Retrieve What You Need: A Mutual Learning Framework for Open-domain Question Answering

Dingmin Wang1* Qiuyuan Huang2 Matthew Jackson1 Jianfeng Gao2
1University of Oxford 2Microsoft Research, Redmond

Abstract

An open-domain question answering (QA) system usually follows a retrieve-then-read paradigm, in which a retriever is used to retrieve relevant documents from a large corpus, and then a reader generates answers based on the retrieved documents and the original question. In this paper, we propose a simple and novel mutual learning framework to improve the performance of retrieve-then-read-style models via an intermediate module named the knowledge selector, which we train with reinforcement learning. The key benefits of our proposed intermediate module are: 1) no requirement for additional annotated question-passage pairs; 2) improvements in both retrieval and QA performance, as well as computational efficiency, compared to prior competitive retrieve-then-read models; 3) with no fine-tuning, improvement in the zero-shot performance of large-scale pre-trained language models, e.g., ChatGPT, by encapsulating the input with relevant knowledge without violating the input length constraint.

1 Introduction

Recently, there has been a revival of interest in tasks requiring large amounts of knowledge of the world. In such real-world scenarios, an efficient information retrieval system, capable of finding a small subset of relevant information, is needed for applications such as open-domain question answering, in which external knowledge (e.g., Wikidata and ConceptNet (Speer et al., 2017)) must be integrated into answers. However, hand-labeling data for training such a retriever is time and money consuming, and many datasets and applications lack such annotations. Hence, an efficient framework should be capable of learning a retriever, without supervision from annotated queries-document pairs.

In this paper, we focus on improving both the inference performance and efficiency of retrieve-then-read frameworks. Retrieve-then-read frameworks have dominated over current open-domain question answering systems (Oguz et al., 2022; Izacard and Grave, 2021; Cheng et al., 2021; Ma et al., 2022b) as well as other knowledge-intensive tasks such as fact checking (Petroni et al., 2021; Martín et al., 2022) and dialogue systems (Zhang et al., 2021). For example, CORE (Ma et al., 2022a), a state-of-the-art open-domain question-answering system, starts by using a dense retriever (Karpukhin et al., 2020a) to retrieve a subset of support documents and tables from a large source knowledge such as Wikipedia. Then, a generative encoder-decoder (reader) model produces the answer, conditioned on the question and the retrieved knowledge.

Previous studies (Yu et al., 2022b; Varshney et al., 2022) have shown that using a large number of support documents will lead to a significant increase in memory requirement and training time cost. According to (Varshney et al., 2022), FiD (Izacard and Grave, 2020) requires approximately 70×10^{11} floating-point operations (FLOPs) for inference on 100 passages. This high inference cost limits the widespread adoption of such systems in real-world applications, that must trade-off performance and latency. In addition to this, empirical results from previous work (Yang and Seo, 2020; Clark and Gardner, 2018; Lewis et al., 2020b) have suggested that, beyond a threshold number of documents, providing the reader with more documents can decay the end-to-end QA accuracy. These two points motivate us to explore whether it is possible to reduce the number of required support passages without compromising the model’s performance. To this end, we conducted two preliminary experiments:
Preliminary Experiment 1: Given a TQA (Joshi et al., 2017) dataset in which each question is accompanied with 100 passages retrieved by DPR (Karpukhin et al., 2020b), we achieved an exact match (EM) score of 65.0 using a Fusion-in-Decoder model (base). We then calculated the average EM scores when using 10 passages under a range of selection strategies. Firstly, by randomly sampling 100 passages out of the 100 passages retrieved by DPR, the EM score decreases from 65.0 to 53.3. Selecting the top 10 passages ranked by DPR outperformed this random sampling, however the EM score still degraded to 59.6. Finally, using Contriever (Izacard et al., 2021a) to select 10 passages, we observed an EM score of 65.4 1, a slight improvement against the original 100 passages.

Preliminary Experiment 2: We randomly chose 20 questions and, for each question, retrieved 100 passages using DPR. We then presented three student volunteers with the question-passage pairs, and asked them to estimate how many documents they would require to obtain the answer. From their response, we observed an average of 7.5 passages required to answer the question, suggesting that a large portion of retrieved passages are redundant.

