
VIRTUAL MACHINE ALLOCATION WITH LIFETIME PREDICTIONS

Hugo Barbalho 1 * Patricia Kovaleski 1 * Beibin Li 1 * Luke Marshall 1 Marco Molinaro 1 Abhisek Pan 2

Eli Cortez 2 Matheus Leao 2 Harsh Patwari 3 Zuzu Tang 2 Tamires Vargas Capanema Santos 1

Larissa Rozales Gonçalves 1 David Dion 2 Thomas Moscibroda 2 Ishai Menache 1

ABSTRACT
The emergence of machine learning technology has motivated the use of ML-based predictors in computer systems
to improve their efficiency and robustness. However, there are still numerous algorithmic and systems challenges
in effectively utilizing ML models in large-scale resource management services that require high throughput and
response latency of milliseconds. In this paper, we describe the design and implementation of a VM allocation
service that uses ML predictions of the VM lifetime to improve packing efficiencies. We design lifetime-aware
placement algorithms that are provably robust to prediction errors and demonstrate their merits in extensive
real-trace simulations. We significantly upgraded the VM allocation infrastructure of Microsoft Azure to support
such algorithms that require ML inference in the critical path. A robust version of our algorithms has been recently
deployed in production, and obtains efficiency improvements expected from simulations.

1 INTRODUCTION

Cloud computing has revolutionized the way computing
resources are consumed. The emergence of cloud com-
puting is attributed to lowering the risks for end-users (e.g.,
scaling-out resource usage based on demand) while allowing
providers to reduce their costs by efficient management and
operation at scale. However, to realize the full economic
potential, cloud providers have to focus attention on max-
imizing the efficiency of cloud operations. This can be
achieved by actions such as increasing resource utilization,
reducing power stranding, and matching projected demand
to hardware supply. Recent advances in Machine Learning
(ML) tools and their accessibility in mature cloud offerings
have thus motivated their internal use for improving cloud
efficiency, e.g., in Microsoft (Cortez et al., 2017) and Google
(Gao, 2014) datacenters.

Arguably, the “holy grail” of cloud resource management
is the Virtual Machine (VM) allocation system. Customers
rent VMs on demand until they decide to terminate usage.
In turn, cloud resource managers place VMs on physical
servers that have enough capacity to serve them. Allocation
decisions have a direct impact on resource efficiency and
return on investment. Inefficient placement might result

*Equal contribution 1Microsoft Research, Redmond, USA
2Microsoft, Redmond, USA 3University of Washington, Seat-
tle, USA. Correspondence to: Patricia Kovaleski <pko-
valeski@microsoft.com>, Beibin Li <beibin.li@microsoft.com>,
Ishai Menache <ishai@microsoft.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

in fragmentation and unnecessary over-provisioning of
physical resources. In fact, even one percent of improvement
in packing efficiency can lead to cost savings of hundreds
of millions of dollars (Hadary et al., 2020).

From an algorithmic perspective, the VM allocation prob-
lem can be mapped to a (multi-dimensional) dynamic bin
packing problem (Coffman et al., 1983). “Dynamic” here
implies that each item (VM) is characterized by both its size
(CPU, memory, etc.) and lifetime (i.e., the duration spent
in the system) as opposed to static bin packing, which does
not include a temporal dimension. While the size is known
to the scheduler upon the VM request, lifetime can only be
predicted. Our goal in this work is therefore to incorporate
real-time ML predictions of lifetimes to guide the online
allocation decisions.

Including lifetimes in VM allocator decisions poses several
design challenges spanning ML algorithms, combinatorial
algorithms, and systems. From an ML perspective, the
prediction problem itself is quite involved because the actual
lifetime has high variability even across VMs with very
similar characteristics §2.4. Algorithmically, the online
allocation mechanisms must be robust to prediction errors
and perform adequately well even when the prediction
accuracy is mediocre. Finally, the end-to-end system must
produce predictions and make them available within a few
milliseconds while ensuring high availability and reliability
expected from cloud-scale systems.

In this paper, we design an end-to-end system that addresses
the above challenges. Our system has been recently de-
ployed in Microsoft Azure’s infrastructure, serving millions

VM Allocation with Lifetime Predictions

of VM requests per day. To enable this, we first had to
carefully pick an ML algorithm that best addresses our
accuracy, performance, and resource usage (e.g., memory
footprint) requirements §3.2. Next, we designed new online
algorithms with lifetime predictions; one important design
choice here is to rely on a coarse-grained classification of
lifetime, which is robust to prediction errors §3.1. Based on
these ideas, we implemented a simple lifetime-aware alloca-
tion mechanism that accounts for different considerations
and constraints beyond packing quality (e.g., “respect” other
system objectives §4.2). Our system encapsulates in real-
time the predicted class into the VM request and has fallback
mechanisms in cases of excess prediction latencies and
corrupt data. Furthermore, the system allows for efficient
retraining of the underlying ML models in case of changing
conditions. Our system design decouples control, inference,
and allocation services, which can facilitate using ML for
other aspects of the allocation problem in the future.

We evaluate our proposed solution in both simulations with
real traces, and production measurements. To understand
the possible benefits of lifetime prediction, our first set of
simulations considers a setting where prediction accuracy
is perfect. In this idealized setting, our lifetime aware algo-
rithms outperform the previous packing algorithm that has
been used in production until recently by 3− 5%. We then
study the effect of prediction errors and additional system
constraints on a variety of lifetime aware algorithms. We
demonstrate an interesting trend where a simple algorithm
that uses the predicted information only implicitly (e.g.,
by prioritizing the packing quality of projected long-lived
VMs) is more robust at higher prediction error levels. In
contrast, some algorithms that use the VM lifetime more
explicitly (intuitively, trying to match the lifetime of the
VM with the lifetime of the node) perform better as the
ML models become more accurate. Based on these results,
we deploy in production an algorithm that strikes the right
balance between simplicity and robustness. Production
measurements taken from multiple regions reaffirm the
benefits of lifetime awareness.

2 BACKGROUND AND MOTIVATION

2.1 VM allocation at scale

Public cloud providers such as Amazon Web Services,
Microsoft Azure, and Google Cloud Platform maintain
enormous inventories of millions of servers spread all over
the world. For instance, Hadary et al. (2020) describe in
detail the scale and organization of Microsoft Azure’s cloud
computing service. The cloud inventory that we consider
in this paper is organized into more than 200 datacenters
in over 60 regions. Each region can be further divided into
one to three availability zones. An availability zone can
comprise up to a few hundred thousand servers, which vary

widely in configurations and capabilities. A single instance
of the allocation service manages VM allocations over all
servers in an availability zone while handling up to a few
thousand VM allocation requests per minute.

The requests also vary tremendously in their resource and
capability requirements. The requests are expressed in terms
of VM sizes, where each size is associated with specific
CPU (or GPU), memory, network, and disk requirements.
A zone can support a large number of VM sizes. Requests
can vary in other dimensions beyond VM size as well, such
as by priority or fault domain constraints. The allocation
service assigns each incoming request to a server that
can fit the requested VM while attempting to optimize
several objectives (which might also be conflicting). While
live-migrations are possible, they are considered costly
to both provider and customer, hence it is preferable to
use them infrequently. With all this in mind, the overall
allocation strategy must strike a delicate balance between
making high-quality VM-server assignment over a large
inventory and handling the peak throughput demand of
diverse allocation requests. This description provides a
fairly typical account of the challenges faced by the leading
public cloud providers.

Despite these challenges, the scale and complexity of this
space also provides system designers with unprecedented
opportunities to impact business margin and customer
satisfaction. In the context of packing efficiency, cloud
providers have stated that even a percent point reduction in
fleet fragmentation can lead to cost savings in the order of
hundreds of million USD per year. This provides a strong
motivation to continuously explore new strategies to achieve
even relatively modest packing efficiency improvements in
the cloud inventory.

As mentioned in the introduction, VM allocation is a
dynamic bin packing problem, in which a VM may arrive
and exit at arbitrary times. The static version of the
problem, in which items never leave the system, is a classic
optimization problem that has been studied for decades
(Garey et al., 1972) with many algorithms such as First-Fit,
Best-Fit, Next-Fit, etc. available; see (Christensen et al.,
2017) for a recent survey. Traditionally, cloud providers
have used heuristics based on these static algorithms to
achieve reasonable packing efficiency (Hadary et al., 2020;
Verma et al., 2015).

Hadary et al. (2020) reports that such heuristics can sustain a
fleet-wide packing efficiency of around 80-90%1. Although
they work fairly well in practice, improving it further has
been challenging for many reasons. For instance, optimizing
packing often conflicts with other objectives such as avoid-
ing noisy-neighbor interference, reducing allocation time, or
handling more requests concurrently. More fundamentally,

1In terms the packing density; see §4 for a precise definition.

VM Allocation with Lifetime Predictions

1
min

10
min

2
hours

1
day

1
week

 1
month

VM Lifetime

0.0

0.2

0.4

0.6

D
en

si
ty

Figure 1. VM lifetime distribution.

we show that using only static packing strategies (thereby
ignoring temporal information) might lead to significant
packing inefficiencies. However, using lifetime information
for a public cloud workload is extremely challenging
because this information is not provided by the customer,
and estimating it is difficult due to workload diversity and
lack of high-quality a-priori information about workload
characteristics.

In this paper, we specifically focus on predicting and using
VM lifetime information to improve the packing efficiency
of public cloud inventory. We show that incorporating
lifetime awareness can lead to significant improvements
in packing efficiency. We also show that while achieving
high-quality lifetime prediction can be very challenging for
a public cloud environment, lifetime-aware packing logic
can be designed to work with noisy predictions to achieve
significant improvements.

2.2 Diversity and periodicity in VM lifetimes

Figure 1 shows a sampled lifetime distribution for VMs
allocated in a public cloud instance across the globe over
a period of three months. We see that VM lifetimes follow
a long-tail distribution: while most VMs live in the system
for less than one hour, some VMs can live longer. We can
also see a small subset of VMs with lifetimes of more than
a month. Interestingly, the median lifetime of VMs is about
16 minutes and the average is more than a day.

Figure 2 shows the distribution of long and short-lived
requests over one week in an Availability Zone. We observe
that VM requests show strong periodicity in their lifetimes
and strong correlation between the time of day and the
likelihood of staying longer in the system. In fact, using
domain knowledge, we are aware that some long-lived
VMs span the duration of the workday in the corresponding
region. These repetitive patterns indicate the feasibility of
VM lifetime prediction even for diverse and largely opaque
public cloud workloads.

2.3 VM lifetimes matter

In this section, we provide an example to illustrate why
using lifetime information is crucial for effective VM-
machine assignments. As the baseline static strategy, we
consider an “Any-Fit” algorithm that ignores VM lifetimes

SUN MON TUES WED THU FRI SAT
0

10k

20k

30k

#
R

eq
ue

st
s

Long Lived (2h+) Short Lived

Figure 2. Number of VM requests per hour in an Availability Zone,
averaged over day-of-week for a month, and split by their lifetime.
Shaded regions represent 25th and 75th percentiles.

and assigns each incoming VM to some available non-empty
machine where it fits, only consuming an empty machine if
necessary (this encompasses the First-Fit, Best-Fit, etc.).

