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Abstract

An open-domain question answering (QA)
system usually follows a retrieve-then-read
paradigm, in which a retriever is used to re-
trieve relevant documents from a large cor-
pus, and then a reader generates answers
based on the retrieved documents and the
original question. In this paper, we pro-
pose a simple and novel mutual learning
framework to improve the performance of
retrieve-then-read-style models via an inter-
mediate module named the knowledge se-
lector, which we train with reinforcement
learning. The key benefits of our proposed
intermediate module are: 1) no requirement
for additional annotated question-passage
pairs; 2) improvements in both retrieval and
QA performance, as well as computational
efficiency, compared to prior competitive
retrieve-then-read models; 3) with no fine-
tuning, improvement in the zero-shot perfor-
mance of large-scale pre-trained language
models, e.g., ChatGPT, by encapsulating the
input with relevant knowledge without vio-
lating the input length constraint.

1 Introduction

Recently, there has been a revival of interest in
tasks requiring large amounts of knowledge of the
world. In such real-world scenarios, an efficient
information retrieval system, capable of finding
a small subset of relevant information, is needed
for applications such as open-domain question an-
swering, in which external knowledge (e.g., Wiki-
data and ConceptNet (Speer et al., 2017)) must be
integrated into answers. However, hand-labeling
data for training such a retriever is time and
money consuming, and many datasets and appli-
cations lack such annotations. Hence, an effi-
cient framework should be capable of learning
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a retriever, without supervision from annotated
queries-document pairs.

In this paper, we focus on improving both the
inference performance and efficiency of retrieve-
then-read frameworks. Retrieve-then-read frame-
works have dominated over current open-domain
question answering systems (Oguz et al., 2022;
Izacard and Grave, 2021; Cheng et al., 2021; Ma
et al., 2022b) as well as other knowledge-intensive
tasks such as fact checking (Petroni et al., 2021;
Martín et al., 2022) and dialogue systems (Zhang
et al., 2021). For example, CORE (Ma et al.,
2022a), a state-of-the-art open-domain question-
answering system, starts by using a dense re-
triever (Karpukhin et al., 2020a) to retrieve a sub-
set of support documents and tables from a large
source knowledge such as Wikipedia. Then, a gen-
erative encoder-decoder (reader) model produces
the answer, conditioned on the question and the
retrieved knowledge.

Previous studies (Yu et al., 2022b; Varshney
et al., 2022) have shown that using a large num-
ber of support documents will lead to a signifi-
cant increase in memory requirement and train-
ing time cost. According to (Varshney et al.,
2022), FiD (Izacard and Grave, 2020) requires ap-
proximately 70 × 1011 floating-point operations
(FLOPs) for inference on 100 passages. This high
inference cost limits the widespread adoption of
such systems in real-world applications, that must
trade-off performance and latency. In addition to
this, empirical results from previous work (Yang
and Seo, 2020; Clark and Gardner, 2018; Lewis
et al., 2020b) have suggested that, beyond a thresh-
old number of documents, providing the reader
with more documents can decay the end-to-end
QA accuracy. These two points motivate us to ex-
plore whether it is possible to reduce the number
of required support passages without compromis-
ing the model’s performance. To this end, we con-
ducted two preliminary experiments:



Preliminary Experiment 1: Given a
TQA (Joshi et al., 2017) dataset in which
each question is accompanied with 100 passages
retrieved by DPR (Karpukhin et al., 2020b), we
achieved an exact match (EM) score of 65.0
using a Fusion-in-Decoder model (base). We then
calculated the average EM scores when using 10
passages under a range of selection strategies.
Firstly, by randomly sampling 10 out of the
100 passages retrieved by DPR, the EM scored
decreases from 65.0 to 53.3. Selecting the top
10 passages ranked by DPR outperformed this
random sampling, however the EM score still de-
graded to 59.6. Finally, using Contriever (Izacard
et al., 2021a) to select 10 passages, we observed
an EM score of 65.4 1, a slight improvement
against the original 100 passages.

Preliminary Experiment 2: We randomly
chose 20 questions and, for each question,
retrieved 100 passages using DPR. We then
presented three student volunteers with the
question-passage pairs, and asked them to esti-
mate how many documents they would require
to obtain the answer. From their response, we
observed an average of 7.5 passages required
to answer the question, suggesting that a large
portion of retrieved passages are redundant.

