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As functional programmers we always face a dilemma: should we write purely functional code, or sacrifice

purity for efficiency and resort to in-place updates? This paper identifies precisely when we can have the

best of both worlds: a wide class of purely functional programs can be executed safely using in-place updates

without requiring allocation. We describe a linear fully in-place (FIP) calculus where we prove that we can
always execute such functions in way that requires no (de)allocation and uses constant stack space. Of course,

such calculus is only relevant if we can express interesting algorithms, and we show many examples, including

splay trees, finger trees, merge sort, and quick sort. We also show how we can generically derive a map

function over any polynomial data type that is fully in-place and uses neither heap- nor stack space. We

consider two approaches to embed the FIP calculus in a larger language, either a static approach based on

uniqueness typing, or a dynamic approach based on precise reference counting. We have a full implementation

based on the dynamic approach in the Koka language and all examples in the paper can be checked and

executed fully in-place.

1 INTRODUCTION AND OVERVIEW
The functional program for reversing a list in linear time using an accumulating parameter has

been known for decades, dating back at least as far as Hughes’s work on difference lists [1986]:

fun reverse-acc( xs : list<a>, acc : list<a> ) : list<a>
match xs

Cons(x,xx) -> reverse-acc( xx, Cons(x,acc) )
Nil -> acc

fun reverse( xs : list<a> ) : list<a>
reverse-acc(xs,Nil)

As this definition is pure, we can calculate with it using equational reasoning in style of Bird and

Meertens [Backhouse 1988; Gibbons 1994]. Using simple induction, we can, for instance, prove that

this linear time list reversal produces the same results as its naive quadratic counterpart.

Not all in the garden is rosy: what about the function’s memory usage? The purely functional

definition of reverse allocates fresh Cons nodes in each iteration; an automatic garbage collector needs

to discard unused memory. This generally induces a performance penalty relative to an imperative

in-place implementation that destructively updates the pointers of a linked list. Reasoning about

such imperative in-place algorithms, however, is much more difficult.

As programmers we seem to face a dilemma: should we write purely functional code, or sacrifice

purity for efficiency and resort to in-place updates? This paper identifies precisely when we can

have the best of both worlds: a wide class of purely functional programs can be executed safely

using in-place updates without requiring allocation, including the reverse function above.

In particular, what if the compiler can make the assumption that the function parameters are

owned and unique at runtime, i.e. that there are no other references to the input list xs of reverse at

runtime. In that case, the compiler can safely reuse any matched Cons node and update it in-place

with the result – effectively updating the list in-place. In this paper we describe a novel fully in-place
(FIP) calculus that guarantees that a function can be compiled in way to never (de)allocate memory

or use unbounded stack space—it can be executed fully in-place.

To illustrate the purely functional fully in-place paradigm, we consider splay trees as described
by Sleator and Tarjan [1985]. These are self-balancing trees where every access to an element in

1



FP
2
: Fully in-Place Functional Programming

the tree, including lookup, restructures the tree such that the element is “splayed” to the top of the

tree. As such, the lookup function returns not only whether the element was found in the tree, but

also a new splayed tree (with the found element on top). Splay trees are generally not considered

well-suited for functional languages, because every such restructuring of the tree copies the spine

of the tree leading to decreased performance relative to an imperative implementation that can

rebalance the tree in-place. Surprisingly, it turns out to be possible to write the splay algorithms in

a purely functional style using fully in-place functions.

1.1 Zippers and Unboxed Tuples
Let us first define the type of splay trees containing integers:

type stree
Node(left : stree, value : int, right : stree)
Leaf

For the lookup function, once we find a given element in the tree, we need to somehow navigate

back through the tree to splay the node to the top. The usual imperative approach uses parent

pointers for this, but in a purely functional style we can use Huet’s zipper [1997] instead. The
central idea is a simple one: to navigate through a tree step by step, we store the current subtree in

focus together with its context. Naively, one might try to represent the context as a path from the

root of the tree to the current subtree. The zipper, however, reverses this path so each step up or

down the tree requires only constant time. For splay trees, we can define the corresponding zipper

as:

type szipper
Root
NodeL( up : szipper, value : int, right : stree )
NodeR( left : stree, value : int, up : szipper )

Huet already observed that the zipper operations could be implemented in-place. He concludes his

paper with the following paragraph [Huet 1997]:

Efficient destructive algorithms on binary trees may be programmed with these com-

pletely applicative primitives, which all use constant time, since they all reduce to local

pointer manipulation.

Our FIP calculus provides the language to make such a statement precise: using the rules presented

in the next section we can check statically that the various operations on zippers are indeed fully

in-place. For example, we can move focus to the left subtree as follows:

fip fun left(t : stree, ctx : szipper) : (stree,szipper)
match! t

Node(l,x,r) -> (l, NodeL(ctx,x,r))
Leaf -> (Leaf, ctx)

The fip keyword indicates that a static check guarantees the function is fully in-place. This check,

specified in Section 2, verifies that the function lives in a linear fragment of the language where the

function parameters and variables are owned and can only be used once. As a consequence, we can

safely reuse the memory of a linear value in-place once it is no longer used. The match! keyword1

indicates a destructive match, after which the matched variable t can no longer be used. Intuitively,

we can then see straightaway that the matched Node cell has become redundant and can be reused

for the NodeL cell of the zipper.

To make this intuition more precise, we view a destructively matched constructor, such as

Node(l,x,r), as a collection of its children l, x, and r, and a reuse credit ⋄3. This “diamond” resource

1
In our implementation it turns out we can always infer when a match needs to be destructive and we can always write just

match for both destructive and borrowing matches. However, for clarity and correspondence to our formal FIP calculus, we

denote destructive matches explicitly in this paper.
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Fig. 1. Looking up the number 3 in a splay tree (A), creating the zipper context to the node containing 3 (B),
and splaying the node up to the top (C).

type ⋄k represents a specific heap cell of size k and is inspired by the work of Aspinall and Hofmann

on space credits [Aspinall and Hofmann 2002; Aspinall et al. 2008; Hofmann 2000b 2000a]. Similar

to their space credits, we also apply the linearity restriction to reuse credits, but, unlike space

credits, a reuse credit can not be split or merged with other credits. In our example, the match!

introduces a reuse credit ⋄3 for the Node, which is consumed by the allocation of NodeL which allows

our left function to be fully in-place.

It may seem that we still need to allocate a tuple to store the result. Such allocation, however,

is usually unnecessary since tuples are often created only to hold multiple return values and

immediately destructed afterwards. In our calculus and implementation, we model tuples as unboxed
values hence no allocation is needed for these

2
.

We can now also see that the list reversal of the introduction is also fully in-place:

fip fun reverse-acc( xs : list<a>, acc : list<a> ) : list<a>
match! xs

Cons(x,xx) -> reverse-acc( xx, Cons(x,acc) )
Nil -> acc

where the destructive match on xs allows the matched Cons cell to be reused (⋄2) for the Cons(x,acc)

allocation in the branch.

1.2 Splay Tree Lookup and Atoms
Using the zipper definition for splay trees, we can now define the lookup function as follows:

fip fun lookup( t : stree, x : int ) : (bool, stree)
zlookup(t,x,Root)

fip fun zlookup( t : stree, x : int, ctx : szipper ) : (bool, stree)
match! t

Leaf -> (False, splay-leaf(ctx)) // not found, but splay anyway
Node(l,y,r) ->

if x < y then zlookup(l,x,NodeL(ctx,y,r)) // go down the left (NodeL reuses Node)
elif x > y then zlookup(r,x,NodeR(l,y,ctx)) // go down the right (NodeR reuses Node)
else (True, splay(Top(l,y,r),ctx)) // found it, now splay it to the top

The lookup function calls zlookup with an initial empty context Root. It seems we need to allocate

the Root constructor, but constructors without any fields do not require allocation. These are

typically implemented using pointer-tagging where only the tag is used to represent them. We call

such constructors atoms. Examples include the Nil of lists, but also booleans (True and False), and,

depending on the implementation, primitive types like integers (int) or floats.

The zlookup function traverses down the tree while extending the current zipper context in-place
with the path that is followed. Figure 1 shows a concrete example of how zlookup constructs the

zipper in the transition from (A) to (B). Once the element is found, the corresponding node is

splayed back up to the top of the tree as splay(Top(l,x,r),ctx). Here we use the Top constructor:

2
In Koka, tuples are implemented as value types which are unboxed and passed in registers. The fip keyword additionally

checks that no automatic (heap allocated) boxing is applied for such value types inside a FIP function.
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type top
Top( left : stree, value : int, right : stree )

But why is this Top constructor needed? Can we not just call splay directly with explicit arguments

as splay(l,x,r,ctx)? This is not possible though in a fully in-place way. In particular, it would mean

that the Node(l,y,r) on which we matched would need to be deallocated as it cannot be reused

immediately (and deallocation is not allowed in fip functions). Moreover, we would now need to

allocate the final top node later on. If we define splay without using Top, we would get something

like:

fun splay( l : stree, x : int, r : stree, ctx : szipper ) : stree // not fip!
match! ctx

Root -> Node(l,x,r)
...

That is, once the zipper ctx is at the Root we need to return a fresh Node with x on top. As there is

no constructor that can be reused (since Root is just an atom), this would require allocation. By

using the intermediate Top constructor we avoid this: at the call site we can now reuse the Node that

we just matched for Top, and later on when we reach the Root, we can reuse Top again to create the

final Node that becomes the top of the returned splay tree. This results in the final fully in-place

definition of the splay function:

fip fun splay( top : top , ctx : szipper ) : stree
match! top

Top(l,x,r) -> match! ctx
Root -> Node(l,x,r)
NodeL(Root,y,ry) -> Node(l,x,Node(r,y,ry)) // zig
NodeL(NodeR(lz,z,up),y,ry) -> splay( Top(Node(lz,z,l),x,Node(r,y,ry)), up) // zig-zag
NodeL(NodeL(up,z,rz),y,ry) -> splay( Top(l,x,Node(r,y,Node(ry,z,rz))), up) // zig-zig
NodeR(ly,y,Root) -> Node(Node(ly,y,l),x,r)
NodeR(ly,y,NodeL(up,z,rz)) -> splay( Top(Node(ly,y,l),x,Node(r,z,rz)), up) // (B)->(C)
NodeR(ly,y,NodeR(lz,z,up)) -> splay( Top(Node(Node(lz,z,ly),y,l),x,r), up)

The compiler statically checks that this function is fully in-place. As a result, we know that its

execution uses no stack space and performs all its rebalancing operations without any (de)allocation

– each Top and Node can reuse a destructively matched Top, NodeL, or NodeR in every branch. Each of

the matched cases correspond to a “zig”, “zig-zig”, and “zig-zag” rebalance operation as described

by Sleator and Tarjan [1985]. Figure 1 shows a concrete example of the “zig-zag” in the transition

from (B) to (C). For completeness, the auxiliary splay-leaf function that is called in case the item is

not a member of the tree is included below:

fip fun splay-leaf( ctx : szipper ) : stree
match! ctx

Root -> Leaf
NodeL(up,x,r) -> splay(Top(Leaf,x,r),up)
NodeR(l,x,up) -> splay(Top(l,x,Leaf),up)

The definition of splay may look somewhat involved but compared to the imperative definition

it is fairly concise. Moreover, the usual imperative algorithm uses extra space for parent pointers

in each node. We do not need this: if we study the generated code for the fip functions, we see

that the reuse of the zipper nodes corresponds to the usual “pointer-reversal” techniques [Schorr

and Waite 1967] (which is illustrated nicely in Figure 1 (B)). Such pointer-reversal is not often used

explicitly in practice though since it is difficult to get right by hand. In the code above, however, the

fully in-place fip functions using zippers provide a statically typed, memory safe, purely functional

definition with the same runtime behaviour, without requiring explicit pointer manipulation.

1.3 Borrowing and Second-Order Functions
While our examples have so far been entirely first-order, we also allow functions to be passed as

arguments. For example, we can map over a splay tree as follows:
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fbip fun smap( t : stree, ^f : int -> int) : stree
match! t

Node(l,v,r) -> Node(smap(f,l), f(v), smap(f,r))
Leaf -> Leaf

In this function we seemingly violate our linearity constraint since f is used three times in the first

branch. However, the function parameter is marked as borrowed using the hat notation (^f) [Ullrich

and de Moura 2019]. This allows the parameter to be freely shared but at the same time it cannot be

used in a destructive match, passed as an owned parameter, or returned as a result. Such borrowing

is often useful for functions that inspect a data structure. Consider the following example is-node

function:

fip is-node( ^t : stree ) : bool
match t
Node(_,_,_) -> True
_ -> False

This function would not be fully in-place if we matched destructively. A subtle point about higher-

order functions is that we consider an application f(e) as a borrowed use of f, and, as a consequence,

f cannot modify any captured free variables in-place. We enforce this in our calculus by only

allowing top-level functions (rather than arbitrary closures) as arguments in our fully in-place

calculus, effectively making it second-order.

Finally, note that the smap function is marked not as fip but as fbip. Unlike the earlier splay

function, smap has recursive calls in non-tail positions. That makes it hard to claim that this function

is “fully in-place”— after all, its execution uses stack space linear in the depth of the splay tree. We

use the fbip keyword to signify FIP functions that still reuse in-place but are allowed to use arbitrary

stack space and deallocate memory. Nevertheless, for smap this is not really required: in Section 3

we show that any map function of polynomial datatypes (including smap) can be tranformed into a

tail-recursive, zipper-based traversal that is fully in-place.

The fbip keyword is derived from the “functional but in-place” technique [Reinking, Xie et

al. 2021] which is a more liberal notion of our strict fully in-place functions. Our implementation

also supports fip(n) and fbip(n) for a constant n, which allows the function to allocate at most a

constant n constructors. This is sometimes useful for functions like splay tree insertion where a

single Node may need to be allocated for the newly inserted element, making it fip(1).

1.4 Fully in-Place in a Functional World
One might argue that fully in-place programming is just imperative programming in functional

clothing. Where are the closures, the non-linear values, the persistence? And who allocates the

list to be reversed in the first place? We need to be able to embed our fully in-place functions in a

larger host language to be useful. The challenge is to do this safely while still guaranteeing in-place

updates when possible.

To illustrate this point, consider the following function:

fun palindrome( xs : list<a>) : list<a>
append(xs, reverse(xs))

Even though reverse is a fip function, it would not be safe for it to destructively update its input

list since the argument xs is used twice (as an owned argument) in the body of palindrome. The

FIP calculus presented here statically checks a function’s definition – deciding which calls to fip

functions can be safely executed using destructive updates requires further information about

sharing at call sites.

1.4.1 Uniqueness Typing. One way to check this information statically is using using a uniqueness
type system. For example, Clean [Brus et al. 1987] is a functional language where the type system

tracks when arguments are unique or shared [Barendsen and Smetsers 1995; De Vries et al. 2008]. A
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fip function may safely use in-place mutation, provided all owned parameters have a unique type.
In that way, the type system guarantees that any argument passed at runtime will be a unique

reference to that object, ruling out any possible sharing. As a result, it is always safe to reuse the

argument in-place.

One possible drawback of linear type systems and uniqueness typing is that it leads to code

duplication, where a single function can have multiple different implementations: one version

taking a unique argument; and one taking a shared argument. For example, we may need to define

two reverse functions that have an equivalent implementation but only differ in the fip annotation

and the uniqueness type of the input list – one uses copying and can be used persistently with a

shared list, while the FIP variant updates the list in-place but requires the input list to be unique.

1.4.2 Precise Reference Counting. Checking call sites of fip functions need not happen statically.

Instead, we could also use a dynamic approach where we check at runtime if a FIP function can

be executed in-place [Lorenzen and Leijen 2022; Schulte and Grieskamp 1992; Ullrich and de

Moura 2019]. This is the approach taken in our implementation in the Koka language, which uses

Perceus precise reference counting [Reinking, Xie et al. 2021; Ullrich and de Moura 2019]. When

an object has a reference count of one, it is guaranteed that we hold the only reference to it, and

it is safe to update it in-place. To illustrate how the compiled code looks in practice, consider the

compilation of the fully in-place reverse-acc function. The destructive match on the input list now

dynamically checks whether or not the list can be mutated in place and the generated code will

look something like:

fip fun reverse-acc( xs : list<a>, acc : list<a> ) : list<a>
match! xs

Cons(x,xx) ->
val ru = if is-unique(xs) then &xs else { dup(x); dup(xx); decref(xs); alloc(2) }
reverse-acc( xx, Cons@ru(x,acc) )

Nil -> acc

The reuse credit ⋄2 is compiled into an explicitly named reuse token ru, and holds to the memory

location of the resulting Cons cell. If the input list is unique, we reuse the address of the input,

&xs, and otherwise, we adjust the reference counts of the children accordingly and return freshly

allocated memory of the right size. In the recursive call, we initialize the Cons cell in-place at the ru

memory location as Cons@ru(x,acc).

Compared to the static analysis, we lost the static guarantee that the owned parameters are

unique at runtime, but also we gained expressiveness: in particular, we can define now a single
purely functional but fully in-place reverse function that serves all usage scenarios: it efficiently

updates the elements in place if the argument list is unique at runtime, but it also adapts dynamically

when the list, or any sublist happens to be shared – falling back gracefully to allocating fresh

Cons nodes for the resulting list. We show formally that the FIP calculus can be embedded, as a

subcalculus, into a Perceus-style linear resource calculus _fip with unboxing, atoms and borrowing

in Section 5.

This language can now express the full range of functional programming. Yet, only one rule needs

to be extended: rather than always reusing in a destructive match!, we inspect the reference counts

and only reuse unique cells as above. In particular, this shows that fully in-place functions can

execute on unique arguments with no overhead due to reference counting (besides the is-unique

check).

In this setting, when we call a function like map fully in-place, it means that the function itself

does not intrinsically allocate any memory. However, any particular evaluation can still allocate

by passing in a non-fip function, for example map(xs, fn(x) Cons(x,Nil)). That is an essential part

of our approach though, where we are able to reason about a fully in-place function like map in

isolation but still allow it to be used in allocating scenarios from a non-FIP context.
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In the next section we look at a precise definition of a fully in-place calculus.

1.5 Contributions
To support the motivating examples outlined so far, this paper makes the following contributions:

• Following the pioneering work on the LFPL calculus [Hofmann 2000b 2000a], we present a novel

fully in-place (FIP) calculus (Section 2), precisely capturing those functions that can be executed

fully in-place. We provide a standard functional operational semantics for our language, but also

define an equivalent semantics for FIP functions in terms of a fixed store, where no (de)allocation

can take place. As a result, we know that FIP functions never allocate memory and use bounded

stack space. As shown for splay trees, atoms and unboxed tuples are needed to avoid allocations

for many common scenarios and the FIP calculus includes these features. Furthermore, the rules

of the FIP calculus provide a static guarantee of linearity in a syntactic way where parameters

can be owned uniquely or borrowed.
• The FIP calculus is only useful if it can actually be used to describe interesting algorithms. To

show the wide applicability of our approach we present a variety of familiar functional programs

and operations on datastructures that are all fully in-place. We already showed how Huet’s

zipper [1997] datastructure, colloquially described as the functional equivalent of backpointers,

can be used fully in-place, and how we can use this to implement fully in-place splay trees [Sleator
and Tarjan 1985]. In Section 3, we further show that we can use a defunctionalized CPS transfor-

mation [Danvy 2008] to derive a generic map function for any polynomial inductive datatype.

The derived map uses fully in-place Schorr-Waite traversal [Schorr andWaite 1967] without using

any extra stack- or heap space. In Section 4, we show further examples of functional algorithms

and datastructures that are fully in-place, including imperative red-black tree insertion [Cormen

et al. 2022], cons and append operations on finger trees [Claessen 2020; Hinze and Paterson 2006],

and even sorting algorithms like merge sort and quick sort. We have an implementation of the

FIP calculus in a fork of the Koka compiler that can check and compile all examples in this paper.

• Finally, we study in the dynamic embedding of our FIP calculus based on precise reference

counting in detail in Section 5. Integrating the static FIP calculus with the dynnamic Perceus

linear resource calculus, _1 [Lorenzen and Leijen 2022; Reinking, Xie et al. 2021], gives us precisely

the information we need to decide when a function call can be executed in-place or not. However,

the original linear resource calculus does not model reuse, atoms, unboxing, or borrowing, all of

which are essential for FIP programs. We simplify and extend the linear resource calculus into a

new calculus (_fip) which includes all these features, and give a novel proof of the soundness of

its heap semantics.

Surprisingly, it turns out that the extended linear resource calculus _fip can be seen a pure

extension of the FIP calculus; and the rules of the FIP calculus are a strict subset of _fip. In

particular, FIP is exactly that subset of _fip which requires no dynamic reference counting or

memory management at runtime. As a result, in the Perceus setting FIP functions can interact

safely with any other function, executing in-place when possible and copying when necessary.

2 A LANGUAGE FOR FULLY IN-PLACE UPDATE
Figure 2 presents the syntax of the fully in-place FIP calculus. The syntax has been carefully chosen

to be expressive enough to cover many interesting functions as shown in this paper, but at the same

time restricted enough to be straightforward to analyze. Particular properties of our syntax are the

inclusion of unboxed tuples, borrowed parameters, and the lack of general lambda expressions.