Example 1. Suppose that all machines are identical, and
each VM consumes 1

k resources of a machine, with integer
k ≥ 2. At time 0, k − 1 “short” VMs with lifetime L = 1
arrive, and is immediately followed by a “long” VM with
lifetime L ≫ 1. At this point, the Any-Fit algorithm has
allocated all these k VMs to a single machine. If we repeat
this sequence k times (see Figure 3.a), with a tiny delay
between repetitions, we see that k machines are used for L
units of time with very low packing-density. In contrast, if
we use lifetime information during allocation we can pack
all k “long” VMs into one machine and use k− 1 machines
for “short” VMs (see Figure 3.b). This way, no machine
resource is ever wasted.

...
k

a)

k

...

b)

Figure 3. Each row represents a machine and each gray bar a VM.
The horizontal axis represents time; (a) Allocation obtained by
an Any-Fit algorithm ignores lifetimes with poor density and
significant waste of resources; (b) Lifetime-aware allocation packs
all “long” VMs on the same machine, with no wasted resources.

Our simulation studies also confirm the insight illustrated
by the above example. In §5, we show that lifetime-aware
packing algorithms can achieve up to 5% improvement in
packing efficiency if we have perfect prediction of VM
lifetimes. The algorithmic challenge here is that existing
algorithms have not been designed with the goal of being
robust to lifetime prediction errors produced by machine
learning models, see §6. Indeed, as we discuss next,
prediction error is prevalent in our production environment.

2.4 Real-world VM lifetime prediction is hard

Several factors make achieving high-quality lifetime predic-
tions extremely challenging in a real-world production sys-

VM Allocation with Lifetime Predictions

tem. We find that VMs with similar features can still show
significant variance in their lifetime distributions across
different time points, which in turn requires extreme care in
temporal feature extraction. The skewed and long-tailed
lifetime distribution also makes high quality prediction
challenging because common ML training approaches are
tuned under Gaussian assumptions. Additionally, since
inference is done as part of the hot-path in VM allocation
request processing, strict milliseconds bounds on allocation
latency might preclude the use of more sophisticated deep
learning models or features that require high extraction
latency (see §5). Several critical features are not available
during extraction time either because they depend on the
behaviors exhibited by running VMs or they are traditionally
not relevant for allocation decision and hence are not
available in the VM allocation workflow (e.g., the VM
name or guest OS image). Lastly, prediction quality might
be compromised by missing data due to temporary data
losses in the storage system or systemic data pruning used
to reduce system overheads.

3 BASIC ALGORITHMS

In this section, we introduce fundamental algorithms for
two crucial components: (1) allocating VMs with predicted
lifetime information and (2) predicting VM lifetimes.

3.1 Robust lifetime-aware allocation algorithms

To design an allocation algorithm that is robust to lifetime
prediction errors in a principled way, we start by considering
a simplified theoretical model to guide our design decisions.

3.1.1 Allocation algorithm with provable guarantees

Model. In the Dynamic Bin Packing Problem with Life-
time Predictions, each VM j has a size (resource demand)
sj ∈ [0, 1], a predicted lifetime ℓ̂j , and an unknown and
random true lifetime Lj (which becomes known only after
the VM finishes). We assume the Lj’s are independent
random variables. The VMs 1, 2, . . . , n come one-by-one
over time, and when VM j arrives it needs to be assigned
to some unit-sized machine, without knowledge of future
VMs. Migration of VMs is not allowed. The effectiveness
of the assignment performed by the algorithm is measured
as the total number of machines used over time, namely
cost =

∫ T

0
[# machines used at time t] dt, where T is the

horizon of the problem. The goal is then to minimize
this cost. Let OPT denote the cost of the offline optimal
solution, namely the best solution possible when all VMs
are known upfront, including the VMs’ true lifetimes. We
design an online algorithm that is provably competitive with
this clairvoyant solution.
Algorithm. The intuition comes again from Example 1.
VMs with “long” predicted lifetimes should be packed
together to avoid unnecessary active machines. Since

there is no clear threshold for declaring a VM “short” or
“long”, the algorithm considers multiple classes of predicted
lifetime lengths and packs all VMs of a given class together
in their dedicated machines. More precisely, for i ∈ Z, let
Ii = {j : ℓ̂j ∈ [2i−1, 2i)} be the set of all VMs for which
the predicted lifetime ℓ̂j is in the interval [2i−1, 2i).

Algorithm 1

Process each sub-instance Ii separately (i.e., each Ii has
its own set of machines) and allocate the VMs in Ii to its
machines using First-Fit (i.e., among the machines that
can currently accommodate the VM’s size, choose the
one with oldest opening time).

Notice that this algorithm can indeed be run online, since
when a VM arrives we know to which sub-instance Ii it
belongs based on its predicted lifetime.

We prove that this algorithm is competitive against the
optimal offline solution, as long as the predictions are not
“too far” from the true lifetimes, as captured in the following
assumption.

Assumption 1. There are constants α, β ≥ 1 such that for
every job j:

1. ℓ̂j ≥ 1
α · Lj with probability 1

2. ℓ̂j ≤ β · ELj

Letting µ denote the ratio of largest to smallest lifetime in
an instance, i.e., the smallest value such that Lj

Lj′
≤ µ for all

j, j′, we have the following guarantee for our algorithm.

Theorem 1. If Assumption 1 holds with parameters
α, β, then Algorithm 1 has expected cost at most
O(αβ log(αβµ)) · EOPT.

We remark that no algorithm without predictions can do bet-
ter than O(µ)·EOPT (see (Li et al., 2014) and Theorem 2 in
the appendix), which is much worse than the guarantee from
Theorem 1 (for constant α, β, say). When there is perfect
knowledge of the lifetimes, Azar & Vainstein (2019) gave
an algorithm with guarantee O(

√
logµ) · EOPT, which is

best possible (Buchbinder et al. (2021) obtain improved
approximation when additional information is available,
namely the load of future jobs). Thus, the main contribution
here is that our guarantee holds even under noisy lifetime
information, which is inevitable in public cloud settings.

See Appendix A for the proof of Theorem 1, and a proof
that Assumption 1 cannot be relaxed for such guarantees to
hold.

3.1.2 The Lifetime Alignment algorithm

Using Algorithm 1 as a starting point, we design the Life-
time Assignment (LA) algorithm that improves over some

VM Allocation with Lifetime Predictions

shortcomings of our previous algorithm. LA introduces
a new concept that has considerable impact in practice:
It dynamically updates the lifetime classification of the
machines based on currently running VMs. This contrasts
with both Algorithm 1 and the previous algorithms of Azar
& Vainstein (2019) and Buchbinder et al. (2021), which use
static machine classification determined by the lifetime of
the first VM assigned to it. Thus, previous algorithms might
assign a long-lived VM to a machine that is about to become
idle, which impacts efficiency.

In addition, LA handles different practical aspects of the
problem that have not been covered in the above-mentioned
papers, such as multi-dimensional allocation (e.g., CPU,
memory, disk) and machines with heterogeneous capacities.

We now describe the LA algorithm, detailing these and other
improvements:

1. We partition the lifetimes into an arbitrary set of intervals
I ′0, I

′
1, . . . , I

′
k (I ′0 contains the smallest values), instead

of the doubling-based partition of Algorithm 1. This
allows us to use fewer intervals, making the algorithm
more robust to prediction errors. We say that a VM is of
class i if its predicted lifetime belongs to I ′i

2. Forcing the assignment of VMs to machines of their own
class can be wasteful (e.g., if there are few VMs of a
class). So, we assign a VM to an existing machine of the
same class, if possible, else we assign it to a machine of
different class. Class 0 (“small”) VMs are an exception:
no machine-class priority is used, since these VMs can
help filling the leftover capacity of machines, and do not
have a long-term impact on the system.

3. Since a machine may receive VMs of a wider range of
lifetimes, we define the class of a machine dynamically.
We look at the “predicted remaining lifetime” of the
machine (i.e., the largest predicted amount of time that a
VM in the machine will still take), and use the interval
I ′i in which it falls as the class of the machine.

4. We use Best-Fit instead of First-Fit to assign a VM to
one of its preferred machines, since the former typically
produces better assignments. For Best-Fit, we define
the aggregate “size” sj of VM j as a weighted sum of
its demand across the multiple resources and the same
is done with the resource capacities of a machine i to
obtain its “size” ci and “current occupation” oi. Best-Fit
assigns VM j to the machine of largest occupation oi
among those where sj ≤ ci − oi (i.e., where it “fits”
considering these aggregate size/occupation/capacities).

With these considerations, we arrive at the LA algorithm,
described in Algorithm 2.

Algorithm 2 Lifetime Alignment (LA)

For each incoming VM j
S ← set of active machines where VM j can fit
If S is empty, assign VM j to a new machine
If S is non-empty

If VM j is not of class 0, and there is a machine in
S of the same class as j, assign it to one of these
machines using Best-Fit
Otherwise, assign VM j to a machine in S using
Best-Fit

3.2 Learning to predict lifetime

To resolve real-world challenges on label heterogeneity in
VM lifetime prediction, we define lifetime-specific learning
tasks, examine cloud operation-related features, and test
different temporal feature extraction methods.

3.2.1 The learning task

Recall that our LA algorithm partitions the VMs into classes
based on predicted lifetimes. From an ML perspective, this
motivates the use of classification models. Accordingly, we
discretize the lifetimes into buckets, and may perform either
binary classification or multi-class classification (depending
on number of classes that we choose for the LA algorithm).
While the subsequent discussion on features and models
is relevant for both of these classification tasks, we focus
here on binary classification for simplicity; see Appendix
§B.3 for details on multi-class classification models (we
also examined regression models for other potential uses
of VM lifetime, see §B.2). For binary classification, we
must choose a cut off threshold that defines whether the
VM is considered short or long lived. Based on some
considerations that would be clarified later (see §4.4 and
Appendix C), we have chosen that threshold to be two hours.

3.2.2 Features

We describe below some of the features that we use for
classification. See §B.1 for a detailed account.

VM centric features. We examined accessible features
within a VM request, including allocation time, operating
system (OS), resource group, and other related information.

Customer centric features. The historical behavior of
a customer is indicative of their future VM demands
characteristics. As some evidence, Figure 4 shows that the
normalized standard deviation (STD) of VM lifetimes for a
given customer is fairly low for VMs that stay in the system
for long periods. We thus include customers’ VM lifetime
statistics in the feature sets. Such features are deidentified
for compliance with privacy considerations.

Additional temporal features. To automatically capture
different behavioral features from the time-series of VM-
request data of a customer, we also support using deep

VM Allocation with Lifetime Predictions

0 100 200 300 400 500 600 700
Avg. VM Lifetime (Hour)

0
5

10
15
20
25

No
m

ra
liz

ed
 S

TD

Figure 4. VM Lifetime from different customers, where each point
represents one customer. The average VM runtime and normalized
standard deviation STD (aka, coefficient of variation) for the
customer are visualized.

Figure 5. Importance of some representative VM features.

learning models. In particular, we may use recurrent neural
networks and the central-attention mechanism (CAM) to
extract a feature embedding vector for each deidentified
customer; see Appendix §B.4 for more details.

