.e. 𝑝
𝑗
𝑡 = 0 for all
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𝑡 ’s and 𝑗 ’s, we can treat all other items as a single composite item and derive the exact formula

for 𝑟𝑇 as in Lemma 1. The main reason for the above property is that the preferential attachment

mechanism remains the proportional allocation whether the novice item is facing one other item

or many other items.

This further extends our understanding of popularity ratio maximization in cases where multiple

items (popular or not, having promotions or not) co-exist in the system.

The Game Theoretic Point of View The above is from one novice item’s view point, on

how to allocate seeds to maximize its popularity ratio when other items’ promotions are known.

When items’ promotions are unknown to one another, we need to study the dynamic of the overall

system, and we enter the game-theoretic setting. Here, each item’s strategy is the allocation of

seeds over 𝑇 rounds under its budget, and its utility is its popularity ratio. The algorithm we

designed before can be viewed as the algorithm for each individual item (player) to achieve its

best response, or approximate best response. Collectively, we can study the best-response dynamic

and the equilibrium behavior. Alternatively, one may also map our basic PA-IC model into the

Stackelberg game model [13], where the novice item and the popular make moves one after another

based on the other side’s previous moves. However, the full study of the game-theoretic aspect

under our PA-IC model and the PRM problem setting would be too complicated to be included in

this paper, and we will leave the detailed formulation and the technical study as a future work item.

7 EXPERIMENTS
In this section, we empirically validate our algorithms on eight real-world networks.

7.1 Experiment Setup
Data description We apply eight real-world network datasets in our experiments, with basic

statistics shown in Table 2. The DM dataset is a collaboration network where nodes represent

the data-mining researchers and edges represent co-authorships [30]. The FX01/02 datasets are

from the Flixster, a network of American social movie discovery services [2]. Each node is a user

and a directed edge from node 𝑢 to 𝑣 is formed if 𝑣 rates one movie shortly after 𝑢 does so on the

same movie. FX01/02 represent two networks on two different movie topics [2], The NetHEPT

dataset is an academic collaboration network from the “High Energy Physics Theory” section of

arXiv from 1991 to 2003, where nodes represent the authors and each edge represents one paper

co-authored by two nodes [9]. LastFM is a UK-based music site that focuses on online radio and

music communities
3
. We use the friend relationship on LastFM to build a user relationship social

network. The Yelp dataset is released by yelp officially
4
. Yelp.com is the largest review site in the

United States. We use the friend relationship data in Yelp to build a user’s social network. DBLP is

another academic collaboration network extracted from the online archive DBLP (dblp.uni-trier.de)

and used for influence studies [34]. LiveJournal, denoted as LJ, is a free online community with

almost 10 million members; a significant fraction of these members are highly active. It is obtained

from Stanford’s SNAP project [20].

Metrics We consider the following three metrics, reflecting what one could consider in practice:

• Popularity ratio. The popularity ratio at the end of promotions.

• Surpass budget. Given a fixed round 𝑇 , the minimum budget needed for the novice item to

surpass the popular item.

• Surpass time. Given a fixed budget 𝑘 , the minimum round number when the novice item

surpasses the popular item.

3
http://www.last.fm/

4
http://www.yelp.com
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Fig. 2. The popularity ratio vs. budgets for different algorithms in OINS setting.

Parameter setup and reproducibility For DM and FX datasets, we use the edge weights learned

in their respective studies [2, 30]. For the remaining datasets, we use the following “Weighted

Cascade” policy adopted in [18] and often used in other influence maximization studies (e.g.

[10, 32, 34]): for each edge (𝑢, 𝑣), 𝑝 (𝑢, 𝑣) is set to be
1

𝑁𝑖𝑛 (𝑣) , where 𝑁𝑖𝑛 (𝑣) is the in-degree of 𝑣 .

Every PRM instance is also determined by the parameters 𝑟0, 𝑑0, 𝑧. We set proper parameters for

each dataset, as shown in Table 3, to reflect different scenarios and match with the network size.

Specifically, the settings of 𝑑0 and 𝑧 are mainly related to the size of the network. When the network

size is large, promotion may generate large popularity from the social network. Thus, to match

the natural growth parameter and to avoid promotion dominating the natural growth, we need

to adjust 𝑑0 and 𝑧 accordingly to compensate for the large popularity generated by promotion.

Parameter 𝑟0 further covers different scenarios among the datasets.

We further vary these parameters and study their effects (Fig.4 and Fig.5). Following [32], we

set the error probability parameter 𝑙 = 1, approximation ratio parameter Y = 0.1 in PRM-IMM. For

implementation details see the source code and proof appendix in this repository
5
.

Baselines There is no existing baseline for the newly proposed PRM problem. Thus, we compare

with the following reasonable heuristic baselines.

• OneShot-IMM: The largest 𝑘 nodes are picked by the IMM algorithm, and all are placed in

round 1.

• Uni-IMM-NS/Uni-IMM-OS: The NS version selects the largest 𝑘 nodes by IMM and places

them in all rounds separately with equal size in the order of the greedy selection. The OS version

simply repeats the first round seeds in later rounds (for NIOS tests).

• RandRound-IMM: Pick the largest 𝑘 nodes by the IMM algorithm and put them into 𝑇 rounds

randomly.

• RandSeed&Round: Randomly select 𝑘 nodes and randomly place these nodes in each round.

• Dec-IMM-NS/Dec-IMM-OS: The NS version picks the largest 𝑘 nodes by IMM and places seed

nodes in descending order. The method of generating the decreasing sequence is to use one-fifth

of the budget in the first round and one-fifth of the remaining budget in each subsequent round.

The OS version repeats the seeds in the first round with the same budget as the NS version.

5
https://github.com/Complex-data/PRM
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Table 4. Running Time (OINS setting, 𝑇 = 100, 𝑘 = 100, results in seconds, average over 5 runs)

IMM PRM-IMM Greedy100 Greedy500

DM 0.067 13.7 397.8 3489

LastFM 1.24 82.86 11976 53681

FX01 4.07 437 - -

FX02 3.42 432 - -

HEPT 2.39 399 - -

Yelp 44.36 2959 - -

DBLP 47.46 1176 - -

LJ 371 15026 - -

• Greedy: Directly apply the greedy algorithm, using simulations to estimate marginal gains and

do not use the RIS approach.

The first five baselines are all heuristics with no theoretical guarantee. Algorithm Greedy has

the theoretical guarantee as PRM-IMM, but it is very slow in running simulations, and we will only

show its result on the two small datasets DM and LastFM.

7.1.1 Platform. We implement all algorithms in C++, compiled in Visual Studio 2019, and run our

tests on a computer with 3.6GHz Intel(R) Core(TM) i9-9900K CPU (16 cores), 128G memory, and

Windows 10 professional (64 bits).

7.2 Results
OINS main results. Fig. 2 shows the result of popularity ratio vs. budget on all datasets and all

algorithms in the OINS setting. The results are averaged over 10 independent runs. Note that the

y-axis corresponds to the original objective function (Eq. (3)), not the surrogate function (Eq. (7)).

It is obvious that PRM-IMM outperforms the baseline algorithms with a large margin in many

cases. More specifically, RandomSeed&Round is much worse than other algorithms, showing that

randomly giving out promotions should be avoided if possible. Uniform-IMM and RandomRound-

IMM have similar performance since both spread the seeds more or less evenly among the 𝑇

rounds, and in many cases such even spreading results in poor performance. OneShot-IMM is at

the opposite extreme, only allocating seeds in the first round. It has unstable performance, and in

most cases it performs poorly, except for the DM and DBLP datasets.