The above two preliminary results align with
our conjecture that selecting a smaller portion of
support passages instead of feeding a large num-
ber of passages to the reader is a viable research
direction. To this end, we propose a novel mutual
learning framework (Figure 1) that improves both
the quality of the retrieved documents and the per-
formance of the reader. The key novelty of our
framework is the introduction of a “knowledge se-
lector” module, which interfaces between the re-
triever and reader. The goal of the knowledge se-
lector is to further refine the set of documents se-
lected by the retriever, which we frame as a rein-
forcement learning problem. We train this system
by iterating between two phases, which train the
knowledge selector and reader respectively. In the
first phase (Phase 1), we use policy gradients to
train the knowledge selector to select the optimal
subset of support passages, with the goal of maxi-
mizing the prediction rewards when passed to the

1In particular, according the statistic results, we notice
that for %98.4 testing samples, the 10 passages selected
by Contriever are contained in the 100 passages directly re-
trieved by DPR although the ranking differs.

reader (whose parameters are frozen at this phase).
Following this, in Phase 2, we freeze the weights
of the knowledge selector and train the reader us-
ing supervised learning over pairs of questions and
K passages selected by the knowledge selector.

We validate the effectiveness of our pro-
posed method on three benchmarks of knowledge-
grounded open-domain question answering: Nat-
ural Questions (NQs) (Kwiatkowski et al., 2019),
TQA (Joshi et al., 2017), and WEBQUESTIONS
(WebQ) (Berant et al., 2013). Evaluation results
on these benchmarks demonstrate that our frame-
work achieves superior performance than exist-
ing models, thus setting a new state-of-the-art.
Moreover, as a byproduct, the knowledge selec-
tion module also outperforms the state-of-the-art
retriever in knowledge selection accuracy, imply-
ing that other models with a retrieval module could
also benefit from this component.

2 Our Method

To improve both the inference efficiency and pre-
diction accuracy we propose a simple and novel
mutual learning framework for training an open-
domain question answering system. Our frame-
work inserts a knowledge selector module be-
tween the retriever and the reader. Crucially, this
module requires no additional annotated data and
is compatible with any retrieve-then-read models.

Specifically, given a question qi, the retriever
first selects a fixed number of passages Di from
a large knowledge source. Then, the knowl-
edge selector prunes Di to obtain a smaller sub-
set of passages pi, where pi ⊆ Di. Finally,
pi is processed by the reader, along with the
question, to generate an answer. For the re-
triever, we use DPR (Karpukhin et al., 2020a),
which has been demonstrated to perform better
than sparse-representation-based methods, such
as BM25 (Robertson et al., 2009), in many
prior works (Izacard and Grave, 2020, 2021).
For the reader module, we use the Fusion-in-
Decoder (FiD) model (Izacard and Grave, 2020),
a sequence-to-sequence architecture which we ini-
tialize from a pre-trained model such as T5 (Raffel
et al., 2020) or BART (Lewis et al., 2020a).

Information retrieval has been studied for many
years and there exists an abundance of off-the-
shelf retrieval models. After reviewing pre-
vious works in open-domain question answer-
ing, we find three main classes of retriever: 1)



Figure 1: Architecture of our proposed mutual learning framework.

sparse retrievers (e.g., BM25), where both doc-
uments and queries are represented as sparse
vectors, with each dimension corresponding to
a different term; 2) unsupervised dense retriev-
ers (e.g., Contriever (Izacard et al., 2021b)), which
are trained without using annotated document-
query pairs; 3) supervised dense retrievers (e.g.,
DPR), which represent a cluster of supervised
dense retrieval model directly trained on annotated
datasets. Since it is not the main focus of our work,
we directly adopt DPR as our retriever, a state-of-
the-art retrieval model.

In the following two sections, we outline the
training details of the two remaining modules:
knowledge selector (§2.1) and reader (§2.2).

2.1 Knowledge Selector Agent

A key novelty of this work is to train the knowl-
edge selector without requiring a task-specific an-
notated training dataset. By framing the document
selection problem as a contextual multi-arm bandit
(Robbins, 1952), we propose training the knowl-
edge selector using a policy gradient strategy. This
avoids brute-force search over all document com-
binations or task-specific heuristics.

Given a question and a document set from the
passage retriever, the knowledge selector chooses
a fixed number of relevant documents from the
document set. This refined document set and the
original question are then fed to the reader model,
which produces an answer. Finally, the answer
is evaluated against the ground truth, from which
an associated loss is computed. In this setting,
the knowledge selector follows the dynamics of a
multi-arm bandit, where the context consists of the

question and the action space is composed of all
subsets of the document set (of a given size). Cru-
cially, this is not an unrestricted Markov decision
process (Sutton and Barto, 2018), since there is
no temporal dependency between question-answer
pairs.