Feature importance. Figure 5 evaluates representative
features using SHapley Additive exPlanation (SHAP) values
(Lundberg & Lee, 2017), which measure the additive feature
importance, borrowing ideas from cooperative game theory.

3.2.3 Models

After examining several ML models, we decided to use
LightGBM (LGB) (Ke et al., 2017) as our main model, and
applied grid search and FLAML (Wang et al., 2021) for
hyper-parameter tuning. Combining the inference speed
advantage from LGB and feature representation strength
from deep learning, we also applied the CAM to calculate
customer embedding vectors offline, used as additional
features to improve LGB’s accuracy2.

4 SYSTEM ARCHITECTURE AND
IMPLEMENTATION

The ML models and lifetime-aware allocation algorithms
from the previous sections were integrated into the VM
allocation system of Microsoft Azure. Figure 6 presents
a high-level architecture of the implemented system. In
the following section, we describe the details of both the
offline and online components that comprise our design.
We also highlight certain multi-objective optimization goals
that go beyond packing quality. Finally, we discuss the
practical challenges we have faced during the development

2We plan to use these for improved precision; see §5.1.

and deployment of the system and our solutions thereof.

4.1 System design

Our system design must accommodate various real-world
requirements. To start, prediction inference must take fewer
than 30 milliseconds to avoid delays in VM allocations.
Additionally, our lifetime-aware logic within the allocator
must be robust to prediction errors while accounting for
additional system considerations (described in §4.2–§4.3).

The system infrastructure has to provide a framework to
train, test, deploy, and validate different ML models in
production. A schematic view of the infrastructure is given
in Figure 6. At a high level, we split the learning and deploy-
ment into offline and online components. Offline compo-
nents process historical cloud data and train ML models that
are consumed by the online system. The online system is
comprised of the following subsystems: i) Control service
to process incoming VM requests, ii) Inference servers that
provide lifetime predictions, and iii) Allocation servers that
decide the physical VM placement.

4.1.1 Offline model and feature updates

As described in §3.2.2, our model exploits features of
the specific VM request, as well as aggregated statistics
calculated from its customer. Due to the fluid nature of client
usage patterns, the underlying data distributions change over
time. Thus, our ML models and customer features require
frequent training or fine-tuning and recalculation to maintain
prediction quality. Figure 14 in Appendix shows the model
performance drop as the time since the last training period
increases. The training and updates are performed offline
using historical datasets computed from daily logs of VM
workloads; we provide some details below.

Training: A set of MapReduce jobs aggregate the workload
data on a weekly basis to produce a complete dataset, which
is then sampled appropriately for training and validation.

Customer features: These are updated daily via MapReduce
jobs. The outcome of the feature generation process is stored
in our feature store (Kakantousis et al., 2019) that is part of
the Inference Server. An example of such data is the average
lifetime of VMs from each customer.

Quality monitoring: All of the predictions from our model
are logged and periodically compared against the actual
lifetime of VMs. This allows for additional post-hoc
analysis that can offer more insights and lead to adjustments
of the model training or validation.

4.1.2 Online services

Machine Learning Pipeline. When a VM request enters
the system, the control service processes it and relies on
the ML client library to inject a lifetime prediction into
its traits before the allocation servers start processing the

VM Allocation with Lifetime Predictions

VM Request

VM End Notification

ML

Storage

Inference Servers

ML’

Training Servers

Customer

features

Physical Nodes
(Data Center)

Allocation Servers

Allocation

Cache Lifetime-Aware

Allocation

Luke Test

Allocate

Application Logs

Offline Components

ML Client

Control

Service

Evacuate

Prediction

Request

Cache Update

Request & Prediction

Data Cloud

Model Deployment &

Customer Feature Updates

Figure 6. The allocation framework. ML training, inference, and allocations are separated into different servers. The ML model is
periodically updated by the offline training servers. Local storage in the inference servers includes features store, client library, customer
embedding store, previous model store. The data cloud stores all the logs and information generated during the VM allocation and the
deallocation processes. Other details, such as the allocator communications with nodes and data centers, are omitted here for brevity.

request. If the inference takes too long, the request is
processed without a prediction. The exact time-budget for
each request depends on the current demand of requests,
number of allocation servers, inventory size, etc., but this
budget is typically small (milliseconds). Thus, our ML
pipeline is designed to be as fast as possible. Our system
reduces network call latency overheads by implementing
two strategies as part of the ML client library: (1) pre-
loading artifacts independently of allocation server calls and
(2) caching lifetime predictions in the control service (see
§4.3). Pre-loading artifacts consists of downloading static
feature data and business policies that can be used for the
execution of the prediction requests.

The inference service is deployed in multiple Availability
Zones (AZs) through phased deployment, where the model
is validated in a set of AZs before moving forward, taking up
to three days from training to reach all clusters. A validation
failure results in an on-call investigation and reverting to the
previous model until the validation passes.

Allocation Pipeline. As Figure 6 shows, the allocation
servers receive the incoming VM allocation request along
with the lifetime prediction. The servers handle availability
requirements (e.g., fault tolerant, geographical diversity re-
quirements) and determine the suitable node for an incoming
VM using a collection of rules. A small subset of these
rules addresses the packing quality of the incoming VM;
we refer to this subset in short as the packing logic. In this
work, we expand and refine the packing logic to account
for the predicted lifetime of the VM. More details about the
allocator system can be found in the Protean paper (Hadary
et al., 2020); in fact, the work we present here builds on and
improves upon the basic Protean infrastructure.

4.2 Allocation objectives

We consider the following metrics when evaluating the
quality of our packing logic:

• Packing Density (PD): PD measures the average number
of allocated cores on non-empty machines. Formally, the
packing density at any given time is the ratio between the
number of allocated cores and the total number of cores
on the non-empty machines.3 In practice, PD is a better
proxy for packing quality than the number of used nodes
(which was used for our theoretical guarantees in §3.1)
since it normalizes load across a heterogeneous fleet.

• Filtering Factor (FF): As mentioned above, the allocation
is determined through a collection of rules evaluated
sequentially. Each rule can be viewed as trimming down
the set of candidate nodes that are best for the given
VM. We define the FF to be the percent of nodes that are
filtered out by the packing logic; namely the difference
between the number of candidate nodes before and after
the packing logic is evaluated, divided by the total size
of the inventory. Here, a smaller value is considered
better, as downstream rules (which are evaluated after
the packing logic) would still be meaningful. Aggressive
rules with high FF values can lead to a small number
of candidate nodes for subsequent rules, making them
ineffective. Thus, it is essential to prevent over-filtering
of nodes by allocation rules. We allow relatively high FF
values for packing related rules due to their direct impact
on efficiency.

• Rejections: A rejection occurs when a VM request cannot
be satisfied. Rejections should be kept to a minimum (e.g.,
less than 0.1% of VM requests).

3PD can be defined similarly for other resources, such as
memory; we focus on CPU as it is typically the bottleneck resource.

VM Allocation with Lifetime Predictions

When designing the packing logic, we have to take into
account an inherent trade-off between the packing quality
metrics (PD) and the filtering factor (FF). Intuitively, the
more sophisticated or nuanced the packing logic is, the
better the chances that the packing quality will increase,
albeit at the expense of higher FF.

4.3 Accounting for practical challenges

Rule smoothing. As described earlier, the allocation
logic consists of a hierarchy of many rules that address
different business needs and considerations. Having a
strict prioritization among these rules requires “smoothing”
some of them so that all rules can contribute; see (Hadary
et al., 2020) for more background and motivation for rule
smoothing. One way of smoothing rules is by quantizing
the score of some rules into a small number of buckets. For
example, we have the Prefer Best Fit rule (PBFR) which
scores the nodes based on how well they will be packed
after the insertion of the requested VM (akin to the best-
fit heuristic (Panigrahy et al., 2011))4; the original score,
which is continuous, is quantized to a small number of
discrete values. Fortunately, our new lifetime aware logic
(see Algorithm 2) already has a discrete structure, in which
a VM is assigned to a class of nodes based on its predicted
lifetime. Hence, we can easily translate that logic into a rule
that is not too aggressive.

Caching of inference results. An AZ can receive up to
thousands of allocation requests per minute at peak. Without
any further enhancements, we observed that the ML system
struggles to fulfill all request bursts within the time budget,
resulting in a drop of almost 2% in service rate. To address
this, we observe that ML inference exhibits “locality”. For
example, a customer may request a large number of VMs
of the same type. We thus cache inference results at each
control service, indexed by the request type. We achieve a
cache hit close to 60% (this can be improved in the future
with distributed caching optimizations).

These inference results are cached in the ML client using
an in-memory data structure indexed by the set of features
that the VM lifetime model takes as input. Due to the use of
temporal features, entries in the cache automatically expire
after some time. This serves to maintain a manageable
cache size. We allowed the cache size to grow as needed
to accommodate bursts and observed in production that the
cache size never exceeds a few megabytes, as shown in
Figure 7.

ML availability. Predictions from the inference servers may
not always be available due to a variety of system related
issues such as server failures, disk overheating, computation

4Since the allocation is multi-dimensional, we use a weighted
sum over the different resources; higher weights are given to scarce
resources (Panigrahy et al., 2011; Hadary et al., 2020).

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

Day

C
ac

he
Si

ze
(M

B
)

Figure 7. Memory footprint of the cache holding ML inference
results. The graph depicts measurements extracted from 30
machines over a one-week period. The solid line represents the
median cache size and the shaded region captures the 25%− 75%
confidence interval.

bottlenecks, extreme request bursts, and networking prob-
lems. Another potential issue is trying to infer the request of
a completely new customer. When the inference servers fail
to yield lifetime prediction, our packing logic relies only on
best-fit (i.e., accounting only for the size of the VM). More
details are provided in §4.4.

4.4 Putting it all together

ML Model. After a careful study, we decided to deploy
an ML model based on LGB, which uses easily accessible
features from the feature store during inference time. As
we elaborate in §5.1, we made this choice by evaluating
various trade-offs in performance, model size, inference
speed, and interpretability for human administrators. While
we have trained models with different numbers of classes,
we currently use in production a simple binary classification
model (i.e., the VM is predicted to be either short or
long lived). Overall, the deployed ML model produces an
inference within the time budget for 99.5% of VM requests
(see §5.3 for more statistics). As a fallback for inference
timeout, we simply set the prediction to be “short lived”.
This is based on the intuition that classifying a short lived
VM as long-lived has worse consequences than vice-versa
(cf. Example 1).

Packing logic. We have implemented packing logic that
accounts for lifetime while taking into account the system
constraints discussed above (§4.3). We developed two
different versions of this logic that differ by how they
account for the lifetime information.

V1. The first version is a simple modification of PBFR
(Prefer Best Fit rule), which we term DPBFR (’D’ for
dynamic). If the VM is predicted to be long-lived, use
kl buckets for the best-fit score quantization; otherwise use
ks buckets, where kl > ks (in our production deployment
we use kl = 5, ks = 3). The idea behind this rule stems
from the intuition that long-lived VM matter more when
it comes to their placement. Thus, intuitively, we wish to
use more of our “FF budget” for these long-lived VMs (see

VM Allocation with Lifetime Predictions

Appendix C.1 for details)5.