The above two preliminary results align with our conjecture that selecting a smaller portion of support passages instead of feeding a large number of passages to the reader is a viable research direction. To this end, we propose a novel mutual learning framework (Figure 1) that improves both the quality of the retrieved documents and the performance of the reader. The key novelty of our framework is the introduction of a “knowledge selector” module, which interfaces between the retriever and reader. The goal of the knowledge selector is to further refine the set of documents selected by the retriever, which we frame as a reinforcement learning problem. We train this system by iterating between two phases, which train the knowledge selector and reader respectively. In the first phase (Phase 1), we use policy gradients to train the knowledge selector to select the optimal subset of support passages, with the goal of maximizing the prediction rewards when passed to the reader (whose parameters are frozen at this phase). Following this, in Phase 2, we freeze the weights of the knowledge selector and train the reader using supervised learning over pairs of questions and K passages selected by the knowledge selector.

We validate the effectiveness of our proposed method on three benchmarks of knowledge-grounded open-domain question answering: Natural Questions (NQs) (Kwiatkowski et al., 2019), TQA (Joshi et al., 2017), and WEBQUESTIONS (WebQ) (Berant et al., 2013). Evaluation results on these benchmarks demonstrate that our framework achieves superior performance than existing models, thus setting a new state-of-the-art. Moreover, as a byproduct, the knowledge selection module also outperforms the state-of-the-art retriever in knowledge selection accuracy, implying that other models with a retrieval module could also benefit from this component.

2 Our Method

To improve both the inference efficiency and prediction accuracy we propose a simple and novel mutual learning framework for training an open-domain question answering system. Our framework inserts a knowledge selector module between the retriever and the reader. Crucially, this module requires no additional annotated data and is compatible with any retrieve-then-read models.

Specifically, given a question qi, the retriever first selects a fixed number of passages Di from a large knowledge source. Then, the knowledge selector prunes Di to obtain a smaller subset of passages pi, where pi ⊆ Di. Finally, pi is processed by the reader, along with the question, to generate an answer. For the retriever, we use DPR (Karpukhin et al., 2020a), which has been demonstrated to perform better than sparse-representation-based methods, such as BM25 (Robertson et al., 2009), in many prior works (Izacard and Grave, 2020, 2021). For the reader module, we use the Fusion-in-Decoder (FiD) model (Izacard and Grave, 2020), a sequence-to-sequence architecture which we initialize from a pre-trained model such as T5 (Raffel et al., 2020) or BART (Lewis et al., 2020a).

Information retrieval has been studied for many years and there exists an abundance of off-the-shelf retrieval models. After reviewing previous works in open-domain question answering, we find three main classes of retriever: 1)
sparse retrievers (e.g., BM25), where both documents and queries are represented as sparse vectors, with each dimension corresponding to a different term; 2) unsupervised dense retrievers (e.g., Contriever (Izacard et al., 2021b)), which are trained without using annotated document-query pairs; 3) supervised dense retrievers (e.g., DPR), which represent a cluster of supervised dense retrieval model directly trained on annotated datasets. Since it is not the main focus of our work, we directly adopt DPR as our retriever, a state-of-the-art retrieval model.

In the following two sections, we outline the training details of the two remaining modules: knowledge selector (§2.1) and reader (§2.2).

2.1 Knowledge Selector Agent

A key novelty of this work is to train the knowledge selector without requiring a task-specific annotated training dataset. By framing the document selection problem as a contextual multi-arm bandit (Robbins, 1952), we propose training the knowledge selector using a policy gradient strategy. This avoids brute-force search over all document combinations or task-specific heuristics.

In this phase, the answer \hat{a}_i is generated by a fixed-parameter READER, whose input contains the question q_i and the document set p_i. More details about the READER will be illustrated in next

![Figure 1: Architecture of our proposed mutual learning framework.](image-url)
section (§2.2). The reward \(r(\hat{a}_i|q_i, p_i) \) is obtained by evaluating the generated answer \(\hat{a}_i \) against the ground truth answer list \(A_i \). Specifically, we use an 0–1 loss as our reward function, which is defined as follows,

\[
r(\hat{a}_i|q_i, p_i) = \begin{cases}
1, & \hat{a}_i \in A_i \\
0, & \hat{a}_i \notin A_i
\end{cases}
\]

(3)

Note that the proper design of reward functions, a.k.a. reward engineering, is critical for training efficiency in reinforcement learning (Sutton and Barto, 2018). While different reward functions might further improve the performance, we leave this as an area for future work.