The syntax distinguishes between expressions e, and values v that cannot be evaluated further.

Values are either variables or fully applied constructors Ck
, taking k values as arguments. We often

leave out the superscript k when not needed.

7



FP
2
: Fully in-Place Functional Programming

Expressions:

e ::= (v, . . ., v) (unboxed tuple) v ::= x, y (variables)

| e e (application) | Ck v1 . . . vk (constructor of arity k)
| f (e; e) (call)

| let x = e in e (let binding)

| match e { p ↦→ e } (matching) p ::= Ck x1 . . . xk (pattern)

| match! e { p ↦→ e } (destructive match)

Σ ::= ∅ | Σ, f (y; x) = e (recursive top-level functions with borrowed parameters y)
Syntax:

v � (v1, . . ., vk) (k ⩾ 1) let x = e1 in e2 � let (x) = e1 in e2
x � (x1, . . ., xk) (k ⩾ 1) _x1, . . ., xk . e � _(x1, . . ., xk). e
v � (v) (unboxed singleton)

Fig. 2. Syntax of the FIP calculus.

Unboxed tuples (v1, . . ., vk) are considered expressions, rather than values. In this way, we

syntactically rule out that unboxed tuples may be passed as an argument to a constructor, causing

them to become “boxed” (and allocated). Instead of enforcing this with a type system [Peyton Jones

and Launchbury 1991], we use this syntactic restriction to enforce this property. By doing so, the

check is simpler and allows us to specify the FIP calculus independent of its static semantics.

We often write just v or e for a singleton unboxed tuple (v), and write an overline to denote

an unboxed tuple (v1, . . ., vk) as v, or an unboxed tuple of variables (x1, . . ., xk) as x. Since expres-
sions always eventually evaluate to an unboxed tuple, the let x = e1 in e2 expression binds all

components of the result unboxed tuple e1 in x.
There are no general lambda expressions. In general, closures need to be heap allocated if they

contain free variables. To keep the FIP rules as simple as possible, we do not allow arbitrary lambda

expressions. Instead, the global Σ environment holds all top-level functions f , which can be mutually

recursive and passed as arguments. This makes our calculus essentially second-order. A top-level

function is declared as f (y; x) = e, where y are the borrowed parameters, and x are the owned
(unique) parameters. Just as in a let binding, the y and x bind the components of the unboxed tuples

that are passed. A function is called by writing f (e1; e2) with e1 for the borrowed arguments, and

e2 for the owned arguments.

If there are no borrowed arguments, we sometimes write just f (e2). The syntax e1 e2 is used for

general application when the function to be called is not statically known. This happens when a

function f is passed as an second-order argument itself, and in such case, e2 is always passed as

the owned parameter(s). We have two match expressions, the regular match, and the destructive

match!. There is no difference in the functional semantics between the two, but in a heap semantics

the destructive match can be used for reuse, and as we see in the FIP rules in Figure 4, it can only

be used on owned parameters.

2.1 Functional Operational Semantics
Figure 3 gives the functional operational semantics for our calculus. This semantics does not yet

use a heap. An evaluation context E is a term with a single occurrence of a hole □ in place of a

sub term. For example, if E = f (v;□), then E[(x, y)] is f (v; (x, y)). Together with the step rule, E
determines the evaluation order, where the hole denotes a unique subterm that can be reduced.

A small step reduction e1 −→ e2 evaluates e1 to e2. The reduction steps are standard except for

always using unboxed tuples to substitute. We write e[x:=v] for the capture-avoiding substitution

of the distinct variables x = (x1, . . ., xn) with the values v = (v1, . . ., vm), where n must be equal
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Evaluation order:

E : := □ | E e | v E | f (E; e) | f (v; E) | let x = E in e
| match E { p ↦→ e } | match! E { p ↦→ e }

e1 −→ e2
E[e1] ↦−→ E[e2]

step

Evaluation steps:

(let) let x = v in e −→ e[x:=v]
(call) f (v1; v2) −→ e[y:=v1, x:=v2] with f (y; x) = e ∈ Σ
(app) (f ) v −→ e[x:=v] with f (; x) = e ∈ Σ
(match) match (C v) { p ↦→ e } −→ ei [y:=v] with pi = C y
(match!) match! (C v) { p ↦→ e } −→ ei [x:=v] with pi = C x

Fig. 3. Functional operational semantics.

Γ ::= ∅ | Γ, x | Γ,⋄k (owned environment)

Δ ::= ∅ | Δ, y (borrowed environment)

Δ | x ⊢ x
var

Δ | Γi ⊢ vi
Δ | Γ1, . . ., Γn ⊢ (v1, . . ., vn)

tuple

y ∈ Δ, dom(Σ) Δ | Γ ⊢ e

Δ | Γ ⊢ f (y; e)
call

y ∈ Δ Δ | Γ ⊢ e

Δ | Γ ⊢ y e
bapp

Δ | Γ ⊢ e

Δ | Γ,⋄0 ⊢ e
empty

⊩ ∅
defbase

Δ | ∅ ⊢ C
atom

Δ | Γi ⊢ vi
Δ | Γ1, . . ., Γk,⋄k ⊢ Ck v1 . . . vk

reuse

Δ, Γ2 | Γ1 ⊢ e1 Δ | Γ2, Γ3, x ⊢ e2 x ̸∈ Δ, Γ2, Γ3

Δ | Γ1, Γ2, Γ3 ⊢ let x = e1 in e2
let

y ∈ Δ Δ, x i | Γ ⊢ ei x i ̸∈ Δ, Γ

Δ | Γ ⊢ match y { Ci x i ↦→ ei }
bmatch

Δ | Γ, x i,⋄k ⊢ ei k = |x i | x i ̸∈ Δ, Γ

Δ | Γ, x ⊢ match! x { Ci x i ↦→ ei }
dmatch!

⊩ Σ′ y | x ⊢ e

⊩ Σ′, f (y; x) = e
deffun

Fig. 4. Well-formed FIP expressions, where the multiplicity of each member in Γ is 1.

to m and x ̸∈ fv(v). When we substitute in a function body, we write e[x:=v1, y:=v2] to substitute

all (distinct) variable x and y at once, where we again require a capture avoiding substitution with

x, y ̸∈ (fv(v1) ∪ fv(v2)).
When an expression e cannot be reduced further using step, then either e reduced to an unboxed

tuple v and we are done, or we call the evaluation stuck. We have purposefully described the

language and its dynamic semantics without a specific type system, but we can easily define

standard Hindley-Milner typing rules [Hindley 1969; Milner 1978] to guarantee that well-typed

programs never get stuck.

2.2 FIP: Fully In-Place
As defined, our functional semantics is very liberal and allows expressions that generally cause

allocation, like C x y. Figure 4 specifies the FIP calculus rules that guarantee that the resulting

programs can be evaluated without needing any (de)allocation. The statement Δ | Γ ⊢ e means
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that under a borrowed environment Δ and owned environment Γ, the expression e is a well-formed

FIP expression. The borrowed environment Δ is a set of borrowed variables which generally come

from the borrowed parameters of a function f , or by borrowing in the let rule. We write Δ,Δ′
for

the union of the sets Δ and Δ′
. The owned environment Γ is a multiset of owned variables, and also

reuse credits. Following Hofmann [2000a] we denoted these as a diamond ⋄k , signifying a credit
of size k. We can append two owned environments Γ and Γ′ as Γ, Γ′. Sometimes, we also write

Δ, Γ to join a borrowed set with a multi-set Γ where it is required that there are no reuse credits in

Γ, where the result is the borrowed set Δ joined with the elements in Γ. Note that in the current

rules, all variables in the Γ environment occur only once as we have no way to duplicate them. In

Section 5 we generalize this to the full Perceus calculus.

The FIP rules ensure that variables in the owned environment Γ are used linearly (with some

borrowing allowed in let). However, this is a syntactic property and we do not use a linear type
system. This is much simpler to specify and implement, and also makes FIP independent of any

particular type system used by a host language.

The linearity of the FIP calculus is apparent in the var rule, Δ | x ⊢ x where we can only consume
x if it is the only element of the owned environment Γ. Similarly, the tuple rule splits the owned

enviroment in n distinct parts, Γi, and ensures well-formedness of each constituent value of the

tuple, vi, under the corresponding environment Γi. With the atom rule, Δ | ∅ ⊢ C we can return

constructors without arguments which we consider allocation free. The owned environment must

be empty here since our calculus is not affine: we cannot discard owned variables as that implies

freeing a potentially heap allocated value (but in the next section we consider an extension of FIP

that allows deallocation as well).

The only way to create a fresh constructors with k ⩾ 1 arguments, is through the reuse rule

where we need to check well-formedness of each argument, but we also need a reuse credit ⋄k to
guarantee that the needed space is available at evaluation time. The dmatch! rule creates such reuse

credits: we can destructively match on an owned variable x to get a reuse credit ⋄k in each branch.

In each branch the x is no longer owned though (but became a reuse credit instead). For simplicity

we only allow matching on a variable in the rules, but we can always rewrite a user expression

match! e { . . . } into let x = e in match! x { .. } where x is a fresh owned variable. Again, we do

not allow freeing at this point, so reuse credits can only be consumed by the reuse rule or the empty

rule for zero-sized reuse credits (when an atom is matched).

In contrast, the borrowed match bmatch can only match on borrowed variables and such match

can only be used to inspect values without creating fresh reuse credits. Even though variables

in the owned environment Γ cannot be discarded (i.e. freed) or duplicated (i.e. shared), we can

temporarily borrow them. In the let rule the owned environment is split in three parts Γ1, Γ2, Γ3.
The Γ1 and Γ3 environments are passed to e1 and e2 respectively, but the Γ2 environment is passed

to e2 as an owned enviroment, but also to e1 as a borrowed environment! Since we consume Γ2
in the derivation of e2, we can consider them borrowed in the derivation of e1. Note that we still
need Γ3 since Γ2 is joined with the borrowed Δ environment and as such cannot contain any reuse

credits (which can thus be included in Γ3 instead).
The call rule is used for a function call f (y; e) where we can pass borrowed variables y, and

the owned argument e. To allow for passing functions, we can also pass a top-level function as

part of y. In the bapp rule we can call such functions passed as a variable. Since we can only pass

them as borrowed, we also only allow borrowed calls of the form y e. To prepare for an extension

with full lambda expressions, we only allow owned arguments in a call, as already apparent in the

operational semantics. Finally, we can check all top-level functions for well-formedness using the

⊩ Σ rule. Any function f ∈ Σ where ⊩ Σ is considered fully in-place.
Implementing the check algorithmically is straightforward where the owned environment

becomes synthesized. For let bindings we first check e2 and use the synthesized Γ2, Γ3 to check

10
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S : := ∅ | S, x ↦→Ck x1 . . . xk | S,⋄k
E : := □ | Ck x1 . . . E . . . vk | (x1, . . ., E, . . ., vn)
| E e | x E | f (y; E) | let x = E in e
| match E { p ↦→ e } | match! E { p ↦→ e }

S | e −→s S′ | e′

S | E[e] ↦−→s S′ | E[e′]
eval

(lets) S | let x = z in e −→s S | e[x:=z]
(calls) S | f (y′; x ′) −→s S | e[y:=y′, x:=x ′] (f (y; x) = e ∈ Σ)
(anons) S | (f ) x ′ −→s S | e[x:=x ′] (f (y; x) = e ∈ Σ)

(reuses) S,⋄k | Ck x1 . . . xk −→s S, x ↦→Ck x1 . . . xk | x (fresh x, k ⩾ 1)

(atoms) S | C −→s S, x ↦→C | x (fresh x)

(bmatchs) S, y ↦→Ck z | match y {p → e} −→s S, y ↦→Ck z | ei [y:=z] (pi = Ck y)
(dmatchs) S, x ↦→Ck z | match! x {p → e} −→s S,⋄k | ei [x:=z] (pi = Ck x)

Fig. 5. Store semantics of FIP.

e1 (where Γ3 only contains reuse credits). When merging synthesized environments we check if

linearity is preserved. Since Δ ∩ Γ is always empty, we can also infer whether to use a borrowed or

destructive match and no such distinction is needed in the user facing syntax – we keep it in our

calculus explicit though since we need the distinction in the store semantics.

2.3 Store Semantics
With the FIP calculus defined, we can now define another operational semantics. Figure 5 defines

the store semantics where we evaluate using a fixed-size store S. The rules in the store semantics

all adhere to an important invariant: each step of the evaluation should not allocate or deallocate

memory. In this section, we establish a key result relating this store semantics with the functional

operational semantics defined previously: under certain conditions, satisfied by all well-formed FIP

programs, the store semantics and operational semantics coincide.

The store semantics uses an evaluation context E but this time a full evaluation goes to an

unboxed tuple of variables x (instead of values v). Any constructor is bound in the store S where

every element is either a binding x ↦→1Ck x1 . . . xk of size k, or a reuse credit ⋄k of size k.
Using the eval rule, we can reduce using small steps in the store semantics. The reduction rules

have the form S | e −→s S′ | e′ where an e in a store S reduces to e′ with a new store S′. The rules
are similar to the earlier operational semantics but now we always substitute with variables instead

of values. There are now two more rules for evaluating constructor values which are bound in

the store. The (reuses) transition uses a reuse credit ⋄k in the store to apply the constructor, while

(atoms) allows atoms to be created freely. The (bmatchs) and (dmatchs) reductions differ, where
the latter replaces the original constructor binding with a reuse credit of the same size.

Since our store semantics is destructive (in the reuse and dmatch rules), it can fail for expressions

where the standard evaluation semantics would succeed. Even for expressions that are well-formed,

the store semantics can fail if the initial store has internal sharing. If a shared variable is mutated

in place, this would break referential transparency. Thus, we have to require that any variable is

referred to just once in the store – we call this a linear store.

Definition 1. (Store Soundness and Linearity)
For a store S we write dom(S) to denote the set of variables x bound in S and write rng(S) to
denote the set of values C x bound in S. A store is sound if all free variables in rng(S) are bound:
fv(rng(S)) ⊆ dom(S). A store is linear if it is sound, and any variable x in dom(S) occurs at most

11



FP
2
: Fully in-Place Functional Programming

Extended Syntax:

e ::= . . . | drop x; e | free k; e
Extended evaluation rules:

(dcons) S, x ↦→Ck x | drop x; e −→s S | drop x; e
(frees) S,⋄k | free k; e −→s S | e

Δ | Γ ⊢ e

Δ | Γ, x ⊢ drop x; e
drop

Δ | Γ ⊢ e k ⩾ 1

Δ | Γ,⋄k ⊢ free k; e
free

Fig. 6. The FBIP calculus extends FIP with deallocation.

once in the free variables of rng(S). By roots(S) we denote all reuse credits of S and the set of

variables in dom(S) that do not occur in the free variables of rng(S).
On linear stores mutation is safe; in a reference counted setting such a store corresponds to a heap

where all values have a reference count of one. We can now state the main soundness theorem. We

write [S]x to denote a substitution that recursively replaces variables by their bound value in S.
We assume that we are given stores corresponding to the owned and borrowed values, but only

require that the store of the owned values is linear. We can then show that the store evaluation

leaves the borrowed values unchanged and only modifies the owned values:

Theorem 1. (The store semantics is sound for well-formed FIP programs)
If Δ | Γ ⊢ e and given disjoint stores S1, S2 with Δ ⊆ dom(S1), S1 sound, Γ = roots(S2) and S2
linear, then [S1, S2]e ↦−→∗ v implies S1, S2 | e ↦−→∗

s S1, S3 | x where [S3]x = v, x = roots(S3) and
S3 is linear.

This is a strong theorem and the proof is quite involved (see Appendix B), both due to destructive

update and the ability to match on variables temporarily borrowed in the let rule. As a corollary,

we can now see that any FIP expression can run on the store semantics if we use a store containing

the necessary reuse credits, i.e. we give it enough space to allocate upfront:

Corollary 1.
If e ↦−→∗ v and ∅ | ⋄k ⊢ e, then ⋄k | e ↦−→∗

s S | x and [S]x = v.

Furthermore, any FIP function can be called on stores from the environment:

Corollary 2.
If Σ, f is fully-in-place and f (v1; v2) ↦−→∗ v, and given disjoint linear stores S1, S2 with roots y, x
and [S1]y = v1, [S2]x = v2, then also S1, S2 | f (y; x) ↦−→∗

s S1, S3 | z, where [S3]z = v.

We can define the size of a store by adding the sizes of all bindings within it. Since atoms and

empty reuse credits have size zero, they do not contribute to the size of the store.

Definition 2.
The size |S| of a store S is: |∅| = 0 |S,⋄k | = |S| + k |S, x ↦→ Ck x1 . . . xk | = |S| + k.

With this definition, we can immediately see that the size of the store doesn’t change in any reduction

of the store semantics. As such, FIP programs can reduce in-place without any (de)allocation:

Theorem 2. (A FIP program reduces in-place.)
For any S | e ↦−→∗

s S′ | e′, we have |S| = |S′ |.

2.4 FBIP: Allowing Deallocation
Our basic FIP calculus is quite strict and allows neither allocation nor deallocation. We can easily

extend it though to allow deallocation. Figure 6 describes the FBIP calculus as an extension of

the FIP calculus with deallocation, where the syntax is extended with drop x; e to drop an owned

variable x, and free k; e to free a reuse credit of size k.
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Δ | Γ,⋄k ⊢ e k ⩾ 1

Δ | Γ,⋄ ⊢ e
inst

Δ | Γ ⊢ e

Δ | Γ,⋄ ⊢ e
weaken

y
1
∈ Δ y

2
∈ dom(Σ) Δ | Γ ⊢ e f fip(n) y

2
fip(n)

Δ | Γ, ⋄n+n ⊢ f (y
1
, y

2
; e)

call

⊩ Σ′ y | x,⋄n ⊢ e f fip(n)
⊩ Σ′, f (y; x) = e

deffun

Fig. 7. The FIP or FBIP calculus augmented with bounded allocation

The drop rule consumes a variable x from the owned environment. Since the multiplicity of all

elements in Γ is still one, this asserts that x is no longer an element of Γ. Similarly, the free rule

allows discarding a reuse credit.

The operational semantics is also extended with two new reductions for dropping a bound

contructor and freeing a reuse credit. With these new rules and reductions for deallocation, the

soundness theorem 1 continues to hold (see Appendix B). Again, we can immediately see that the

store semantics now only allows deallocation:

Theorem 3. (A FBIP program can only deallocate.)
For any S | e ↦−→∗

s S′ | e′ with the deallocation rules, we have |S| ⩾ |S′ |.
In our implementation the fbip keyword checks if the function is well-formed in the FBIP calculus.

2.5 FIP and FBIP with bounded allocation
We can also model bounded allocation in both the FIP and FBIP calculi to support the fip(n) and

fbip(n) keywords, by adding special allocation credits ⋄ to the Γ enviroment. These credits do not

have a size, and can be used to allocate a cell of any size. Since we usually have several at a time,

we write ⋄n for n such credits.

In the inst rule, we can allocate a reuse credit ⋄k of any size from an allocation credit. We do

not have to spend allocation credits, which gives them a weakening rule. We modify the call

and deffun rules from above to respect the fip(n) keyword: When calling a function, we require

the necessary allocation credits to call f . Furthermore, we also require allocation credits for all

higher-order functions passed to f . Then we can assume in the bapp rule that any allocation credits

necessary for the function call have already been paid. Finally, in the deffun rule, we obtain as

many allocation credits as assigned by the keyword.

It is slightly tricky to infer the necessary allocation credits when also inferring deallocation. For

example, there can be several, equally valid inferences for expressions that differ only in their use

of free:
• x | ⋄ ⊢ match x { True ↦→ Cons(Nil,Nil); False ↦→ Nil } or
• x | ⋄2 ⊢ match x { True ↦→ Cons(Nil,Nil); False ↦→ free 2; Nil }.
The first expression requires an allocation credit, while the second one requires a reuse credit

(which is explicitly deallocated). Which one is preferable depends on the availability of a reuse

credit ⋄2 in the context of e and on the precise annotation on the function containing e: in a fip(1)

function only the first expression would be valid, while in an fbip function only the second one

is allowed (if a reuse credit is available). In our implementation, the Γ context is an output of the

inference, but we do not create a joint context for all branches of a match immediately. Instead

we keep the Γi contexts of the branches and resolve them as reuse credits become available from

surrounding match-statements.
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2.6 Stack Safe FIP
So far, our FIP calculus has allowed us to bound the heap space of the program—but what about

the stack space? If we only seek to bound allocations, we could choose to leave it unbounded. In

practice, however, the stack space matters: when compiling FIP programs to C we have to assume

a relatively small stack and even in a garbage-collected setting growing the stack is not free. To

ensure that the stack is bounded, we require two modifications to the calculus. We assume that

any function f is defined as part a of mutually recursive group f (which might consist of just f
or more functions). In the call rule we then require two additional conditions. Firstly, Σ contains

only functions defined before or as part of the current mutually recursive group. Secondly, we

constrain the mutually recursive groups f by requiring that any recursive calls within this group

are tail-recursive. Formally, all function definitions f ∈ f need to be of the form f (y; x) = T [f ]:

T [f ] : := e0 | fi (e0; e0) | let x = e0 in T [f ] | match e0 { pi ↦→ Ti [f ] } | match! e0 { pi ↦→ Ti [f ] }
| drop x; T [f ] | free k; T [f ]

wher f ̸∩ fv(e0). In the call rule, one can pass functions from Σ to the called function. By the

first constraint, these functions can only be defined before or mutually recursive with the current

definition. In the tail-context we further require that any functions passed as arguments are also not

in the mutually recursive group. Thus, we can only pass functions that were defined strictly before

the current definition. We call the FIP calculus extended with these requirements FIP
S
, in which

the stack usage is always bounded. The fip keyword in our implementation checks if a function is

a well-formed FIP
S
function.