V2. The second version involves more explicit use of the
VM lifetime prediction. We introduce a new rule termed
Lifetime Awareness Rule (LAR), which is essentially a two-
class version of Algorithm 2. To further account for the VM
size itself, LAR is followed by PBFR (with ks buckets).

Due to its simplicity and excellent robustness properties (see
§5.2), we currently have V1 deployed in production. We
plan to integrate V2 in the future as we continue to refine
our ML models.

Safeguard. While we have carefully tested our system and
algorithms, we must take additional necessary precautions
when relying on ML. In particular, we wish to prevent a
scenario where the new packing logic exhibits a very high
filtering factor (FF), e.g., due to mistakenly classifying too
many VMs as longed-lived because of some unforeseen
data issue. To address this, we implement a safeguard that
mitigates such behavior. The safeguard is based on the
following property: if all VMs were to be classified as short-
lived, then we effectively end up with just the original PBFR
(this property holds for both V1 and V2).

The safeguard therefore keeps track of the amount of
requests that have been classified as longed-lived in the
last T minutes (say, T = 10). If the percent of such
classifications exceeds a certain threshold (say, 50%) then
all following requested will be statically classified as short-
lived for a certain timeout period. We note that the safeguard
is rarely invoked (less than 1% of the requests are impacted
by the safeguard), hence it does not have a meaningful
impact on our metrics.

5 EVALUATION

In this section, we ask the following questions: (1) what
is the preferred choice of an ML model for our purposes,
taking into account accuracy, performance, and resource
overheads? §5.1 (2) What is the potential benefit of our
lifetime-aware packing and how does our lifetime-aware
packing perform in the face of inaccurate predictions? §5.2
(3) What are the actual performance gains that we obtain in
our large-scale production deployment? §5.3

5.1 ML model evaluation

Training and testing. We have tested our ML models for
a period of three months in 2022. At each weekend, we
re-train models using the previous week’s data and then
apply the latest models for the following week.

Metrics. We use area-under-ROC-curve (AUC), Average

5We note that the cutoff threshold for classifying short vs. long
lived VMs also affects the FF. The smaller this threshold is, the
more VMs would be classified as long-lived, which in turn would
increase FF.

Table 1. Machine learning performance over 3 months. Random
coin flip would result in a F-1 score of 17%.

Features ML tinf (µs) AP F-1 AUC

Small

LGB 0.1 46% 45% 89%

CAM 0.3 73% 47% 84%
L + G 0.2 47% 45% 89%
L + C 0.2 50% 47% 90%

Large

LGB 0.2 62% 62% 94%

CAM 0.4 63% 63% 93%
L + G 0.2 63% 63% 94%
L + C 0.2 63% 64% 95%

Precision (AP), and F-1 score as the main accuracy met-
rics. A detailed tuning analysis with precision, recall, and
Precision@Recall scores are in Table 3 in the Appendix.

Results. Table 1 shows various ML models’ performance
with two different sets of features, termed small and large
(the small set is a subset of the large set); see Appendix §B.1.
Choosing a model is determined based on multiple criteria
including the inference memory footprint, the inference time
per VM request (tinf), and the prediction accuracy of the
model.

The LGB method has the smallest memory footprint with
20 MB (for the small set) and 51 MB (for the large set) per
million customers. Other methods require loading temporal
feature embeddings extracted from deep learning models,
resulting in at least 40X memory footprint (implying also
larger caches). The CAM model incurs 4X inference latency
compared to LGB, while the other hybrid models (i.e., L
+ G = LGB with GRU features, L + C = LGB with CAM
features), with their relatively lightweight backbones, still
incur up to 2X inference latency compared to LGB.

From a prediction accuracy standpoint, all of the models
display similar characteristics. Notably, CAM achieves
17% higher AP but 5% lower AUC over LGB for the small
feature set. This is because CAM focused more on the
subtleties of short lived VMs. As such, the benefits of
using CAM over LGB are doubtful. Additionally, the deep
learning models take longer time to train. In summary, LGB
exhibits low inference latency, small memory footprint,
and competitive prediction accuracy when compared to
other models; hence, LGB is our current chosen model
for production deployment.

5.2 Evaluating the benefits of lifetime-aware packing

The production system evolves continuously and multiple
changes may affect packing quality. Hence, simulations
serve as an important tool for algorithmic comparisons. In
this section, we rely on realistic simulations of the allocation
system with the same testing dataset used in §5.1.

Methodology. Our simulations use real traces and configu-
rations from several zones as input and can be considered

VM Allocation with Lifetime Predictions

Table 2. Performance under idealized setting. Results are averaged
over ten different instances.

Method Density Avg. (STD) Imp. (%)
Best Fit (no quant.) 82.12% (± 1.80%) -

Lifetime Alignment 85.06% (±0.05%) 3.58%
OFFLINE 90.11% 9.73%

a reasonably accurate representation of reality. In particu-
lar, our historical traces from production (spanning three
months) include VM requests, the actual lifetimes of the
VMs, and when required, the ML predictions of the lifetimes.
Our event-driven simulator includes a lightweight emulation
of the allocator (e.g., supports a subset of the rules). The
simulator still provides an excellent approximation of the
system and is able to scale adequately to large inventories.

In addition to simulating online allocation algorithms
through our simulation, we have implemented an offline
combinatorial heuristic (OFFLINE) that obtains perfect
knowledge of all VM requests as input. OFFLINE helps
establish the potential range of algorithmic improvement.

Results. To understand the potential benefits of lifetime
awareness, we first consider an idealized (unrealistic) setting
where the lifetime predictions are perfect. Furthermore,
for the sake of the experiment, we relax rule smoothness
considerations (see §4.2). Under this setting, the baseline
algorithm is a non-quantized version of best-fit, where a
VM is simply allocated to the node that leaves the least
amount of node fragmentation (see 4.3); from a packing
perspective, the non-quantized best-fit is obviously better
than its quantized version. We compare this better baseline
to our Lifetime Alignment (LA) algorithm, and obtain PD
improvements of around 3.5% (Table 2), a huge gain which
can be attributed to lifetime awareness. For reference,
we also compare the results to OFFLINE, which can be
regarded as an upper bound for any online algorithm. The
results show us that the maximum margin for improvement
is around 10%, however most of it might not be achievable
due to the shortcomings of online vs. offline allocations.

We next examine the performance of our algorithms in a
more realistic setting where the ML predictions are prone
to errors and we further have to smoothen our packing logic
rules. Figure 8 summarizes our results. The vertical line in
the figure corresponds to simulations with the actual outputs
of the ML model. As shown, DPBFR (recently deployed in
production) obtains average gains of 0.6% over PBFR, while
the binary version of our LA algorithm has larger gains of
around 1.5%. Based on these results, we expect to gradually
deploy the latter in production. Interestingly, the multi-class
version of the LA algorithm is less robust to prediction errors
and achieves negligible gains over baseline. We note that
the addition of lifetime awareness has not affected the FF,
which is roughly the same for all algorithms, including the

50 60 70 80 90 100

0

2

4

Average Precision (%)

Im
pr

ov
em

en
t(

%
)

DPBFR Lifetime Alignment (Binary)
Lifetime Alignment Current ML Precision

Figure 8. Real-world data simulation with noise

baseline (ranges between 21− 25%); the rejections levels
are negligible for all algorithms.

To further understand the impact of prediction noise (and
in particular, the potential gains that can be obtained with
better ML precision), we have synthetically modified the
prediction outcomes so that they correspond to different
values of average precision (see Appendix §B.6 for details
on our noise generation methodology). We observe a few
key trends: while DPBFR gains are modest compared to the
LA algorithms, DPBFR exhibits quite stable performance
across the spectrum, which is a desirable property for cloud
providers (e.g., for capacity planning). Furthermore, the
binary version of LA obtains the best improvement almost
throughout, but it is surpassed by the multi-class version at
around 97% precision; such levels of precision are highly
unlikely in practice, hence we do not expect to transition to
that version.

5.3 Real-World Production Results

We next provide concrete evidence that the system we devel-
oped and deployed in production can perform according to
our requirements in regards to system performance, machine
learning prediction quality, and allocation quality.

ML system performance. To measure the effectiveness
of our solution, specifically the ML client library and the
inference service, we collected production telemetry to
evaluate the ML cache policy hit rate and, when there is a
cache miss, the latency to get the prediction from inference
servers and make them available to allocation servers.

On average, we process around 20 Million prediction
requests daily. Of these, 12 million are locally processed
and resolved by the ML client library and only 8 million are
processed by the inference servers; namely, we observe a
60% cache hit rate.

Figure 9 shows the VM lifetime latency distribution and
different percentiles for uncached requests. The 50th,
95th, and 99th percentile values are at 7.0, 20.0, and 40.0
milliseconds, respectively – less than 2% of the prediction
requests that were not available in the cache do not meet the

VM Allocation with Lifetime Predictions

100 101 102

Prediction Request Latency (milliseconds)
0

2

4

6

8
De

ns
ity

50th Percentile
95th Percentile
99th Percentile

Figure 9. VM lifetime latency distribution and percentiles.

time budget requirement. Combined with the cache impact,
99.2% of requests meet the time budget.

We can calculate performance metrics by comparing the
production predictions given by the model with the ground
truth observed after the VM departs. Recall that the model
deployed in production is an LGB with the small feature
set in Table 1. Sampling over 200k predictions over all
zones, we have an AUC of 89.6% and an AP of 59.2%,
which is slightly better than the expected performance from
simulations.

Allocation quality. It is quite challenging to assess the
impact of our new algorithms in a production environment.
The production allocation system is continually evolving,
with many changes potentially affecting the packing quality
simultaneously. In addition, changes in workload can
significantly influence results. Therefore, we need to
carefully choose metrics that directly measure the impact
of our changes. One such metric that is robust to envi-
ronment changes is the instantaneous packing density at
each allocation. Specifically, for each VM request, we
can measure the utilization of its selected node. If we
partition the requests into short and long lived, we expect
that, on average, VMs that have been predicted to be long
lived will have improved packing density. To measure this
in production, we evaluated ten clusters over a period of
three months and observed that there was an instantaneous
packing density improvement of 2% for long lived VMs, on
average.

6 RELATED WORK

Resource management for large clouds. Our work adds
to a large body of work on hyper-scale cloud computing
clusters, see (Verma et al., 2015; Burns et al., 2016;
Schwarzkopf et al., 2013; Delimitrou & Kozyrakis, 2013;
2014; Delimitrou et al., 2015; Newell et al., 2021; Tang
et al., 2020; Goudarzi & Pedram, 2012; Gharehpasha et al.,
2021) and references therein.

ML for cloud systems. ML for systems has been a very
active area of research over the last decade or so; see,
e.g., (Wu & Xie, 2022) for a survey. We briefly survey
below recent related works on ML for cloud systems, which
are more relevant to our context. The Resource Central
paper (Cortez et al., 2017) lays out key principles for
using ML for cloud resource management. However, while

the paper motivates some scenarios, there is no concrete
guidance for how to use lifetimes for VM allocation. Ambati
et al. (2020) applies ML models to predict survival rates
and average number of cores to accommodate harvest
VMs. Li et al. (2021); Wang et al. (2020) optimize the
placement of long-running application (LRA) containers
through reinforcement learning techniques. Wang et al.
(2022) applies ML to increase node agent efficiency in
cloud platforms. Finally, Kumbhare et al. (2021) uses ML to
predict future workload for power oversubscription. None
of the above papers utilizes real-time predictions of VM
lifetimes.