We optimize the agent with policy gradients according to the following objective function:

\[
\mathcal{J}(\theta) = \mathbb{E}_{(q_i, p_i) \sim \pi_\theta(p_i|q_i)}[r(\hat{a}_i|q_i, p_i)]
\]

(4)

Intuitively, we update the policy to increase the probability of sampling the selected documents if the predicted answer is correct, and decrease their probability if the predicted answer is incorrect.

2.2 FiD-based Reader

The reader takes the selected passages from knowledge selector and the question as input and generates an answer. To make the input compatible with recent advanced sequence-to-sequence models like T5 (Raffel et al., 2020) and BART (Lewis et al., 2020a), one way is to concatenate the question with all the passages and let the self-attention in the Transformer module do the cross-passage reasoning. However, this can be inefficient when the number of retrieved passages is very large because of the quadratic computation complexity in self-attention. To achieve both cross-passage modeling and computation efficiency, we take as our reader FiD model (Izacard and Grave, 2020), which achieves state-of-the-art performance and is widely adopted by prior works (Ma et al., 2022a; Izacard and Grave, 2021). The underlying architecture is a sequence-to-sequence model, composed of an encoder and a decoder, and initialized from pre-trained models such as T5 or BART.

For a given question \(q_i \) and a set of passages \(p_i \) of size \(K \), we concatenate question \(q_i \) with each passage, thus resulting in \(K \) question-passage pairs. In particular, following (Izacard and Grave, 2020), for each question and a passage, we add sentinel tokens \(q \), \(title \), \(context \) before the question, the passage title, and the passage content separately. The encoder independently processes \(K \) different question-passage pairs. The token embeddings of all passages output from the last layer of the encoder are concatenated as a global representation \(H \) of dimension \(\sum_{k=1}^{K} \ell_k \times d \), where \(\ell_k \) is the length of the \(k \)-th question-passage pair and \(d \) is the dimension of the embeddings and hidden representations of the model. \(H \) is then sent to the decoder to generate the expected answer in a regular autoregressive manner, alternating self-attention, cross-attention and feed-forward modules.

By concatenating the encoder output embeddings, the decoder can generate outputs based on joint modeling of multiple passages. In this way, it means that the computation time of the model grows linearly with the number of used passages, instead of quadratically. Besides, processing passages jointly in the decoder allows to better aggregate evidence from multiple passages.

2.3 Two-phase Training Framework

We present our two-phase mutual-learning training framework in Algorithm 1. For each epoch, it goes through the whole training dataset twice for optimizing the parameters of knowledge selector \(\pi_\theta \) and reader \(\Psi_\phi \), respectively.

At the first phase, we adopt a reinforcement learning (RL) approach to train our knowledge selector. The reason for choosing an RL-based approach contains mainly come from two considerations: one is that there are no annotated pairs of questions and the corresponding list of support passages, so we are unable to train the knowledge selector in a standard supervised training paradigm; another is that based on some prior works (Izacard and Grave, 2020, 2021) showing that the quality of the retrieved passages greatly influences the performance of the reader, we conjecture that the reward calculated based on the reader’s prediction performance can serve as a good proxy for the relevance of support passages.

Ideally, we would like the knowledge selector to select the best \(K \) performing passages from the whole external source \(\mathcal{E} \). In practice, however, querying a large knowledge source is time- and memory-consuming. Thus, we use an off-the-shelf retrieval model to first retrieve \(n \) passages, which
Algorithm 1: Two-phase Training.