In a first-order calculus the previous restrictions immediately imply that the stack size is bounded

by the number of mutually recursive groups: any call is either tail-recursive (and executing it does

not increase the stack size) or to a previously defined group. However, our FIP calculus is not a

first-order calculus since we can pass top-level functions as arguments. Instead, our FIP calculus is

a second-order calculus: since we ensure that functions never enter the Γ enviroment, we cannot

return any anonymous function as a result.

In a second-order calculus, it is possible for any top-level function to call back in the list of

definitions by calling an anonymous function. However, any sequence of anonymous calls will be

to increasingly earlier defined functions. Our stack bound is thus equal to the square of the number

of mutually recursive groups.

To show this formally, we use the size of the evaluation context as a proxy for the stack size. We

write |e | for the depth of an expression e and |E | for the depth of an evaluation context. We fix a

signature Σ and denote by |𝑒max | the maximum depth of an expression bound in Σ. Then we have:

Theorem 4. (A FIP program uses constant stack space)
Let Σ be fully-in-place such that for all functions f in Σ that are mutually recursive with f , we
have f (y; x) = T [f ]. At any intermediate evaluation step S | f (y; x) ↦−→∗

s S′ | E[e′], we have
|E | ⩽ |𝑒max | · |Σ|2.
This then yields our stack size bound of |Σ|2. The additional factor of |𝑒max | describes the maximum

size of the evaluation context within each function. In practice, we would not allocate a stack frame

for these parts of the evaluation context. In a first-order context we would expect a stack bound of

|Σ| (where any function can call functions defined before it). However, in a second-order calculus,

any function can call anonymous functions defined after it which adds another factor of |Σ| (and
see Section Appendix C for a detailed proof).
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3 FULLY IN-PLACE TRAVERSALS OVER POLYNOMIAL DATATYPES
A classic example of fully in-place algorithm is the in-place traversal of a binary tree [Reinking,

Xie et al. 2021]. Consider a binary tree with all the values at the tips:

type tree<a>
Bin( left: tree<a>, right: tree<a> )
Tip( value: a )

Similar to our earlier splay tree in Section 1, we can define again a zipper to help traversing the

tree in-order:

type tzipper<a,b>
Top
BinL (up : tzipper<a,b>, right: tree<a>)
BinR (left : tree<b>, up : tzipper<a,b>)

A tzipper<a,b> stores fragments of the input tree in-order: those subtrees we have not yet visited

are stored using the BinL constructor; the subtrees we have already visited are stored in the BinR

constructor. We can now map over the tree in-order without using heap- or stack space by reusing

the tzipper nodes. To define the tree map function, we begin by repeatedly stepping down through

the input tree to the leftmost tip. Each subtree we have not yet visited, is accumulated in a BinL

constructor. Once we hit the leftmost leaf, we apply the argument function f, and work our way

back up, recursively processing any unvisited subtrees:

fip fun down( t : tree<a>, ^f : a -> b, ctx : tzipper<a,b> ) : tree<b>
match! t

Bin(l,r) -> down( l, f, BinL(ctx,r) ) // go down the left spine, remember to visit r later
Tip(x) -> app( Tip(f(x)), f, ctx) // start upwards along the zipper

fip fun app( t : tree<b>, ^f : a -> b, ctx : tzipper<a,b> ) : tree<b>
match! ctx
Top -> t
BinR(l,up) -> app( Bin(l,t), f, up) // keep going up rebuilding the tree
BinL(up,r) -> down( r, f, BinR(t,up) ) // go down a right side

fip fun tmap( t : tree<a>, ^f : a -> b ) : tree<b>
down(t,f,Top)

The mutually tail-recursive app and down functions are fully in-place since each matched Bin can be

paired with a BinL, each BinL with a BinR, and finally each BinR with a Bin again. The definition of

tmap may seem somewhat involved, yet consider writing this function in an imperative language,

without using extra stack- or heap space, mutating pointers throughout the tree.

It is not quite a coincidence that the reuse credits we need in every step line up perfectly – these

forms of tail recursive functions can be expressed using a generalisation of zippers known as

dissections [McBride 2008]. By marking each of these functions as fip the compiler checks that they

are indeed fully in-place.

Seeing how we can write a map over a binary tree as a FIP function, we may ask if this is possible

perhaps for any simple algebraic datatype that can be expressed as a sum of products. It turns

out this is indeed the case, and we show this in two steps: first we show in the next subsection a

general method for rewriting programs that are tail-recursive modulo reusable contexts (TRMReC)

such that they are fully in-place. Then, we show how we can generically derive a map function for

any polynomial inductive datatype to which our TRMReC translation can be applied.

3.1 Tail Recursion Modulo Reusable Defunctionalized CPS Contexts
While our FIP tmap function may seem very different from a standard map over trees, it turns out

that it actually corresponds to the defunctionalized CPS [Danvy 2008; Reynolds 1972] version of

the standard tmap function:
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Translating f to a tail-recursive f ′ function:
f (y; x) = e
f ′(y; x, z) = J e Kfz
zipper = H | Z1 (z1, z′) | . . . | Zn (zn, z′)

Applying the zipper:

app(y; z, x ′) = match! z
H→ x ′

Z1 (z1; z′) → J E1 [x ′] Kf ,z′
. . .

Zn (zn; z′) → J En [x ′] Kf ,z′
Tail recursion translation for a function f with zipper z:
(tctx) J T[e] Kfz = T[J e Kfz]
(base) J e0 Kfz = app(y; z, e0) where f ̸∈ fv(e0)
(tail) J f (y; e0) Kfz = f ′(y; e0, z)
(ectx) J Ei [f (y; e0)]Kfz = f ′(y; e0, Zi (zi, z)) where zi = fv(Ei) and (★)
Only allow recursive calls in well-formed reusable evaluation contexts:

(★) : Δ | Γ,⋄k, zi ⊢ Ei [f (y; e0)], with Δ | Γ ⊢ f (y; e0), k = |zi | + 1 and y | ⋄k, zi ⊢ Ei [□]
Tail recursive contexts with f ̸∈ fv(e0):
T : := □ | let x = e0 in T | match e0 { pi ↦→ Ti } | match! e0 { pi ↦→ Ti } | drop x; T | free k; T

Fig. 8. TRMReC: tail-recursive modulo reusable contexts.

fun tmap(t : tree<a>, ^f : a -> b) : tree<a>
match! t

Bin(l,r) -> val l’ = tmap(l,f) in val r’ = tmap(r,f) in Bin(l’, r’)
Tip(a) -> Tip(f(a))

Let us focus on the first branch, where a CPS-translation yields the following closures:

Bin(l,r) -> tmap(l,f, fn(l’){ tmap(r,f, fn(r’){ k(Bin(l’, r’)) }) })

Comparing with our tzipper type, we can identify Top with the identity function, BinR with the

inner closure (fn(r’) k(Bin(l’, r’))), and BinL with the outer closure – the zipper is just the

defunctionalization of the closures:

fn(x) x === Top -> t
fn(r’) k(Bin(l’,r’)) === BinR(l’,k) -> app( Bin(l’,t), f, k )
fn(l’) tmap(r,f,fn(r’){ k(Bin(l’,r’)) }) }) === BinL(k,r) -> down(r,f,BinR(t,k))

The arguments r’ and l’ to the closures correspond to the tree t, the down function to the transformed

tmap function, and app applies the defunctionalized continuation k to the new tree. As shown

by Danvy [2022], this defunctionalized CPS-transformation applies widely and can transform many

programs from direct-style to tail-recursive form. But are these techniques also applicable when

writing FIP programs? Sobel and Friedman [1998] show that it is always possible to reuse the zipper

for the result in all anamorphisms. In fact, in the above translation, it is even possible to reuse the

initial tree to construct the zipper.

Using this insight, we can give a general translation to tail-recursive programs that is guaranteed

fully in-place. It is inspired by the defunctionalized CPS-translation, but we have to make several

small adjustments to make it work. For example, notice how the borrowed function f is not included

in the zipper, but instead passed directly to app. This is crucial, since we can not store a borrowed

value inside a data structure. Figure 8 shows the formal transformation, based on the general

framework of tail recursion modulo context as shown recently by Leijen and Lorenzen [2023].

Starting with a function f (y; x) = e, we first define the zipper by creating a constructor H for

the identity and one constructor Zi each for each evaluation context Ei in e that contains a recursive
call to f . Each constructor carries the free variables zi of its evaluation context and the link to the

parent zipper z′. We transform f into f ′(y; x, z) and provide an app(y; z, x ′) function, where we
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ensure that they all receive the same borrowed variables y. The calls to f ′ receive the current zipper
as an extra argument z and is defined by the translation below. The app function matches on the

current zipper (as before) and resumes execution in the relevant (transformed) evaluation context.

The transformation follows defunctionalized CPS contexts of the TRMC framework [Leijen

and Lorenzen 2023,Sec. 4.3] with the (tctx), (base), (tail), and (ectx) rules. If we encounter a tail
context, we continue the transformation in every hole using the (tctx) rule. When we encounter a

term e0 which has no recursive calls, the (base) rule inserts a call to app to apply the result of e0
to the continuation stored in z. If we encounter a tail-call we simply leave it as is. Finally, if we

find a call in an evaluation context, we make it into tail-call by storing the free variables of Ei and
the current zipper. Notice that we cannot have a tail-context nested in an evaluation context: the

translation assumes that programs are in A-normal form [Flanagan et al. 1993].

So far this transformation describes just how to enable tail recursion on general defunctionalized

CPS contexts but the result is not yet guaranteed to be FIP. To guarantee that reuse applies we need

to instantiate the (★) condition to ensure the following three properties hold:

• The function call f (y; e0) may not depend on the evaluation context Ei. In particular, it may not

use any borrowed values introduced by a let in Ei.
• The context Ei may not depend on any borrowed values except y. In particular, it cannot use

any variable introduced as borrowed in a preceding tail-context (as borrowed values cannot be

stored in the accumulator).

• We need to be able to allocate the accumulator, so a reuse credit ⋄k needs to be available that can
store the variables zi and the parent link z.

If all three conditions are met (as formalized by the (★) condition), this transformation yields a

tail-recursive, fully in-place program:

Theorem 5. (The TRMReC transformation is sound.)
Let f be a function with y | x ⊢ f (y; x) and f (v1; v2) −→∗ w. If it can be transformed into f ′, then
y | x, k ⊢ f ′(y; x, k) and y | k, x ⊢ app(y; k, x) and f ′(v1; v2,H) −→∗ w.

See Appendix D for the proof (which also generalizes to the case here k ≥ |zi | + 1 or more

than one reuse credit is available). Clearly, this translation can apply to the tmap introduced at

the start of this section. We just have to check the (★) condition: For the first context E1 =

val l’ = □ in val r’ = tmap(r, f) in Bin(l’, r’), we have f | ⋄2, l, r ⊢ E1 [map(f ; l)], f | l ⊢ map(f ; l)
and f | ⋄2, r ⊢ E1 [□]. For the second context E2 = val r’ = □ in Bin(l’, r’), we have f | ⋄2, l′, r ⊢ E2 [map(f ; r)],
f | r ⊢ map(f ; r) and f | ⋄2, l′ ⊢ E2 [□]. Thus the condition is fulfilled and the translation succeeds.

An important special case of the more general transformation is the tail recursion modulo (product)

cons transformation [Bour et al. 2021; Leijen and Lorenzen 2023], where E = let x = □ in v. This
can be compiled more efficiently by allocating the values v upfront and storing E as pointers to

the slots x in v. In our programming examples in section 4 we assume this optimization, but in

systems that lack it one can instead obtain a FIP program by using reusable contexts.

3.2 Schorr-Waite Tree Traversals
Using the translation in the previous section we can now generalize the tmap function to any

polynomial inductive datatype. Following the approach by van Laarhoven [2007] to generically

derive functors in Haskell, we use a generic macro $map𝜏 to define a (non tail-recursive) map
function for any type T 𝛼 in a straightforward way, where we match on each constructor in T and
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call the $map macro on each of the fields:

map(f ; x) = match! x $mapT 𝛼 (f ; xi) = map(f ; xi)
Ck
1
(x1 :𝜏1) . . . (xk :𝜏k) → $map𝛼 (f ; xi) = f (xi)

let y1 = $map𝜏1 (f ; x1) in $map𝜏 (f ; xi) = xi otherwise
. . .

let yk = $map𝜏k (f ; xk) in
Ck
1
y1 . . . yk

. . .

The $map𝜏 macro dispatches on the type of its argument. if x has type T 𝛼 it generates a recursive

call map(f ; x) if x has type 𝛼 , it generates a call f (x); otherwise it leaves the argument unchanged.

In this definition, all recursive calls to map happen in an evaluation context E = let yi = □ in . . .,

where we can show that f | xi ⊢ map(f ; xi) and f | ⋄k, y1, . . ., yi−1, xi+1, . . ., xk ⊢ E[□] holds. Thus,
we can apply the TRMReC transformation of the previous section and automatically obtain a

tail-recursive fully-inplace version of map!
Why does reuse work so naturally here? Part of the solution seems to be that the link to the

parent is stored together with the other free variables. In contrast, McBride [2008] defines a generic

fold function which is not fully in-place since it stores the defunctionalized continuations on a

stack. Nevertheless, as McBride [2001] shows, the defunctionalized continuations correspond to the

(generalised) derivative of a regular type T 𝛼 . For every constructor C with k recursive subtrees, the
derivative datatype has k constructors, one for each possible continuation. The reuse then arises

naturally, as the constructors of the derivative and original datatype can line up perfectly.

In the literature on imperative algorithms, these traversals that use no extra stack space except for

direction hints (as encoded in the constructors of the zipper datatype), are known as Schorr-Waite

traversals [Schorr and Waite 1967]. Effectively, we can thus derive a Schorr-Waite traversal for any

polynomial algebraic datatype and use the reuse of the FIP calculus to compile it to the corresponding

imperative code. This is remarkable as imperative Schorr-Waite traversals are notoriously difficult

to get right or prove correct. In his famous work on separation logic, Reynolds [2002] writes:

The most ambitious application of separation logic has been Yang’s proof of the Schorr-

Waite algorithm for marking structures that contain sharing and cycles.

Of course, our construction cannot handle cycles, but rather shows the traversal of trees (or any

polynomial inductive datatype in general). The tree traversal by itself, however, is already quite

complicated and has become a benchmark for verification frameworks [Loginov et al. 2006; Walker

and Morrisett 2000]. Furthermore, our translation also shows that the Schorr-Waite tree traversal is

equivalent to a stack-based depth-first traversal (like the standard tmap). This was already shown

by Yang [2007] in the context of separation logic, but that required more advanced methods than

straightforward induction.

4 FURTHER EXAMPLES OF FULLY IN-PLACE ALGORITHMS
Many common functions used in functional programming are already FIP in their standard definition,

like map or reverse. In this section we want to present some advanced examples that test the limits of

what is possible. Along the way, we see several techniques that may be of general use for designing

algorithms in a language with in-place reuse. These include passing reuse credits to functions,

padding constructors and the partition datastructure. Full listings of the examples in this section

can be found in Appendix F.

4.1 Imperative red-black tree insertion, functionally
Can insertion into a red-black tree be FIP? The traditional implementation of red-black trees, due

to Okasaki [1999], can indeed be written to use all its arguments in-place. However, it occasionally
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has to rebalance the result of the recursive call and thus uses stack space linear in the depth

of the tree. However, we can avoid this by using a zipper (as in Section 3) and balancing while

reconstructing the tree from the zipper. Surprisingly, this yields a functional implementation which

is almost identical to the imperative red-black tree insertion algorithm described in the popular

“Introduction to Algorithms” textbook [Cormen et al. 2022]. We first define the tree and its zipper:

type color { Red; Black }
type tree<k,v>

Node(c : color, l : tree<k,v>, k : k, v : v, r : tree<k,v>)
Leaf

type accum<k,v>
Done
NodeL(c : color, l : accum<k,v>, k : k, v : v, r : tree<k,v>)
NodeR(c : color, l : tree<k,v>, k : k, v : v, r : accum<k,v>)

This definition is typical for a functional datastructure, but different from the imperative definition

as a node does not store a pointer to its parent. Such parent-pointers would not work well in our

setting, because they create many small cycles between parent and children, which can never be

in-place reused again. Instead, we use pointer-reversal along the insertion path. On this path, the

zipper contains the parent links instead of children links and no cycles are created.

We can insert a value into the tree by recursing into the left- or right-subtree until we either find

the key with an existing value or a leaf. In the latter case, we will have to allocate a new node for

key and value. During the recursion, we turn the nodes of the tree into the accum zipper. At the end,

we thus have a subtree with our new value and a zipper. We create a rebalanced red-black tree by

calling the fixup function below on them.

But how dowewrite fixup? Thankfully, we can translate it almost verbatim from the rb-insert-fixup

procedure in section 13.3 of Cormen et al. [2022]. Just as in that procedure, we only consider the

case where z.p == z.p.p.left, where we write zp for the zipper corresponding to the parent link z.p

(and thus zpp is a NodeL). There are three cases (marked on the left of the function definition) that

correspond to Cormen et al. [2022]’s three cases. Case one translates directly (even if we have it

twice). In case three we notice that it is possible to stop fixup (by calling rebuild defined below) as

z.p was colored black. Case two is the most difficult one as our naming scheme breaks down at the

assignment z = z.p. Here we notice how the inner part is first rotated left before the outer part is

rotated to the right. Again we can stop balancing as z.p is now black.

fip fun fixup( zp : accum<k,v>, z : tree<k,v> ) : tree<k,v>
match! zp

NodeL(Red,zpp,zpk,zpv,zpr) -> match zpp
NodeL(Black,zppp,zppk,zppv,y) ->

if is-red(y)
then fixup(zppp,Node(Red,Node(Black,z,zpk,zpv,zpr),zppk,zppv,y.set-black)) // (1)
else rebuild(zppp,right-rotate(Node(Red,Node(Black,z,zpk,zpv,zpr),zppk,zppv,y))) // (3)

NodeR(Red,zpl,zpk,zpv,zpp) -> match zpp
NodeL(Black,zppp,zppk,zppv,y) ->

if is-red(y)
then fixup(zppp,Node(Red,Node(Black,zpl,zpk,zpv,z),zppk,zppv,y.set-black)) // (1)
else rebuild(zppp,right-rotate( // (2)

Node(Red,left-rotate(Node(Red,zpl,zpk,zpv,z.set-black)),zppk,zppv,y)))
// and cases as above with "left" and "right" interchanged
_ -> rebuild(zp, z)

We have left some functions unspecified: set-black sets the color of a node to black. is-red returns

a boolean indicating whether the given node is red. We have to make its argument borrowed so

that we apply r2 to it. The left rotation is as usual (and the right rotation its mirror image).
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fip fun is-red(^t : tree) : bool
match t { Node(Red) -> True; _ -> False }

fip fun left-rotate(t : tree<k,v>) : tree<k,v>
match! t { Node(c,l,k,v,Node(c1,l1,k1,v1,r1)) -> Node(c1,Node(c,l,k,v,l1),k1,v1,r1); t’ -> t’ }

The last remaining function is rebuild, which is called when balancing is finished. In the imperative

implementation, this simply marks the root black and returns the root. But in our version, the root

is now hidden in the zipper and we have to rebuild the tree from the zipper (without balancing) to

access the root:

fip fun rebuild(z : accum<k,v>, t : tree<k,v>)
match! z

NodeR(c, l, k, v, z1) -> rebuild(z1, Node(c, l, k, v, t))
NodeL(c, z1, k, v, r) -> rebuild(z1, Node(c, t, k, v, r))
Done -> t.set-black

In practice, the imperative version benefits from not having to rebuild the tree (and fixup considers

some cases specifically to be able to enter rebuild earlier). Thus we can not quite achieve the same

efficiency in a functional version. However, our version can also be used persistently (see Section 5)

and might be easier to understand.

4.2 Sorting lists in-place
Is it possible to run merge sort in-place? The traditional functional implementation first turns each

element into a singleton list. A singleton list is obviously sorted, so we can now pairwise merge

such sorted lists. Finally, we end up with just one sorted list, which we extract:

[4,3,2,1] -> [[4],[3],[2],[1]] // created sorted singleton lists
-> [[3,4],[1,2]] -> [[1,2,3,4]] // merge sorted lists pairwise
-> [1,2,3,4] // extract sorted list

Here, the output takes up just as much space as the input - so a fully in-place implementation might

be possible. But in the first step, many singleton lists are created for which no reuse tokens are

available, so the traditional implementation is not fully in-place.