Dynamic bin packing. Different versions of dynamic bin
packing with perfect lifetime information have been studied
for decades (Coffman et al., 1983), see (van Stee, 2012)
for a survey. This has seen renewed interest motivated
by VM allocation; the recent works (Li et al., 2015a;
Azar & Vainstein, 2019; Buchbinder et al., 2021) present
online algorithms under the assumptions, respectively, of
no lifetime information, perfect lifetime information, and
lifetime plus total load information. Offline versions of the
problem have also been studied, see (Brandao & Pedroso,
2016; Aydın et al., 2020) and references therein. Li et al.
(2015b) present an application of dynamic bin packing to
VM allocations in cloud gaming.

7 CONCLUSION

We design and implement an end-to-end lifetime-aware VM
allocation system, which serves millions of VM requests per
day. Our allocation algorithms are robust to prediction errors
and lead to efficiency gains, observed both in simulation and
production measurements. Our system design decouples
control, inference, and allocation services, allowing us to
infuse ML into other aspects of the allocation problem in
the future (e.g., over-subscription and live migration).

8 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
suggestions. We also thank Saurabh Agarwal, Konstantina
Mellou and Ricardo Bianchini for useful discussions.

REFERENCES

Ambati, P., Goiri, Í., Frujeri, F., Gun, A., Wang, K., Dolan,
B., Corell, B., Pasupuleti, S., Moscibroda, T., Elnikety, S.,
et al. Providing slos for resource-harvesting vms in cloud
platforms. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pp. 735–
751, 2020.

Aydın, N., Muter, İ., and Birbil, Ş. İ. Multi-objective
temporal bin packing problem: An application in cloud
computing. Computers & Operations Research, 121:

VM Allocation with Lifetime Predictions

104959, 2020.

Azar, Y. and Vainstein, D. Tight bounds for clairvoyant
dynamic bin packing. ACM Trans. Parallel Comput., 6
(3), oct 2019. ISSN 2329-4949. doi: 10.1145/3364214.

Brandao, F. and Pedroso, J. P. Bin packing and related
problems: General arc-flow formulation with graph
compression. Computers & Operations Research, 69:
56–67, 2016.

Buchbinder, N., Fairstein, Y., Mellou, K., Menache, I., and
Naor, J. Online virtual machine allocation with lifetime
and load predictions. ACM SIGMETRICS Performance
Evaluation Review, 49(1):9–10, 2021.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and
Wilkes, J. Borg, Omega, and Kubernetes. Queue, 14(1):
70–93, January 2016. ISSN 1542-7730. doi: 10.1145/
2898442.2898444.

Christensen, H. I., Khan, A., Pokutta, S., and Tetali, P. Ap-
proximation and online algorithms for multidimensional
bin packing: A survey. Computer Science Review, 24:
63–79, 2017.

Coffman, Jr, E. G., Garey, M. R., and Johnson, D. S.
Dynamic bin packing. SIAM Journal on Computing, 12
(2):227–258, 1983.

Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fon-
toura, M., and Bianchini, R. Resource central: Under-
standing and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of
the 26th Symposium on Operating Systems Principles, pp.
153–167, 2017.

Crow, E. L. and Shimizu, K. Lognormal distributions.
Marcel Dekker New York, 1987.

Delimitrou, C. and Kozyrakis, C. Paragon: QoS-aware
scheduling for heterogeneous datacenters. In Proceed-
ings of the Eighteenth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 77–88, 2013. ISBN
9781450318709. doi: 10.1145/2451116.2451125.

Delimitrou, C. and Kozyrakis, C. Quasar: Resource-
efficient and QoS-aware cluster management. In Pro-
ceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 127–144, 2014. ISBN
9781450323055. doi: 10.1145/2541940.2541941.

Delimitrou, C., Sanchez, D., and Kozyrakis, C. Tarcil:
reconciling scheduling speed and quality in large shared
clusters. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), pp. 97–110, 2015.

Diederik, P. K., Welling, M., et al. Auto-encoding varia-
tional bayes. In Proceedings of the International Con-
ference on Learning Representations (ICLR), volume 1,
2014.

Eban, E., Schain, M., Mackey, A., Gordon, A., Rifkin, R.,
and Elidan, G. Scalable learning of non-decomposable
objectives. In Artificial intelligence and statistics, pp.
832–840. PMLR, 2017.

Gao, J. Machine learning applications for data center
optimization. 2014.

Garey, M. R., Graham, R. L., and Ullman, J. D. Worst-case
analysis of memory allocation algorithms. In Proceedings
of the Fourth Annual ACM Symposium on Theory of
Computing, STOC ’72, pp. 143–150, New York, NY,
USA, 1972. Association for Computing Machinery. ISBN
9781450374576. doi: 10.1145/800152.804907.

Gharehpasha, S., Masdari, M., and Jafarian, A. Virtual
machine placement in cloud data centers using a hybrid
multi-verse optimization algorithm. Artificial Intelligence
Review, 54:2221–2257, 2021.

Goudarzi, H. and Pedram, M. Energy-efficient virtual
machine replication and placement in a cloud computing
system. In 2012 IEEE Fifth International Conference on
Cloud Computing, pp. 750–757. IEEE, 2012.

Hadary, O., Marshall, L., Menache, I., Pan, A., Greeff, E. E.,
Dion, D., Dorminey, S., Joshi, S., Chen, Y., Russinovich,
M., et al. Protean: VM Allocation Service at Scale. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pp. 845–861, 2020.

Kakantousis, T., Kouzoupis, A., Buso, F., Berthou, G.,
Dowling, J., and Haridi, S. Horizontally scalable ml
pipelines with a feature store. In Proc. 2nd SysML Conf.,
Palo Alto, USA, 2019.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Kumbhare, A. G., Azimi, R., Manousakis, I., Bonde, A.,
Frujeri, F., Mahalingam, N., Misra, P. A., Javadi, S. A.,
Schroeder, B., Fontoura, M., et al. Prediction-based
power oversubscription in cloud platforms. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pp. 473–487, 2021.

Li, S., Wang, L., Wang, W., Yu, Y., and Li, B. George:
Learning to place long-lived containers in large clusters
with operation constraints. In Curino, C., Koutrika, G.,
and Netravali, R. (eds.), SoCC ’21: ACM Symposium on
Cloud Computing, Seattle, WA, USA, November 1 - 4,

VM Allocation with Lifetime Predictions

2021, pp. 258–272. ACM, 2021. ISBN 978-1-4503-8638-
8. doi: 10.1145/3472883.3486971.

Li, Y., Tang, X., and Cai, W. On dynamic bin packing
for resource allocation in the cloud. In Proceedings of
the 26th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’14, pp. 2–11, New York, NY,
USA, 2014. Association for Computing Machinery. ISBN
9781450328210. doi: 10.1145/2612669.2612675.

Li, Y., Tang, X., and Cai, W. Dynamic bin packing for on-
demand cloud resource allocation. IEEE Transactions on
Parallel and Distributed Systems, 27(1):157–170, 2015a.

Li, Y., Tang, X., and Cai, W. Play request dispatching
for efficient virtual machine usage in cloud gaming.
IEEE Transactions on Circuits and Systems for Video
Technology, 25(12):2052–2063, 2015b.

Lundberg, S. M. and Lee, S.-I. A unified approach to
interpreting model predictions. Advances in neural
information processing systems, 30, 2017.

Moerkotte, G., Neumann, T., and Steidl, G. Preventing bad
plans by bounding the impact of cardinality estimation
errors. Proceedings of the VLDB Endowment, 2(1):982–
993, 2009.

Newell, A., Skarlatos, D., Fan, J., Kumar, P., Khutornenko,
M., Pundir, M., Zhang, Y., Zhang, M., Liu, Y., Le, L., et al.
Ras: Continuously optimized region-wide datacenter
resource allocation. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pp.
505–520, 2021.

Panigrahy, R., Talwar, K., Uyeda, L., and Wieder, U.
Heuristics for vector bin packing. Microsoft Research
Technical Report, 2011.

Qi, Q., Luo, Y., Xu, Z., Ji, S., and Yang, T. Stochastic
optimization of areas under precision-recall curves with
provable convergence. Advances in Neural Information
Processing Systems, 34:1752–1765, 2021.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., and
Wilkes, J. Omega: flexible, scalable schedulers for
large compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems (EuroSys),
pp. 351–364, 2013.

Tang, C., Yu, K., Veeraraghavan, K., Kaldor, J., Michelson,
S., Kooburat, T., Anbudurai, A., Clark, M., Gogia, K.,
Cheng, L., et al. Twine: A unified cluster management
system for shared infrastructure. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pp. 787–803, 2020.

van Stee, R. SIGACT news online algorithms column 20:
the power of harmony. SIGACT News, 43(2):127–136,
2012. doi: 10.1145/2261417.2261440.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D.,
Tune, E., and Wilkes, J. Large-Scale Cluster Management
at Google with Borg. In Proceedings of the Tenth
European Conference on Computer Systems, pp. 1–17,
2015.

Wang, C., Wu, Q., Weimer, M., and Zhu, E. Flaml: A fast
and lightweight automl library. Proceedings of Machine
Learning and Systems, 3:434–447, 2021.

Wang, L., Weng, Q., Wang, W., Chen, C., and Li, B.
Metis: Learning to schedule long-running applications
in shared container clusters at scale. In SC20: Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–17, 2020. doi:
10.1109/SC41405.2020.00072.

Wang, Y., Crankshaw, D., Yadwadkar, N. J., Berger, D.,
Kozyrakis, C., and Bianchini, R. Sol: safe on-node
learning in cloud platforms. In Proceedings of the 27th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pp.
622–634, 2022.

Wu, N. and Xie, Y. A survey of machine learning for
computer architecture and systems. ACM Computing
Surveys (CSUR), 55(3):1–39, 2022.

Yan, L., Dodier, R. H., Mozer, M., and Wolniewicz, R. H.
Optimizing classifier performance via an approximation
to the wilcoxon-mann-whitney statistic. In Proceedings
of the 20th international conference on machine learning
(icml-03), pp. 848–855, 2003.

Yuan, Z., Yan, Y., Sonka, M., and Yang, T. Large-scale
Robust Deep AUC Maximization: A New Surrogate
Loss and Empirical Studies on Medical Image Classi-
fication. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 3020–3029, Montreal, QC,
Canada, October 2021. IEEE. ISBN 978-1-66542-812-5.
doi: 10.1109/ICCV48922.2021.00303.

VM Allocation with Lifetime Predictions

A PROOF OF THEOREM 1
Throughout this section, we use jobs or items to denote the
VMs, following the standard terminology in the bin packing
literature.

A.1 Proof of Theorem 1

By scaling the problem, without loss of generality assume
that all lifetimes Lj are between α and αµ with probability
1. Thus, given Assumption 1, the predicted lifetimes ℓ̂j are
between 1 and αβµ, and we have log(αβµ) (non-empty)
intervals I1, I2, . . . , Ilog(αβµ). To simplify the notation we
use µ̄ := αβµ.