Dec-IMM in general performs better than the OneShot/Uniform/RandomRound versions, but

it still has a clear gap with our algorithm PRM-IMM. This is because all these heuristics cannot

adjust to different network structure and diffusion characteristics of the networks (such as whether

important seeds are likely to have overlapping influence), while our PRM-IMM automatically

balances the early promotion and the influence redundancy among seeds.

Greedy should perform equally well as PRM-IMM, since PRM-IMM is just a more efficient way of

implementing Greedy. But Greedy is very time consuming — as shown in Table 4, Greedy with 100

and 500 simulations per estimation is already several orders of magnitude slower than PRM-IMM,

and it takes Greedy500 almost 15 hours to run on the 1.8K node LastFM network. Thus Greedy is

not scalable and we cannot run it on other datasets except for DM and LastFM. Even for LastFM,

Fig. 2(b) shows that Greedy500 and Greedy100 are not as competitive as PRM-IMM, due to the

insufficient number of simulations.
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Table 5. Running Time (OINS setting, 𝑘 = 500, 1000 results in seconds, average over 5 runs)

𝑘 = 500 𝑘 = 1000

IMM PRM-IMM IMM PRM-IMM

DM 0.13 1.16 0.13 1.98

LastFM 0.54 48.59 0.61 48.59

FX01 11.47 138.62 16.51 229.9

FX02 10.52 137.52 16.25 253.48

HEPT 15.11 67.83 13.79 106.93

Yelp 20.36 1639.34 24.51 2715

DBLP 332.46 1317.18 383.73 1939.36

LJ 2505 5607 4251 10760

The top left corner of each subfigure in Fig.2 shows the result of different algorithms under

larger seed budget of 𝑘 = 500, 1000. It can be seen that PRM-IMM still performs better than other

baselines for larger 𝑘’s.

Table 4 shows that the running time of the algorithms with 𝑘 = 100. Note that Random

Seed&Round is a trivial baseline with almost instant running time, but its quality is far worse than

all others as reported in Fig.2, and thus we do not include it in the running time table. For all other

baselines except Greedy, they call IMM to select seeds first, and then do various simple allocation

of seeds over rounds. Thus their running time is dominated by the IMM running time, which is

reported in the table. The result shows that (a) Greedy100/Greedy500 is two to three orders of

magnitude slower than PRM-IMM, and thus is not scalable at all; (b) PRM-IMM is around 100 times

slower than the pure IMM algorithm (except for DBLP and LJ), which aligns with our theoretical

analysis showing that our running time has an extra 𝑇 factor. Note that for the two large datasets

DBLP and LJ, we reduce its round input𝑇 to save time, since the results from smaller budgets show

that only the first few rounds get allocated for seeds.

Table 5 shows the running time of PRM-IMM vs. IMM with 𝑘 = 500, 1000. For this test, we

optimize for 𝑇 , meaning that we set 𝑇 to a small value, and if the resulting allocation of PRM-IMM

does not use all rounds, we stop the algorithm; otherwise, we double the 𝑇 value and retry the

algorithm. We can see that PRM-IMM can still scale to larger seed budgets and large networks.

Overall, our OINS results clearly show that our PRM-IMM algorithm outperforms all simple

heuristics, while it runs much more efficiently than the greedy algorithm. PRM-IMM achieves a

good balance between quality and efficiency.

Model justificationWe now justify two choices we made in our model formulation. First, Eq.(1)

is based on the average popularity growth in each round rather than the random popularity growth,

as we discussed in Section 3.1. We compare the effect of the average growth with the random

growth, using the seed allocation selected by PRM-IMM with the budget ranging from 10 to 100.

Fig. 3(a) shows that the results of the two effects are very close in four datasets (the other four have

similar results), justifying our use of the average effect in Eq.(1).

Next, we compare the original objective function of Eq. (3) with the surrogate round-weighted

influence function of Eq. (7). We use seed allocations selected by PRM-IMM for this comparison.

Fig. 3(b) shows that the two functions agree with each other very well, with average derivation

less than 5% for four datasets (and the other four have similar results). Hence, using the surrogate

function is a reasonable choice, even though our PRM is a heuristic with respect to the original

objective.

Parameter analysis in PRM We now analyze the effect of the initial total popularity measure
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Fig. 5. Different parameter’s impact on seeds allocation, in the FX01 dataset.

𝑑0 and natural growth count 𝑧 on the PRM-IMM algorithm. We run PRM-IMM to select 100 seeds

for this analysis. Fig. 4 shows the result for FX01, and results on other datasets are similar.

Fig. 4(a) shows that when 𝑧 increases, the popularity ratio decreases, indicating that the larger

the natural growth of the popularity measure, the more difficult it is for the novice item to catch up

with the popular item. Fig. 4(b) also shows the decreasing trend with respect to 𝑑0. This is because
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Fig. 6. The popularity ratio vs. budgets for different algorithms in NIOS setting

Table 6. Running Time (NIOS setting, 𝑇 = 100, 𝑘 = 100, results in seconds, average over 5 runs)

IMM PRM-IMM greedy-100 greedy-500

DM 0.067 342.8 1274.8 3489

LastFM 1.24 1258 51034 249656

FX01 4.07 4396 - -

FX02 3.42 6163 - -

HEPT 2.39 8056 - -

Yelp 44.36 39582 - -

DBLP 47.46 1395 - -

LJ 371 76396 - -

when 𝑑0 is larger while 𝑟0 remains the same, the gap between the popular and novice item becomes

larger and it is more difficult for the noice item to catch up.

Among the parameters, 𝑧 and 𝑑
𝑝

0
(initial popularity of the popular item) are not directly related

to the novice item. Thus, we further investigate how 𝑧 and 𝑑
𝑝

0
would affect the seed allocation

choice of the novice item in Fig. 5. Y-axis “max round” means the maximum number of rounds

used in the allocation. Fig. 5 shows that when 𝑧 increases, the max round decreases, and when 𝑑
𝑝

0

increases, the max round also increases. This shows the interesting adaptive property of PRM-IMM:

when the natural growth count per round increases, the algorithm tries to put more seeds earlier,

otherwise natural growth in each round will cause more people going to the popular item and

making it harder to catch up; but if only the initial popularity of the popular item increases, the

algorithm can use more rounds to achieve a better catch-up result in the end.

Results on NIOS The popularity ratio and running time results for NIOS are shown in Fig. 6

and Table 6, respectively. For this test, we further include baselines Uni-IMM-OS and Dec-IMM-OS

to consider seed overlaps. Overall, the results are similar to those of OINS, and our PRM-IMM

algorithm always performs the best among all baselines, and it runs significantly faster than the
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Fig. 8. The popularity ratio vs. budgets for different algorithms when the popular item has promotion.

simple greedy algorithm. The performance gap between our algorithm and other baselines is even

larger in many cases compared to OINS. This is perhaps because the NIOS setting demands more

sophisticated seed allocation. For example, we notice that seed overlaps vary with the networks.

The OS specific baselines in many cases perform not as well as their NS counterparts, indicating that

it is not easy to adjust proper overlaps among seeds. Compared to OINS, our PRM-IMM algorithm

runs slower, and this is mainly because each MR-RR set for NIOS is much larger than the PW-RR

set for OINS.