However, we can make it FIP by using a tailor made datastructure, that can store the sorted

sublists while taking up exactly the same amount of space as the original list. Our partition is a list

partitioned into sublists, which are either Singletons or Sublists of at least two elements. Since a

sublist has at least two elements, we can store two elements in the last cell.

type sublist<a>
Cons(a : a, cs : sublist<a>)
Tuple(a : a, b : a)

type partition<a>
Sublist(c : sublist<a>, bdl : partition<a>)
Singleton(c : a, bdl : partition<a>)
End

Considering the memory usage, we see that a sublist can store n elements in n − 1 cells. As a

result, a partition of n elements uses just as much space as a list of n elements, while also keeping

information about the partitioning. With that in hand, we can implement an in-place list mergesort:

Cons(4,Cons(3,Cons(2,Cons(1,Nil)))) // start with unsorted list
-> Singleton(4,Singleton(3,Singleton(2,Singleton(1,End)))) // created sorted singleton lists
-> Sublist(Tuple(3,4),Sublist(Tuple(1,2),End)) // merge sorted lists pairwise
-> Sublist(Cons(1,Cons(2,Tuple(3,4))),End) // merge sorted lists pairwise
-> Cons(1,Cons(2,Cons(3,Cons(4,Nil)))) // extract sorted list

Note that this does not solve the (much harder) in-place sorting problem for arrays, where we can

not distinguish sublists through tags and shuffling pointers.

This datastructure is also helpful to implement a quicksort that can not run out of stack. The

typical functional but in-place implementation is [Baker 1994; Hofmann 2000b; Hudak 1986]:
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fbip fun quicksort(xs : list<a>)
match! xs

Nil -> Nil
Cons(pivot, xx) ->

val (lo, hi) = split(pivot, xx) // split xx into (lo,hi) in-place
val (lo’,hi’) = (quicksort(lo),quicksort(hi)) // sort the sublists
append(lo’, Cons(pivot, hi’))

This code is not FIP because the stack usage is not bounded and might grow linear with the length

of the input list. Of course, we could apply the defunctionalized CPS-transformation (see Section 3),

but our (★)-condition fails:

Cons(pivot, xx) -> // reuse credit of size 2 available
val (lo, hi) = split(pivot, xx)
quicksort’(lo, Z1(pivot, hi, zipper)) // reuse credit of size 3 needed

The problem here is that the zipper needs to store pivot,hi and the parent zipper, which requires

more space than we have available. This is because, in a stack-safe quicksort, the zipper needs to

keep track of all the pivots and hi lists that still need to be sorted. However, we can use a partition

structure as the zipper where we store the pivots as singletons and the hi either not at all (if hi is

empty), as a singleton (if hi is a one-element list) or else as a sublist. We can pass the parent zipper

into the split function, which now returns a list lo and a partition hi which includes the zipper.

Then we obtain a fully in-place solution:

Cons(pivot, xx) -> // reuse credit of size 2 available
val (lo, hi) = split(pivot, xx, zipper)
quicksort’(lo, Singleton(pivot, hi)) // reuse credit of size 2 needed

4.3 Finger trees
Finally, as an advanced example, we want to consider finger trees [Claessen 2020; Hinze and

Paterson 2006], an efficient functional implementation of sequences. Yet, at first glance the cons

function on finger trees does not appear to be FIP: only the More constructors can be reused as the

other datatypes do not match up for reuse. We can fix this, however, by padding all constructors

with a dummy atom Pad so that they all have three slots.

We use Claessen [2020]’s version of finger trees, since Hinze and Paterson’s version has an extra

Four constructor which would require us to pad all constructors to four fields.

fun cons(x : a, s : seq<a>) : seq<a>
match! s

Empty -> Unit(x, Pad, Pad)
Unit(y, _, _) -> More(One(x, Pad, Pad), Empty, One(y, Pad, Pad))
More(One(y, _, _), q, u) -> More(Two(x, y, Pad), q, u)
More(Two(y, z, _), q, u) -> More(Three(x, y, z), q, u)
More(Three(y, z, w), q, u) -> More(Two(x, y, Pad), cons(Pair(z, w, Pad), q), u)

We have gotten rid of all deallocations since all constructors on the left of -> can be paired with one

to the right. But we still have allocations in the Empty, Unit and More(Three) cases. Even worse, the

cons can recurse up to O(log n)-times in the More(Three) case and require a new memory cell each

time, so this function is not fip(n) or fbip(n). However, this case is very unlikely as the amortized

complexity analysis of finger trees shows that cons only recurses O(1)-times on average and thus

only uses a constant amount of memory.

Therefore, we pair a finger tree seq<a> with a buffer which contains exactly the memory needed.

Our buffer is just a padded list of size 3, which makes it available for reuse with the rest of the

finger tree.

type buffer { BEmpty; BCons(next : buffer, b : pad, c : pad) }
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Extended syntax :

v ::= . . . | _z x . e (lambda with z = fv(_x . e))
e ::= . . . | dup x; e | dropru x; e | alloc k; e

Extended evaluation steps :

(beta) (_z x . e) v −→ e[x:=v]
(dup) dup x; e −→ e
(dropru) dropru x; e −→ e
(alloc) alloc k; e −→ e

Δ | Γ, x ⊢ e x ∈ (Δ, Γ)
Δ | Γ ⊢ dup x; e

dup

Δ | Γ,⋄k ⊢ e k ⩾ 1

Δ | Γ ⊢ alloc k; e
alloc

Δ | Γ1 ⊢ e1 Δ | Γ2 ⊢ e2
Δ | Γ1, Γ2 ⊢ e1 e2

app

Δ | Γ,⋄k ⊢ e k = size(x)
Δ | Γ, x ⊢ dropru x; e

dropru

x ∈ (Δ, Γ) Δ | Γ, x i ⊢ ei
Δ | Γ ⊢ match x { Ci x i ↦→ dup x i; ei }

match

∅ | z, x ⊢ e z = fv(_x . e)
Δ | z ⊢ _z x . e

lam

Fig. 9. The _fip calculus extends the Perceus linear resource calculus with borrowing reuse, and unboxed
tuples. The calculus extends the syntax, rules, and functional semantics of the FBIP calculus as shown in
Figure 6 and 4. The multiplicity of each member in Γ is unconstrained.

We then pass the necessary reuse credits of size 3 to cons, which we either use to create a

new cell in the finger tree or fill up the buffer. If we recurse into cons, we draw the neces-

sary memory back from the buffer. Then we only need to ensure that we pass enough credits

so that the buffer is never empty. Inserting two elements x,y into an empty finger tree yields

More(One(x, Pad, Pad), Empty, One(y, Pad, Pad)), so it would seem that we need to pass at least

two credits. But that would mean that we need 6n space to represent n elements in a finger

tree! We can do better by specializing More(One) as More0 to represent the two-element list as

More0(x, Empty, One(y, Pad, Pad)). With this modification, it suffices to pass in a single reuse credit

per element for a space overhead of 3n space, which is close to the 2n factor of singly-linked lists.

Our cons function than takes a reuse credit unit3 and becomes:

fip fun cons(x : a, u3 : unit3, s : seq<a>, b : buffer) : (seq<a>, buffer)
match! s

Empty -> (Unit(x, Pad, Pad), b)
Unit(y, _, _) -> (More0(x, Empty, One(y, Pad, Pad)), b)
More0(y, q, u) -> (More(Pair(x, y, Pad), q, u), b)
More(Pair(y, z, _), q, u) -> (More(Triple(x, y, z), q, u), BCons(b, Pad, Pad))
More(Triple(y, z, w), q, u) ->

match! b
BCons(b’, _, _) ->

val (q’, b”) = cons(Pair(z, w, Pad), u3, q, b’)
(More(Pair(x, y, Pad), q’, u), b”)

This function is now fully in-place. In the More(Two) case we store an unneeded credit in the buffer.

In the More(Three) case we recurse
3
and take a reuse credit from the buffer. The buffer has the

invariant that, given n1 Triple, n2 Three and n3 Two constructors in the finger tree, its size is just

n1 + 2 ∗ n2 + n3. Since this invariant is maintained in the cons function, the buffer is never empty.

5 REFERENCE COUNTINGWITH BORROWING AND UNBOXING
In this section we formalize the connection between the FIP calculus and Perceus precise reference

counting [Lorenzen and Leijen 2022; Reinking, Xie et al. 2021]. Our implementation of FIP in Koka

3
The recursive call is here in tail-position modulo product-contexts [Leijen and Lorenzen 2023], which can be efficiently

compiled to a tail-recursive call. However, we could also apply the TRMReC transformation to eliminate it (see section

Appendix D).
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uses this approach where detection of the uniqueness of owned arguments happens dynamically

at run-time. Figure 9 formalizes the _fip calculus as an extension of the syntax and operational

semantics of the FBIP calculus (in Figure 4 and 6). It has full lambda expressions _z x . e now since

arbitrary allocation is allowed. Here we write the free variables of the lambda expression explicitly

as (the multiset) z. This is not needed for the functional operational semantics but as we see later, we

require it for the heap based operational semantics. Moreover, we have a dup x; e and dropru x; e
expressions that let us duplicate owned variables and explicitly reuse dropped variables. Finally,

the alloc k; e allows for abitrary allocation of constructors by creating reuse credits ⋄k at runtime.

The (beta) evaluation rule for lambda expressions is standard, and we can see that the (dup),
(dropru), and (alloc) rules have no effect in the functional operational semantics (and are only used

in the heap semantics).

We rephrase the original Perceus linear resource calculus, called _1 [Reinking, Xie et al. 2021],

in Figure 9 as a type system (instead of a typed translation). We call any expressions in Δ | Γ ⊢ e
well-formed, and such expression always uses correct reference counting when evaluated, i.e. it

never drops a value from the heap that is still needed later, or leaves garbage in the heap at the end

of an evaluation. Moreover, the new type rules also extend the original rules with borrowing and

unboxed tuples, and give a characterization of reuse based on reuse credits.

Just like the FIP calculus, the rules are still based on linear logicwith a linear owned Γ environment,

but unlike a pure linear logic it now has an escape hatch: through rules like dup we can freely

duplicate “linear” variables by maintaining reference counts dynamically at runtime. As we can

see, there is a suprisingly close connection between _fip and the FBIP and FIP calculi where each

one is a strict subset of the other: FIP ⊂ FBIP ⊂ _fip. As such, the FIP calculus is exactly the subset

of _fip that excludes the rules that require dynamic reference counting!

The dup rule is the rule that either allows us to use a borrowed variable (x ∈ Δ) as owned, or
duplicates an owned variable (x ∈ Γ). The alloc rule now allows arbitrary allocation of a constructor

by adding a reuse credit ⋄k to the owned environment. With the full lambda expressions, we also

have an app rule to apply an argument to a lambda expression. Here, we split the owned environment

in two parts for each subexpression. We could have been more elaborate and allow borrowing of Γ2
in the e1 derivation just like our earlier let rule in Figure 4. We refrain from doing that here for

simplicity as we can always use let if borrowing is required.

The lam rule requires that all free variables of the lambda expression are owned (which are

needed to create the initial closure). In the body, we check with the free variables (from the closure)

and the passed in parameters as all owned. Borrow information is not part of a type, so only

top-level functions can take borrowed arguments (using the call rule).

The match rule can match on any borrowed or owned variable. However, each branch must start

by dupping the matched constructor fields (as dup(x i)). Indeed, since the match is non-destructive

each field is now reachable directly but also via the original x (and thus we need to increment the

reference count at runtime). For simplicity, the match rule can only match variables but we can

always rewrite an expression match e { . . . } into let x = e in match x { . . . } for a fresh x when

required. Since match no longer creates reuse credits, we can now create them explicitly instead

using the “drop reuse” dropru rule. This drops a variable x, and immediately allows for a reuse

credit ⋄k where k is the allocated size of x.
With the new match and dropru rules we no longer require the destructive match and corre-

sponding rule of the FIP calculus and we can always replace any destructive match:

match! x { Ci x i → ei } with match x { Ci x i → dup x i; dropru x; ei } .
In particular, if the FIP match! expression is well-formed, we have:

Δ | Γ, x i,⋄k ⊢ ei (1)
[dmatch!]

Δ | Γ, x ⊢ match! x { Ci x i → ei }
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A heap H extends a store S with reference counts n ⩾ 1, and can hold closures as well:

H : := ∅ | H,⋄k | H, x ↦→n𝜑 where 𝜑 : := C x | _zx . e
The ↦−→h relation extends the ↦−→s (using H for S) relation:
(duph) H, x ↦→n v | dup x; e −→h H, x ↦→n+1 v | e
(dlamh) H, x ↦→1_zx .e′ | drop x; e −→h H | drop z; e
(droph) H, x ↦→n+1 v | drop x; e −→h H, x ↦→n v | e (if n ⩾ 1)

(dropruh) H, x ↦→n+1Ck x | dropru x; e −→h H,⋄k, x ↦→nCk x | e (if n ⩾ 1)

(dconruh) H, x ↦→1Ck x | dropru x; e −→h H,⋄k | drop x; e

(alloch) H | alloc k; e −→h H,⋄k | e
(lamh) H | _z x . e −→h H, x ↦→1_zx . e | x (fresh x)
(apph) H | (y) y −→h H | dup z; drop y; e[x:=y] (y ↦→n_zx . e ∈ H)

Fig. 10. Heap semantics of _fip – extending the FBIP store semantics as shown in Figure 5 and 6.

and thus we can also derive that the translated match is well-formed in the _fip calculus:

x ∈ Γ, x

Δ | Γ, x i,⋄k ⊢ ei (1)
[dropru]

Δ | Γ, x, x i ⊢ dropru x; ei
[match]

Δ | Γ, x ⊢ match x { Ci x i → dup x i; dropru x; ei }
Furthermore, unlike the FIP or FBIP calculus, we can always elaborate a plain expression with

dup, drop, free, alloc, and dropru to make it a well-formed _fip expression. The heap semantics

can thus always be used to evaluate an expression. In particular, we can easily adapt the Perceus

algorithm [Reinking, Xie et al. 2021] to elaborate plain expressions with correct reference count

instructions.

5.1 Heap semantics
Figure 10 gives a heap based operational semantics for our Perceus calculus. Here we generalize

the store S from the FIP calculus (Figure 5) to contain a reference count n ⩾ 1 for each binding.

The heap now contains reuse credits ⋄k , a constructor binding x ↦→nC x, or a closure x ↦→n_z x . e.
We extend the original FBIP store semantics in Figure 5 and Figure 6 with new rules where the

evaluation context and eval rule stays the same (just replacing a store S with a heap H). For the
(bmatch) rule we can allow any reference count on the matched binding, while the (dmatch!) rule
requires that the matched binding has a unique reference count:

(bmatchh) H, y ↦→nCk y | match y {p → e} −→h H, y ↦→nCk y | ei [x:=y] (pi = Ck y)
(dmatchh) H, x ↦→1Ck y | match! x {p → e} −→h H,⋄k | ei [x:=y] (pi = Ck x)

The extra transition rules are for general allocation and reference counting. The (alloch) rule allows
allocating a constructor without a reuse credit, and similarly, the (lamh) rule allocates a closure.
The application rule (apph) applies a closure. We see that it starts by dupping its environment z,
and then dropping the closure itself. This way the app rule can consider the free variables to part of

the owned environment. This is important in practice as it allows a function to discard variables in

the environment as soon as possible and be garbage-free. Here we can also see why we need to

maintain z explicitly: even though the free variables of a lambda expression are initially distinct,

during evaluation some may be substituted by the same variable and we need to dup such variable

multiple times when applying to maintain proper reference counts.

The other rules all deal with reference counting. The (duph) transition increments a reference

count, while (droph) decrements a reference count n > 1. The (dlamh) rule drops a closure when
the reference count is 1; this never creates a reuse credit though as the size of a closure cannot be

accounted for statically. Note that also the environment is dropped, just like the (dconruh) rule
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and the (dcons) rule in Figure 6. The (dconruh) rule creates a reuse credit if the reference count
is unique, while the (dropruh) rule applies for a non-unique reference count with n > 1; this rule

decrements the reference count but also allocates a fresh reuse credit (as required by rule dropru) –

this is where the runtime falls back to copying if the cell was not unique.

Of course, with our match! translation, we no longer require the (dmatchh) rule and can derive

the rule from the translated expression when we assume the matched binding is unique:

H, x ↦→1Ck
i y | match! x { Ci x i → ei }

= H, x ↦→1Ck
i y | match x { Ci x i → dup x i; dropru x; ei }

−→h H, x ↦→1Ck
i y | dup y; dropru x; ei [x i:=y]

−→h H′, x ↦→1Ck
i y | dropru x; ei [x i:=y] { H′ is H but with all y refcounts +1 (A) }

−→h H′,⋄k | drop y; ei [x i:=y] { (dconruh), rc is 1 }
−→h H,⋄k | ei [x i:=y] { (droph), (A) }
However, the translation is more general, and can also proceed if the matched binding is not unique

but shared – in that case the final steps use (dropruh) and become:

. . .

−→h H′, x ↦→n+1Ck
i y | dropru x; ei [x i:=y] { H′ is H but with all y refcounts +1 (A) }

−→h H′,⋄k, x ↦→nCk
i y | drop y; ei [x i:=y] { (dropruh) }

−→h H,⋄k, x ↦→nCk
i y | ei [x i:=y] { (droph), (A) }

where the binding for x stays alive but we still allocate a fresh reuse credit. This is exactly where we

can generate the code shown in Section 1.4 where we essentially inline and specialize the definition

of dropru and check upfront if the matched binding is unique or not.

5.2 Soundness of the Heap Semantics
First we generalize the properties of the store semantics to reference counted heaps:

Definition 3. (Heap Soundness and Linearity)
For a heap H we write dom(H) to denote the set of variables x bound in H and write rng(H)
to denote the set of values C x bound in H. Two heaps H1,H2 are compatible if they map equal

names x ↦→n v ∈ H1, x ↦→mw ∈ H2, to equal values v = w. A heap is sound if all free variables in

rng(H) are bound: fv(rng(H)) ⊆ dom(H). A heap is linear if it is sound, and any variable x ↦→n v in
dom(H) occurs at most n times in the free variables of rng(H). By roots(H) we denote the multi-set

of reuse credits of H and variables x ↦→n v of dom(H), which contains any variable n − m times,

if it occurs m times in the free variables of rng(H).
The definition of linearity ensures that mutation is safe if the reference count is one. Exactly as

in the store semantics, we write [H]x to denote a substitution that recursively replaces variables

by their bound value in H. We assume that we are given heaps corresponding to the owned and

borrowed values, but only require that the heap of the owned values is linear. We can then show

that heap evaluation leaves the borrowed values unchanged:

Theorem 6. (The heap semantics is sound for well-formed Perceus programs)
If Δ | Γ ⊢ e and given heaps H1,H2 with Δ ⊆ dom(H1), H1 sound, Γ = roots(H2) and H2 linear,

then [H1 ⊗ H2]e ↦−→∗ v implies H1 ⊗ H2 | e ↦−→∗
h H1 ⊗ H3 | x where [H3]x = v, x = roots(H3)

and H3 is linear.

Unlike in the corresponding lemma for stores, we do not assume that the heaps have a disjoint

domain. Instead we use the join operator ⊗ to split the heap in a borrowed and owned part, where

the borrowed and owned part may have common elements with the same name and value. We join

common elements by summing their reference counts. Since this eliminates one reference to their
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children, we decrease their reference count accordingly:

∅ ⊗ H2 = H2

H1,⋄k ⊗ H2 = H1 ⊗ H2,⋄k
H1, x ↦→n v ⊗ H2 = H1 ⊗ H2, x ↦→n v iff x ̸∈ dom(H2)
H1, x ↦→n v ⊗ H2, x ↦→m v, z ↦→k+1w = H1 ⊗ H2, x ↦→n+m v, z ↦→kw iff z = fv(v)
This is again a strong theorem as it shows that the dynamic reference count is always correct and

no variables will be discarded too early, while also having no garbage at the end of an evaluation

(x = roots(H3)). Our proof (in Appendix E) is novel and may be well suited to possible mechanized

formalization. As a corrollary, any closed _fip expression can evaluate starting from an empty heap:

Corollary 3.
If e ↦−→∗ v and ∅ | ∅ ⊢ e, then ∅ | e ↦−→∗

h H | x and [H]x = v.

While it is outside the scope of this paper, we could also modify the let rule of our calculus with a

(★)-condition to characterize garbage-free and frame-limited derivations [Lorenzen and Leijen 2022].
However, borrowing makes it harder to achieve these proporties and further study is needed. In

particular, a garbage-free derivation can only exist if all borrowed arguments are still used later on,

and similarly, a frame-limited derivation can only exist if all borrowed arguments are either used

later on or have constant size.