We say that job j has class i (or is an i-job) if its predicted
lifetime belongs to the interval Ii, and say that a machine
has class i if it receives jobs of class i. Also, let aj denote
the arrival time of job j.

The following lemma is the core of the upper bound for the
cost of the algorithm. Essentially for every interval J , it
upper bound the maximum number of machines of class i
simultaneously active during this interval by the total size of
the i-jobs that arrive in a slightly bigger interval. To make
this precise, for an interval J , let sizei(J) be the total size
of the i-items that arrive at some time in the interval J .

Lemma 1. Fix a class i ∈ [log µ̄], and an interval J over
the grid with spacing α2i, i.e., J = [c · α2i, (c+ 1) · α2i)
for an integer c ≥ 0. Let m be the maximum number of
machines of class i simultaneously active during a time in
J , in the execution of Algorithm 1. Then, letting J ′′ =
[(c− 2) · α2i, (c+ 1) · α2i),

m ≤ 4 sizei(J
′′) + 2 .

Proof. Let J ′ = [(c− 1) · α2i, (c+ 1) · α2i). Assume that
at most m

2 i-jobs of size at least 1
2 (“big jobs”) arrive in

the interval J ′, else sizei(J ′′) ≥ m
4 and the lemma directly

follows.
Now consider a time t in J such that there are m active
machines of class i, and let us denote them by M . All these
machines must have received at least one i-job that arrived
in the interval J ′ ∩ [0, t], otherwise such machine would
be inactive at time t, since any i-job j that arrives prior to
interval J ′ finishes before time

(c−1)·α2i+Lj ≤ (c−1)·α2i+αℓ̂j ≤ (c−1)·α2i+α2i ≤ t.

Moreover, since at most m
2 big i-jobs arrived in J ′, at least

half of the machines in M receive a non-big i-job that
arrived in J ′ ∩ [0, t]; let M ′ ⊆M denote these machines.

Consider the “newest” (newest opening time) of the ma-
chines in M ′, and let j be a non-big i-job that arrived in
J ′∩[0, t] that is assigned to this newest machine. Notice that
then job j arrives, all other machines in M ′ are active (they
are older than the “newest”, and they remain active at least
until time t ≤ aj). Thus, all these machines were all under

consideration for the First-Fit rule. Since this rule chose the
“newest” machine, it means that all the other machines in
M ′ could not fit job j at this time. Since j is a non-big job,
it means that all these m

2 − 1 machines have size occupation
at least 1

2 at this time. Again, all this size occupation must
have been incurred due to i-jobs released in the interval
J ′′ (older jobs would be done by time aj ∈ J ′). Thus, the
total size of i-jobs that arrive in the interval J ′′ is at least
(m2 − 1) · 12 , and the lemma follows.

To continue upper bounding the cost of the algorithm, we
say that the predicted volume of job j is sj ℓ̂j . Also, let
span (which is a random quantity) denote the total amount
of time where at least one job is active, namely span =
area(∪j [aj , aj + Lj]). Actually we need to work with the
following “predicted span with lifetimes multiplied by α”
ŝpan := area(∪j [aj , aj+αℓ̂j]). We then have the following
upper bound on the cost of the algorithm.

To continue upper bounding the cost of the algorithm, we
say that the predicted volume of job j is sj ℓ̂j . Also, let
span (which is a random quantity) denote the total amount
of time where at least one job is active, namely span =
area(∪j [aj , aj + Lj]). Actually we need to work with the
following “predicted span with lifetimes multiplied by α”
ŝpan := area(∪j [aj , aj+αℓ̂j]). We then have the following
upper bound on the cost of the algorithm.

Lemma 2. Algorithm 1 has expected cost at most

24α[total predicted volume of jobs] + 8(log µ̄) · ŝpan.

Proof. Fix a class i. For an integer c, define the intervals
Jc =: [c · α2i, (c+ 1) · α2i) and J ′′

c = [(c− 2) · α2i, (c+
1) · α2i). Also, let Ci be the set of integral c’s such that
some i-job arrives at some time in interval the Jc, i.e. only
the intervals indexed by Ci matter.

Finally, let mi
c be the maximum number of machines of class

i simultaneously active during a time in J , in the execution
of Algorithm 1. The total cost that the algorithm pays in
interval Jc due to the active machines of class i is at most
|Jc| ·mi

c (i.e. majorizes the cost by assuming that all mi
c

machines are active over the whole interval Jc). Moreover,
from Lemma 1, we have that mi

c ≤ 4sizei(J
′′
c) + 2. Then

adding over all c ∈ Ci, we obtain that the total cost of the
algorithm due to machines of class i is at most∑
c∈Ci

|Jc| ·mi
c ≤ α2i ·

∑
c∈Ci

(
4sizei(J

′′
c) + 2

)
= 4α2i ·

∑
c∈Ci

sizei(J
′′
c) + α2i+1|Ci|. (1)

Now notice that the interval J ′′
c only intersects with the

next 2 intervals J ′′
c+1 and J ′′

c+2; more precisely, for every
k = 0, 1, 2, the intervals {J ′′

c }c:c=k mod 3 are disjoint.

VM Allocation with Lifetime Predictions

Thus,
∑

c∈Ci:c=k mod 3 sizei(J
′′
c) ≤ sizei([0,∞)), and

so
∑

c∈Ci
sizei([0,∞)) ≤ 3 sizei([0,∞)). Employing

this on (1), the cost of the algorithm due to machines of
class i is at most

12α2i · sizei([0,∞)) + α2i+1|Ci|
≤ 24α · [total predicted volume of i-jobs] + α2i+1|Ci|,

the last inequality because the predicted volume of an i-jobs
is sj ℓ̂j ≥ 2i−1sj . Adding over all classes i, we have

cost of algo

≤ 24α[total predicted vol of jobs] +
∑
i

α2i+1|Ci|. (2)

Next, we relate each term α2i+1|Ci| on the right-hand side
with ŝpan. To see this, for c ∈ Ci, let jc be any i-job that
arrives in Jc. So the “predicted span with lifetime multiplied
by α” of job jc satisfies the containment is contained in

[ajc , ajc + αℓ̂jc] ⊆ [c · α2i, (c+ 1) · α2i + α2i)

= Jc ∪ Jc+1.

In particular, the intervals on the left-hand side relative to
jobs jc with even c are disjoint, and hence

ŝpan = area
(⋃

j

[aj , aj + αℓ̂j]

)
≥

∑
c∈Ci : c even

area
(
[ajc , ajc + αℓ̂jc]

)
≥

∑
c∈Ci : c even

α2i−1,

where the last inequality uses the fact that the jobs jc are of
class i and hence ℓ̂jc ≥ 2i−1. Moreover, the same holds for
the odd c’s in Ci, and adding these two bounds together we
get

2 ŝpan ≥
∑
c∈Ci

α2i−1 = α2i−1|Ci|.

Applying this bound on inequality (2) we get that the total
cost of the algorithm is at most

24α[total predicted volume of jobs] + 8(log µ̄) · ŝpan,

which concludes the proof of the lemma.

We now lower bound OPT. It is clear that OPT is lower
bounded by the total volume

∑
j sjLj of the jobs (since

each machine has capacity 1), and also by the span (at least
one machine needs to be open during the span). Thus:

Lemma 3. We have OPT ≥ [total volume of jobs], and
OPT ≥ span.

In order to relate this bound to the upper bound of the
Algorithm 1 from Lemma 2, we need to relate these true
volume/span to the predicted (scaled) volume/span. The
volume par is easy due to Assumption 1:

E [total volume of jobs] =
∑
j

sjELj ≥
1

β

∑
j

sj ℓ̂j

=
1

β
[total predicted volume of jobs]. (3)

Relating span and ŝpan is more complicated, and requires
another argument based on disjoint intervals, carried out in
the next lemma.

Lemma 4. It holds that E span ≥ 1
2αβ · ŝpan.

Proof. Let U be a minimal set of jobs whose “predicted
span with lifetimes multiplied by α” equals ŝpan, namely
area(∪j∈U [aj , aj + αℓ̂j]) = ŝpan. Then we have

ŝpan ≤
∑
j∈U

∣∣∣[aj , aj + αℓ̂j]
∣∣∣ = α

∑
j∈U

ℓ̂j . (4)

Moreover, due to the minimality of U , we claim that these
intervals are almost disjoint; more precisely, for each time t
there are at most 2 intervals [aj , aj + αℓ̂j] with j ∈ U that
contain t. To see this, by means of contradiction assume
that there are 3 intervals, indexed by j1, j2, j3 ∈ U , that
contain t. Without loss of generality let j1 be the interval
among these that starts earliest. The same interval cannot
have finish the latest, else one could remove the jobs j2
and j3 from U and still have the desired span property,
contradicting the minimality of U . So without loss of
generality assume the interval indexed by j3 has finishes
the latest among these 3 intervals. Since both the intervals
indexed by j1 and j3 intersect at t, we have

[aj1 , aj1 + αℓ̂j1] ∪ [aj3 , aj3 + αℓ̂j3] = [aj1 , aj3 + αℓ̂j3]

⊇ [aj2 , aj2 + αℓ̂j2];

in this case job j2 can be removed from U , also contradicting
its minimality. This proves the claim.

Since from Assumption 1 we have Lj ≤ αℓ̂j for every job j,
we have the interval inclusion [aj , aj+Lj] ⊆ [aj , aj+αℓ̂j],
and so the previous claim implies that for any time t, at most
2 of the intervals [aj , aj + Lj] with j ∈ U contain t; that is,
at most 2 jobs in U are active at time t. Therefore, we have
the span lower bound

span ≥ area
(⋃

j∈U

[aj , aj + Lj]

)
≥ 1

2

∑
j∈U

∣∣∣[aj , aj + Lj]
∣∣∣

=
1

2

∑
j∈U

Lj .

VM Allocation with Lifetime Predictions

Taking expectation and using the fact ELj ≥ 1
β ℓ̂j (Assump-

tion 1), we get E span ≥ 1
2β

∑
j∈U ℓ̂j . Combining this with

inequality (4) concludes the proof of the lemma.

With these elements, we can now finally conclude the proof
of Theorem 1: combining Lemma 3, inequality (3), and
Lemma 4, we obtain that

cost of algo ≤ 48αβ · EOPT+ 16αβ(log µ̄) · EOPT

≤
(
64αβ log µ̄

)
EOPT .

This concludes the proof.

A.2 Necessity of Assumption 1

We show that Assumption 1 on the quality of the prediction
is basically necessary to obtain approximation guarantees
that improve over the O(µ)-approximation that can be
obtained without any prediction (Li et al., 2014). More
precisely, we show that even if with a tiny probability
the prediction underestimates the true lifetime, then no
algorithm can do well. In particular, it says that while we
can relax the assumption ℓ̂j ∈ [1βLj , αLj] so that the upper
bound only holds in expectation, we cannot do the same for
the lower bound. That is, it is much more important to be
careful to not underestimate the lengths. A main difficulty
in the analysis is that the algorithm may adapt to the size of
the jobs scheduled thus far.
Theorem 2. For every µ and ε > 0, there is an instance
for this problem where Lj ≥ ℓ̂j for all j, the probability of
underestimation is at most ε (i.e. Pr(ℓ̂j < Lj) = ε for all
jobs j) but any online algorithm has cost at least µ

4 ·EOPT.
(In particular, note that for ε ≤ 1/µ we have ELj ≤ 2ℓ̂j .)