Alternative Objectives. Finally, we evaluate the two alternative objectives discussed in Section

6.4. Since RandomSeed&Round is clearly worse than other algorithms, while OneShot-IMM cannot

assign seeds to multiple rounds, we do not include them as baselines in this part. We apply the idea

in Section 6.4 to conduct these experiments for the OINS setting.
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Fig.7 shows the results on four datasets, and the results on the other four datasets are similar.

Fig.7(a) shows the result for the Seed Minimization problem, in which we fix 𝑇 = 20, and then use

different algorithms to find the minimum budget that can make the popular ratio exceed 1. Fig.7(b)

shows the result for the Round Minimization problem. For this problem, we need to set different

budgets for different datasets based on our result from Fig.7(a) to balance the influence of 𝑇 and 𝑘 .

The results in both figures show that our algorithm can achieve the best results compared to all

other baselines.

Popular item having promotion. In this section, we evaluate different algorithms in the

situation when the novice item knows the promotion plan of the popular item. We assume that

the popular item uses a budget of 30 and uses three different strategies: PRM-IMM, Dec-IMM,

Uni-IMM, to select seeds. Then the novice item uses PRM-IMM and other baselines to select seed

nodes and evaluate the final popularity ratio. The results on FX01 and HEPT dataset are shown in

Fig.8. We can see that even when the popular item has promotions, our PRM-IMM still performs

well and beats all the baselines. Moreover, the end popularity ratio increases when the popular

item promotion moves from PRM-IMM algorithm to Dec-IMM and then Uni-IMM, suggesting that

the novice item can achieve better promotion result when the popular item uses a less competitive

promotion strategy.

8 FUTUREWORK
One interesting future direction is to study adaptive strategies, where the seed selection of later

rounds depends on the actual promotional results of the earlier rounds. Another direction is to

consider the delayed effect of promotion, where social network promotion may take multiple

rounds to generate popularity growth. One may also look into the model where the promotion of

the popular item and the novice item also competes in the social network.
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Table 7. Notations

Notation Description

𝐺 = (𝑉 , 𝐸) a social network 𝐺 with a node set 𝑉 and an edge set 𝐸

𝑁,𝑀 the numbers of nodes and edges in 𝐺 , respectively

𝑑𝑛𝑡 the popularity measure of Novice item at the end of round 𝑡

𝑑
𝑝

𝑡 the popularity measure of Popular item at the end of round 𝑡

𝑘 number of seeds to be selected

𝜏 time step index, each time step is one step in one round of IC model propagation

𝑡 round index, each round is a promotional round

𝑇 Total rounds

𝑆𝑡 seed set of round 𝑡

S =
⋃𝑇

𝑡=1
𝑆𝑡 × {𝑡} pair set, a pair (𝑢, 𝑡) is a node 𝑢 at round 𝑡

S∗
optimal pair set

𝑟𝑇 (S) the popularity ratio at the end of round 𝑇

𝑟0 the initial popularity ratio

𝑝 (𝑢, 𝑣) the probability of node 𝑢 active 𝑣

𝑧 total natural growth of popularity measure

𝜎 (𝑆) the influence spread of seed set 𝑆

𝑤 = (𝑤1,𝑤2...𝑤𝑇 ) the weight vector,𝑤𝑡 is the weight of round 𝑡

𝜌𝑇 (S) weighted overlapping influence spread

𝜌 (𝑡 ) (𝑆𝑡 ) weighted overlapping influence spread of round 𝑡

𝑅, 𝑅(𝑣) one RR set, 𝑅(𝑣) is the RR set rooted at node 𝑣

𝑅 (𝑡 ) , 𝑅 (𝑡 ) (𝑣) one PW-RR set, 𝑅 (𝑡 ) = 𝑅 × {𝑡}, 𝑅 (𝑡 ) (𝑣) is the RR set rooted at pair (𝑣, 𝑡)
R the set of pair-wised RR set

\ the number of PW-RR sets that need to be generated

𝑙 Error probability parameter

Y Approximate ratio parameter

𝑏,Q, 𝑖, 𝑗, 𝑥𝑖 , 𝛼, 𝛽,𝑂𝑃𝑇, 𝛿, 𝐿𝐵, 𝑃𝑟, 𝜔,Ω parameters in derivation

A NOTATIONS
Table.7 shows all terms’ notations in this paper.

B PROOF OF MONOTONICITY AND NON-SUBMODULARITY OF POPULARITY
RATIO FUNCTION (LEMMA 2)

Proof. It is proved that the expected influence spread set function𝜎 is monotone and submodular,

we don’t show the proof process here. So we only need to prove that the popularity ratio function

is monotone with respect to the function 𝜎 (𝑆𝑖 ), 0 < 𝑖 < 𝑇 . We can prove the monotone of the
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popularity ratio function. For simplicity, we denote 𝑑𝑛𝑡−1
+𝑑𝑝

𝑡−1
+𝑧 as 𝑑𝑡 , denote 𝜎 (𝑆𝑖 ) as 𝑥𝑖 , 0 < 𝑖 < 𝑇 .

𝜕𝑟𝑇

𝜕𝑥𝑖
= (𝑟0 + 1)

𝑖−1∏
𝑡=1

(
1 + 𝑥𝑡

𝑑𝑡

) [
1

𝑑𝑖

𝑇∏
𝑡=𝑖+1

(
1 + 𝑥𝑡

𝑑𝑡

)
+

𝑇∑︁
𝑡=𝑖+1

−𝑥𝑡
𝑑2

𝑡

𝑇∏
𝑠=𝑖,𝑠≠𝑡

(
1 + 𝑥𝑠

𝑑𝑠

) ]
= 𝑟𝑇 ·

[
𝑧

𝑑𝑖+1 (𝑑𝑖 + 𝑥𝑖 )
+ · · · + 𝑧

𝑑𝑇 (𝑑𝑇−1 + 𝜎 (𝑆𝑇−1))

+ 1

𝑑𝑇 + 𝑥𝑇

]
> 0

For any 0 < 𝑖 < 𝑇,
𝜕𝑟𝑇
𝜕𝑥𝑖

> 0, the popularity ratio function is monotone.

However the popularity ratio function does not satisfy submodular, and we will illustrate this

property with a counter example below.

Consider the simplest case that social network has only three nodes 𝑢, 𝑣,𝑤 . No edges between

nodes, the initial popularity measure of Novice item is 𝑑𝑛
0
= 1 and the initial popularity measure of

Popular item is 𝑑
𝑝

0
= 2, the increment of popularity measure of each round 𝑧 = 1. In this case, the

original

𝑟𝑇 (S) = (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
− 1

where 𝑇 is at most 3, 𝑟0 =
𝑑𝑛

0

𝑑
𝑝

0

= 1

2
.

𝑟𝑇 (S)

=
3

2

∗ (1 + 𝜎 (𝑆1)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 𝑧

) ∗ (1 + 𝜎 (𝑆2)
𝑑𝑛

1
+ 𝑑𝑝

1
+ 𝑧

) ∗ (1 + 𝜎 (𝑆3)
𝑑𝑛

2
+ 𝑑𝑝

2
+ 𝑧

) − 1

where 𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 = 4, 𝑑𝑛

1
+ 𝑑𝑝

1
+ 𝑧 = 5 + 𝜎 (𝑆1), 𝑑𝑛1 + 𝑑𝑝

1
+ 𝑧 = 6 + 𝜎 (𝑆1) + 𝜎 (𝑆2).