Input: \mathcal{D}: question-answer pairs, \mathcal{E}: an external source, epochs: number of epochs, Φ: fixed-parameter retriever, initialized knowledge selector π_θ and reader Ψ_ϕ, n: number of passages retrieved by Φ, K: number of passages selected by π.

for $e = 1$ to epochs do
 Phase 1: (train knowledge selector)
 for each question $(q_i, a_i) \in \mathcal{D}$ do
 1. retrieve n passages from \mathcal{E} via Φ;
 2. select K passages p_i out of the n retrieved passages by $\pi_\theta(p_i|q_i)$;
 3. generate \hat{a}_i by $\Psi_\phi(\hat{a}_i|q_i, p_i)$;
 4. compute the gradient of π_θ:
 $$r(\hat{a}_i|q_i, p_i)\nabla_\theta \pi_\theta(p_i|q_i)$$
 5. Update the parameters of π_θ;
 end
 Phase 2: (train FiD-based reader)
 for each question $(q_i, a_i) \in \mathcal{D}$ do
 1. retrieve n passages from \mathcal{E} via Φ;
 2. select K passages p_i out of the n retrieved passages by $\pi_\theta(p_i|q_i)$;
 3. generate \hat{a}_i by $\Psi_\phi(\hat{a}_i|q_i, p_i)$;
 4. compute the gradient of Ψ_ϕ:
 $$\nabla_\phi \Psi_\phi(\hat{a}_i|q_i, p_i)$$
 5. Update the parameters of Ψ_ϕ;
 end
Save the optimal parameters of both π_θ and Ψ_ϕ by evaluating the valid dataset.

are expected to contain the most relevant passages if n is large enough ($n=200$). Then, we further filter out some irrelevant passages to obtain a smaller set of passages p_i, which will be sent together with the question q_i to the reader Ψ_ϕ for generating an answer \hat{a}_i. At this phase, \hat{a}_i generated by Ψ_ϕ is only used to calculate the reward, which is then used to update the parameters of π_θ while keeping the parameters of Ψ_ϕ fixed.

At the second phase, we train the reader Ψ_ϕ together with our improved knowledge selector from the first phase. For Ψ_ϕ, we use the FiD model (Izard and Grave, 2020), which has proven to be a state-of-the-art architecture by many prior studies (Izard and Grave, 2021; Ma et al., 2022a). By processing passages independently in the encoder, but jointly in the decoder, this architecture allows to scale to large number of contexts, and meanwhile, the computation time of the model grows linearly with the number of passages, instead of quadratically.

3 Experiments

Datasets We evaluate our mutual learning framework by performing experiments on TriviaQA (TQA) (Joshi et al., 2017), NaturalQuestions (NQ) (Kwiatkowski et al., 2019) and Web Questions (WebQ) (Berant et al., 2013) tasks:

- TQA contains a set of trivia questions with answers that were originally scraped from trivia and quiz-league websites. The original split uses 78,785 examples for training, 8,837 for validating, and 11,313 for testing.

- NQ were mined from real Google search queries with answers from Wikipedia articles identified by human annotators. The original split uses 79,168 examples for training, 8,757 for validating, and 3,610 for testing.

- WebQ consists of questions selected using Google Suggest API, where the answers are obtained via Amazon Mechanical Turk. The original split uses 3,478 examples for training, 300 for validating, and 2,032 for testing.

We use the Wikipedia dump from Dec. 20, 2018 for support documents, splitting articles into non-overlapping passages of 100 tokens, and applying the same pre-processing as (Chen et al., 2017).

Evaluation Metrics The model performance is assessed in two ways. First, we report the top-k retrieval accuracy ($R@k$), which is the percentage of questions for which at least one passage of the top-k retrieved passages contains the gold answer. Additionally, we report the final end-to-end performance of the question-answering system composed of the retriever and reader modules. Predicted answers are evaluated with the standard exact-match metric (EM), as introduced by (Rajpurkar et al., 2016). An answer is considered to be correct if it is exact match with any of the reference answer strings after minor normalization such as lowercasing, following evaluation scripts from DrQA (Chen et al., 2017).

Unlike prior studies, we also consider floating-point operations (FLOPs) as the metric to evaluate
Table 1: EM scores of prior state-of-the-art models and our models on NQ, TQA and WebQ. Note that this work aims at reducing the number of retrieved passages without compromising the model’s performance, so we do not report experimental results (K = 100) of our method because it means that the knowledge selector is not needed.