Formally, the Knowledge Selector πθ is built on
BERT (Devlin et al., 2019) together with a small
linear layer on top of BERT. The parameters of
BERT are fixed and only the appended linear is
updated, i.e., θ is composed of learnable parame-
ters W and b. Given a question qi and a set of can-
didate documents Di retrieved by the aforemen-
tioned retriever, we want the “agent” to find the K
best performing document set pi from the candi-
date pool Di. The agent’s goal is that the reader
can generate an answer âi based on (qi, pi), ob-
taining the maximum reward r(âi|qi, pi).

The agent samples the document set pi accord-
ing to the policy

pi ∼ πθ(pi|qi), pi ⊆ Di. (1)

Here, the policy πθ computes the sampling proba-
bility for each document d ∈ Di as

f(d|qi) =
exp [h(d) · h(qi)]∑

dj∈Di
exp [h(dj) · h(qi))]

(2)

where h(x) = W(BERT(x)) + b. The policy
then samples K documents dk ∼ f(d|qi) from this
distribution without replacement, giving the docu-
ment set pi = {d1, . . . , dK}.

In this phase, the answer âi is generated by a
fixed-parameter READER, whose input contains
the question qi and the document set pi. More de-
tails about the READER will be illustrated in next



section (§2.2). The reward r(âi|qi, pi) is obtained
by evaluating the generated answer âi against the
ground truth answer list Ai

2. Specifically, we use
an 0–1 loss as our reward function, which is de-
fined as follows,

r(âi|qi, pi) =

{
1, âi ∈ Ai

0, âi ̸∈ Ai

(3)

Note that the proper design of reward functions,
a.k.a. reward engineering, is critical for training
efficiency in reinforcement learning (Sutton and
Barto, 2018). While different reward functions
might further improve the performance, we leave
this as an area for future work.

We optimize the agent with policy gradients ac-
cording to the following objective function:

J (θ) = E(qi,pi)∼πθ(pi|qi)[r(âi|qi, pi)] (4)

Intuitively, we update the policy to increase the
probability of sampling the selected documents if
the predicted answer is correct, and decrease their
probability if the predicted answer is incorrect.

2.2 FiD-based Reader
The reader takes the selected passages from
knowledge selector and the question as input
and generates an answer. To make the input
compatible with recent advanced sequence-to-
sequence models lik T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020a), one way is to con-
catenate the question with all the passages and let
the self-attention in the Transformer module do
the cross-passage reasoning. However, this can
be inefficient when the number of retrieved pas-
sages is very large because of the quadratic com-
putation complexity in self-attention. To achieve
both cross-passage modeling and computation ef-
ficiency, we take as our reader FiD model (Izac-
ard and Grave, 2020), which achieves state-of-
the-art performance and is widely adopted by
prior works (Ma et al., 2022a; Izacard and Grave,
2021). The underlying architecture is a sequence-
to-sequence model, composed of an encoder and
a decoder, and initialized from pre-trained models
such as T5 or BART.

For a given question qi and a set of pas-
sages pi of size K, we concatenate question qi
with each passage, thus resulting in K question-
passage pairs. In particular, following (Izacard

2A question might correspond to one or multiple answers.

and Grave, 2020), for each question and a passage,
we add sentinel tokens question:, title:
and context: before the question, the pas-
sage title, and the passage content separately.
The encoder independently processes K different
question-passage pairs. The token embeddings of
all passages output from the last layer of the en-
coder are concatenated as a global representation
H of dimension (

∑K
k=1 ℓk) × d, where ℓk is the

length of the k-th question-passage pair and d is
the dimension of the embeddings and hidden rep-
resentations of the model. H is then sent to the de-
coder to generate the expected answer in a regular
autoregressive manner, alternating self-attention,
cross-attention and feed-forward modules.

By concatenating the encoder output embed-
dings, the decoder can generate outputs based on
joint modeling of multiple passages. In this way,
it means that the computation time of the model
grows linearly with the number of used passages,
instead of quadratically. Besides, processing pas-
sages jointly in the decoder allows to better aggre-
gate evidence from multiple passages.

2.3 Two-phase Training Framework

We present our two-phase mutual-learning train-
ing framework in Algorithm 1. For each epoch, it
goes through the whole training dataset twice for
optimizing the parameters of knowledge selector
πθ and reader Ψϕ, respectively.

At the first phase, we adopt a reinforcement
learning (RL) approach to train our knowledge
selector. The reason for choosing an RL-based
approach contains mainly come from two con-
siderations: one is that there are no annotated
pairs of questions and the corresponding list of
support passages, so we are unable to train the
knowledge selector in a standard supervised train-
ing paradigm; another is that based on some prior
works (Izacard and Grave, 2020, 2021) showing
that the quality of the retrieved passages greatly
influences the performance of the reader, we con-
jecture that the reward calculated based on the
reader’s prediction performance can serve as a
good proxy for the relevance of support passages.