𝑟𝑇 (S)

=
3

2

∗ (1 + 𝜎 (𝑆1)
4

) ∗ (1 + 𝜎 (𝑆2)
5 + 𝜎 (𝑆1)

) ∗ (1 + 𝜎 (𝑆3)
6 + 𝜎 (𝑆1) + 𝜎 (𝑆2)

) − 1

Now the two pair set S ⊂ Q, S = {(𝑢, 1)}, Q = {(𝑢, 1), (𝑣, 1)}, and a pair 𝑏 = (𝑤, 2), Clearly 𝑏 ∉ S.

𝑟𝑇 (S) = 0.875, 𝑟𝑇 (S ∪ {𝑏}) = 1.1875

𝑟𝑇 (Q) = 1.25, 𝑟𝑇 (Q ∪ {𝑏}) = 1.5714

𝑟𝑇 (Q ∪ {𝑏}) − 𝑟𝑇 (Q) = 0.3214, 𝑟𝑇 (S ∪ {𝑏}) − 𝑟𝑇 (S) = 0.3125

𝑟𝑇 (Q ∪ {𝑏}) − 𝑟𝑇 (Q) > 𝑟𝑇 (S ∪ {𝑏}) − 𝑟𝑇 (S)

In this case, the marginal value of Q is larger than S. So the set popularity ratio function is not

submodular. □
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C SIMPLIFICATION PROCESS FROM POPULARITY RATIO FUNCTION TO ROUND
WEIGHTED INFLUENCE FUNCTION (SECTION 4.2

The first step: expanding the multiplication series of Eq.(3) and only keeping the first-order terms;

𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
=

𝜎 (𝑆1)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 𝑧

+ 𝜎 (𝑆2)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 2𝑧 + 𝜎 (𝑆1)

+ · · · + 𝜎 (𝑆𝑇 )
𝑑𝑛

0
+ 𝑑𝑝

0
+𝑇 · 𝑧 + ∑𝑇−1

𝑖=0
𝜎 (𝑆𝑖 )

second step: removing the 𝜎 (𝑆1), . . . , 𝜎 (𝑆𝑇−1) in the denominator of each term left after step (a).

=
𝜎 (𝑆1)

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧

+ 𝜎 (𝑆2)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 2𝑧

+ · · · + 𝜎 (𝑆𝑇 )
𝑑𝑛

0
+ 𝑑𝑝

0
+𝑇 · 𝑧

Combining the above simplified process, it can be noted that

𝜌𝑇 (S) =
𝜎 (𝑆1)

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧

+ 𝜎 (𝑆2)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 2𝑎

+ · · · + 𝜎 (𝑆𝑇 )
𝑑𝑛

0
+ 𝑑𝑝

0
+𝑇 · 𝑧

is our weighted overlapping influence function, where 𝑑𝑛
0
, 𝑑

𝑝

0
, 𝑧 are our predefined parameters.

Thus we can denote the weighted overlapping influence function as

𝜌𝑇 (S) =
𝑇∑︁
𝑡=1

𝑤𝑡 · 𝜎 (𝑆𝑡 ) (17)

D PW-RR GENERATION PROCESS
RR set 𝑅 is generated by independently reverse simulating the propagation from 𝑣 in round 𝑡 . A

(random) pair-wise RR set (𝑅, 𝑡) is a RR set 𝑅 rooted at a node picked uniformly at random from 𝑉 ,

and 𝑡 is picked uniformly at random from [𝑇 ].

Algorithm 4 PW-RR generation process.

Input: directed graph 𝐺 = (𝑉 , 𝐸), IC model, Max round 𝑇

Number of PW-RR set \

Output: the set of PW-RR set R
1: R = ∅
2: for 0 < \ do
3: \ = \ − 1

4: Generate an RR set 𝑅 for a random node 𝑣 ∈ 𝑉

5: choose a round 𝑡 uniformly at random from [𝑇 ]
6: put the RR set 𝑅 and round 𝑡 together as 𝑅 (𝑡 )

7: R = R ∪ {𝑅 (𝑡 ) }
8: end for
9: return R

E PROOF OF MONOTONICITY AND NON-SUBMODULARITY OF POPULARITY
RATIO FUNCTION (LEMMA 3)

Proof. For every 𝑡 ∈ [𝑇 ] and every set S of pairs in 𝑉 × [𝑇 ], define 𝜌 (𝑡 ) (S) = 𝜎 (𝑆𝑡 ). Using
the fact that the influence spread function 𝜎 (𝑆) is monotone and submodular with respect to 𝑆 ,

we want to show that 𝜌 (𝑡 ) (S) is monotone and submodular with respect to S. In fact, for every
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S ⊆ Q ⊆ 𝑉 × [𝑇 ], we know that 𝑆𝑡 ⊆ 𝑄𝑡 , and therefore 𝜌 (𝑡 ) (S) = 𝜎 (𝑆𝑡 ) ≤ 𝜎 (𝑄𝑡 ) = 𝜌 (𝑡 ) (Q), and
thus the monotonicity holds.

Now, suppose that S ⊆ Q ⊆ 𝑉 × [𝑇 ] and 𝑏 = (𝑣, 𝑗) ∈ 𝑉 × [𝑇 ] \ Q. If 𝑗 ≠ 𝑡 , then S ∪ {𝑏}
and S has the same node set for round 𝑡 , which means 𝜌 (𝑡 ) (S ∪ {𝑏}) − 𝜌 (𝑡 ) (S) = 0. Similarly,

𝜌 (𝑡 ) (Q∪{𝑏}) −𝜌 (𝑡 ) (Q) = 0. Thus, 𝜌 (𝑡 ) (Q∪{𝑏}) −𝜌 (𝑡 ) (Q) ≤ 𝜌 (𝑡 ) (S∪{𝑏}) −𝜌 (𝑡 ) (S). If 𝑗 = 𝑡 , then

we have 𝑆𝑡 ⊆ 𝑄𝑡 and 𝑣 ∈ 𝑉 \𝑄𝑡 . By the submodularity of 𝜎 , we have 𝜌 (𝑡 ) (Q ∪ {𝑏}) − 𝜌 (𝑡 ) (Q) =
𝜎 (𝑄𝑡 ∪ {𝑣}) − 𝜎 (𝑄𝑡 ) ≤ 𝜎 (𝑆𝑡 ∪ {𝑣}) − 𝜎 (𝑆𝑡 ) = 𝜌 (𝑡 ) (S ∪ {𝑏}) − 𝜌 (𝑡 ) (S). Therefore submodularity

also holds.

Finally, since 𝜌 (𝑡 ) (S) is monotone and submodular with respect to S for every 𝑡 , by the well

known fact that the nonnegative weighted summation of monotone submodular functions is

still monotone and submodular, we know that 𝜌𝑇 (S) =
∑𝑇

𝑡=1
𝑤𝑡𝜎 (𝑆𝑡 ) =

∑𝑇
𝑡=1

𝑤𝑡𝜌
(𝑡 ) (S) is also

monotone and submodular with respect to S. □

F PROOF OF PROPERTY OF PW-RR (LEMMA 4)
Proof. The randomness of 𝑌 (S) is from two aspect: (1) the root of a PW-RR set is uniformly

random choose, (2) the round 𝑡 of the PW-RR set is uniformly random choose.