<table>
<thead>
<tr>
<th>Model</th>
<th>NQ K=10</th>
<th>NQ K=100</th>
<th>TQA K=10</th>
<th>TQA K=100</th>
<th>WebQ K=10</th>
<th>WebQ K=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPR (Karpukhin et al., 2020a)</td>
<td>- 41.5</td>
<td>- 57.9</td>
<td>-</td>
<td></td>
<td>- 41.1</td>
<td></td>
</tr>
<tr>
<td>ColBERT-QA (Khattab et al., 2021)</td>
<td>- 48.2</td>
<td>- 63.2</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ORQA (Lee et al., 2019)</td>
<td>- 33.3</td>
<td>- 45.0</td>
<td>-</td>
<td></td>
<td>- 36.4</td>
<td></td>
</tr>
<tr>
<td>RAG-Token (Lewis et al., 2020b)</td>
<td>- 44.1</td>
<td>- 55.2</td>
<td>-</td>
<td></td>
<td>- 45.5</td>
<td></td>
</tr>
<tr>
<td>RAG-Seq (Lewis et al., 2020b)</td>
<td>- 44.5</td>
<td>- 56.8</td>
<td>-</td>
<td></td>
<td>- 45.2</td>
<td></td>
</tr>
<tr>
<td>REALM_wiki (Guu et al., 2020)</td>
<td>- 39.2</td>
<td>-</td>
<td>-</td>
<td></td>
<td>- 40.2</td>
<td></td>
</tr>
<tr>
<td>REALM_news (Guu et al., 2020)</td>
<td>- 40.4</td>
<td>-</td>
<td>-</td>
<td></td>
<td>- 40.7</td>
<td></td>
</tr>
<tr>
<td>FiD (T5 base) (Izacard and Grave, 2020)</td>
<td>42.3</td>
<td>48.2</td>
<td>61.1</td>
<td>65.0</td>
<td>45.2</td>
<td>47.2</td>
</tr>
<tr>
<td>FiD (T5 large) (Izacard and Grave, 2020)</td>
<td>45.6</td>
<td>51.4</td>
<td>63.2</td>
<td>67.6</td>
<td>47.1</td>
<td>50.5</td>
</tr>
<tr>
<td>FiD-KD (T5 base) (Izacard and Grave, 2021)</td>
<td>49.2</td>
<td>50.1</td>
<td>68.7</td>
<td>69.3</td>
<td>49.2</td>
<td>51.2</td>
</tr>
<tr>
<td>FiD-KD (T5 large) (Izacard and Grave, 2021)</td>
<td>52.7</td>
<td>54.4</td>
<td>72.5</td>
<td>72.5</td>
<td>49.8</td>
<td>52.7</td>
</tr>
<tr>
<td>Ours (T5 base)</td>
<td>52.1</td>
<td>-</td>
<td>69.8</td>
<td>-</td>
<td>52.5</td>
<td>-</td>
</tr>
<tr>
<td>Ours (T5 large)</td>
<td>56.1</td>
<td>-</td>
<td>74.1</td>
<td>-</td>
<td>53.7</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Accuracy-cost curves of the proposed system for different K on NQ, TQA and WebQ, respectively. The dotted red line represents the average FLOPs for an inference under different numbers of passages.

3.1 Main Results

In Table 1, we report the performance of our approach, as well as existing state-of-the-art systems on NQ, TQA and WebQ with two different numbers of retrieved passages. The goal of this experiment is to validate whether the knowledge selector can effectively retain the passages required by the reader while filtering irrelevant passages, thus achieving the goal of improving the inference efficiency. From the experimental results in Table 1, we observe that models trained under our mutual learning framework achieve better overall performance than the previously published SOTA methods, even when limited to 10 passages only. This validates our assumption that it is possible to obtain a strong combination of the retriever and the knowledge selector, without requiring the supervision of annotated pairs of questions and passages.