6 RELATEDWORK
The FIP calculus is most closely related to Hofmann’s type system for in-place update [Hof-

mann 2000b 2000a]. Just like Hofmann, we add reuse credits to a linear enviroment, model a

destructive match, and collect top-level functions in the signature. However, Hofmann’s unboxed

tuples can escape into allocations, which makes it necessary to monomorphise the program (and

track types to be able to do so). In contrast, our calculus does not need monomorphisation or know

about types at all. Hofmann also uses a uniform size for all constructors of a datatype (including

atoms such as Nil), but unboxes the first layer of each datatype. Many FIP programs can also be

checked by that scheme, but it seems to increase memory usage substantially: in our calculus,

a constructor with n fields filled with atoms takes n space, while it would take n ∗ n space in

Hofmann’s calculus.

While we only model unique and borrowed values in our FIP calculus, shared values are another

interesting variant. Unlike borrowed values, shared values can be stored in datatypes. But unlike

unique values, they can be used multiple times (and it is not possible to use a destructive match! on

them). Shared values correspond to the usage aspect 2 introduced by Aspinall and Hofmann [2002]

and Aspinall et al. [2008]. We believe that it may be worthwhile to extend the FIP calculus with

shared values to allow it to check a wider range of programs. However, shared values can only be

supported in a garbage-collected setting, while our FIP programs can also easily be compiled to C.

Even without in-place reuse, FIP programs still use constant space, which allows us to reason

about their space usage. Space credits [Hofmann 2003; Hofmann and Jost 2003] generalize reuse

credits with the axiom ⋄n1 ,⋄n2 = ⋄n1 + n2 . This axiom does not hold for reuse credits (which can not

be combined unless they are in adjacent slots in the heap), but it does hold if we view ⋄n just as the
promise that nwords of space is available. Based on space credits, an automated analysis [Hoffmann

et al. 2011; Hofmann and Jost 2006] or manual proofs in separation logic [Madiot and Pottier 2022;

Moine et al. 2022] can be used to reason about heap space. However, these systems usually do not

model atoms or unboxing, which we identified as crucial for real-world FIP programs.

Reuse analysis can be implemented either statically using uniqueness types [Barendsen and

Smetsers 1995] or flow analysis, or dynamically using reference counts. Compile-time Garbage

Collection [Bruynooghe 1986] is the most developed flow based analysis, which tracks the flows of
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unique values through the program to identify reuse opportunities statically. Reuse with reference

counts has long been applied to arrays, where the update function can be designed to mutate the

array in-place if the reference count is one [Hudak and Bloss 1985; Scholz 1994]. Similarly, Stoye

et al. [1984] used reuse with one-bit reference counts for combinator reduction, where reuse is

encoded in the hand-written combinators. However, in this work, we rely on a reuse analysis that

can statically discover reuse opportunities between otherwise unconnected memory cells, which

was pioneered by OPAL [Didrich et al. 1994; Schulte 1994; Schulte and Grieskamp 1992]. Their

analysis was refined by Ullrich and de Moura [2019], who showed that such an analysis can be

implemented efficiently without duplicating code. They also introduce borrowed parameters but

these were used purely for improved reference counting efficiency. Reinking, Xie et al. [2021]

present the linear resource calculus as a formalization of precise reference counting and give a

garbage free algorithm. Lorenzen and Leijen [2022] refine this calculus further with a declarative

star condition that can guarantee either garbage-free or frame-limited space usage which ensures

extra space usage due to reuse is bounded.

Wadler [Wadler 1984] describes the listless transformation that can transform compositions of

many common list functions, like map, append, or partitition, into a state machine that does not

allocate any Cons cells. Functions that cannot be transformed include our reverse example, sorting a

list, or handle trees. Since the transform can discard Cons cells, we believe that any listless program

is also a well-formed FBIP program.

7 CONCLUSION AND FUTUREWORK
We have shown the necessary features for, and spirit of, fully in-place functional programming. We

believe the examples given in this paper have only scratched the surface of what is possible and

that there are more FIP algorithms waiting to be discovered. Another interesting research direction

is to extend the fully in-place calculus to cover more possible programs that are currently not quite

FIP; for example by adding shared values as described by Aspinall et al. [2008].
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Fig. 11. Benchmarks on Ubuntu 22.04.2 (AMD 7950x), Koka v2.4.1-dev-fbip.

A BENCHMARKS
Figure 11 shows benchmark results of examples from this paper, relative to the fip variant. The

results are the average over 5 runs on an AMD7950X on Ubuntu 22.04.2 with Koka v2.4.1-dev-fbip.

Each benchmark uses 100 iterations over N (=100000) element structures. We test each benchmark

in following variants:

• fip: the algorithm implemented as FIP in Koka.

• std: the standard functional implementation in Koka without reuse optimization. For general

GC’d languages without precise reference counts, the relative performance between std and fip
can be more indicative of potential performance gains.

• std-reuse: just as std but with reuse optimization enabled. This is standard Koka which always

applies dynamic reuse.

• c/c++: an standard in-place updating implementation in C or C++. Since our benchmarks are

allocation heavy, we also include a variant when linked with the mimalloc [Leijen et al. 2019]

memory allocator since that is usually faster than the standard C/C++ one.

The benchmarks consist of:

• rbtree: performs N balanced red-black tree insertions and folds the tree to compute the sum

of the elements. The fip variant is the one in Section 4.1. while std uses Okasaki style inser-

tion [Okasaki 1999]. The C++ versions use the standard in-place updating STL std::map which is

implemented using red-black trees internally.

• ftree: builds a finger tree of size N and performs 3*N uncons/snoc operations. The fip variant is

shown in Section 4.3 where the std variant uses a implementation described by Claessen [2020].

• msort, qsort: sorts an N element random list. The fip variant uses the implementations shown in

Section 4.2 while std uses the standard recursive functional implementations (derived from the

Haskell library implementations).

• tmap: maps an increment function over a shared (non-unique) N element tree returning a

fresh tree which is then folded to compute the sum of the elements. The fip variant uses the

implementation of Section 3 while std and c/c++ use the standard (recursive) way to map over a

tree.

It is hard to draw firm conclusions as the results are dependent on our particular implementation,

but we make some general observations:

• The performance of fip versus std is generally much better showing that in-place updating is

indeed generally faster than allocation.

• Even without a fip annotation, the std-reuse variant shows that the reuse optimization in Koka

can be very effective – but of course, unlike fip, reuse here is not guaranteed.
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• In an absolute sense, the performance seems very good where in the rbtree benchmark the fip
variant rivals the performance of the in-place updating std::map implementation in C++.

• The tmap benchmark is interesting as fip is generally slower here. The fip variant uses a zipper to
visit the tree such that uses constant stack space (unlike the others which use stack space linear

in the depth of the tree). Reversing the pointers Schorr-Waite style can be slower though than

recursing with the stack. Also, the tree that is mapped is shared and thus even the fip function

cannot reuse the original tree. Nevertheless, the fip variant will still reuse the zipper it uses to

traverse the tree. This is also shows why std and std-reuse are performing the similarly since

there is no reuse possible for the standard algorithms. That std-reuse is only about 1% slower

shows that the dynamic reuse check has negligible impact on performance.

B SOUNDNESS OF STORE SEMANTICS
This section contains the soundness result for the store semantics. It follows a typical progress-and-

preservation style proof, where we maintain an invariant across all steps of the store semantics.

First, we define a simple invariant and show that this guarantees progress of evaluation if we

omit the eval rule. We also show that our invariant is maintained by such evaluation steps. But this

is not quite enough since the eval rule has a complicated interaction with the bmatch construct.

We explain how our simple invariant goes wrong and define a more complicated one, which is also

preserved by the eval rule. Together, these results directly imply the soundness claim.

We define the free and bound variables in the usual way. In this section, we omit constructors

and top-level, statically-called functions from the free variables.

fv(f ) := ∅
fv(x) := {x}
fv(Ck v1 . . . vk) := fv(v1), . . ., fv(vk)
fv((v1, . . ., vn)) := fv(v1), . . ., fv(vn)
fv(e1 e2) := fv(e1), fv(e2)
fv(f (e1; e2)) := fv(e1), fv(e2)
fv(let x = e1 in e2) := fv(e1), fv(e2) − x
fv(match e { p ↦→ e }) := fv(e), fv(e1) − bv(p1), . . ., fv(en) − bv(pn)
fv(match! e { p ↦→ e }) := fv(e), fv(e1) − bv(p1), . . ., fv(en) − bv(pn)
bv(Ck x1 . . . xk) := {x1, . . ., xk}
fv(drop x; e) := fv(e), x
fv(free k; e) := fv(e)

B.1 Properties of Stores
In the following, we will often need to focus on a specific part of the store that corresponds to

all values reachable from a root set Γ. For a linear store with Γ ⊆ roots(S), we write S[Γ] for the
smallest linear subset of S containing Γ. Then we can split any store with roots Γ1, Γ2 into S[Γ1],
S[Γ2] and Scyc where Scyc is the largest linear subset of S with no roots:

Lemma 1. (Store splitting)
Let S be a linear store, Γ1 ∩ Γ2 = ∅ and Γ1, Γ2 = roots(S). Then S[Γ1], S[Γ2] and Scyc are pairwise
disjoint linear stores and S = S[Γ1], S[Γ2], Scyc .

Proof. We first show that they are pairwise disjoint: We use lemma 2 (see below) to prove that for

any x ∈ dom(S[Γ1]), we have x ̸∈ dom(S[Γ2]) and x ̸∈ dom(Scyc). By symmetry, the same holds

with Γ1 and Γ2 swapped which implies pairwise disjointness.

Case Let x ∈ Γ1. As x is a root of S, it does not occur in fv(rng(S)). As such, if x ∈ dom(S[Γ2])
or x ∈ dom(Scyc), it would be a root of S[Γ2] or Scyc respectively. But x ̸∈ Γ2 by assumption and
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x ̸∈ ∅. Thus the claim holds for all roots Γ1.

Case Let x ∈ fv(v) with y ↦→v ∈ S[Γ1], y ̸∈ dom(S[Γ2]) and y ̸∈ dom(Scyc). Since S is linear and

x ∈ fv(v), x ̸∈ fv(rng(S[Γ2])) and x ̸∈ fv(rng(Scyc)). Then x might still be a root of S[Γ2] or Scyc .
But x ̸∈ Γ2 since x is not a root of S and x ̸∈ ∅.

Now we show that they cover S. Let S′ = S − (S[Γ1], S[Γ2], Scyc). Then S′ is a linear store with
roots(S′) = ∅:

Case S′ is sound: Assume that x ∈ fv(rng(S′)) but x ̸∈ dom(S′). Since S is linear, x must be a root

of S[Γ1], S[Γ2], Scyc . But by lemma 3 (see below), the roots of S[Γ1], S[Γ2], Scyc are Γ1, Γ2 which are

also the roots of S. This is a contradiction, since x is not a root of S.

Case S′ is linear: Clearly, since S′ is a subset of S which is linear.

Case Assume that x ∈ roots(S′). Since Γ1, Γ2 ∈ dom(S[Γ1], S[Γ2], Scyc), x is not a root of S. But
since S is linear, this implies that S[Γ1], S[Γ2], Scyc is not sound, which is a contradiction to lemma 3.

But then (by lemma 3, see below) we could add S′ to Scyc to obtain a linear subset of S with no

roots. Since Scyc is already the largest such subset, S′ = ∅.

The above lemma makes use of the fact that S[Γ] contains just values reachable from the roots Γ.
We call this property cycle-free. Formally, a store S is cycle free if for any property P with

• P (x) for all x ∈ Γ
• P (x) for all x ∈ fv(v) with y ↦→v ∈ S and P (y)
we have P (x) for all x ∈ dom(S). In particular, the induced store is cycle-free:

Lemma 2. (Reachability from roots)
Let S be a linear store, Γ ⊆ roots(S) and S[Γ] the smallest linear subset of S containing Γ. Then
S[Γ] is cycle-free.

Proof. Let S′ be the subset of S[Γ] for which P is not true. We claim that S[Γ] − S′ is still a linear
subset of S containing Γ. Since S[Γ] being the smallest such set, this implies S′ = ∅.

Case Soundness of S[Γ] − S′: Assume that there is x ∈ fv(rng(S[Γ] − S′))with x ̸∈ dom(S[Γ] − S′).
Choose y ↦→v ∈ (S[Γ] − S′) with x ∈ fv(v). Since y ∈ dom(S[Γ] − S′), we have P (y). But since
S[Γ] is sound, x ∈ dom(S[Γ]) and thus x ∈ dom(S′). If x ∈ dom(S′), P (x) is not true, which is a

contradiction to the second rule of P .

Case Linearity of S[Γ] − S′: Since S[Γ] is linear, so is any subset of S[Γ].
Case S[Γ] − S′ contains Γ: By assumption P (x) is true for all x ∈ Γ, so Γ ∩ S′ = ∅.

We can combine any linear stores again to obtain a linear store:

Lemma 3. (Store joining)
Let S1 and S2 be disjoint sound/linear stores with roots Γ1 and Γ2. Then S1, S2 is a sound/linear store
with roots Γ1, Γ2.

Proof.
Case Soundness: Let x ∈ fv(rng(S1, S2)). Then either x ∈ fv(rng(S1)) or x ∈ fv(rng(S2)) and by

the soundness of S1 and S2, we have x ∈ dom(S1) or x ∈ dom(S2).
Case Linearity: Let x ∈ dom(S1, S2). Since S1 and S2 are disjoint, either x ∈ dom(S1) (exclusive)
or x ∈ dom(S2). Without loss of generality, assume x ∈ dom(S1). Then x ̸∈ dom(S2) and by

soundness of S2, x ̸∈ fv(rng(S2)). By linearity of S1, x occurs at most once in the free variables of

rng(S1). Since it does not occur in the free variables of rng(S2), it also occurs at most once in the

free variables of rng(S1, S2).
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Case Roots: Since S1 is sound and disjoint from S2, we have Γ2 ∩ fv(rng(S1)) = ∅. By symme-

try, Γ1, Γ2 ⊆ roots(S1, S2). Assume x ∈ roots(S1, S2). Then x ∈ roots(S1) or x ∈ roots(S2) and so

x ∈ Γ1, Γ2.

B.2 Simple Invariant
Our simple invariant maintains that the store remains “well-formed” during evaluation. We use

two stores: a “borrowed” store S1 which is unchanged by evaluation and an “owned” store which

can be changed. Our simple invariant I (e,Δ, Γ, S1, S2) is defined as:

• Δ | Γ ⊢ e
• S1, S2 are disjoint stores
• Δ ⊆ dom(S1) and S1 sound
• Γ = roots(S2) and S2 linear
That invariant makes it safe to modify S2, as all values that the store semantics destroys are in

Γ and not used anywhere else in the store (Γ = roots(S2)). It would be enough for soundness to

demand Γ ⊆ roots(S2). However, the stronger assertion directly gives us the garbage-free theorem

and by the weakening lemma 4 we can always add separated memory to the store later:

Lemma 4. (Weakening for store semantics)
If S | e −→∗

s S′ | e′ then S, S1 −→∗
s S′, S1 | e′ for any S1 with dom(S1) ∩ dom(S) = ∅.

Proof. By straight-forward induction on the judgement S | e −→∗
s S′ | e′.

B.3 Progress
In this section we want to show that the store semantics can progress if the simple invariant

is true and operational semantics can progress. We assume throughout that for any function

f (y; x) = e ∈ Σ, we have fv(e) ⊆ y, x. This is true if Σ is fully in-place:

Lemma 5. (Free variables of FIP expressions are in Δ, Γ)
If Δ | Γ ⊢ e, then fv(e) ⊆ Δ, Γ.

Proof. By induction on the judgement Δ | Γ ⊢ e.
Case var:

Δ | x ⊢ x (1), given

fv(x) ⊆ {x} (2), definition

Case atom:

Δ | ∅ ⊢ C (1), given

fv(C) = ∅ (2), definition

Case tuple:

Δ | Γ1, . . ., Γn ⊢ (v1, . . ., vn) (1), given

Δ | Γi ⊢ vi (2), by tuple

fv(vi) ⊆ Δ, Γi (3), inductive hypothesis

fv((v1, . . ., vn)) = fv(v1), . . ., fv(vn) ⊆ Δ, Γ1, . . ., Γn (4), definition

Case reuse:

Δ | Γ1, . . .,Gk ⊢ Ck v1 . . . vk (1), given

Δ | Γi ⊢ vi (2), by reuse

fv(vi) ⊆ Δ, Γi (3), inductive hypothesis

fv(Ck v1 . . . vk) = fv(v1), . . ., fv(vk) ⊆ Δ, Γ1, . . .,Gk (4), definition

Case call:
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Δ | Γ ⊢ f (y; e) (1), given

y ∈ Δ, dom(Σ) (2), by call

Δ | Γ ⊢ e (3), by call

fv(e) ⊆ Δ, Γ (4), inductive hypothesis

fv(f (y; e)) = y, fv(e) ⊆ Δ, Γ (4), definition and dom(Σ) ∩ fv(e) = ∅

Case bapp:

Δ | Γ ⊢ y e (1), given

y ∈ Δ (2), by bapp

Δ | Γ ⊢ e (3), by bapp

fv(e) ⊆ Δ, Γ (4), inductive hypothesis

fv(y e) = y, fv(e) ⊆ Δ, Γ (4), definition

Case empty:

Δ | Γ,⋄0 ⊢ e (1), given

Δ | Γ ⊢ e (2), by empty

fv(e) ⊆ Δ, Γ (3), inductive hypothesis

Case let:

Δ | Γ1, Γ2, Γ3 ⊢ let x = e1 in e2 (1), given

Δ, Γ2 | Γ1 ⊢ e1 (2), by let

Δ | Γ2, Γ3, x ⊢ e2 (3), by let

fv(e1) ⊆ Δ, Γ2, Γ1 (4), inductive hypothesis

fv(e2) ⊆ Δ, Γ2, Γ3, x (5), inductive hypothesis

fv(let x = e1 in e2) = fv(e1), fv(e2) − x ⊆ Δ, Γ1, Γ2, Γ3 (6), definition

Case bmatch:

Δ | Γ ⊢ match y { Ci x i ↦→ ei } (1), given

y ∈ Δ (2), by bmatch

Δ, x i | Γ ⊢ ei (3), by bmatch

fv(ei) ⊆ Δ, x i, Γ (4), inductive hypothesis

fv(match y { Ci x i ↦→ ei) = y, fv(e1) − x1, . . ., fv(en) − xn ⊆ Δ, Γ (5), definition

Case dmatch!:

Δ | Γ, x ⊢ match! x { Ci x i ↦→ ei } (1), given

Δ | Γ, x i,⋄k ⊢ ei (2), by dmatch!

fv(ei) ⊆ Δ, Γ, x i (3), inductive hypothesis

fv(match! x { Ci x i ↦→ ei) = x, fv(e1) − x1, . . ., fv(en) − xn ⊆ Δ, Γ (4), definition

We define [S − x]e as the substitution which replaces every variable y ∈ fv(e) − x by [S]y. Then:
Lemma 6. (Store Substitution on unused variables)
If x ̸∈ fv(e) or x ̸∈ dom(S), then [S]e = [S − x]e.

Proof. By induction on e.
Case Variable: y ≠ x
[S − x]y = [S]y (1), by definition

Case Variable: x
x ∈ fv(e) (1), since case necessary

x ̸∈ dom(S) (2), by (1)

[S]x = x (3), by (2)

[S − x]x = x (4), by definition
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Lemma 7. (Store Substitution commutes)
If S sound and [S]z = v, then [S] (e[x:=z]) = ( [S − x]e) [x:=v].

Proof.
[S]z = v = [S]v (1), store substitution is idempotent

[S] (e[x:=z]) = [S] (e[x:=v]) (2), by (1)

fv(v) ∩ dom(S) = ∅ (3), definition

fv(v) ⊆ z (4), since S is sound

x ∩ fv(e[x:=v]) ⊆ fv(v) (5), since x is substituted

[S] (e[x:=v]) = [S − x] (e[x:=v]) (6), lemma 6

Lemma 8. (Store semantics reads values)
If I (v,Δ, Γ, S1, S2) then S1, S2 | v −→∗

s S1, S′2 | x with [S2]v = [S′
2
]x and all names in dom(S′

2
) − dom(S2)

are fresh.

Proof. Using the (x1, . . .,□, . . ., vn) context, view each value v individually. By induction on v.
Case x: clear
S1, S2 | x −→∗

s S1, S2 | x (1), reflexivity

x ∈ dom(S2) (2), by invariant

Case C:
S1, S2 | C −→s S1, S2, x ↦→C | x (1), (atoms), fresh x
[S2, x ↦→C]x = [S2]C (2), obvious

Case Ck v1 . . . vk :
Δ | Γ1, . . ., Γk,⋄k ⊢ Ck v1 . . . vk (1), by reuse

Δ | Γ1, . . ., Γk ⊢ (v1, . . ., vk) (2), by tuple

I ((v1, . . ., vk),Δ, (Γ1, . . ., Γk), S1, S2 − ⋄k) (3), by (2)

S1, (S2 − ⋄k) | (v1, . . ., vk) −→∗
s S1, S′2 | x (4), inductive hypothesis

[S′
2
]x = [S2 − ⋄k] (v1, . . ., vk) (5), inductive hypothesis

S1, S2 | (v1, . . ., vk) −→∗
s S1, S′2,⋄k | x (6), weakening (4)

S1, S′2,⋄k | Ck x −→s S1, S′2, x ↦→Ck x | x (7), (reuses), fresh x
[S′

2
, x ↦→Ck x ′]x = [S2] (Ck v1 . . . vk) (8), by (5) and x fresh

We write drop x; e as a short-hand for drop x1; . . . drop xn; e.