Ideally, we wold like the knowledge selector to
select the best K performing passages from the
whole external source E . In practice, however,
querying a large knowledge source is time- and
memory-consuming, Thus, we use an off-the-shelf
retrieval model to first retrieve n passages, which



Algorithm 1: Two-phase Training.
Input : D : question-answer pairs , E : an

external source , epochs : number of
epochs, Φ : fixed-parameter retriever
, initialized knowledge selector πθ

and reader Ψϕ, n : number of
passages retrieved by Φ, K : number
of passages selected by π.

for for e = 1 to epochs do
Phase 1: (train knowledge selector)
for each question (qi, ai) ∈ D do

1 retrieve n passages from E via Φ;
2 select K passages pi out of the n

retrieved passages by πθ(pi|qi);
3 generate âi by Ψϕ(âi|qi, pi);
4 compute the gradient of πθ:

r(âi|qi, pi)∇θπθ(pi|qi)

5 Update the parameters of πθ;
end
Phase 2: (train FiD-based reader)
for each question (qi, ai) ∈ D do

1 retrieve n passages from E via Φ;
2 select K passages pi out of the n

retrieved passages by πθ(pi|qi);
3 generate âi by Ψϕ(âi|qi, pi)
4 compute the gradient of Ψϕ:

∇ϕΨϕ(âi|qi, pi)

5 Update the parameters of Ψϕ;
end
Save the optimal parameters of both πθ

and Ψϕ by evaluating the valid dataset.
end

are expected to contain the most relevant passages
if n is large enough (n=200). Then, we further fil-
ter out some irrelevant passages to obtain a smaller
set of passages pi, which will be sent together with
the question qi to the reader Ψϕ for generating an
answer âi. At this phase, âi generated by Ψϕ is
only used to calculate the reward, which is then
used to update the parameters of πθ while keeping
the parameters of Ψϕ fixed.

At the second phase, we train the reader Ψϕ

together with our improved knowledge selector
from the first phase. For Ψϕ, we use the FiD
model (Izacard and Grave, 2020), which has
proven to be a state-of-the-art architecture by
many prior studies (Izacard and Grave, 2021; Ma
et al., 2022a). By processing passages indepen-

dently in the encoder, but jointly in the decoder,
this architecture allows to scale to large number of
contexts, and meanwhile, the computation time of
the model grows linearly with the number of pas-
sages, instead of quadratically.

3 Experiments

Datasets We evaluate our mutual learning
framework by performing experiments on Triv-
iaQA (TQA) (Joshi et al., 2017), NaturalQues-
tions (NQ) (Kwiatkowski et al., 2019) and Web
Questions (WebQ) (Berant et al., 2013) tasks:

- TQA contains a set of trivia questions with
answers that were originally scraped from
trivia and quiz-league websites. The original
split uses 78,785 examples for training, 8,837
for validating, and 11,313 for testing.

- NQ were mined from real Google search
queries with answers from Wikipedia articles
identified by human annotators. The original
split uses 79,168 examples for training, 8,757
for validating, and 3,610 for testing.

- WebQ consists of questions selected using
Google Suggest API, where the answers are
obtained via Amazon Mechanical Turk. The
original split uses 3,478 examples for train-
ing, 300 for validating, and 2,032 for testing.

We use the Wikipedia dump from Dec. 20, 2018
for support documents, splitting articles into non-
overlapping passages of 100 tokens, and applying
the same pre-processing as (Chen et al., 2017).

Evaluation Metrics The model performance is
assessed in two ways. First, we report the top-k
retrieval accuracy (R@k), which is the percent-
age of questions for which at least one passage
of the top-k retrieved passages contains the gold
answer. Additionally, we report the final end-to-
end performance of the question-answering sys-
tem composed of the retriever and reader modules.
Predicted answers are evaluated with the standard
exact-match metric (EM), as introduced by (Ra-
jpurkar et al., 2016). An answer is considered to
be correct if it is exact match with any of the ref-
erence answer strings after minor normalization
such as lowercasing, following evaluation scripts
from DrQA (Chen et al., 2017).