For the remainder of the section we prove this theorem.
Without loss of generality we may assume that ε is suffi-
ciently small, in particular, we may assume ε ≤ 1

3µ . The
instance is the following: It is convenient to denote k := 1

ε ,
and assume WLOG that k is an integer. There are 1

ε2

identical jobs, and each has size sj = 1
ε and true length

Lj that is equal to µ with probability ε
2 and equal to 1 with

probability 1 − ε
2 . The predictions are all ℓ̂j = 1, hence

Pr(ℓ̂j < Lj) = ε. The jobs 1,2,. . . are released in this order
but all of them at almost time 0 (e.g. the release time of job
j is rj := j

2k2 , say).

To simplify the notation, we say that job j is “big” whenever
Lj = µ, and “small” otherwise.

Consider any algorithm for this instance. Let Ni be the
number of jobs this algorithm assigns to bin i (note Ni is
a random variable, since the algorithm may adapt to the
outcome of the sizes of the jobs it has already scheduled).
Let Bi be the indicator of the event that one of the jobs
assigned to bin i turned out to be big. The main lemma is
the following.

Lemma 5. For every bin i we have

EBi ≥
ε

2
· ENi.

Before proving this lemma we show how it implies the
desired result. Notice that every bin that has a big job
remains open until at least time µ, thus the total cost of
the algorithm can be lower bounded as µ times the number
of bins that have a big job, i.e. µ ·

∑
i Bi. Since the total

number of jobs
∑

i Ni equals k2, the previous lemma gives

cost of alg ≥ µ · E
∑
i

Bi ≥
εµ

2
· E

∑
i

Ni =
kµ

2
. (5)

On the other hand, OPT can pack all the small and big jobs
separately (i.e., each machine only has big or only has small
jobs). Since each bin accommodates k jobs, there is such
a packing using at most #big jobs

k + 1 bins for the big jobs
and k bins for the small jobs. Each of the first set of bins
contributes with at most rk2 + µ ≤ 2µ to the cost, and each
of the second set of bins contributes with 1. This gives an
upper bound on OPT of

EOPT ≤ 2µ·
(
E[#big jobs]

k
+1

)
+k = 3µ+k ≤ 2k, (6)

where the second inequality follows from the fact
E[#big jobs] = k2 ε

2 = k
2 , and the last inequality from the

assumption that ε ≤ 1
3µ . Combining the bounds from (5)

and (6) we obtain that the cost of any algorithm is at least
µ
4 · EOPT, proving the desired result.

In order to conclude the proof, we now prove Lemma 5.

Proof of Lemma 5. Fix a bin i for the rest of the proof. Let
Aj be the indicator that the algorithm assigned job j to
machine i, and let Bigj be the indicator that job j is big, i.e.
Bigj = 1(Lj = µ). Then we can express the indicator Bi

that bin i was assigned a job that has materialized as big as
Bi = maxj AjBigj . It is easy to see that fo every scenario
we have

Bi ≥
∑
j

AjBigj ·
(
1−

∑
j′<j

Aj′Bigj′
)

=
∑
j

AjBigj −
∑
j′<j

(AjBigj) · (Aj′Bigj′). (7)

To lower bound the expected value of Bi, we compute the
expected value of the right-hand side.

For the product terms on the right-hand size, we have

E
[
(AjBigj) · (Aj′Bigj′)

]
= E

[
Aj ·Aj′ ·Bigj′ · E[Bigj | Aj ·Aj′ ·Bigj′]

]
= E

[
Aj ·Aj′ ·Bigj′ ·

ε

2

]
,

VM Allocation with Lifetime Predictions

the last equation because the size of job j is independent of
where j itself and the previously released job j′ are assigned,
and also independent to whether j′ is big or not. Fixing j′

and adding this over all job j > j′ and using the fact that
at most k jobs can be assigned to machine i (since their the
job sizes are 1

k), i.e.,
∑

j Aj ≤ k = 1
ε , we have

∑
j:j>j′

E
[
(AjBigj) · (Aj′Bigj′)

]
=

ε

2
E
[
Aj′Bigj′ ·

∑
j:j>j′

Aj

]
≤ 1

2
· E[Aj′Bigj′] .

Applying this to inequality (7) we get

EBi ≥
1

2

∑
j

E[AjBigj] =
1

2

∑
j

EAj · EBigj

=
ε

2

∑
j

EAj =
ε

2
ENi,

the first equation again because the size of job j is indepen-
dent to where it is assigned. This concludes the proof of the
lemma.

B MORE MACHINE LEARNING DETAILS

B.1 Features

As discussed, we have ablated around one hundreds avail-
able features among all accessible information. We also
included simple statistics for each customer: 25, 50, 75, 90
percentiles, mean, and standard deviation of VM lifetime in
the past half, one, and three months for a given customer.
Then, we decided to only have two set of features based on
the features’ acquisition time and their importance on the
ML performance through SHAP value.

Small feature set contains seven features: allocation hour
and day, counts of all the customer’s VMs and long-lived
VMs in the past two months, VM requested size and
location.

Large features set contains all features in the small feature
set, and it also contains additional eleven features, including
the 50, 75, 90 percentile of the customers’ VM lifetime in
the past 2 months, the standard deviation of the customer’s
VM lifetime, the number of cores, the amount of memory
requested, the OS disk type, extensions requested, resource
group name, computer name, and the setting for VM scale
set. A more detailed SHAP value plot is shown in Figure
10.

B.2 Regression

As indicated by the Assumption 1 used in the guarantee of
Algorithm 1, the ratio between ground truth VM lifetime and
its prediction is an important indicator of errors from online
VM allocation algorithms. Moreover, as indicated in Figure

Figure 10. SHAP value for the large set of features.

1, most VMs’ lifetimes are in lognormal distribution or a
mixture of lognormal distributions. Here, by considering
the longtail but ignoring the spike of longlived VMs at the
tail, we assume the labels are lognormal (Crow & Shimizu,
1987), such that the log of the label is distributed according
to a normal distribution. We use the Q-error (Moerkotte
et al., 2009) to evaluate the ratio between the ground truth
and the predicted; letting y denote the ground truth and y′

denote the prediction, the Q-error is:

Q = max

(
max(y, 1)

max(y′, 1)
,
max(y′, 1)

max(y, 1)

)
. (8)

We use the mean absolute error of the logarithmic values as
our regression loss, which is equivalent to minimizing the
average of Q-error (Theorem 3). This optimization objective
has two desirable properties: (1) it assumes the labels are in
lognormal distribution so that standard MAE or MSE loss
can be applied to the log values; (2) it minimizes the ratio
between the ground truth and prediction.

Theorem 3 (MAE-Log Loss and Q-Error). When ground
truth and predictions are both positive values, optimizing
mean absolute error between log value of ground truth and
log value of the prediction is equivalent to minimize the
Q-error.

VM Allocation with Lifetime Predictions

<
10 min

10 min
to 2 hours

2 hours
to 1 day

>
1 day

Ground Truth Lifetime

100

101

102

103

Q-
Er

ro
r

Figure 11. Regression testing errors.

Figure 12. Regression testing results.

Proof. Assuming y, y′ ∈ [1,∞), we have:

argminQ(y, y′) = argminmax(y/y′, y′/y)

= argminmax(log y/y′, log y′/y)

= argminmax(log y − log y′,

log y′ − log y)

= argmin | log y − log y′| . (9)

For the regression task, we use Geometric Mean of Q-
error GMQ = n

√
Q1Q2 ·Qn between the ground truth

and predicted lifetime, where n is the number of predicted
items. As shown in Figure 11, the regression performance is
worse for VMs with longer lifetime, and the Q-error could
reach 100 for VMs with lifetime of more than a day. Figure
12 shows the prediction distribution for VMs with different
ground truth lifetime.

B.3 Multi-Class Classification

Following the theoretical guarantee from Algorithm 1, we
use buckets of doubling widths, using cut-off thresholds
of the form 15 · 2i, more precisely, 15, 30, ..., and 3840
minutes.

We use the standard cross entropy loss for the 10-way
classification experiments. All tested models, with different

sets of features and backbones, achieved similar results for
multi-class classification of 61 - 65% weighted F-1 score.
The accuracy for VMs that lived in less than 15 minutes is
high, but the accuracy for the rest is extremely low, which
might affect VM allocation. If we grant more granularity
to VMs with lifetime up to 15 minutes, the packing density
would not be significantly affected, because those VMs
would exit the system very soon.

B.4 CAM Details

Targeting to automatically learn customers’ behaviors for
VM lifetime prediction, we create a novel central-attention
mechanism (CAM) based on existing self-attention and
multi-instance learning. This model architecture enables
the system to learn information from long sequence (> 104

tokens) and store customer’s embedding in a vector.

Multi-Instance Attention: our preliminary experiment
shows customers’ historical VMs contain useful information
to predict the lifetime of future VM requests, which inspired
the feature extraction methods as described in the previous
section. Here, we create a multi-instance learning-based
method to extract information from historical VM requests
for each customer.

Denote p as the number of dimensions for the attention,
X ∈ Rt×d as an input time-series data with t time points
and d features at each time point, C ∈ Rc×d as c central
tokens, f as a neural network-based estimator. Based on the
self-attention mechanism, we define:

• Query: Q = fq(C) ∈ Rc×p.

• Key: K = fk(C,X) ∈ Rt×p

• Value: Vx = fv(X) ∈ Rt×p, Vc = fv(C) ∈ Rc×p, and
V = [Vc;Vx] ∈ R(t+c)×p

• Attention: AC = softmax(
QKT√

dp
)Vx

• Output: Y = [Ac;Vx] ∈ R(c+t)×p

• Multi-head Output: [Y0;Y1, ..., Yh] ∈ R(c+t)×(p×h) with
h heads.

Integrating Binary and Multi-class Classification: In neu-
ral network-based models, we use 10 neurons to represent
10 geometric intervals for the lifetime span with the softmax
function for the multi-class classification. For binary
classification, we calculate cumulative sum across these
neurons. Denoting {ci}i as the list of cut-off thresholds
mentioned earlier and value x, we have:

Pr(lifetime ≥ x) =
∑
ci<x

Pr
(

lifetime ∈ [ci−1, ci]
)

(10)

VM Allocation with Lifetime Predictions

Other Design Considerations: runtime and latency is a
crucial challenge to apply giant deep learning models for
system application, and we offshore the main computation
offline, as discussed in §4.

B.5 Other ML Methods We Tried

Here, we discuss some methods that we have tried but
haven’t included in the study. We believe all these ap-
proaches have potential to be applied in lifetime-aware VM
allocation, but more future studies are needed to strengthen
them for this challenging application.