Lemma 9. (Dropping can progress)
If I ((drop x; e),Δ, Γ, S1, S2) then S1, S2 | drop x; e −→∗

s S1, S′2 | e with [S1, S2]e = [S1, S′2]e.

Proof. By induction on |S2 |.
Case S2 = ∅:

Δ | ∅ ⊢ drop x; e (1), since roots(S2) = ∅
x = ∅ (2), by drop

S1, S2 | drop ∅; e −→∗
s S1, S2 | e (3), by reflexivity

Case S2 ≠ ∅. Let x = x, x ′.
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Δ | Γ, x, x ′ ⊢ drop x; e (1), by assumption

x ̸∈ Γ (2), by (1) and the multiplicity of x in Γ, x is one

x ̸∈ fv(drop x ′; e) (3), by (2) and lemma 5

S2 = S′
2
, x ↦→Ck y (4), by assumption

[S1, S2]e = [S1, S′2]e (5), by (3)

S1, S′2, x ↦→Ck y | drop x; drop x ′; e −→s S1, S′2 | drop (y, x ′); e (6), by (dcons)
|S′
2
| + 1 = |S2 | (7), by definition

Δ | Γ, y, x ′ ⊢ drop (y, x ′); e (8), by (1) and drop

Γ, x, x ′ = roots(S2) (9), by assumption

Γ, y, x ′ = roots(S′
2
) (10), by (4)

I ((drop (y, x ′); e),Δ, (Γ, y, x ′), S1, S2) (11), by (8) and (10)

S1, S′2 | drop (y, x ′); e −→∗
s S1, S′′2 | e (12), by inductive hypothesis

[S1, S′2]e = [S1, S′′2 ]e (13), by inductive hypothesis

[S1, S2]e = [S1, S′′2 ]e (14), by (5) and (13)

Since free variables and static functions are separate syntactic categories, we define store substi-

tution [S]e to not act on functions. This assumption simplifies our proof, but does not actually

change its semantics, since by lemma 36, we know that the store never contains functions anyway.

Then we can take steps in the store semantics yielding the same value as the operational semantics:

Lemma 10. (Store semantics can progress (no eval ctx))
If I (e,Δ, Γ, S1, S2) and [S1, S2]e −→ e′, then S1, S2 | e −→∗

s S1, S′2 | e′′ with e′ = [S1, S′2]e′′.

Proof. By case-analysis on [S1, S2]e −→ e′.
Case (let):
[S1, S2] (let x = v in e′) = (let x = [S1, S2]v in [S1, S2 − x]e′) (1), definition

−→ ([S1, S2 − x]e′) [x:=( [S1, S2]v)] (2), by (let)
S2 = S2 [Γ1], S2 [Γ2], S2 [Γ3], Scyc (3), by assumption

I (v,∅, Γ1,∅, S2 [Γ1]) (4), since ∅ | Γ1 ⊢ v
I (v,∅, Γ1, (S1, S2 [Γ2], S2 [Γ3], Scyc), S2 [Γ1]) (5), weakening (4)

S1, S2 | v −→∗
s S1, S′2 | z (6), lemma 8

S′
2
= S′

2
[Γ1], S2 [Γ2], S2 [Γ3], Scyc (7), by (5)

[S1, S′2]z = [S1, S2]v (8), lemma 8

[S1, S′2 − x]e′ = [S1, S2 − x]e′ (9), since all new bindings are fresh

S1, S′2 | let x = z in e′ −→s S1, S′2 | e′[x:=z] (10), (lets)
[S1, S′2] (e′[x:=z]) = ( [S1, S′2 − x]e′) [x:=( [S1, S′2]z)] (11), by lemma 7

( [S1, S′2 − x]e′) [x:=( [S1, S′2]z)] = ( [S1, S2 − x]e′) [x:=( [S1, S2]v)] (12), by (8) and (9)

Case (call):
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[S1, S2] (f (y′; v)) = f ( [S1, S2]y′; [S1, S2]v) (1), definition

−→ e[y:=( [S1, S2]y′), x:=( [S1, S2]v)] (2), by (call) with f (y; x) = e ∈ Σ
I ((f (y′; v)),Δ, Γ1, S1, S2) (3), by assumption

I (v,Δ, Γ1, S1, S2) (4), by call

S1, S2 | v −→∗
s S1, S′2 | z (5), lemma 8

[S1, S′2]z = [S1, S2]v (6), lemma 8

[S1, S′2]y
′
= [S1, S2]y′ (7), since all new bindings are fresh

S1, S′2 | f (y
′
; z) −→s S1, S′2 | e[y:=y

′
, x:=z] (8), by (calls) with f (y; x) = e ∈ Σ

[S1, S′2] (e[y:=y
′
, x:=z])

= [S1, S′2 − y, x]e[y:=( [S1, S′2]y
′), x:=( [S1, S′2]z)] (9), lemma 7

= e[y:=( [S1, S′2]y
′), x:=( [S1, S′2]z)] (10), since fv(e) ∈ y, x, dom(S)

= e[y:=( [S1, S2]y′), x:=( [S1, S2]v)] (11), by (6) and (7)

Case (app):
[S1, S2] ((f ) v) = (f ) ( [S1, S2]v) (1), by 36

−→ e[x:=( [S1, S2]v)] (2), by (app) with f (; x) = e ∈ Σ
I ((f v),Δ, Γ1, S1, S2) (3), by assumption

I (v,Δ, Γ1, S1, S2) (4), by bapp

S1, S2 | v −→∗
s S1, S′2 | z (5), lemma 8

[S1, S′2]z = [S1, S2]v (6), lemma 8

S1, S′2 | (f ) z −→s S1, S′2 | e[x:=z] (7), by (calls) with f (y; x) = e ∈ Σ
[S1, S′2] (e[x:=z]) = [S1, S′2 − x]e[x:=( [S1, S′2]z)] (8), lemma 7

= e[x:=( [S1, S′2]z)] (9), since fv(e) ∈ y, x, dom(S)
= e[x:=( [S1, S2]v)] (10), by (6)

Case (match):
[S1, S2] (match y { p ↦→ e })

= (match (C v) { p ↦→ [S1, S2]e }) (1), definition, where [S1, S2]y = Ck v
−→ ([S1, S2 − y]ei) [y:=v] (2), by (match)

I ((match y { p ↦→ e }),Δ, Γ1, S1, S2) (3), by assumption

y ↦→Ck z ∈ S1 (4), by (3)

[S1, S2]y = [S1, S2] (Ck z) = Ck v (5), since [S1, S2]y = Ck v
S, y ↦→Ck z | match y {p → e} −→s S, y ↦→Ck z | ei [y:=z] (6), by (bmatchs)
[S1, S2] (ei [y:=z]) = ( [S1, S2 − y]ei) [y:=v] (7), lemma 7

Case (match!):
[S1, S2] (match! x { p ↦→ e })

= (match! (C v) { p ↦→ [S1, S2]e }) (1), definition, where [S1, S2]x = Ck v
−→ ([S1, S2 − x]ei) [x:=v] (2), by (match!)

I ((match! x { p ↦→ e }),Δ, Γ1, S1, S2) (3), by assumption

x ↦→Ck z ∈ S2 (4), by (3)

[S1, S2]x = [S1, S2] (Ck z) = Ck v (5), since [S1, S2]x = Ck v
S, x ↦→Ck z | match! x {p → e} −→s S,⋄k | ei [x:=z] (6), by (dmatchs)
[S1, S2] (ei [x:=z]) = ( [S1, S2 − x]ei) [x:=v] (7), lemma 7

Case (drop):
I ((drop x; e),Δ, Γ, S1, S2) (1), given

S1, S2 | drop x; e −→∗
s S1, S′2 | e (2), by lemma 9

[S1, S2]e = [S1, S′2]e (3), by lemma 9
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Case (free):
I ((free k; e),Δ, Γ, S1, S2) (1), given

⋄k ∈ S2 (2), given

S1, S2,⋄k | free k; e −→∗
s S1, S2 | e (3), by (frees)

[S1, S2,⋄k]e = [S1, S2]e (4), obvious

B.4 Store semantics preserves linearity and roots
In this section, we wish to maintain the invariant I (e,Δ, Γ, S1, S2) which makes lemma 10 work.

Lemma 11. (Variable substitution preserves FIP typing)
Assuming that y does not occur in e. (1) If Δ | Γ, x ⊢ e, then Δ | Γ, y ⊢ e[x:=y]. (2) If Δ, x | Γ ⊢ e,
then Δ, y | Γ ⊢ e[x:=y].

Proof. By induction on the FIP judgement for any such x, y.
Case var:

Δ | x ⊢ x given

Δ | y ⊢ x [x:=y] given

Case let:

Δ | Γ1, Γ2, Γ3, x1, x2, x3 ⊢ let z = e1 in e2 given

Δ | Γ2, Γ3, x2, x3, z ⊢ e2 given

Δ | Γ2, Γ3, y2, y3, z ⊢ e2 [x2:=y2, x3:=y3] inductive hypothesis (1)

Δ, Γ2, x2 | Γ1, x1 ⊢ e1 given

Δ, Γ2, x2 | Γ1, y1 ⊢ e1 [x1:=y1] inductive hypothesis (1)

Δ, Γ2, y2 | Γ1, y1 ⊢ e1 [x1:=y1, x2:=y2] inductive hypothesis (2)

Δ | Γ1, Γ2, Γ3, y1, y2, y3 ⊢ (let z = e1 in e2) [x:=y] above

Other cases are clear.

Lemma 12. (The delta environment can be weakened)
If Δ | Γ ⊢ e, then Δ, x | Γ ⊢ e for any x ̸∈ Γ.

Proof. By straight-forward induction on the judgement Δ | Γ ⊢ e. We have to require x ̸∈ Γ as we

have to ensure Δ, x ∩ Γ = ∅.

The next lemma is the main lemma of our soundness proof. It says that the individual steps of the

store semantics take sound/linear stores to sound/linear stores. As usual, the judgement −→s does

not include the eval rule.

Lemma 13. (Store semantics preserves linearity and roots (no eval ctx))
If I (e,Δ, Γ, S1, S2) and S1, S2 | e −→s S1, S3 | e′, then I (e′,Δ′, Γ′, S1, S3).

Proof. By case analysis on the rules of the store semantics.

Case (lets).
S3 := S2 define

Δ | Γ, y ⊢ let x = y in e given

Γ, y = roots(S2) = roots(S3) given

Δ | Γ, x ⊢ e by let

Δ | Γ, y ⊢ e[x:=y] by lemma 11

Case (calls).
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S3 := S2 define

Δ, y′ | x ′ ⊢ f (y′; x ′) given

x ′ = roots(S2) = roots(S3) given

y′ ⊆ dom(S1) given

y | x ⊢ e by deffun and f (y; x) = e ∈ Σ
y′ | x ′ ⊢ e[x:=x ′, y:=y′] by lemma 11

Case (anons).
S3 := S2 (1), define

Δ, f | x ′ ⊢ f x ′ (2), given

x ′ = roots(S2) = roots(S3) (3), by (2)

∅ | x ⊢ e (4), by deffun and f (; x) = e ∈ Σ
∅ | x ′ ⊢ e[x:=x ′] (5), by lemma 11

Case (reuses).
Δ | ⋄k, x ⊢ Ck x (1), given

⋄k ∈ roots(S2) (2), by (1)

S3 := S2 − ⋄k, x ↦→Ck x (3), define, well-defined by (2)

Δ | x ⊢ x (4), by var

x,⋄k = roots(S2) (5), by (1)

x = roots(S3) (6), by (3),(5) and since x is fresh

S3 linear (7), by (6)

Case (atoms).
Δ | ∅ ⊢ C (1), given

S2 = ∅ (2), by (1)

S3 := x ↦→C (3), define

Δ | x ⊢ x (4), by var

x = roots(S3) (5), by (3)

S3 linear (6), since x is fresh

Case (bmatchs).
Δ | Γ ⊢ match y { p ↦→ e } (1), given

y ↦→Ck y ∈ dom(S1) (2), given

y ⊆ dom(S1) (3), since S1 is sound
Δ, y | Γ ⊢ e[bv(p):=y] (4), by (1) and 11

S3 := S2 (5), define

Case (dmatchs).
S3 := S2 − x,⋄k (1), define

Δ | Γ ⊢ match x { p ↦→ e } (2), given

x ↦→Ck y ∈ roots(S2) (3), given

S3 sound (4), by (3)

y ⊆ roots(S3) (5), since S2 is linear
Δ | Γ, y,⋄k ⊢ e[bv(p):=y] (6), by (2) and 11

Case (dcons).
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S3 := S2 − x (1), define

Δ | Γ, x ⊢ drop x; e (2), given

x ↦→Ck y ∈ roots(S2) (3), given

S3 sound (4), by (3)

y ⊆ roots(S3) (5), since S2 is linear
Δ | Γ, y ⊢ drop y; e (6), by (2), drop

Case (frees).
Δ | Γ,⋄k ⊢ free k; e (1), given

⋄k ∈ roots(S2) (2), given

S3 := S2 − ⋄k (3), define, well-defined by (2)

B.5 Main Invariant
We now want to generalize lemma 13 to arbitrary evaluation contexts. In particular, we might start

with I (E[e],Δ, Γ, S1, S2), take a step S1, S2 | e −→s S1, S3 | e′ andwant to obtain I (E[e′],Δ′, Γ′, S1, S3).
But unfortunately, this does not work. Let’s see where this breaks down. We define:

• E = let x = □ in drop x; y
• e = match y { C y ↦→ f (y; ) }
Then:

• We start with I (E[e],∅, {y},∅, S2)
• We have y | ∅ ⊢ e, so I (e, {y},∅, S2,∅)
• We step S2 | match y { C y ↦→ f (y; ) } −→s S2 | f (y; )
• Now we have y | ∅ ⊢ f (y; ), so I (e′, {y},∅, S2,∅)
But then we do not have:

• I (E[f (y; )],∅, {y},∅, S2), because the let-rule only allows us to borrow y, not y
• I (E[f (y; )],∅, {y, y},∅, S2), because y are not used as owned.

• I (E[f (y; )], {y}, {y},∅, S2), because clearly y ̸∈ ∅.

The problem seems to be that the Δ environment of the nested computation can change in such

a way, that we can not put the enviroment back together in our invariant. Therefore, we need a

weaker assumption which is maintained across nested evaluation steps. In this weaker invariant,

we maintain the split of the evaluation context explicitly and allow a new Δ′
environment for the

contained expression. We define IE (e,Δ, Γ, S1, S2) by induction on E:
Case E = □:

I□ (e,Δ, Γ, S1, S2) := I (e,Δ, Γ, S1, S2)
Case E[E′] = Ck x1 . . . E′ . . . vk | (x1, . . ., E′, . . ., vn) | E′ e | x E′ | f (y; E′) | match E′ { p ↦→ e }:
IE [E′ ] (e,Δ, (Γi, Γ), S1, (S2 [Γi], S′2)) := IE′ (e,Δ′, Γi, (S1, S′2), S2 [Γi]) and I (E[()],Δ, Γ, S1, S′2)

Case E[E′] = let x = E′ in e:
IE [E′ ] (e,Δ, (Γ1, Γ2, Γ3), S1, (S2 [Γ1], S′2)) :=

IE′ (e,Δ′, Γ1, (S1, S′2), S2 [Γ1])
and I (E[()],Δ, (Γ2, Γ3), S1, S′2)

The big difference between this new invariant and the statement I (E[e],Δ, Γ, S1, S2), is that we
allow an arbitrary Δ′

enviroment in the recursive case (as long as Δ′
continues to a be a subset of

S1, S′2). This simply weakens the previous invariant:

Lemma 14. (Weakening the invariant)
If I (E[e],Δ, Γ, S1, S2), then IE (e,Δ, Γ, S1, S2).
By induction on E:
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Case E = □:

I (e,Δ, Γ, S1, S2) (1), given

I□(e,Δ, Γ, S1, S2) (2), by definition

Case E[E′] = Ck x1 . . . E′ . . . vk | (x1, . . ., E′, . . ., vn) | E′ e | x E′ | f (y; E′) | match E′ { p ↦→ e }:
I (E[E′[e]],Δ, Γ, S1, S2) (1), given

Γ = Γi, Γ
′
and S2 = S2 [Γi], S′2 (2), by the relevant rule

I (E′[e],Δ, Γi, S1, S2 [Γi]) (3), by (2)

I (E[()],Δ, Γ′, S1, S′2) (4), by (2)

IE′ (e,Δ, Γi, S1, S2 [Γi]) (5), inductive hypothesis on (3)

IE [E′ ] (e,Δ, Γ, S1, S2) (6), by definition

Case E[E′] = let x = E′ in e:
I (E[E′[e]],Δ, Γ, S1, S2) (1), given

Γ = Γ1, Γ2, Γ3 and S2 = S2 [Γ1], S′2 (2), by let

I (E′[e], (Δ, Γ2), Γ1, (S1, S′2), S2 [Γ1]) (3), by (2)

I (E[()],Δ, (Γ2, Γ3), S1, S′2) (4), by (2)

IE′ (e, (Δ, Γ2), Γ1, (S1, S′2), S2 [Γ1]) (5), inductive hypothesis on (3)

IE [E′ ] (e,Δ, Γ, S1, S2) (6), by definition

Crucially, we can also weaken the simple variant inside the main invariant:

Lemma 15. (Weakening the invariant)
If IE (E2 [e],Δ, Γ, S1, S2), then IE [E2 ] (e,Δ, Γ, S1, S2).
By induction on E:
Case E = □:

I□(E2 [e],Δ, Γ, S1, S2) (1), given

I (E2 [e],Δ, Γ, S1, S2) (2), by definition

IE2 (e,Δ, Γ, S1, S2) (3), by lemma 14

I□[E2 ] (e,Δ, Γ, S1, S2) (4), by (3)

Case E[E′] = Ck x1 . . . E′ . . . vk | (x1, . . ., E′, . . ., vn) | E′ e | x E′ | f (y; E′) | match E′ { p ↦→ e }:
IE [E′ ] (E2 [e],Δ, (Γi, Γ), S1, (S2 [Γi], S′2)) (1), given

IE′ (E2 [e],Δ′, Γi, S1, S2 [Γi]) (2), by definition

I (E[()],Δ, Γ, S1, S′2) (3), by definition

IE′ [E2 ] (e,Δ′, Γi, S1, S2 [Γi]) (4), by inductive hypothesis on (2)

IE [E′ [E2 ] ] (e,Δ, (Γi, Γ), S1, (S2 [Γi], S′2)) (5), by (3) and (4)

Case E[E′] = let x = E′ in e:
IE [E′ ] (E2 [e],Δ, (Γ1, Γ2, Γ3), S1, (S2 [Γ1], S′2)) (1), given

IE′ (E2 [e],Δ′, Γ1, (S1, S′2), S2 [Γ1]) (2), by definition

I (E[()],Δ, (Γ2, Γ3), S1, S′2) (3), by definition

IE′ [E2 ] (e,Δ′, Γ1, (S1, S′2), S2 [Γ1]) (4), by inductive hypothesis on (2)

IE [E′ [E2 ] ] (e,Δ, (Γ1, Γ2, Γ3), S1, (S2 [Γ1], S′2)) (5), by (3) and (4)

Of course, we do not want to remain in the weaker invariant forever. But how can we get back,

if the Δ′
enviroment is wrong? The trick is that we have to wait until execution of the nested

expression is finished. Then, any resulting value can be typed with an empty Δ′
enviroment:

Lemma 16. (Values do not borrow)
If Δ | Γ ⊢ v, then ∅ | Γ ⊢ v.
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Proof. By induction on Δ | Γ ⊢ v:
Case x: clear
Δ | x ⊢ x (1), given

∅ | x ⊢ x (2), by var

Case C:
Δ | ∅ ⊢ C (1), given

∅ | ∅ ⊢ C (2), by atom

Case Ck v1 . . . vk :
Δ | Γ1, . . ., Γk,⋄k ⊢ Ck v1 . . . vk (1), by reuse

Δ | Γi ⊢ vi (2), by (1)

∅ | Γi ⊢ vi (3), inductive hypothesis

∅ | Γ1, . . ., Γk,⋄k ⊢ Ck v1 . . . vk (4), by reuse

Case (v1, . . ., vk):
Δ | Γ1, . . ., Γk ⊢ (v1, . . ., vk) (1), by tuple

Δ | Γi ⊢ vi (2), by (1)

∅ | Γi ⊢ vi (3), inductive hypothesis

∅ | Γ1, . . ., Γk ⊢ (v1, . . ., vk) (4), by tuple

Lemma 17. (Values do not borrow)
If I (v,Δ, Γ, S1, S2), then I (v,∅, Γ, S′

1
, S2) for any S′

1
.