E [𝑌 (S)]

=
1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 · E (I {S ∩ R ≠ ∅})

=
1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 · Pr

{
𝑆𝑡 ∩ 𝑅 (𝑡 ) ≠ ∅

}
=

1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 ·
1

𝑁

∑︁
𝑣∈𝑉

Pr

{
𝑆𝑡 ∩ 𝑅 (𝑡 ) (𝑣) ≠ ∅

}
=

1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 ·
1

𝑁

∑︁
𝑣∈𝑉

𝑎𝑝 (𝑆𝑡 , 𝑣)

=
1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 ·
1

𝑁
𝜎 (𝑆𝑡 )

For any seed set 𝑆𝑡 ∈ 𝑉 , any node 𝑣 ∈ 𝑉 , the probability that the seed set 𝑆𝑡 activates node 𝑣 with

probability 𝑎𝑝 (𝑆𝑡 , 𝑣). 𝑎𝑝 (𝑆𝑡 , 𝑣) is the probability that 𝑆𝑡 have an intersaction with a random RR set

𝑅(𝑣) rooted from node 𝑣 . i.e. 𝑎𝑝 (𝑆, 𝑣) = Pr{𝑆 ∩ 𝑅(𝑣) ≠ ∅}
□

G ESTIMATE THE NUMBER OF PW-RR IN OINS SETTING (ALGORITHM 2)
We first give a general conclusion (Theorem 7) to show how the greedy solution obtained by

the PRM-NodeSelection approaches the optimal solution of the weighted overlapping influence

maximization problem when the 𝜌𝑇 (S,R) itself satisfies monotone submodular (It is easy to proof

that 𝜌𝑇 (S,R) is submodular and nondecreasing with respect to S).
We denote the random estimation of 𝜌𝑇 (S) as 𝜌𝑇 (S, 𝜔), where 𝜔 ∈ Ω is a sample in random

space Ω. S∗
is the optimal solution of 𝜌𝑇 (S), OPT = 𝜌𝑇 (S∗). ˆS𝑔 (𝜔) is the greedy result of 𝜌𝑇 (·, 𝜔).

For Y > 0, we say a solution S is bad, if 𝜌𝑇 (S) < (1/2 − Y) · OPT .

Theorem 7. for any Y > 0, Y1 ∈ (0, 2Y), 𝛿1, 𝛿2 > 0, if:
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(a) Pr

𝜔∼Ω
{𝜌𝑇 (S∗, 𝜔) ≥ (1 − Y1) · OPT } ≥ 1 − 𝛿1

(b) for any bad S ,
Pr

𝜔∼Ω

{
𝜌𝑇 (S, 𝜔) ≥ 1

2
(1 − Y1) · OPT

}
≤ 𝛿2

𝑇𝑘 ·(𝑁𝑘 )
(c) for all 𝜔 ∼ Ω, 𝜌𝑇 (S, 𝜔)is monotone and submodular with respect to S.

So that, Pr

𝜔∼Ω

{
𝜌𝑇

(
ˆS𝑔 (𝜔)

)
≥

(
1

2
− Y

)
· OPT

}
≥ 1 − 𝛿1 − 𝛿2

Proof. Because 𝜌𝑇 (S, 𝜔)is monotone and submodular with respect to S, due to the property of

partition matroid, we know the greedy solution returns a 1/2-approximate solution.

𝜌𝑇

(
ˆS𝑔 (𝜔), 𝜔

)
≥ 1

2

𝜌𝑇 (S∗, 𝜔)

With (a), we have at least 1 − 𝛿1 probability that:

𝜌𝑇

(
ˆS𝑔 (𝜔), 𝜔

)
≥ 1

2

(1 − Y1) ·𝑂𝑃𝑇

In 𝑇 round, the number of the 𝑘 size seed set is at most 𝑇𝑘 ·
(
𝑁
𝑘

)
. The probability that every bad S

satisfy (b) is less than
𝛿2

𝑇𝑘 ·(𝑁𝑘 )
, so the probability that existing aS tomake 𝜌𝑇 (S, 𝜔) ≥ 1

2
(1 − Y1)·OPT

is at most 𝛿2.

So Pr

𝜔∼Ω

{
𝜌𝑇

(
ˆS𝑔 (𝜔)

)
≥

(
1

2
− Y

)
· OPT

}
≥ 1 − 𝛿1 − 𝛿2 □

We will use the concentration inequality to find out how much \ is sufficient to satisfy the

conditions (a) and (b) in Theorem 7. For all subsequences of length \,R[\ ] in the probability space

Ω, each PW-RR set is also independent of each other, so we can use Chernoff bounds of independent

sequences to analyze, which is more simple and intuitive[6].

Theorem 8. For any Y > 0, Y1 ∈ (0, 2Y), 𝛿1, 𝛿2 > 0:

\ (1) =
2𝑤1𝑁 ·𝑇 · ln

1

𝛿1

OPT · Y2

1

, \ (2) =

𝑤1𝑁 ·𝑇 · ln

(
𝑇𝑘 ·(𝑁𝑘 )

𝛿2

)
𝑂𝑃𝑇 ·

(
Y − 1

2
Y1

)
2

For any fixed \ > \ (1) , Pr

𝜔∼Ω
{𝜌𝑇 (S∗, 𝜔) ≥ (1 − Y1) · OPT } ≥ 1 − 𝛿1

For any fixed \ > \ (2) , any bad S,

Pr

𝜔∼Ω

{
𝜌𝑇 (S, 𝜔) ≥

1

2

(1 − Y1) ·𝑂𝑃𝑇
}
≤ 𝛿2

𝑇𝑘 ·
(
𝑁
𝑘

)
Now we discuss the setting of parameters Y1, 𝛿1, 𝛿2. The Settings of these parameters are not

unique, and the method we describe below follows the settings in the original IMM algorithm.

According to Theorem 8, assuming that OPT is known, the target of these parameters is to make

the output of greedy solution
ˆS𝑔
is the 1/2 − Y approximation of optimal solution with probability

at least 1 − 1/(2𝑁 𝑙 ). The high probability of 1 − 1/(2𝑁 𝑙 ) was achieved because, in the next step,

we would use the same high probability of 1 − 1/(2𝑁 𝑙 )to obtain a better lower-bound estimate of

OPT . Thus, the correctness of the overall algorithm would be guaranteed for an assignment with a

high probability of 1 − 1/(𝑁 𝑙 ). The following corollary give the setting of the parameters.

Corollary 1. Set 𝛿1 = 𝛿2 =
1

4𝑛𝑙
, Y1 = Y · 𝛼

1

2
𝛼+𝛽

𝛼 =
√
𝑙 ln𝑁 + ln 4, 𝛽 =

√︄
1

2

·
(
ln

(
𝑁

𝑘

)
+ 𝑙 ln𝑁 + ln 4 + 𝑘 ln𝑇

)
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For any fixed \ >
2𝑁 ·𝑇 ·[ 1

2
𝛼+𝛽]2

Y2 ·OPT , if the input of PRM-NodeSelection is R0 [\ ],R0 ∼ Ω,the probability
that PRM-NodeSelection’s output ˆS𝑔 (R0 [\ ]) is the (1/2 − Y) approximation of the optimal solution is
at least 1 − 1

2𝑁 𝑙 .