Unlike prior studies, we also consider floating-
point operations (FLOPs) as the metric to evaluate



Model NQ TQA WebQ
K=10 K=100 K=10 K=100 K=10 K=100

DPR (Karpukhin et al., 2020a) - 41.5 - 57.9 - 41.1
ColBERT-QA (Khattab et al., 2021) - 48.2 - 63.2 - -
ORQA (Lee et al., 2019) - 33.3 - 45.0 - 36.4
RAG-Token (Lewis et al., 2020b) - 44.1 - 55.2 - 45.5
RAG-Seq (Lewis et al., 2020b) - 44.5 - 56.8 - 45.2
REALMwiki (Guu et al., 2020) - 39.2 - - - 40.2
REALMnews (Guu et al., 2020) - 40.4 - - - 40.7
FiD (T5 base) (Izacard and Grave, 2020) 42.3 48.2 61.1 65.0 45.2 47.2
FiD (T5 large) (Izacard and Grave, 2020) 45.6 51.4 63.2 67.6 47.1 50.5
FiD-KD (T5 base) (Izacard and Grave, 2021) 49.2 50.1 68.7 69.3 49.2 51.2
FiD-KD (T5 large) (Izacard and Grave, 2021) 52.7 54.4 72.5 72.5 49.8 52.7

Ours (T5 base) 52.1 - 69.8 - 52.5 -
Ours (T5 large) 56.1 - 74.1 - 53.7 -

Table 1: EM scores of prior state-of-the-art models and our models on NQ, TQA and WebQ. Note that this work
aims at reducing the number of retrieved passages without compromising the model’s performance, so we do not
report experimental results (K = 100) of our method because it means that the knowledge selector is not needed.
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Figure 2: Accuracy-cost curves of the proposed system
for different K on NQ, TQA and WebQS, respectively.
The dotted red line represents the average FLOPs for
an inference under different numbers of passages.

computational efficiency. An alternative metric for
this would be the computation (“wall-clock”) time
for inference; however, this is a system-dependent
metric. FLOPs, on the other hand, are system-
independent and hence a reliable metric for com-
parison. We compute these and other FLOP values
using the ‘thop’ 3 Python library.

3.1 Main Results

In Table 1, we report the performance of our ap-
proach, as well as existing state-of-the-art systems

3https://github.com/Lyken17/pytorch-OpCounter

on NQ, TQA and WebQ with two different num-
bers of retrieved passages. The goal of this exper-
iment is to validate whether the knowledge selec-
tor can effectively retain the passages required by
the reader while filtering irrelevant passages, thus
achieving the goal of improving the inference effi-
ciency. From the experimental results in Table 1,
we observe that models trained under our mutual
learning framework achieve better overall perfor-
mance than the previously published SOTA meth-
ods, even when limited to 10 passages only. This
validates our assumption that it is possible to ob-
tain a strong combination of the retriever and the
knowledge selector, without requiring the supervi-
sion of annotated pairs of questions and passages.

Improvement in Inference Efficiency We
quantify how much inference efficiency improves
in our proposed framework when compared with
the original Fusion-in-Decoder model requiring
a large number of support passages (n=100).
From Figure 2, we can find that for the NQ
dataset, when the number of retrieved passages
increases from 1 to 10, the performance gains
increase accordingly; however, when we continue
to increase the number of retrieved passages,
the increase in the exact match value begins to
plateau. A similar trend has also been observed in
both TQA and WebQ datasets (i.e., a significant
performance gain when increasing the number of
the retrieved passages from 1 to 5, followed by a



NQ TQA WebQ

Supervised (T5-based, K=5) 46.1 59.2 44.8
Policy-gradient (T5-base, K=5) 49.8 63.1 47.9

Supervised (T5-base, K=10) 50.2 64.2 49.2
Policy gradient (T5-base, K=10) 52.1 69.8 52.5

Table 2: Comparsion results of the policy-gradient
based framework and the supervised approach.

trivial improvement when increasing the number
of retrieved passages beyond this). From this, we
make the following three conclusions:

1. Once the number of support passages is suf-
ficient to provide the reader enough evidence
to generate the correct answer, increasing the
number of passages does not necessarily im-
prove model performance.

2. Our proposed model outperforming the origi-
nal FiD model highlights that excessive exter-
nal knowledge might distract the reader from
giving correct answers.

3. Crucially, as demonstrated in Figure 2 with
the red dotted line, our framework requires
only 5 support passages to achieve compara-
ble performance to with FiD models which
use 100 support passages, whilst requiring
significantly fewer FLOPs.

3.2 Ablation Study

In this section, we conduct ablation studies to an-
swer the following questions:

Policy-Gradient vs Supervised Training To
the knowledge selector with supervised learning,
one needs pairs of questions and the corresponding
list of passages that contains the information cor-
responding to the questions. Unfortunately, gener-
ating hand-labelled data is time consuming, mean-
ing many datasets and applications lack such an-
notations. An alternative approach is to resort to
heuristics, or weakly supervised learning, for ex-
ample by considering that all documents contain-
ing the answer as positive samples. Hence, to val-
idate the merit of such an intuitive alternative ap-
proach, we use this to construct a training dataset
to train the knowledge selector, which we refer
as the supervised approach. Using these “ground
truth” labels, we can directly train the knowledge
selector in a supervised manner.