Improvement in Inference Efficiency

We quantify how much inference efficiency improves in our proposed framework when compared with the original Fusion-in-Decoder model requiring a large number of support passages (n=100). From Figure 2, we can find that for the NQ dataset, when the number of retrieved passages increases from 1 to 10, the performance gains increase accordingly; however, when we continue to increase the number of retrieved passages, the increase in the exact match value begins to plateau. A similar trend has also been observed in both TQA and WebQ datasets (i.e., a significant performance gain when increasing the number of the retrieved passages from 1 to 5, followed by a computational efficiency. An alternative metric for this would be the computation (“wall-clock”) time for inference; however, this is a system-dependent metric. FLOPs, on the other hand, are system-independent and hence a reliable metric for comparison. We compute these and other FLOP values using the ‘thop’ Python library.

3https://github.com/Lyken17/pytorch-OpCounter
trivial improvement when increasing the number of retrieved passages beyond this). From this, we make the following three conclusions:

1. Once the number of support passages is sufficient to provide the reader enough evidence to generate the correct answer, increasing the number of passages does not necessarily improve model performance.

2. Our proposed model outperforming the original FiD model highlights that excessive external knowledge might distract the reader from giving correct answers.

3. Crucially, as demonstrated in Figure 2 with the red dotted line, our framework requires only 5 support passages to achieve comparable performance to with FiD models which use 100 support passages, whilst requiring significantly fewer FLOPs.

3.2 Ablation Study

In this section, we conduct ablation studies to answer the following questions:

Policy-Gradient vs Supervised Training To the knowledge selector with supervised learning, one needs pairs of questions and the corresponding list of passages that contains the information corresponding to the questions. Unfortunately, generating hand-labelled data is time consuming, meaning many datasets and applications lack such annotations. An alternative approach is to resort to heuristics, or weakly supervised learning, for example by considering that all documents containing the answer as positive samples. Hence, to validate the merit of such an intuitive alternative approach, we use this to construct a training dataset to train the knowledge selector, which we refer as the supervised approach. Using these “ground truth” labels, we can directly train the knowledge selector in a supervised manner.

<table>
<thead>
<tr>
<th>Methods</th>
<th>NQ</th>
<th>TQA</th>
<th>WebQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>*without retrieval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPT-3</td>
<td>14.6</td>
<td>64.3</td>
<td>14.4</td>
</tr>
<tr>
<td>ChatGPT</td>
<td>20.9</td>
<td>67.5</td>
<td>18.6</td>
</tr>
<tr>
<td>*with ONE retrieved passage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPT-3 (DPR, n=1)</td>
<td>22.4</td>
<td>67.9</td>
<td>34.5</td>
</tr>
<tr>
<td>GPT-3 (Ours, n=1)</td>
<td>24.2</td>
<td>69.3</td>
<td>36.1</td>
</tr>
<tr>
<td>ChatGPT (DPR, n=1)</td>
<td>24.8</td>
<td>70.5</td>
<td>36.2</td>
</tr>
<tr>
<td>ChatGPT (Ours, n=1)</td>
<td>26.1</td>
<td>72.1</td>
<td>37.8</td>
</tr>
<tr>
<td>*with TWO retrieved passage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPT-3 (DPR, n=2)</td>
<td>26.1</td>
<td>69.2</td>
<td>36.4</td>
</tr>
<tr>
<td>GPT-3 (Ours, n=2)</td>
<td>28.9</td>
<td>71.8</td>
<td>39.8</td>
</tr>
<tr>
<td>ChatGPT (DPR, n=2)</td>
<td>29.2</td>
<td>71.3</td>
<td>40.9</td>
</tr>
<tr>
<td>ChatGPT (Ours, n=2)</td>
<td>32.1</td>
<td>73.2</td>
<td>42.3</td>
</tr>
</tbody>
</table>

Table 4: Experimental results of using GPT-3 and ChatGPT with one and two retrieved results. The prompt we used is from P3 (Bach et al., 2022) of the form Refer to the passage below and answer the following question. Passage: {passages} Question: {question}, where {question} and {passages} are replaced by the corresponding question and the retrieved passages.
Exploration of Different Pretrained Language Models for the Knowledge Selector
In our previous experiments, the knowledge selector is built on the BERT-base with its parameters fixed. In this part, we explore whether the knowledge selector can benefit from other pretrained language models with different parameter sizes.