H PROOF OF THEOREM 7
For any Y > 0, Y1 ∈ (0, 2Y), 𝛿1, 𝛿2 > 0:

\ (1) =
2𝑤1𝑁 ·𝑇 · ln

1

𝛿1

OPT · Y2

1

, \ (2) =

𝑤1𝑁𝑇 · ln

(
𝑇𝑘 ·(𝑁𝑘 )

𝛿2

)
OPT ·

(
Y − 1

2
Y1

)
2

For any fixed \ > \ (1) , Pr

𝜔∼Ω
{𝜌𝑇 (S∗, 𝜔) ≥ (1 − Y1) · OPT } ≥ 1 − 𝛿1

For any fixed \ > \ (2)
, every bad S,

Pr

𝜔∼Ω

{
𝜌𝑇 (S, 𝜔) ≥

1

2

(1 − Y1) · OPT
}
≤ 𝛿2

𝑇𝑘 ·
(
𝑁
𝑘

)
Proof. When \ > \ (1)

Notice that:

𝜌𝑇 (S,R) =
𝑁 ·𝑇
\

\∑︁
𝑗=1

𝑌 R
𝑗 (S)

Pr

R0∼Ω
{𝜌𝑇 (S∗,R0) < (1 − Y1) · OPT }

= Pr

R0∼Ω

{
𝑁 ·𝑇
\

·
\∑︁
𝑗=1

𝑌
R0

𝑗
(S∗) < (1 − Y1) · OPT

}
= Pr

R0∼Ω

{
\∑︁
𝑗=1

𝑌
R0

𝑗
(S∗) < \

𝑁 ·𝑇 · (1 − Y1) · OPT
}

= Pr

R0∼Ω

{
\∑︁
𝑗=1

𝑌
R0

𝑗
(S∗) − \ · 𝜌𝑇 (S∗)

𝑁 ·𝑇 <
\ (1 − Y1) OPT

𝑁 ·𝑇 − \
𝜌𝑇 (S∗)
𝑁 ·𝑇

}
= Pr

R0∼Ω

{
\∑︁
𝑗=1

𝑌
R0

𝑗
(S∗) − \ · 𝜌𝑇 (S∗)

𝑁 ·𝑇 < −Y1 ·
(
\ · 𝜌𝑇 (S∗)

𝑁 ·𝑇

)}
= Pr

R0∼Ω

{
\∑︁
𝑗=1

𝑌
R0

𝑗
(S∗)

𝑤1

− \ · 𝜌𝑇 (S∗)
𝑤1𝑁 ·𝑇 < −Y1 ·

(
\ · 𝜌𝑇 (S∗)

𝑤1𝑁 ·𝑇

)}
≤ exp

(
−
Y2

1

2

\ · 𝜌𝑇 (S∗)
𝑤1𝑁 ·𝑇

)
≤ exp

(
−
Y2

1

2

·
2𝑤1𝑁 ·𝑇 · ln

1

𝛿1

OPT · Y2

1

· 𝜌𝑇 (S∗)
𝑁 ·𝑇

)
= 𝛿1
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When \ > \ (2)
, set Y2 = Y − 1

2
Y1, 𝜌𝑇 (S) <

(
1

2
− Y

)
· OPT

Pr

R0∼Ω

{
𝜌𝑇\ (S,R0) ≥

1

2

(1 − Y1) · OPT
}

= Pr

R0∼Ω

{
𝑁 ·𝑇
\

·
\∑︁
𝑗=1

𝑌
R0

𝑗
(S) ≥ 1

2

(1 − Y1) · OPT
}

= Pr

R0∼Ω

{
\∑︁
𝑗=1

𝑌
R0

𝑗
(S) − \ · 𝜌𝑇 (S)

𝑁 ·𝑇 ≥ \

𝑁 ·𝑇

[
1

2

(1 − Y1) · OPT − 𝜌𝑇 (S)
]}

/∗𝜌𝑇 (S) <
(

1

2

− Y

)
· OPT ∗ /

≤ Pr

R0∼Ω

{
\∑︁
𝑗=1

𝑌
R0

𝑗
(S) − \ · 𝜌𝑇 (S)

𝑁 ·𝑇 ≥ \

𝑁 ·𝑇 · Y2 · OPT
}

= Pr

R0∼Ω

{
\∑︁
𝑗=1

𝑌
R0

𝑗
(S)

𝑤1

− \ · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇 ≥

(
Y2 ·

OPT
𝜌𝑇 (S)

)
· \ · 𝜌𝑇 (S)

𝑤1𝑁 ·𝑇

}

≤ exp

©«−
(
Y2 · OPT

𝜌𝑇 (S)

)
2

2 + 2

3

(
Y2 · OPT

𝜌𝑇 (S)

) · \ · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇

ª®®¬
≤ exp

(
−

Y2

2
· OPT 2

2𝜌𝑇 (S) + 2

3
Y2 · OPT

· \ · 1

𝑤1𝑁 ·𝑇

)

≤ exp

(
−

Y2

2
· OPT 2

2

(
1

2
− Y

)
· OPT + 2

3

(
Y − 1

2
Y1

)
· OPT

· \ · 1

𝑤1𝑁 ·𝑇

)

≤ exp

©«
−

(
Y − 1

2
Y1

)
2 · OPT 2

OPT
·
𝑤1𝑁 ·𝑇 · ln

(
𝑇𝑘 ·(𝑁𝑘 )

𝛿2

)
OPT ·

(
Y − 1

2
Y1

)
2

· 1

𝑤1𝑁 ·𝑇

ª®®®®¬
=
𝑇𝑘 ·

(
𝑁
𝑘

)
𝛿2

□

Theorem 9. The probability of 𝐿𝐵 ≤ OPT is at least 1 − 1

2𝑁 𝑙 , which means that the probability of

˜\ ≥ 2𝑛𝑡 ·[ 1

2
·𝛼+𝛽]2

Y2 ·OPT is at least 1 − 1

2𝑁 𝑙 .

I PROOF OF THEOREM 9
Theorem 10. For any 𝑖 = 1, 2, · · · ,

⌊
log

2
𝑁

⌋
− 1,

(1) if 𝑥𝑖 =
∑𝑘

1
𝑤𝑡 ·𝑁
2
𝑖 > OPT , the probability of 𝜌𝑇\𝑖 (S𝑖 ,R0 [\𝑖 ]) ≥

(
1 + Y

′ ) · 𝑥𝑖 is at most 1

2𝑁 𝑙
log

2
𝑁
.

(2) if 𝑥𝑖 =
∑𝑘

1
𝑤𝑡 ·𝑁
2
𝑖 ≤ OPT , the probability of 𝜌𝑇\𝑖 (S𝑖 ,R0 [\𝑖 ]) ≥

(
1 + Y

′ ) ·OPT is at most 1

2𝑁 𝑙
log

2
𝑁
.

Proof. For any 𝑘 size seed set S.
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𝜌𝑇\𝑖 (S,R0 [\𝑖 ]) =
𝑁 ·𝑇 ·∑\𝑖

𝑗=1
𝑌
R

0
[\𝑖 ]

𝑗
(S)

\𝑖

Pr

R0∼Ω

{
𝜌𝑇\𝑖 (S,R0) ≥ (1 + Y′) · 𝑥𝑖

}
= Pr

R0∼Ω

{
𝑁 ·𝑇
\𝑖

·
\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S) ≥ (1 + Y′) · 𝑥𝑖

}
= Pr

R0∼Ω

{
\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S) − \𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ \𝑖 (1 + Y′) 𝑥𝑖

𝑁 ·𝑇 − \𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇

}
/∗ because 𝑥𝑖 > OPT ≥ 𝜌𝑇 (S) ∗ /

≤ Pr

R0∼Ω

{
\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S) − \𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ \𝑖

𝑁 ·𝑇 Y′ · 𝑥𝑖

}
= Pr

R0∼Ω

{
\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S) − \𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ Y′ · 𝑥𝑖

𝜌𝑇 (S)
· \𝑖 · 𝜌𝑇 (S)