NQ TQA WebQ

BERT-base (110M) 52.1 69.8 52.5

BERT-large (330M) 52.8 69.8 53.0
ALBERT (235M) 52.2 69.7 52.6
RoBERTa-base (125M) 52.0 69.7 52.1
RoBERTa-large (355M) 52.9 69.9 52.9

Table 3: Performance of different pretrained language
models (parameter sizes are shown in the bracket) are
used in the knowledge selector where the reader we use
is T5-base and the number of passages is 10.

Methods NQ TQA WebQS

*without retrieval
GPT-3 14.6 64.3 14.4
ChatGPT 20.9 67.5 18.6

*with ONE retrieved passage
GPT-3 (DPR, n=1) 22.4 67.9 34.5
GPT-3 (Ours, n=1) 24.2 69.3 36.1
ChatGPT (DPR, n=1) 24.8 70.5 36.2
ChatGPT (Ours, n=1) 26.1 72.1 37.8

*with TWO retrieved passage
GPT-3 (DPR, n=2) 26.1 69.2 36.4
GPT-3 (Ours, n=2) 28.9 71.8 39.8
ChatGPT (DPR, n=2) 29.2 71.3 40.9
ChatGPT (Ours, n=2) 32.1 73.2 42.3

Table 4: Experimental results of using GPT-3 and Chat-
GPT with one and two retrieved results. The prompt
we used is from P3 (Bach et al., 2022) of the form
Refer to the passage below and answer the following
question. Passage: {passages} Question: {question},
where {question} and {passages} are replaced by the
corresponding question and the retrieved passages.

Table 2 shows the experimental results of the
two approaches under two different numbers (5
and 10) of passages. We observe that our policy-
gradient-based method performs much better than
the supervised learning in both settings. Two pos-
sible reasons are: 1) Frequent answers or enti-
ties might lead to false-positive examples. For ex-
ample, we can consider the question “which uni-
versity did Barack Obama obtain graduate from?”
alongside the passage “...Barack Obama gave a
speech in Harvard University... ”, which would
be considered a positive example as it contains the
answer “Harvard”. 2) A second limitation is that
for some tasks, such as fact checking or long-form
question answering, such heuristics might not be



directly applicable.

Exploration of Different Pretrained Language
Models for the Knowledge Selector In our pre-
vious experiments, the knowledge selector is built
on the BERT-base with its parameters fixed. In
this part, we explore whether the knowledge se-
lector can benefit from other pretrained language
models with different parameter sizes.

From Table 3, we observe that there is no sig-
nificant improvement on three benchmark datasets
when using alternative pretrained language mod-
els of different sizes. For example, there is only
a 0.7 increase in the EM score when we replace
the 110M BERT-base model with 330M BERT-
large. This suggests that using BERT-base is large
enough to learn the relationship between the ques-
tion and the passages under our mutual learn-
ing framework. In addition, one interesting phe-
nomenon is that the EM score on the TQA dataset
is almost unchanged for the chosen five different
pretrained language models. One possible reason
is that questions in TQA do not rely heavily on ex-
ternal knowledge, namely, many questions could
be answered based on the parameters of the pre-
trained language models.

4 Extension

Previous experimental results showed that our mu-
tual learning framework could improve the model
performance in the supervised fine-tuning setting.
Here, we evaluate whether the trained knowledge
selector module can also contribute to improv-
ing the generation performance of large-scale lan-
guage models (LLMs) (e.g., GPT-3 and ChatGPT)
in a zero-shot setting. In particular, we explore
three different settings: 1) without retrieval means
that we feed the question to LLMs directly with-
out concatenating any other background knowl-
edge; 2) with ONE retrieved passage denotes that
we concatenate a passage retrieved by different
methods to the question following the prompt as
P3 (Bach et al., 2022); 3) similarly, for with TWO
retrieved passages, we add two passages retrieved
by different methods to the question as additional
contextual information. All experimental results
are reported in Table 4. Note that due to the length
limitation, we only explore the settings of using
one retrieved passages and two retrieved passages.

From Table 4, we observe that adding the re-
trieved passage (s) to the question as the input to
LLMs could obviously improve the generation in-

formation in both GPT-3 and ChatGPT. Similar
phenomenon has also been noticed in (Yu et al.,
2022b). Besides, under the same number of re-
trieved passages, passages selected by our trained
knowledge selector contribute more to the gen-
eration performance, as reflected from the exact
match scores. To some extent, this demonstrates
that the knowledge selector trained using our mu-
tual learning framework is not model-specific, and
can be used as a standalone tool for retrieving rel-
evant passages in other frameworks.