From Table 3, we observe that there is no significant improvement on three benchmark datasets when using alternative pretrained language models of different sizes. For example, there is only a 0.7 increase in the EM score when we replace the 110M BERT-base model with 330M BERT-large. This suggests that using BERT-base is large enough to learn the relationship between the question and the passages under our mutual learning framework. In addition, one interesting phenomenon is that the EM score on the TQA dataset is almost unchanged for the chosen five different pretrained language models. One possible reason is that questions in TQA do not rely heavily on external knowledge, namely, many questions could be answered based on the parameters of the pretrained language models.

4 Extension

Previous experimental results showed that our mutual learning framework could improve the model performance in the supervised fine-tuning setting. Here, we evaluate whether the trained knowledge selector module can also contribute to improving the generation performance of large-scale language models (LLMs) (e.g., GPT-3 and ChatGPT) in a zero-shot setting. In particular, we explore three different settings: 1) without retrieval means that we feed the question to LLMs directly without concatenating any other background knowledge; 2) with ONE retrieved passage denotes that we concatenate a passage retrieved by different methods to the question following the prompt as P3 (Bach et al., 2022); 3) similarly, for with TWO retrieved passages, we add two passages retrieved by different methods to the question as additional contextual information. All experimental results are reported in Table 4. Note that due to the length limitation, we only explore the settings of using one retrieved passage and two retrieved passages.

From Table 4, we observe that adding the retrieved passage(s) to the question as the input to LLMs could obviously improve the generation information in both GPT-3 and ChatGPT. Similar phenomenon has also been noticed in (Yu et al., 2022b). Besides, under the same number of retrieved passages, passages selected by our trained knowledge selector contribute more to the generation performance, as reflected from the exact match scores. To some extent, this demonstrates that the knowledge selector trained using our mutual learning framework is not model-specific, and can be used as a standalone tool for retrieving relevant passages in other frameworks.

5 Case Study

To better understand why our proposed framework can help improve the predictive performance, we manually pick two representative examples as case studies. Examples where predicted results of our prof framework and a strong baseline (FiD-with-DPR) together with part of their used passages are in Table 5. Note that for both approaches, we set the number of retrieved passages as 10 for a fair comparison while we only showcase top threes retrieved passages due to the space limitation.

In the first case, we can observe that among the three top passages ranked by DPR, only one is relevant to the question and can provide evidence to generate the correct answer while the other two passages are either off-topic or even providing some incorrect information. For example, the top-1 retrieved passage conveys a seemingly relevant information about the first American winner of the Nobel Prize for physics, which is considered as a negative factor of leading the reader to generate an incorrect prediction with respect the given question without emphasizing the winner’s nationality. In contrast, in terms of the relevance to the given question, we can notice that all the three passages from our method are talking about Wilhelm Conrad Röntgen, based on which the reader correctly gives the answer as we expect. We conjecture that the reader might be negatively distracted by irrelevant knowledge, thus making an incorrect predictions with respect to the given question.

In the second case, while the comparison between the two predictions with the ground truth answer (Donald Trump) is incorrect, the prediction itself should be considered as a correct answer for the question due to the time-dependent property of the question. According to (Zhang and Choi, 2021), the Natural Questions dataset contains a significant proportion, roughly 16.5%, of
questions that have time-dependent answers. Another observation is that when compared to the baseline model, the retrieved passages from our approach are more consistent, all of which are related to Barack Obama, and we conjecture that such a bunch of topic-relevant passages might contribute more to the reader’s generation.

Besides, we give an example to show that for some knowledge-intensive tasks like open-domain question answering, providing some necessary context information relevant to the given question can bring some gains in improving the predictive performance for large and versatile language models like ChatGPT. One possible reason is that although the Wikipedia data have been seen during the training stage of ChatGPT, it is impossible to “remember” all training data in the form of their parameters. As shown in Table 6, with no contextual knowledge, ChatGPT gave an incorrect answer. However, when equipped with one passage containing the answer, ChatGPT can make a correct prediction. Hence, providing some necessary contextual information as a reference might help ChatGPT generate a correct prediction when meeting with some tough questions, thus indirectly showing the superiority of our trained knowledge selector over DPR.