𝑁 ·𝑇

}
= Pr

R0∼Ω


\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S)
𝑤1

− \𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇 ≥ Y′ · 𝑥𝑖

𝜌𝑇 (S)
· \𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇


≤ exp

©«−
(

Y′ ·𝑥𝑖
𝜌𝑇 (S)

)
2

2 + 2

3

(
Y′ ·𝑥𝑖
𝜌𝑇 (S)

) · \𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇

ª®®¬ /∗ chernoff bound ∗ /

= exp

(
− (Y′ · 𝑥𝑖 )2

2𝜌𝑇 (S) + 2

3
(Y′ · 𝑥𝑖 )

· \𝑖

𝑤1𝑁 ·𝑇

)
≤ exp

(
− Y′2 · 𝑥𝑖

2 + 2

3
Y′

· \𝑖

𝑤1𝑁 ·𝑇

)

≤ exp

(
− Y′2 · 𝑥𝑖

2 + 2

3
Y′

·
𝑤1𝑁 ·𝑇

(
2 + 2

3
Y′
) (

ln𝑇𝑘 + ln

(
𝑁
𝑘

)
+ 𝑙 ln𝑁 + ln 2 + ln log

2
𝑁

)
Y′2𝑥𝑖

· 1

𝑤1𝑁 ·𝑇

)
=

1

2𝑇𝑘 ·
(
𝑁
𝑘

)
𝑁 𝑙

log
2
𝑁
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For any 𝑘 size set S.
Pr

R0∼Ω

{
𝜌𝑇\𝑖 (S,R0) ≥ (1 + Y′) · OPT

}
= Pr

R0∼Ω

{
𝑁 ·𝑇
\𝑖

·
\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S) ≥ (1 + Y′) · OPT
}

Pr

R0∼Ω

{
\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S) − \𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ \𝑖

𝑁 ·𝑇 (1 + Y′) · OPT − \𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇

}
/∗OPT ≥ 𝜌𝑇 (S) ∗ /

≤ Pr

R0∼Ω

{
\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S) − \𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ \𝑖

𝑁 ·𝑇 Y′ · OPT
}

≤ Pr

R0∼Ω

{
\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S) − \𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ Y′ · OPT

𝜌𝑇 (S)
· \𝑖 · 𝜌𝑇 (S)

𝑁 ·𝑇

}
≤ Pr

R0∼Ω


\𝑖∑︁
𝑗=1

𝑌
R0 [\𝑖 ]
𝑗

(S)
𝑤1

− \𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇 ≥ Y′ · OPT

𝜌𝑇 (S)
· \𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇


≤ exp

©«−
(
Y′ ·OPT
𝜌𝑇 (S)

)
2

2 + 2

3

(
Y′ ·OPT
𝜌𝑇 (S)

) · \𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇

ª®®¬
= exp

(
− (Y′ · OPT )2

2𝜌𝑇 (S) + 2

3
(Y′ · OPT )

· \𝑖

𝑤1𝑁 ·𝑇

)
≤ exp

(
−Y

′2 · OPT
2 + 2

3
Y′

· \𝑖

𝑤1𝑁 ·𝑇

)
≤ exp

(
− Y′2 · 𝑥𝑖

2 + 2

3
Y′

· \𝑖

𝑤1𝑁 ·𝑇

)
≤ exp

(
− Y′2 · 𝑥𝑖

2 + 2

3
Y′

·
𝑤1𝑁 ·𝑇

(
2 + 2

3
Y′
) (

ln𝑇𝑘 + ln

(
𝑁
𝑘

)
+ 𝑙 ln𝑁 + ln 2 + ln log

2
𝑁

)
Y′2𝑥𝑖

· 1

𝑤1𝑛𝑇

)
=

1

2𝑇𝑘 ·
(
𝑁
𝑘

)
𝑁 𝑙

log
2
𝑁

With the union bound Pr

R0∼Ω

{
𝜌𝑇\𝑖 (S𝑖 ,R0) ≥ (1 + Y′) · OPT

}
≤ 1

2𝑁 𝑙
log

2
𝑁

□

With Theorem 10 we know that 𝐿𝐵 is a lower bound of OPT with high probability, so \ satisfy

the Corollary 1. Further we can know that the probability of 𝐿𝐵 < OPT is at least 1 − 1/2𝑁 𝑙
.
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Proof. Set 𝐿𝐵𝑖 =
𝜌𝑇\𝑖

(S𝑖 ,R0 )
(1+Y′ ) . When OPT ≥ 𝑥⌊log

2
𝑁⌋−1

.Set 𝑖 ≥ 1 is the smallest index to make

OPT ≥ 𝑥𝑖 .

For any 𝑖
′ ≤ 𝑖 − 1,OPT < 𝑥𝑖′ ,

For any 𝑖
′′
> 𝑖 − 1,OPT ≥ 𝑥𝑖′′ ,

We define the event Y as: for any 𝑖
′ ≤ 𝑖 − 1, 𝜌𝑇\𝑖′ (S𝑖′ ,R0) < (1 + Y′) 𝑥𝑖′ , and for any 𝑖

′′ ≥ 𝑖 ,

𝜌𝑇\𝑖′ (S𝑖′ ,R0) ≥ (1 + Y′) 𝑥𝑖′
Notice that 𝑖

′
, 𝑖

′′ ≥ 1, so when 𝑖 = 1, 𝑖
′
is not exist. The part of Event Y about 𝑖

′
is true. Event Y is

the event that we expected. Because as Event Y happens, 𝐿𝐵 = 𝐿𝐵𝑖 or 𝐿𝐵 = 1. So Event Y indicate

that 𝐿𝐵 ≤ OPT so the upper bound of Event Y not happen is that:

Pr

R0∼Ω
{¬Y} ≤

𝑖−1∑︁
𝑖
′
=1

Pr

R0∼Ω

{
𝜌𝑇\

𝑖
′
(
S𝑖

′ ,R0

)
≥ (1 + Y

′ )𝑥𝑖′
}
+

⌊log
2
𝑁⌋−1∑︁

𝑖
′′
=𝑖−1

Pr

R0∼Ω

{
𝜌𝑇\

𝑖
′′ (S𝑖

′′ ,R0) ≥ (1 + Y
′ )OPT

}

With the above, we know that Pr

R0∼Ω

{
𝜌𝑇\𝑖′ (S𝑖

′ ,R0) ≥ (1 + Y
′ )𝑥𝑖′

}
≤ 1

2𝑁 𝑙
log

2
𝑁
. And Pr

R0∼Ω

{
𝜌𝑇\

𝑖
′′ (S𝑖

′′ ,R0) ≥ (1 + Y
′ )OPT

}
≤

1

2𝑁 𝑙
log

2
𝑁
. So Pr

R0∼Ω
{¬Y} ≤ 1

2𝑁 𝑙 .

When OPT < 𝑥⌊log
2
𝑛⌋−1

. 𝐿𝐵 = 1 with probability at least 1 − 1

2𝑁 𝑙 . □

For any Y > 0, 𝑙 > 0, PRM-IMM Guarantees that
ˆS𝑔

is the
1

2
− Y approximation of OPT with

probability at least 1 − 1

𝑁 𝑙 . Define the Event Y as the 𝐿𝐵 ≤ OPT , and put the R ′
0
[ ˜\ ] to PRM-

NodeSelection to get the seed set
ˆS𝑔

is the
1

2
− Y approximation of the PRM problem.

𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜\ ]

))
≥

(
1

2

− Y

)
· OPT

with union bound:

Pr

R0∼ΩR′
0
∼Ω

{¬Y} ≤ Pr

R0∼ΩR′
0
∼Ω

{LB > OPT}

+ Pr

R0∼ΩR′
0
∼Ω

{
LB ≤ OPT∧𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜\ ]

))
<

(
1

2

− Y

)
· OPT

}
And Pr

R0∼ΩR′
0
∼Ω

{LB > OPT} = Pr

R0∼Ω
{LB > OPT} ≤ 1

2𝑁 𝑙 .

Now we know that:

Pr

R0∼ΩR′
0
∼Ω

{
LB ≤ OPT∧𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜\ ]

))
<

(
1

2
− Y

)
· OPT

}
When 𝐿𝐵 ≤ OPT , ˜\ ≥ 2𝑁 ·[ 1

2
·𝛼+𝛽]2

Y2 ·OPT , and
˜\ ≤ 2𝑁 ·[ 1

2
·𝛼+𝛽]2

Y2
.
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\min =

⌈
2𝑁 ·[ 1

2
·𝛼+𝛽]2

Y2 ·OPT

⌉
, \max =

⌊
2𝑁 ·[ 1

2
·𝛼+𝛽]2

Y2

⌋
.
˜\ is a integer range from \𝑚𝑖𝑛 to \𝑚𝑎𝑥 .

Pr

R0∼ΩR′
0
∼Ω

{
LB ≤ OPT∧𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜\ ]

))
<

(
1

2

− Y

)
· OPT

}
≤ Pr

R0∼ΩR′
0
∼Ω

{
˜\ ≥ \min ∧ ˜\ ≤ \max ∧ 𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜\ ]

))
<

(
1

2

− Y

)
· OPT

}
=

\max∑︁
\=\min

Pr

R0∼ΩR′
0
∼Ω

{
˜\ = \ ∧ 𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜\ ]

))
<

(
1

2

− Y

)
· OPT

}
=

\max∑︁
\=\min

Pr

R0∼ΩR′
0
∼Ω

{
˜\ = \ ∧ 𝜌𝑇

(
ˆS𝑔

(
R′

0
[\ ]

) )
<

(
1

2

− Y

)
· OPT

}
/∗ because R0 is independent with R′

0
* /

=

\max∑︁
\=\min

𝑃𝑟
R0∼Ω

{ ˜\ = \ } · Pr

R′
0
∼Ω

{
𝜌𝑇

(
ˆS𝑔

(
R′

0
[\ ]

) )
<

(
1

2

− Y

)
· OPT

}
≤

\max∑︁
\=\min

Pr

R0∼Ω

{
˜\ = \

}
· 1

2𝑁 𝑙

=
1

2𝑁 𝑙

So Pr

R0∼Ω,R
′
0
∼Ω

{¬Y} ≤ 1

𝑁 𝑙 , which means that with probability at least 1− 1

𝑁 𝑙 , the output of PRM-IMM

ˆS𝑔
is the

1

2
− Y approximation of OPT .

J TIME COMPLEXITY OF PRM-IMM-OINS
The time complexity of RPM-IMM is 𝑂 ((𝑘 + 𝑙) (𝑀 + 𝑁 )𝑇 log(𝑁𝑇 )/Y2).

Proof. We use the Martingale theorem in the IMM algorithm[32] to estimate the time complexity

of the PRM-IMM algorithm. Then the time complexity of the IMM algorithm is𝑂 (E[
_

\+ ˜\ ] · (EPT+1)),
where E[

_

\ + ˜\ ] is the overall number of PW-RR sets needed to be generated.

E[ ¯\ + ˜\ ] ≤ 8 (_∗ + _′) · (1 + Y′)2

·𝑂𝑃𝑇 + 2,

where

_∗ =
4𝑤1𝑁𝑇 · (·𝛼 + 𝛽)2

Y2

_′ =
𝑤1𝑁𝑇 ·

(
2 + 2

3
Y′
)
·
(
ln

(
𝑁
𝑘

)
+ ℓ ln𝑁 + ln 2 + ln log

2
𝑁 + ln𝑇𝑘

)
Y′2

,

and 𝛼 and 𝛽 is defined in section 5.

Therefore, E[ ¯\ + ˜\ ] = 𝑂

(
𝑤1 (𝑘+𝑙 )𝑁𝑇 log𝑁𝑇

OPTY2

)
. And EPT = 𝑀

𝑁
· E[𝜎 (𝑣)] is the expected running time

of generating a PW-RR set. Because E[𝜎 (𝑣)] ≤ OPT
𝑤1

, so the expected running time is:

𝑂

(
(𝑘 + 𝑙) (𝑁 +𝑀)𝑇 log𝑁𝑇

Y2

)
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□

K PROOF OF SECTION 6.2
Proof. Upper bound:

𝑟𝑡 + 1 =
𝑑𝑛𝑡 + 𝑑𝑝𝑡
𝑑
𝑝

𝑡

=
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑎 + 𝑝𝑡

𝑑
𝑝

𝑡−1
+ 𝑎 · 𝑑

𝑝

𝑡−1

𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

+ 𝑝𝑡

=
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑎 + 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑎 + 𝑝𝑡 ·
𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

𝑑
𝑝

𝑡−1

· 𝑑
𝑛
𝑡−1

+𝑑𝑝

𝑡−1

𝑑
𝑝

𝑡−1

<
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑎 + 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑎 + 𝑝𝑡
·
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1

=

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑎 + 𝑝𝑡

)
· (𝑟𝑡−1 + 1)

𝑟𝑡 + 1 <

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑎 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
· (𝑟𝑡−1 + 1)

𝑟𝑡−1 + 1 <

(
1 + 𝜎 (𝑆𝑡−1)

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑎 · (𝑡 − 1) + ∑𝑡−2

1
𝜎 (𝑆𝑖 ) +

∑𝑡−1

1
𝑝𝑖

)
· (𝑟𝑡−2 + 1)

𝑟𝑇 + 1 < (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑎 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
𝑟𝑇 < 𝑟 ′𝑇 = (𝑟0 + 1)

𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑎 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
− 1
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Lower bound:

𝑟𝑡 + 1 =
𝑑𝑛𝑡 + 𝑑𝑝𝑡
𝑑
𝑝

𝑡

=
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑎 + 𝑝𝑡

𝑑
𝑝

𝑡−1
+ 𝑎 · 𝑑

𝑝

𝑡−1

𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

+ 𝑝𝑡

=
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑎 + 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑎 + 𝑝𝑡 ·
𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

𝑑
𝑝

𝑡−1

·
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1

>
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑎 + 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑎 + 2 · 𝑝𝑡
·
𝑑𝑛𝑡−1

+ 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1

=

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑎 + 2 · 𝑝𝑡

)
· (𝑟𝑡−1 + 1)

𝑟𝑡 + 1 >

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑎 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 + 𝑝𝑡

)
· (𝑟𝑡−1 + 1)

𝑟𝑡−1 + 1 >

(
1 + 𝜎 (𝑆𝑡−1) − 𝑝𝑡−1

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑎 · (𝑡 − 1) + ∑𝑡−2

1
𝜎 (𝑆𝑖 ) +

∑𝑡−1

1
𝑝𝑖 + 𝑝𝑡−1

)
· (𝑟𝑡−2 + 1)

𝑟𝑇 > (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑎 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 + 𝑝𝑡

)
− 1

𝑟𝑇 > 𝑟 ′′𝑇 = (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑎 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 + 𝑝𝑡

)
− 1

□

L PROOF OF SECTION6.3
M PROOF OF THEOREM6
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