5 Case Study

To better understand why our proposed framework
can help improve the predictive performance, we
manually pick two representative examples as case
studies. Examples where predicted results of our
prof framework and a strong baseline (FiD-with-
DPR) together with part of their used passages are
in Table 5. Note that for both approaches, we set
the number of retrieved passages as 10 for a fair
comparison while we only showcase top threes re-
trieved passages due to the space limitation.

In the first case, we can observe that among the
three top passages ranked by DPR, only one is rel-
evant to the question and can provide evidence to
generate the correct answer while the other two
passages are either off-topic or even providing
some incorrect information. For example, the top-
1 retrieved passage conveys a seemingly relevant
information about the first American winner of the
Nobel Prize for physics, which is considered as a
negative factor of leading the reader to generate an
incorrect prediction with respect the given ques-
tion without emphasizing the winner’s nationality.
In contrast, in terms of the relevance to the given
question, we can notice that all the three passages
from our method are talking about Wilhelm Con-
rad Röntgen, based on which the reader correctly
gives the answer as we expect. We conjecture that
the reader might be negatively distracted by irrele-
vant knowledge, thus making an incorrect predic-
tions with respect to the given question.

In the second case, while the comparison be-
tween the two predictions with the ground truth
answer (Donald Trump) is incorrect, the predic-
tion itself should be considered as a correct an-
swer for the question due to the time-dependent
property of the question. According to (Zhang and
Choi, 2021), the Natural Questions dataset con-
tains a significant proportion, roughly 16.5%, of



Original question FiD-with-DPR’s prediction Our prediction

Q: Who got the first nobel prize in physics? Albert A. Michelson ✗ Wilhelm Conrad Röntgen ✓

Top-3 passages ranked by DPR :
1. Albert A. Michelson was an American physicist known for his work on measuring the speed of light . . .
In 1907 he received the Nobel Prize in Physics, becoming the first American to win the Nobel Prize . . .
2. Nobel Prize in Physics The Nobel Prize in Physics is a yearly award given by the Royal Swedish Academy . . .
3. The discovery of X-rays by physicist Wilhelm Conrad Röntgen, first winner of the Nobel Prize for Physics . . .
Top-3 passages ranked by our method:
1. Wilhelm Conrad Röntgen was a German mechanical engineer and physicist, who, on 8 November 1895 . . .
range known as X-rays rays . . . an achievement that earned him the first Nobel Prize in Physics in 1901 . . .
2. The discovery of X-rays by physicist Wilhelm Conrad Röntgen, first winner of the Nobel Prize for Physics . . .
3. . . . when German physics professor Wilhelm Conrad Röntgen discovered the X-ray and noted that, while it
could pass through human tissue . . . He received the first Nobel Prize in Physics for his discovery . . .

Q: Who is the president of USA right now ? George W. Bush ✗ Barack Obama ✗

Top-3 passages ranked by DPR:
1. . . . on January 20, 2009, when Barack Obama was inaugurated as the 44th President of the United States . . .
2. . . . Donald Trump was formally elected by the Electoral College on December 19, 2016 . . .
3. . . . January 20, 2001, when George W. Bush was inaugurated as the 43rd President of the United States . . .
Top-3 passages ranked by our method:
1. . . . on January 20, 2009, when Barack Obama was inaugurated as the 44th President of the United States . . .
2. Barack Obama, a Democrat and former U.S. Senator from Illinois, was first elected president . . .
3. Barack Obama is an American attorney and politician who served as the 44th President of U.S. . . .

Table 5: Case study of retrieved documents and predicted results from FiD-with-DPR (Izacard and Grave, 2021)
and our proposed framework. For the space limitation, we only illustrate the snapshots of the top three out of the
ten retrieved Wiki passages from the two different approaches, specifically.

questions that have time-dependent answers. An-
other observation is that when compared to the
baseline model, the retrieved passages from our
approach are more consistent, all of which are re-
lated to Barack Obama, and we conjecture that
such a bunch of topic-relevant passages might con-
tributes more to the reader’s generation.

Besides, we give an example to show that for
some knowledge-intensive tasks like open-domain
question answering, providing some necessary
context information relevant to the given question
can bring some gains in improving the predictive
performance for large and versatile language mod-
els like ChatGPT. One possible reason is that al-
though the Wikipedia data have been seen dur-
ing the training stage of ChatGPT, it is impossi-
ble to “remember” all training data in the form
of their parameters. As shown in Table 6, with
no contextual knowledge, ChatGPT gave an in-
correct answer. However, when equipped with
one passage containing the answer, ChatGPT can
make a correct prediction. Hence, providing some
necessary contextual information as a reference
might help ChatGPT generate a correct prediction
when meeting with some tough questions, thus

indirectly showing the superiority of our trained
knowledge selector over DPR.