6 Related work

Open-domain Question Answering (ODQA) is an important task, aiming at providing precise answers in response to the user’s questions in natural language. In terms of the knowledge source where answers are derived from, there are usually two kinds of forms: one is unstructured textual documents available on the Internet, and another is a predefined structured data such as knowledge graphs which are often manually constructed. In this paper, we focus on the former, which is considered to be a more general and challenging task since available unstructured text to obtain answers are fairly common and easily accessible, such as Wikipedia, news articles and science books, etc.

Next, we review two categories of approaches widely explored in current textual based ODQA literature. We refer the reader to Zhu et al. (2021) for a more exhaustive introduction to this topic.

Retrieval-free LLMs based Domain Question Answering Systems Large language models show impressive performance on a wide range of
Query: Who is the girl in green day 21 guns?

Ground truth Answer: Lisa Stelly

ChatGPT [No Passage]: Lauren German ✗

With top-1 passage by DPR: 21 Guns is a song by American punk rock band Green Day. It was released as the second single from their eighth album ...

ChatGPT: Lauren German ✗

With top-1 passage by our method: The 21 guns music video takes place with the band and the album’s two protagonists Christian (Josh Boswell) and Gloria (Lisa Stelly) taking refuge ...

ChatGPT: Lisa Stelly ✓

Table 6: Case study of predictions of ChatGPT w/o the top-1 passage from DPR or our method.

... tasks. Prior studies (Petroni et al., 2019; Roberts et al., 2020; Brown et al., 2020) have shown that a large amount of knowledge learned from large-scale textual data can be stored in the underlying parameters, and thus these models are capable of answering questions without access to any external knowledge. For example, ChatGPT is able to correctly generate the answer given only a natural language question. However, although large language models demonstrate impressive performance on zero-shot learning abilities, their performance still lag behind the supervised settings (Yu et al., 2022b). Besides, some prior studies (Izacard et al., 2022) also demonstrate that retrieval augmented language models can achieve better performance in knowledge-intensive tasks.

Retrieve-then-Read Open Domain Question Answering

According to the detailed survey (Yu et al., 2022b), modern ODQA architectures mainly follow the retriever-then-read paradigm as well as the specific techniques adopted in each of the components. Given a question, this model first leverages a retriever over a large evidence corpus to fetch a set of relevant documents that may contain the answer. A reader is then used to peruse the retrieved documents and predict an answer. In this paradigm, we observe that recent follow-up work has focused on improving either the retriever (Sachan et al., 2022; Qu et al., 2021) or the reader (Yu et al., 2022a; Wang et al., 2018; Min et al., 2019). To the best of our knowledge, only a few prior studies have been carried out on training both the retriever and the reader in an end-to-end mode. Lee et al. (2019) introduced the inverse cloze task for pre-training retrievers, which are then fine-tuned end-to-end on question-answering tasks. Besides, one most related to our work is (Izacard and Grave, 2021), which uses the internal attention scores from the reader as synthetic labels to train the retriever. In this work, we also explore the method of using the reader’s feedback to optimize the retriever without additional supervision besides available pairs of question and answer.

7 Conclusion

In this work, we explore how to improve the prediction performance and inference cost of reader models in current open-domain question-answer architectures. To this end, we introduce a fine-grained knowledge selector into the retrieve-then-reader paradigm, whose goal is to construct a small subset of passages which retain question-relevant information. The knowledge selector is trained as a component of our novel mutual learning framework, which iteratively trains the knowledge selector and the reader. We adopt a simple and novel approach employing policy gradients to optimize the knowledge selector, using feedback from the reader to train it to select a small and informative set of passages. This approach avoids brute-force search or manually-designed heuristics, without requiring any annotated query-document pairs for supervision. We show that iteratively training the reader and the knowledge selector leads to better predictive performance on some public open-domain question answering benchmarks. Finally, our approach matches the accuracy of the top-performing Fusion-in-Decoder reader, whilst utilizing just 18.32% of its reader inference cost (FLOPs).

8 Acknowledgement

We would like to thank Chenglong Wang, Baolin Peng, and Michel Galley for their insightful discussions and support.
References