Proof.
I (v,Δ, Γ, S1, S2) (1), given

Δ | Γ ⊢ v (2), by definition

S1, S2 are disjoint stores (3), by definition

Δ ⊆ dom(S1) and S1 sound (4), by definition

Γ = roots(S2) and S2 linear (5), by definition

∅ | Γ ⊢ v (6), by lemma 16

I (v,∅, Γ, S′
1
, S2) (7), above

However, notice that we introduce a Δ′
enviroment at every level of the evaluation context. That

means, that we can only remove a single level of the evaluation context at a time. To model this,

we call an evaluation context E flat if E = E′[E′′] implies that either E′
or E′′

is the hole. Then:

Lemma 18. (Strengthening the invariant)
If E is flat and IE (v,Δ, Γ, S1, S2), then I (E[v],Δ, Γ, S1, S2).

Proof. By case analysis on E.
Case E = □:

I□(v,Δ, Γ, S1, S2) (1), given

I (v,Δ, Γ, S1, S2) (2), by definition

Case E = Ck x1 . . . □ . . . vk | (x1, . . .,□, . . ., vn) | □ e | x □ | f (y;□) | match □ { p ↦→ e }:
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IE (v,Δ, (Γi, Γ), S1, (S2 [Γi], S′2)) (1), given

I□(v,Δ′, Γi, S1, S2 [Γi]) (2), by definition

I (E[()],Δ, Γ, S1, S′2) (3), by definition

I (v,Δ′, Γi, S1, S2 [Γi]) (4), by (2)

I (v,∅, Γi, (S1, S′2), S2 [Γi]) (5), by lemma 17

I (E[v],Δ, (Γi, Γ), S1, (S2 [Γi], S′2)) (6), by (3) and (5)

Case E = let x = □ in e:
IE (v,Δ, (Γ1, Γ2, Γ3), S1, (S2 [Γ1], S′2)) (1), given

I□(v,Δ′, Γ1, (S1, S′2), S2 [Γ1]) (2), by definition

I (E[()],Δ, (Γ2, Γ3), S1, S′2) (3), by definition

I (v,Δ′, Γ1, (S1, S′2), S2 [Γ1]) (4), by (2)

I (v,∅, Γ1, (S1, S′2), S2 [Γ1]) (5), by lemma 17

I (E[v],Δ, (Γ1, Γ2, Γ3), S1, (S2 [Γ1], S′2)) (6), by (3) and (5)

Again, we can also strengthen inside the main invariant:

Lemma 19. (Strengthening the invariant)
If E2 is flat and IE [E2 ] (v,Δ, Γ, S1, S2), then IE (E2 [v],Δ, Γ, S1, S2).

Proof. By induction on E.
Case E = □:

I□[E2 ] (v,Δ, Γ, S1, S2) (1), given

IE2 (v,Δ, Γ, S1, S2) (2), by definition

I (E2 [v],Δ, Γ, S1, S2) (3), by lemma 18

I□ (E2 [v],Δ, Γ, S1, S2) (4), by (3)

Case E[E′] = Ck x1 . . . E′ . . . vk | (x1, . . ., E′, . . ., vn) | E′ e | x E′ | f (y; E′) | match E′ { p ↦→ e }:
IE [E′ [E2 ] ] (v,Δ, (Γi, Γ), S1, (S2 [Γi], S′2)) (1), given

I (E[()],Δ, Γ, S1, S′2) (2), by definition

IE′ [E2 ] (v,Δ′, Γi, (S1, S′2), S2 [Γi]) (3), by definition

IE′ (E2 [v],Δ′, Γi, (S1, S′2), S2 [Γi]) (4), inductive hypothesis on (3)

IE [E′ ] (E2 [v],Δ, (Γi, Γ), S1, (S2 [Γi], S′2)) (5), by (2) and (4)

Case E[E′] = let x = E′ in e:
IE [E′ [E2 ] ] (v,Δ, (Γ1, Γ2, Γ3), S1, (S2 [Γ1], S′2)) (1), given

I (E[()],Δ, (Γ2, Γ3), S1, S′2) (2), by definition

IE′ [E2 ] (v,Δ′, Γ1, (S1, S′2), S2 [Γ1]) (3), by definition

IE′ (E2 [v],Δ′, Γ1, (S1, S′2), S2 [Γ1]) (4), by inductive hypothesis on (3)

IE [E′ ] (E2 [v],Δ, (Γ1, Γ2, Γ3), S1, (S2 [Γ1], S′2)) (5), by (2) and (4)

B.6 Soundness
Now we can show the main soundness theorem. First, we extend the progress and preservation

proofs to handle the step and eval cases. If we evaluate e1 under the context E1, we need to assume

the invariant IE1 (e1,Δ, Γ, S1, S2). But how can we obtain the invariant for this precise E1? The trick is
that we do not have to know E1, instead we can just assume IE2 (e2,Δ, Γ, S1, S2) for E1 [e1] = E2 [e2]:
Lemma 20. (Comparing evaluation contexts)
Let E1 [e1] = E2 [e2], then either:

• E1 = E′
1
[E′′

1
] with E′

1
= E2 and e2 = E′′

1
[e1]

• E2 = E′
2
[E′′

2
] with E′

2
= E1 and e1 = E′′

2
[e2]
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Proof. By induction on the pair (E1, E2):
Case E1 = □:

e1 = E2 [e2] (1), given

E2 = □[E2] (2), obvious

Case E2 = □:

e2 = E1 [e1] (1), given

E1 = □[E1] (2), obvious

Case Else: E1 = E′
1
[E′′

1
], E2 = E′

2
[E′′

2
], and E′

1
, E′

2
are flat.

E′
1
[E′′

1
[e1]] = E′

2
[E′′

2
[e2]] (1), given

E′
1
= E′

2
(2), by (1)

E′′
1

= E3 [E4] with E3 = E′′
2
and e2 = E4 [e1] (3), inductive hypothesis, wlog case (1) holds

E1 = E′
1
[E′′

1
] = E′

1
[E3 [E4]] (4), by (3)

E′
1
[E3] = E′

2
[E′′

2
] (5), by (2) and (3)

Lemma 21. (Alignment of invariant)
If e1 −→ e′

1
, E1 [e1] = E2 [e2] and IE2 (e2,Δ, Γ, S1, S2), then IE1 (e1,Δ, Γ, S1, S2).

Proof. Use lemma 20 to compare E1 and E2.
Case E1 = E′

1
[E′′

1
] with E′

1
= E2 and e2 = E′′

1
[e1]

IE2 (e2,Δ, Γ, S1, S2) (1), given

IE′
1

(E′′
1
[e1],Δ, Γ, S1, S2) (2), by assumption

IE′
1
[E′′

1
] (e1,Δ, Γ, S1, S2) (3), lemma 15

IE1 (e1,Δ, Γ, S1, S2) (4), by (3)

Case E2 = E′
2
[E′′

2
] with E′

2
= E1 and e1 = E′′

2
[e2]

IE2 (e2,Δ, Γ, S1, S2) (1), given

IE′
2
[E′′

2
] (e2,Δ, Γ, S1, S2) (2), by assumption

e1 = E′′
2
[e2] −→ e′

1
(3), given

Use case analysis on (3). In every case, either E′′
2

= □ or E′′
2
is flat with e2 = v.

If E′′
2

= □, then E2 = E′
2
= E1 and the claim holds by (1).

If E′′
2
is flat with e2 = v, then

IE′
2

(E′′
2
[v],Δ, Γ, S1, S2) (4), by (2) and lemma 19

IE1 (e1,Δ, Γ, S1, S2) (5), by (4)

Lemma 22. (Store semantics can progress)
If IE (e,Δ, Γ, S1, S2) and [S1, S2]e −→ e′, then S1, S2 | e −→∗

s S1, S′2 | e′′ with e′ = [S1, S′2]e′′.

Proof.
IE (e,Δ, Γ, S1, S2) (1), given

I (e,Δ′, Γ′, S′
1
, S′

2
), with S1, S2 = S′

1
, S′

2
and S′

2
⊆ S2 (2), by (1)

[S1, S2]e = [S′
1
, S′

2
]e (3), by (2)

S′
1
, S′

2
| e −→∗

s S′
1
, S′

3
| e′′ (4), by lemma 10

e′ = [S′
1
, S′

3
]e′′ (5), by lemma 10

S3 := S′
3
, (S2 − S′

2
) (6), define

S1, S2 | e −→∗
s S1, S3 | e′′ (7), by (4)

e′ = [S1, S3]e′′ (8), by (5)
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Lemma 23. (Store semantics preserves linearity and roots)
If IE (e,Δ, Γ, S1, S2) and S1, S2 | e −→s S1, S3 | e′, then IE (e′,Δ′, Γ′, S1, S3).

Proof.
IE (e,Δ, (Γ, Γ′), S1, (S2, S′2)) (1), given

I (e,Δ′, Γ, (S1, S′2), S2) (2), split (1)

IE ((),Δ, Γ′, S1, S′2) (3), split (1)

S1, S′2, S2 | e −→s S1, S′2, S
′
3
| e′ (4), by assumption

I (e′,Δ′′, Γ′′, (S1, S′2), S′3) (5), by lemma 13

S3 := S′
3
, S′

2
(6), define

IE (e′,Δ, (Γ′′, Γ′), S1, S3) (7), merge (3) and (5)

Lemma 24. (Soundness lemma)
If IE (e,Δ, Γ, S1, S2) and [S1, S2] (E[e]) ↦−→∗ v, then S1, S2 | E[e] ↦−→∗

s S1, S3 | x with I (x,∅, x,∅, S3)
and [S3]x = v.

Proof. By induction on [S1, S2] (E[e]) ↦−→∗ v.
Case Reflexive case:
[S1, S2] (E[e]) = v (1), given

E = □, e = w, [S1, S2]w = v (2), by (1)

I□(w,Δ, Γ, S1, S2) (3), given

I (w,Δ, Γ, S1, S2) (4), by definition

S1, S2 | w −→∗
s S1, S′2 | x (5), by lemma 8

v = [S1, S2]w = [S1, S′2]x (6), by lemma 8

I (x,Δ, Γ, S1, S′2) (7), by lemma 13

I (x,∅, Γ,∅, S′
2
) (8), by lemma 17

Case Transitive case:
[S1, S2] (E[e]) ↦−→ e′ (1), given

e′ ↦−→∗ v (2), given

E′
1
[e′

1
] = [S1, S2] (E[e]), e′1 −→ e′

2
, e′ = E′

1
[e′

2
] (3), by step

[S1, S2]E1 := E′
1
, [S1, S2]e1 := e′

1
(4), define

E1 [e1] = E[e] (5), by (4)

IE (e,Δ, Γ, S1, S2) (6), given

IE1 (e1,Δ, Γ, S1, S2) (7), by lemma 21

S1, S2 | e1 −→∗
s S1, S′2 | e′′ (8), by lemma 22

e′
2
= [S1, S′2]e′′ (9), by lemma 22

IE1 (e′′,Δ′, Γ′, S1, S′2) (10), by lemma 23

[S1, S′2] (E1 [e′′]) = ( [S1, S′2]E1) ( [S1, S′2]e′′) (11), commute

= E′
1
[e′

2
] (12), by (4) and (9)

= e′ ↦−→∗ v (13), by (3) and (2)

S1, S′2 | E1 [e′′] ↦−→∗
s S1, S3 | x (14), inductive hypothesis

I (x,∅, x,∅, S3) and [S3]x = v (15), inductive hypothesis

S1, S2 | E1 [e1] ↦−→∗
s S1, S′2 | E1 [e′′] (16), eval on (8)

S1, S2 | E[e] ↦−→∗
s S1, S3 | x (17), append (16) and (14)

Theorem 7. (FIP programs are sound in store semantics)
If Δ | Γ ⊢ e and given disjoint stores S1, S2 with Δ ⊆ dom(S1), S1 sound, Γ = roots(S2) and S2
linear, and [S1, S2]e −→∗ v, then S1, S2 | e −→∗

s S1, S3 | x where [S3]x = v, x = roots(S3) and S3
is linear.
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Proof.
Δ | Γ ⊢ e (1), given

S1, S2 disjoint stores (2), given

Δ ⊆ dom(S1) and S1 sound (3), given

Γ = roots(S2) and S2 linear (4), given

I (e,Δ, Γ, S1, S2) (5), by (1)-(4)

e = E[e′] (6), for some E, e′

IE (e′,Δ, Γ, S1, S2) (7), lemma 14

S1, S2 | E[e′] ↦−→∗
s S1, S3 | x (8), lemma 24

I (x,∅, x,∅, S3) (9), lemma 24

[S3]x = v (10), lemma 24

x = roots(S3) and S3 linear (11), by (9)
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C STACK BOUND
In this section we wish to prove the stack bound on FIP algorithms.

C.1 Within a function
First, we show a bound on the evaluation context when no functions are called by working with

a version of the store semantics without the (anons) and (calls) rules. In practice, we would not

allocate a stack frame for these parts of the evaluation context.

Below, we define the depth |e | of an expression and the depth |E | of an evaluation context. We

fix a signature Σ and denote by |𝑒max | the maximum depth of an expression bound in Σ.

|x | := 0

|Ck v1 . . . vk | := 1 + max{ |v1 |, . . ., |vk | }
| (v1, . . ., vn) | := 1 + max{ |v1 |, . . ., |vn | }
|e1 e2 | := 1 + max{ |e1 |, |e2 | }
|f (e1; e2) | := 1 + max{ |e1 |, |e2 | }
|let x = e1 in e2 | := 1 + max{ |e1 |, |e2 | }
|match e { p ↦→ e }| := 1 + max{ |e |, |e1 |, . . ., |en | }
|match! e { p ↦→ e }| := 1 + max{ |e |, |e1 |, . . ., |en | }
|drop x; e | := 1 + |e |
|free k; e | := 1 + |e |
|□| := 0

|Ck x1 . . . E′ . . . vk | := 1 + |E′ |
| (x1, . . ., E′, . . ., vn) | := 1 + |E′ |
|E′ e | := 1 + |E′ |
|x E′ | := 1 + |E′ |
|f (y; E′) | := 1 + |E′ |
|let x = E′ in e | := 1 + |E′ |
|match! E { p ↦→ e } | := 1 + |E′ |

We also re-define the free variables fv to also collect all directly called functions

fv(f (e1; e2)) := {f }, fv(e1), fv(e2)
Lemma 25. (Relating the depths of expressions and eval contexts)
We have |E[e] | ⩾ |E | + |e |.

Proof. By straight-forward induction on E.

Lemma 26. (Substitution of variables leaves depth unchanged)
We have |e | = |e[x:=y] |.

Proof. By straight-forward induction on e.

Lemma 27. (Substitution inside eval context)
If |e1 | ⩾ |e2 |, then |E[e1] | ⩾ |E[e2] |.

Proof. By straight-forward induction on E.
Case □: By assumption.

Case Ck x1 . . . E′ . . . vk :
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|Ck x1 . . . E′[e1] . . . vk | = 1 + max{ |x1 |, . . ., |E′[e1] |, . . ., |vk | } (1), by definition

|Ck x1 . . . E′[e2] . . . vk | = 1 + max{ |x1 |, . . ., |E′[e2] |, . . ., |vk | } (2), by definition

|E′[e1] | ⩾ |E′[e2] | (3), inductive hypothesis

|E[e1] | ⩾ |E[e2] | (4), by (1),(2),(3)

Case (x1 . . . E′ . . . vk):
| (x1 . . . E′[e1] . . . vk) | = 1 + max{ |x1 |, . . ., |E′[e1] |, . . ., |vk | } (1), by definition

| (x1 . . . E′[e2] . . . vk) | = 1 + max{ |x1 |, . . ., |E′[e2] |, . . ., |vk | } (2), by definition

|E′[e1] | ⩾ |E′[e2] | (3), inductive hypothesis

|E[e1] | ⩾ |E[e2] | (4), by (1),(2),(3)

Case E′ e:
|E′[e1] e | = 1 + max{ |E′[e1] |, |e | } (1), by definition

|E′[e2] e | = 1 + max{ |E′[e2] |, |e | } (2), by definition

|E′[e1] | ⩾ |E′[e2] | (3), inductive hypothesis

|E[e1] | ⩾ |E[e2] | (4), by (1),(2),(3)

Case x E′
:

|x E′[e1] | = 1 + max{ |x |, |E′[e1] | } (1), by definition

|x E′[e2] | = 1 + max{ |x |, |E′[e2] | } (2), by definition

|E′[e1] | ⩾ |E′[e2] | (3), inductive hypothesis

|E[e1] | ⩾ |E[e2] | (4), by (1),(2),(3)

Case f (y; E′):
|f (y; E′[e1]) | = 1 + max{ |y |, |E′[e1] | } (1), by definition

|f (y; E′[e2]) | = 1 + max{ |y |, |E′[e2] | } (2), by definition

|E′[e1] | ⩾ |E′[e2] | (3), inductive hypothesis

|E[e1] | ⩾ |E[e2] | (4), by (1),(2),(3)

Case let x = E′ in e:
|let x = E′[e1] in e | = 1 + max{ |E′[e1] |, |e | } (1), by definition

|let x = E′[e2] in e | = 1 + max{ |E′[e2] |, |e | } (2), by definition

|E′[e1] | ⩾ |E′[e2] | (3), inductive hypothesis

|E[e1] | ⩾ |E[e2] | (4), by (1),(2),(3)

Case match! E { p ↦→ e:
|match! E′[e1] { p ↦→ e }| = 1 + max{ |E′[e1] |, |e1 |, . . ., |en | } (1), by definition

|match! E′[e2] { p ↦→ e }| = 1 + max{ |E′[e2] |, |e1 |, . . ., |en | } (2), by definition

|E′[e1] | ⩾ |E′[e2] | (3), inductive hypothesis

|E[e1] | ⩾ |E[e2] | (4), by (1),(2),(3)

Lemma 28. (Store semantics without calls reduces expression depth)
If S | e −→s S′ | e′ not using the (anons),(calls) rules, then |e | ⩾ |e′ |.

Proof. By induction on the evaluation context E of the evaluation.

Case E = □:

Case (lets):
|let x = y in e | = 1 + max{ |y |, |e | } definition

> |e | = |e[x:=y] | using lemma 26

Case (reuses):
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|Ck x1 . . . xk | = 1 + max{ |x1 |, . . ., |xk | } = 1 > 0 = |x | definition

Case (atoms):
|C | = 1 > 0 = |x | definition

Case (bmatchs), (dmatchs):
|match y {p → e}| = 1 + max{ 0, |e1 |, . . ., |en | } definition

> |ei | = |ei [x:=y] | using lemma 26

Case (dcons):
|drop x; e | = 1 + |e | = |drop x; e | definition

Case (frees):
|free k; e | = 1 + |e | > |e | definition

Case E ≠ □:

E′[e1] ⩾ E′[e2] by inductive hypothesis

E[e1] ⩾ E[e2] using lemma 27

Lemma 29. (Inside a function, the stack bound is |e |)
At any intermediate step S | e[y:=y′, x:=x ′] −→∗

s S′ | E[e′] not using the (anons),(calls) rules, we
have |E | + |e′ | ⩽ |e |.

Proof.
|e | = |e[y:=y′, x:=x ′] | lemma 26

|e[y:=y′, x:=x ′] | ⩾ |E[e′] | repeatly apply lemma 28

|E[e′] | ⩾ |E | + |e′ | lemma 25

C.2 First-order
Next, we want to show the usual stack bound in a first order language, omitting just the (anons)
rule this time. As in the paper, we work with a signature Σ where all functions f are defined so

that their (mutually) recursive calls are in tailposition T [f ]. However, in a purely first-order sense

this tail context is too strict. This is because the side-condition fi ̸∈ fv(e0) also prevents us from

storing functions pointers in e0. However, in a first-order language, these function pointers do not

matter: We only care about direct calls. We write T̃ [f ] for the tail context where the side-condition
fi ̸∈ fv(e0) is replaced by fi ̸∈ calls(e0) and calls(e0) contains all the functions directly called in e0.
Clearly, if e = T [f ], then e = T̃ [f ].

Next, we want to show that the evaluation context does not grow under tail calls. Essentially, this

is because the holes in the tail context are precisely the complement of the holes in the evaluation

context [Bour et al. 2021].

Lemma 30. (The eval context is complementary to the (first order) tail context)
If e = T̃ [f ], f ∈ f and e = E[f (y; x)], then E = □.

If e = T̃ [f ], e = E[e′] and E ≠ □, then f ∩ calls(e′) = ∅.

Proof. The eval and tail context are defined as:

E : := □ | Ck x1 . . . E . . . vk | (x1, . . ., E, . . ., vn) | E e | x E | f (y; E) | let x = E in e
| match! E { p ↦→ e }
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and

T̃ [f ] : := e0 | fi (e0; e0) | let x = e0 in T [f ] | match e0 { pi ↦→ Ti [f ] } | match! e0 { pi ↦→ Ti [f ] }
| drop x; T [f ] | free k; T [f ] (where fi ̸∈ calls(e0))

Unifying T [f ] = E[f (y; x)] by matching on T [f ] yields E = □ and T [f ] = f (y; x).
Unifying T [f ] = E[e′] by matching on T [f ] yields fi ̸∈ calls(e′) for all fi ∈ f .