6 Related work

Open-domain Question Answering (ODQA) is an
important task, aiming at providing precise an-
swers in response to the user’s questions in nat-
ural language. In terms of the knowledge source
where answers are derived from, there are usually
two kinds of forms: one is unstructured textual
documents available on the Internet, and another
is a predefined structured data such as knowledge
graphs which are often manually constructed. In
this paper, we focus on the former, which is con-
sidered to be a more general and challenging task
since available unstructured text to obtain answers
are fairly common and easily accessible, such as
Wikipedia, news articles and science books, etc.

Next, we review two categories of approaches
widely explored in current textual based ODQA
literature. We refer the reader to Zhu et al. (2021)
for a more exhaustive introduction to this topic.

Retrieval-free LLMs based Domain Question
Answering Systems Large language models
show impressive performance on a wide range of



Query: Who is the girl in green day 21 guns? Ground truth Answer: Lisa Stelly

ChatGPT [No Passage]: Lauren German ✗

With top-1 passage by DPR: 21 Guns is a song by American punk rock band Green Day. It was
released as the second single from their eighth album . . .
ChatGPT: Lauren German ✗

With top-1 passage by our method: The 21 guns music video takes place with the band and the
album’s two protagonists Christian (Josh Boswell) and Gloria (Lisa Stelly) taking refuge . . .
ChatGPT: Lisa Stelly ✓

Table 6: Case study of predictions of ChatGPT w/o the top-1 passage from DPR or our method.

tasks. Prior studies (Petroni et al., 2019; Roberts
et al., 2020; Brown et al., 2020) have shown that
a large amount of knowledge learned from large-
scale textual data can be stored in the underlying
parameters, and thus these models are capable of
answering questions without access to any exter-
nal knowledge. For example, ChatGPT is able to
correctly generate the answer given only a natu-
ral language question. However, although large
language models demonstrate impressive perfor-
mance on zero-shot learning abilities, their perfor-
mance still lag behind the supervised settings (Yu
et al., 2022b). Besides, some prior studies (Izacard
et al., 2022) also demonstrate that retrieval aug-
mented language models can achieve better per-
formance in knowledge-intensive tasks.

Retrieve-then-Read Open Domain Question
Answering According to the detailed sur-
vey (Yu et al., 2022b), modern ODQA archi-
tectures mainly follow the retriever-then-read
paradigm as well as the specific techniques
adopted in each of the components. Given a ques-
tion, this model first leverages a retriever over a
large evidence corpus to fetch a set of relevant doc-
uments that may contain the answer. A reader is
then used to peruse the retrieved documents and
predict an answer. In this paradigm, we observe
that recent follow-up work has focused on im-
proving either the retriever (Sachan et al., 2022;
Qu et al., 2021) or the reader (Yu et al., 2022a;
Wang et al., 2018; Min et al., 2019). To the best of
our knowledge, only a few prior studies have been
carried out on training both the retriever and the
reader in an end-to-end mode. Lee et al. (2019)
introduced the inverse cloze task for pre-training
retrievers, which are then fine-tuned end-to-end on
question-answering tasks. Besides, one most re-
lated to our work is (Izacard and Grave, 2021),
which uses the internal attention scores from the

reader as synthetic labels to train the retriever. In
this work, we also explore the method of using the
reader’s feedback to optimize the retriever with-
out additional supervision besides available pairs
of question and answer.

7 Conclusion

In this work, we explore how to improve the pre-
diction performance and inference cost of reader
models in current open-domain question-answer
architectures. To this end, we introduce a fine-
grained knowledge selector into the retrieve-then-
reader paradigm, whose goal is to construct a
small subset of passages which retain question-
relevant information. The knowledge selector is
trained as a component of our novel mutual learn-
ing framework, which iteratively trains the knowl-
edge selector and the reader. We adopt a simple
and novel approach employing policy gradients
to optimize the knowledge selector, using feed-
back from the reader to train it to select a small
and informative set of passages. This approach
avoids brute-force search or manually-designed
heuristics, without requiring any annotated query-
document pairs for supervision. We show that it-
eratively training the reader and the knowledge
selector leads to better predictive performance
on some public open-domain question answer-
ing benchmarks. Finally, our approach matches
the accuracy of the top-performing Fusion-in-
Decoder reader, whilst utilizing just 18.32% of its
reader inference cost (FLOPs).
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