Cox Proportional Hazard (CPH): The Cox models are
widely recognized as a valuable tool for predicting lifetime
using right-censored data. Compared to the volume of
VMs we received every day, only a small fraction of VMs
remain active, and they are what we refer to as right-
censored data. Our research has shown that incorporating
the Proportional Hazard loss in our deep learning system has
little effect on the final outcome. In addition, most online
allocation algorithms in use today do not heavily rely on the
proportional hazard score. Nevertheless, the CPH model
may prove to be useful in data centers where there is an
abundance of right-censored VMs, or in cases where the
training data is limited.

Contrastive Learning: contrastive learning is a great
tool and improved our machine learning prediction per-
formance. However, the optimization community lacks
correspondingly online allocation algorithms using Con-
trastive Learning’s predictions or ranking predictions. In
the future, if more robust allocation algorithms are invented,
this approach can be tested further.

AUC and PaR Optimization: several optimization objec-
tives have been proposed to improve AUC score or Preci-
sion@Recall in the past decades, including Wilcoxon-Mann-
Whitney Statistics (Yan et al., 2003), non-decomposable
objectives (Eban et al., 2017), compositional optimization
(Qi et al., 2021), surrogate loss (Yuan et al., 2021), and many
other methods. We tested some of them in our systems but
only have seen incremental effects on our ML models. Our
data size is large enough for standard optimizer to achieve
satisfied results.

Variational Bayesian Inference: we applied standard
reparameterization approach (Diederik et al., 2014) to
approximate the lognormal distribution of lifetime for each
VM. Its performances for short-lived VMs are great, but its
variational inference for super long-lived VMs (e.g., that
lived for more than a few days) is hard to interpret.

Baseline ML Models: we also tested linear regression,
logistic regression, support vector machines, and multi-layer
perceptron. As expected, these approaches all underper-
formed more advanced models.

Standard MSE and MAE Losses for Regression: as

06-29
07-06

07-13
07-20

07-27
08-03

08-10
08-17

08-24
08-31

09-07
09-14

09-21
0.4
0.5
0.6
0.7
0.8
0.9

Av
g.

 P
re

cis
io

n

Zone 1
Zone 2
Zone 3

Figure 13. Performance Across Different Availability Zones. The
x-axis is the date, and y-axis is the Average Precision score.

discussed, these simple loss functions failed to generalize
for the long-tail distribution.

Reinforcement Learning (RL): we also tested reinforce-
ment learning and Markov decision process to replace
existing bin packing algorithms. Training time, convergence,
and generalizability are main obstacles to apply RL for
large data centers. The RL approach has not outperform
the production Best Fit algorithms yet, but we believe RL-
inspired approaches could be promising methods for AI-
based VM allocation in the future.

B.6 Simulation Experiment Details

To examine different packing algorithms, we designed a
simple strategy to synthesize noises to ground truth lifetime.
To establish a fair comparison for different algorithms with
different label types (e.g., binary classification, multi-class
classification, different categorization thresholds, etc.), we
use the regression performance distribution obtained in
Table 11 and Table 12. Then, we convert the noisy labels
into different bins.

B.7 More machine learning results

Here, we discuss more interesting ML results and findings.
First, we observed different ML performance across differ-
ent zones (Figure 13) and performance drop over time if the
model is not re-trained (Figure 14).

The behaviors at different zones and geographical locations
might be caused by different cultures, time-zone differences,
and other customer preferences. For instance, in some
locations, people would start an VM around 8 AM and
use it for several hours. While this phenomena would not
happen in other zones.

The performance drop over time also indicates the distri-
bution shift occurred in cloud management system, where
users and systems would have change their behavior over
time. Hence, adapting to the new distribution is also critical
for applying ML models to system management. We resolve
this data shift problem by re-training a model each weekend,
and more thoughtful techniques could be applied in the
future.

VM Allocation with Lifetime Predictions

Figure 14. F1 score metric calculated day-by-day for an ML model
trained until June 12.

C DPBFR: METHOD DETAILS

To study how lifetime information can be valuable for
VM allocation, we adapt the Prefer Best Fit algorithm
mentioned on Section 4.3 to apply different quantization
values depending on the lifetime of the VM. If the VM is
short-lived (for a defined threshold. E.g.: 60 min) we apply
the default quantization. But if the VM is long-lived we
apply a better, and more aggressive quantization.

C.1 Gains of using lifetime during packing

In this round of experiments, we selected two quantization
sets to test as the “better” quantization for long-lived VM:

• Quantization with 5 buckets: The higher the number of
buckets, the higher the precision of the selected nodes.
Currently we use quantization with 3 buckets in produc-
tion, by increasing the number of buckets we can narrow
the number of nodes selected.

• No quantization: At the limit, considering an infinite
number of buckets, not using quantization is the best that
we could do. This is our upper limit.

We want to answer if there is gain in packing performance
when using lifetime information. To answer that we will
compare the results obtained when applying 5 buckets or no
quantization for long-lived VMs with the baseline (applying
3 buckets for all VMs). We also need to define what a long-
lived VM is and analyze how different thresholds impact
the metrics.

In the real scenario we won’t have perfect predictions for
lifetime. The machine learning model will make mistakes
and those mistakes need to be considered in our experiments
because they will impact the final performance of the algo-
rithm. We also need to understand how noisy predictions
impact the metrics. For that, we mimic the model precision
by inserting noise (randomly making mistakes at a rate
consistent with the results from the model). In this set of
experiments, the noise applied was: 73% of recall for the
long-lived VMs and 96% of recall for the short-lived VMs.

Figure 15. Lifetime distribution for different thresholds in 80
clusters from generation 7.

The dataset utilized for the simulation consists of 80 clusters
from generation 7 that were randomly selected amount all
zones. Each cluster has 3 months of data, and the simulation
starts with a snapshot of the system from June to August
2021 . Figure 15 shows the dataset lifetime distribution.
Overall, the percentage of long-lived VMs in the dataset is
small; half of VMs live longer than 30min, only 32% live
longer than 1h, and 20% live longer than 2h.

Figure 16 shows the improvement we achieve in packing
density (PD), and Figure 17 shows the increase in FF,
by using different quantization approaches to a group of
VMs. Each line is a different experiment, in which a new
quantization setup is compared to the baseline. The x axis
represents the threshold in minutes that defines a long-lived
VM, and the y axis represents the improvement over the
baseline in percentage points. For a threshold of 0 min (the
left-most point) all VMs are classified as long-lived, and as
the threshold increases, the percentage of long lived VM
decreases. The experiments considered are:

1. Blue line: Apply no quantization for the long-lived
VMs and keep using the default quantization for the
short-lived VMs.

2. Orange line: Apply 5 buckets quantization for the long-
lived VMs and keep using the default quantization for
the short lived VMs.

3. Grey line: Apply no quantization for the long-lived
VMs and keep using the default quantization for
the short-lived VMs (the same as the blue line) but
inserting noise in the lifetime predictions.

4. Green line: Randomly applies no quantization to the
same percentage of VMs that are long-lived. That
is, for each threshold, we calculate the amount of
VMs that are long-lived and use this percentage to
randomly choose the VMs that will receive the better
quantization.

Figure 16 shows that all experiments have a positive gain
compared to the baseline, and the smaller lifetime thresholds

VM Allocation with Lifetime Predictions

Figure 16. Gain in core packing density for 80 clusters from gen7
considering no quantization, no quantization with noise, 5 buckets
quantization and random no quantization.

lead to the higher deltas. This is expected because with a
small threshold more VMs will be considered long lived
and receive improved quantization. Thus, as the threshold
increases the number of VMs affected decreases, resulting
in smaller gains. This effect can be clearly seen in the green
line, for which the amount of improvement follows the
percentage of long-lived VMs at each threshold, as shown
in Figure 15, since it chooses the VMs at random to receive
better quantization.

We see the impact of choosing long-lived VMs instead of
random VMs to apply the improved quantization comparing
the blue and green line. When choosing the long-lived VMs
we achieve a much better performance, especially when the
percentage of affected VMs is very low. For instance, for
a threshold of 1440 min only 2% of the VMs are affected,
and the performance of the blue line is over 3.5 p.p. higher
than the green line.

As expected, the blue line works as our upper limit, because
we apply the most aggressive quantization and consider the
actual lifetime instead of model predictions (working as
“perfect predictions”). With that said, another interesting
comparison is the one between the blue and the grey line.
The considerable gap between them shows us the amount
of performance that is lost when we insert noisy predictions.
The machine learning model will make mistakes, but
improving its performance can decrease this gap.

Figure 17 shows the increase in FF for those experiments
when varying the long-lived threshold from 0 to 1440
minutes. The smaller lifetime thresholds lead to bigger
increases in FF because a higher number of VMs are
being allocated using the improved, but more aggressive,
quantization. As the number of VMs affected by the new
quantization decreases, the addition to the FF also decreases.
The FF is what limits our choice of lifetime threshold
because we cannot increase it too much. It is important
to notice that when choosing the long lived VMs to apply
the new quantization (blue line) the increase in FF is smaller

Figure 17. Increase in FF for 80 clusters from gen7 considering no
quantization, no quantization with noise, 5 buckets quantization
and random no quantization.

Table 3. Binary Classification results in P@R (Precision at Recall)
metric.

Threshold P@R0.70 P@R0.75 P@R0.80 P@R0.85

60 min 73.7% 70.6% 67.4% 63.3%
120 min 60.4% 56.2% 51.6% 46.7%
180 min 57.8% 52.4% 47.1% 41.3%
240 min 57.0% 52.2% 46.7% 40.8%
300 min 56.7% 52.2% 47.2% 41.2%
360 min 54.7% 49.4% 44.4% 38.8%

than the random VM selection (green line), reinforcing
our assumption of the importance of VM lifetime to the
allocation process.

These experiments proved our belief that VM lifetime is
valuable information to be used during allocation. Figure 16
shows the gain we have when applying improved quantiza-
tion to long-lived VMs, while Figure 17 helps us determine
the lifetime threshold to consider a VM long-lived. Based on
these experiments, we decided to aim at a 0.5p.p. increase
in PD with long-lived threshold varying from 1h to 6h.

C.2 Parameter selection

To decide on the best set of values for the “improved
quantization” we performed an extensive parameter sweep
over sets of 4, 5 and 6 buckets. The evaluation dataset was
upgraded to 170 traces of generations 5, 6 and 7 to better
represent the system’s reality. After many simulations, the
best set of values for each configuration (4, 5 or 6 buckets)
was chosen and we moved on to noise evaluation.

There were packing density improvement as we add quan-
tization buckets in the perfect prediction case. However,
when adding noise to the system, the 5 buckets set proved to
be the most robust. We decided not to explore more buckets
divisions and follow our experiments with the 5-buckets
setting.

We evaluated how each lifetime threshold performs given

VM Allocation with Lifetime Predictions

Figure 18. Gain in core packing density for 170 clusters from gen7,
gen6 and gen8 for different recall values.

different recall values for the long-lived class. We explored
a lifetime threshold between 1 to 6 hours, and recall values
from 70% to 85%. For each value of recall, we used
the corresponding metrics obtained by the current binary
lifetime model to mimic the errors during simulation. Table
3 shows the long-lived precision used for each setting.
Figure 18 shows the gain in core packing density and there
were no significant changes in FF when varying the recall
and threshold values. Based on that, we decided to aim for
85% recall in our models.