Lemma 31. (Substitution preserves first order tail contexts)
If e = T̃ [f ] then e[x:=y] = T̃ [f ].

Proof. By straight-forward induction on T̃ [f ] as the substitution does not act on direct calls.

Lemma 32. (Store semantics preserves first order tail contexts)
If S | e −→s S′ | e′ not using the (anons),(calls) rules and e = T̃ [f ] then e′ = T̃ [f ].

Proof. We use case analysis on T̃ [f ]. Let us first assume that e = e0 where fi ̸∈ calls(e0). By
induction on the evaluation context E of the evaluation.

Case (lets):
S | let x = y in e −→s S | e[x:=y] definition

f ∩ calls(e) = ∅ by assumption

f ∩ calls(e[x:=y]) = ∅ by lemma 31

Case (reuses):
S,⋄k | Ck x1 . . . xk −→s S, x ↦→Ck x1 . . . xk | x definition, (fresh x, k ⩾ 1)

calls(x) = ∅ by definition

Case (atoms):
S | C −→s S, x ↦→C | x definition, (fresh x)
calls(x) = ∅ by definition

Case (bmatchs)
S, y ↦→Ck y | match y {p → e} −→s S, y ↦→Ck y | ei [x:=y] definition, (pi = Ck y)
f ∩ calls(ei) = ∅ by assumption

f ∩ calls(ei [x:=y]) = ∅ by lemma 31

Case (dmatchs):
S, x ↦→Ck y | match! x {p → e} −→s S,⋄k | ei [x:=y] definition, (pi = Ck x)
f ∩ calls(ei) = ∅ by assumption

f ∩ calls(ei [x:=y]) = ∅ by lemma 31

Case (dcons):
S, x ↦→Ck x | drop x; e −→s S | drop x; e definition

f ∩ calls(e) = ∅ by assumption

f ∩ calls(drop x; e) = ∅ by definition

Case (frees):
S,⋄k | free k; e −→s S | e definition

f ∩ calls(e) = ∅ by assumption

Case (eval):
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S | E[e] −→s S′ | E[e′] (1), given

f ∩ calls(E[e]) = ∅ (2), by assumption

S | e −→s S′ | e′ (3), (eval) rule
f ∩ calls(e′) = ∅ (4), inductive hypothesis

f ∩ calls(E[e′] = ∅) (5), by (2) and (4)

We can now assume that T̃ [f ] ≠ e0. Then split on outermost layer of the evaluation context E.
First we consider the case where E ≠ □.

S | E[e] −→s S′ | E[e′] (1), given

f ∩ calls(e) = ∅ (2), by lemma 30

S | e −→s S′ | e′ (3), by (eval)
f ∩ calls(e′) = ∅ (4), by the first case of this proof

We need to show that E[e′] is again a tail-context. We split on the remaining cases of E that match

a tail-context T̃ [f ] ≠ e0:

Case E = fi (y;□), fi ∈ f :

fi (y; e′) = T̃ [f ] (5), by (4)

Case E = let x = □ in e2:
let x = e in e2 = T̃ [f ] (5), given

e2 = T̃ ′[f ] (6), by (5)

let x = e′ in e2 = T̃ [f ] (7), by (4) and (6)

Case E = match! □ { p ↦→ e }:
match! e { p ↦→ e } = T̃ [f ] (5), given

ei = T̃i [f ] (6), by (5)

match! e′ { p ↦→ e } = T̃ [f ] (7), by (4) and (6)

Lastly, assume that T̃ [f ] ≠ e0 and E = □. Then split on the cases of T̃ [f ].
Case fi (y; x): Impossible, since only the call rule (which we omitted) can reduce in this case.

Case let x = y in T̃ [f ]:
S | let x = y in e −→s S | e[x:=y] definition

e = T̃ [f ] assumption

e[x:=y] = T̃ [f ] by lemma 31

Case match y { pi ↦→ T̃i [f ] }:
S, y ↦→Ck y | match y {p → e} −→s S, y ↦→Ck y | ei [x:=y] definition, (pi = Ck y)
ei = T̃ [f ] assumption

ei [x:=y] = T̃ [f ] by lemma 31

Case match! x { pi ↦→ T̃i [f ] }:
S, x ↦→Ck y | match! x {p → e} −→s S,⋄k | ei [x:=y] definition, (pi = Ck x)
ei = T̃ [f ] assumption

ei [x:=y] = T̃ [f ] by lemma 31

Case drop x; T̃ [f ]:
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S, x ↦→Ck x | drop x; e −→s S | drop x; e definition

e = T̃ [f ] assumption

drop x; e = T̃ [f ] by definition

Case free k; T̃ [f ]:
S,⋄k | free k; e −→s S | e definition

e = T̃ [f ] assumption

The store semantics also does not insert calls outside the signature into e′. We show this by showing

that it preserves some FIP typing regarding a signature Σ.

Lemma 33. (Store semantics preserves FIP typing)
If Δ | Γ ⊢ Σe and S | e −→s S′ | e′ then Δ′ | Γ′ ⊢ Σe′.

Proof. By induction on the evaluation context E in e = E[e1]. Case □: By case analysis on the

rules of the store semantics.

Case (lets).
Δ | Γ, y ⊢ let x = y in e given

Δ | Γ, x ⊢ e by let

Δ | Γ, y ⊢ e[x:=y] by lemma 11

Case (calls), (anons).
y | x ⊢ e by deffun and f (y; x) = e ∈ Σ
y′ | x ′ ⊢ e[x:=x ′, y:=y′] by lemma 11

Case (reuses), (atoms).
Δ | x ⊢ x by var

Case (bmatchs).
Δ | Γ ⊢ match y { p ↦→ e } given

Δ, bv(p) | Γ ⊢ e by match

Δ, y | Γ ⊢ e[bv(p):=y] by 11

Case (dmatchn).
Δ | Γ ⊢ match x { p ↦→ e } given

Δ | Γ, bv(p),⋄k ⊢ e by match!

Δ | Γ, y,⋄k ⊢ e[bv(p):=y] by 11

Case (dconn).
Δ | Γ, x ⊢ drop x; e given

Δ | Γ, y ⊢ drop y; e by drop

Case (freen).
Δ | Γ,⋄k ⊢ free k; e given

Δ | Γ ⊢ e by free

Case Ck x1 . . . E′ . . . vk | (x1, . . ., E′, . . ., vn) | E′ e | x E′ | f (y; E′) | match! E′ { p ↦→ e }:
Δ | Γ ⊢ E[e] (1), given

Δ | Γ1 ⊢ E′[e] (2), by (1), where Γ1 ⊆ Γ
Δ′ | Γ′

1
⊢ E′[e′] (3), inductive hypothesis

Δ,Δ′ | Γ − Γ1, Γ
′
1
⊢ E[e′] (4), by (3)
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Case let x = E′ in e: (notice that we may put “children” of Γ2 into Δ′
)

Δ | Γ ⊢ E[e] (1), given

Δ, Γ2 | Γ1 ⊢ E′[e] (2), by (1), where Γ1, Γ2 ⊆ Γ
Δ′, Γ2 | Γ′1 ⊢ E′[e′] (3), inductive hypothesis with Δ′ ∩ Γ2 = ∅
Δ,Δ′ | Γ − Γ1, Γ

′
1
⊢ E[e′] (4), by (3)

We can now prove the main lemma of this section:

Lemma 34. (First order stack bound)
Let Σ be non-empty and fully-in-place such that for all functions f in Σ mutually recursive with f
we have f (y; x) = T̃ [f ]. If e = T̃ [f ], Δ | Γ ⊢ Σe and |e | ⩽ |𝑒max |, then at any intermediate step

S | e −→∗
s S′ | E′[e′] not using the (anons) rule, we have |E′ | ⩽ |𝑒max | · |Σ|.

Proof. By induction on Σ. In both the base and the inductive case, we use another induction on all

subderivations of S | e −→∗
s S′ | E′[e′]. Our induction hypothesis is then:

• Either Σ = f or the lemma holds for all derivations on Σ′ ⊆ Σ.
• The lemma holds for Σ and all derivations S2 | e2 −→∗

s S′ | E′[e′] such that S | e −→∗
s S2 | e2,

e2 = T̃ [f ], Δ′ | Γ′ ⊢ Σe2 and |e2 | ⩽ |𝑒max |.
CaseBase case S | e −→∗

s S | E′[e′] with e = E′[e′]: Clear, since |E′ | ⩽ |e | ⩽ |𝑒max | and |Σ| ⩾ 1.

If S | e −→∗
s S′ | E′[e′] even without the call rule, we have

|E′ | ⩽ |E′ | + |e′ | clear

⩽ |E′[e′] | by lemma 25

⩽ |e | repeatly apply lemma 28

⩽ |𝑒max | by assumption

Else, we choose the longest subderivation from E[e] that does not involve the call rule S | e −→∗
s Sg | Eg [g(y2; x2)].

We consider two cases: Either g is in the recursive group f , or it appears in Σ before f .

Case g is in the recursive group, e = T̃ [g]:
Eg [g(y2; x2)] = T̃ [g] by lemma 32

Eg = □ by lemma 30

Sg | g(ys
2
; xs2) −→s Sg | eg [y:=ys2; x:=xs2] (calls)

eg = T̃ [f ] assumption

y | x ⊢ eg since Σ is fully-in-place

|eg | ⩽ |𝑒max | by definition of 𝑒max

|E′ | ⩽ |𝑒max | · |Σ| by the inductive hypothesis (2)

Case g is not in the same recursive group, g ∈ Σ − f :
If evaluation never leaves g and E′ = Eg [E′′], then:

|Eg | ⩽ |𝑒max | since the derivation involves no (calls)
g(ys

2
; xs2) = T̃ [gs] definition of T̃ [gs], where gs is g’s recursive group

ys
2
| xs2 ⊢ g(ys

2
; xs2) call

|g(ys
2
; xs2) | = 1 ⩽ |𝑒max | definition of length

Sg | Eg [g(y2; x2)] −→∗
s S′ | Eg [E′′[e′]] since we chose a subderivation

Sg | g(y
2
; x2) −→∗

s S′ | E′′[e′] by the (eval) rule
|E′′ | ⩽ |𝑒max | · |Σ − f | by the inductive hypothesis (1)

|Σ − f | + 1 ⩽ |Σ| definition of Σ − f
|E′ | = |Eg [E′′] | = |Eg | + |E′′ | ⩽ |𝑒max | · |Σ| as above

If evaluation leaves g and Sg | Eg [g(y2; x2)] −→s S′g | Eg [x3], then:
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|Eg [g(ys2; xs2)] | ⩽ |𝑒max | since the derivation involves no (calls)
|Eg [xs3] | ⩽ |𝑒max | substitution of variables does not increase length

Eg [g(ys2; xs2)] = T̃ [f ] by lemma 32

Eg [xs3] = T̃ [f ] substitution of variables does not introduce calls

Δ′ | Γ′ ⊢ Eg [xs3] repeatedly apply lemma 33

|E′ | ⩽ |𝑒max | · |Σ| by the inductive hypothesis (2)

Together, these results imply the well-known stack bound for first-order programs:

Lemma 35. (The first-order stack bound is |𝑒max | |Σ|)
Let Σ be fully in-place such that for all functions f in Σ mutually recursive with f we have

f (y; x) = T̃ [f ]. Then at any intermediate step S | f (y; x) −→∗
s S′ | E[e′] not using the (anons)

rule, we have |E | ⩽ |𝑒max | · |Σ|.

Proof. Apply lemma 34 to f (y; x).
Σ nonempty since f (y; x) = e ∈ Σ

f (y; x) = T̃ [f ] definition of T̃ [f ]
y | x ⊢ f (y; x) call

|f (y; x) | = 1 ⩽ |𝑒max | definition of length

C.3 Second-order
Now, we want to get to the main novelty of the proof: Giving a stack bound for anonymous function

calls. The proof idea is that our calculus is second-order: An anonymously called function can only

make direct calls to other functions (which are mutually recursive, or defined before it). The reason

for this is that an anonymous function only receives the store and owned arguments in Γ, but we
make sure that functions are never in the store or the Γ environment. Then the function has no

way to access a function pointer f defined before itself to call anonymously.

Lemma 36. (The store and Γ never contain functions)
Let Δ | Γ ⊢ e, g ̸∈ Γ, rng(S) and S | e −→s S′ | e′. Then Δ′ | Γ′ ⊢ e′ and g ̸∈ Γ′, rng(S′).

Proof. By induction on the evaluation context E in e = E[e1]. Case □: By case analysis on the

rules of the store semantics.

Case (lets).
Δ | Γ, y ⊢ let x = y in e given

Δ | Γ, x ⊢ e by let

Δ | Γ, y ⊢ e[x:=y] by lemma 11

g ̸∈ Γ, y, rng(S) by assumption

Case (calls), (anons).
y′ | x ′ ⊢ f (y′; x ′) given

y | x ⊢ e by deffun and f (y; x) = e ∈ Σ
y′ | x ′ ⊢ e[x:=x ′, y:=y′] by lemma 11

g ̸∈ x ′, rng(S) by assumption

Case (reuses), (atoms).
Δ | x ⊢ Ck x1 . . . xk by reuse

g ̸∈ x, rng(S) given

Δ | x ⊢ x by var

g ̸∈ x, rng(S, x ↦→Ck x1 . . . xk) since x fresh
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Case (bmatchs).
Δ | Γ ⊢ match y { p ↦→ e } given

Δ, bv(p) | Γ ⊢ e by match

Δ, y | Γ ⊢ e[bv(p):=y] by 11

g ̸∈ Γ, rng(S) by assumption

Case (dmatchn).
Δ | Γ ⊢ match x { p ↦→ e } given

g ̸∈ Γ, rng(S, x ↦→Ck y1 . . . yk) given

Δ | Γ, bv(p),⋄k ⊢ e by match!

Δ | Γ, y,⋄k ⊢ e[bv(p):=y] by 11

g ̸∈ Γ, y,⋄k, rng(S,⋄k) as above

Case (dconn).
Δ | Γ, x ⊢ drop x; e given

g ̸∈ Γ, x, rng(S, x ↦→Ck y1 . . . yk) given

Δ | Γ, y ⊢ drop y; e by drop

g ̸∈ Γ, y, rng(S) as above

Case (freen).
Δ | Γ,⋄k ⊢ free k; e given

g ̸∈ Γ,⋄k, rng(S,⋄k) given

Δ | Γ ⊢ e by free

g ̸∈ Γ, rng(S) as above

Case Ck x1 . . . E′ . . . vk | (x1, . . ., E′, . . ., vn) | E′ e | x E′ | f (y; E′) | match! E′ { p ↦→ e }:
Δ | Γ ⊢ E[e] (1), given

g ̸∈ Γ, rng(S) (2), given

Δ | Γ1 ⊢ E′[e] (3), by (1), where Γ1 ⊆ Γ
Δ′ | Γ′

1
⊢ E′[e′] (4), inductive hypothesis

g ̸∈ Γ′
1
, rng(S′) (5), inductive hypothesis

Δ,Δ′ | Γ − Γ1, Γ
′
1
⊢ E[e′] (6), by (5)

g ̸∈ Γ − Γ1, Γ
′
1
, rng(S′) (7), by (2),(5)

Case let x = E′ in e: (notice that we may put “children” of Γ2 into Δ′
)

Δ | Γ ⊢ E[e] (1), given

g ̸∈ Γ, rng(S) (2), given

Δ, Γ2 | Γ1 ⊢ E′[e] (3), by (1), where Γ1, Γ2 ⊆ Γ
Δ′, Γ2 | Γ′1 ⊢ E′[e′] (4), inductive hypothesis with Δ′ ∩ Γ2 = ∅
g ̸∈ Γ′

1
, rng(S′) (5), inductive hypothesis

Δ,Δ′ | Γ − Γ1, Γ
′
1
⊢ E[e′] (6), by (4)

g ̸∈ Γ − Γ1, Γ
′
1
, rng(S′) (7), by (2),(5)

We will also need that the tail-context is preserved by evaluation. Here we use the T [f ] tail-context,
which includes the condition, that fi ̸∈ fv(e0). This is important, since it means that a tail-call can

not pass along a function pointer of the same recursive group. If we didn’t have that restriction,

functions in the same recursive group could call themselves anonymously in non-tail position and

the stack size would be unbounded.

Lemma 37. (Substitution preserves tail contexts)
If e = T [f ] and f ∩ y = ∅, then e[x:=y] = T [f ].
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Proof. By straight-forward induction on T [f ], noticing that fv(e[x:=y]) ⊆ fv(e), y.

Lemma 38. (The eval context is complementary to the tail context)
If e = T [f ], f ∈ f and e = E[f (y; x)], then E = □.

If e = T [f ], e = E[e′] and E ≠ □, then f ∩ fv(e′) = ∅.

Proof. Same as proof of lemma 30.

Lemma 39. (Store semantics preserves tail contexts)
If S | e −→s S′ | e′ not using the (anons) rule, e = T [f ] and f ∩ rng(S) = ∅, then e′ = T [f ].

Proof. We use case analysis on T [f ]. Let us first assume that e = e0 where fi ̸∈ fv(e0). By induction
on the evaluation context E of the evaluation.

Case (lets):
S | let x = y in e −→s S | e[x:=y] definition

f ∩ y = ∅, f ∩ fv(e) = ∅ assumption

f ∩ fv(e[x:=y]) = ∅ since fv(e[x:=y]) ⊆ fv(e), y

Case (calls):
S | f (y′; x ′) −→s S | e[y:=y′; x:=x ′] for f (y; x) = e ∈ Σ

f ∩ y, x = ∅ by definition of the tail context

e = T [f ] by definition of Σ

e[y:=y′; x:=x ′] = T [f ] lemma 37

Case (reuses):
S,⋄k | Ck x1 . . . xk −→s S, x ↦→Ck x1 . . . xk | x definition, (fresh x, k ⩾ 1)

x ̸∈ f since x fresh

Case (atoms):
S | C −→s S, x ↦→C | x definition, (fresh x)
x ̸∈ f since x fresh

Case (bmatchs)
S, y ↦→Ck y | match y {p → e} −→s S, y ↦→Ck y | ei [x:=y] definition, (pi = Ck y)
y ∩ f = ∅ since S contains no functions

f ∩ fv(ei) = ∅ by assumption

f ∩ fv(ei [x:=y]) = ∅ since fv(e[x:=y]) ⊆ fv(ei), y

Case (dmatchs):
S, x ↦→Ck y | match! x {p → e} −→s S,⋄k | ei [x:=y] definition, (pi = Ck x)
y ∩ f = ∅ since S contains no functions

f ∩ fv(ei) = ∅ by assumption

f ∩ fv(ei [x:=y]) = ∅ since fv(e[x:=y]) ⊆ fv(ei), y

Case (dcons):
S, x ↦→Ck x | drop x; e −→s S | drop x; e definition

x ∩ f = ∅ since S contains no functions

f ∩ fv(e) = ∅ by assumption

f ∩ fv(drop x; e) = ∅ as above
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Case (frees):
S,⋄k | free k; e −→s S | e definition

f ∩ fv(e) = ∅ by assumption

Case (eval):
S | E[e] −→s S′ | E[e′] (1), given

f ∩ fv(E[e]) = ∅ (2), by assumption

S | e −→s S′ | e′ (3), (eval) rule
f ∩ fv(e′) = ∅ (4), inductive hypothesis

f ∩ fv(E[e′] = ∅) (5), by (2) and (4)

We can now assume that T [f ] ≠ e0. Then split on outermost layer of the evaluation context E.
First we consider the case where E ≠ □.

S | E[e] −→s S′ | E[e′] (1), given

f ∩ fv(e) = ∅ (2), by lemma 38

S | e −→s S′ | e′ (3), by (eval)
f ∩ fv(e′) = ∅ (4), by the first case of this proof

We need to show that E[e′] is again a tail-context. We split on the remaining cases of E that match

a tail-context T [f ] ≠ e0:
Case E = g(y;□):
E[e] = T [f ] (5), given

f ∩ y = ∅ (6), by (5)

E[e′] = T [f ] (7), by (4) and (6)

Case E = let x = □ in e2:
E[e] = T [f ] (5), given

e2 = T ′[f ] (6), by (5)

E[e′] = T [f ] (7), by (4) and (6)

Case E = match! □ { p ↦→ e }:
E[e] = T [f ] (5), given

ei = Ti [f ] (6), by (5)

E[e′] = T [f ] (7), by (4) and (6)

Lastly, assume that T [f ] ≠ e0 and E = □. Then split on the cases of T [f ].
Case fi (y; x): Impossible, since only the call rule (which we omitted) can reduce in this case.

Case let x = y in T [f ]:
S | let x = y in e −→s S | e[x:=y] definition

y ∩ f = ∅ assumption

e = T [f ] assumption

e[x:=y] = T [f ] by lemma 37

Case match y { pi ↦→ Ti [f ] }:
S, y ↦→Ck y | match y {p → e} −→s S, y ↦→Ck y | ei [x:=y] definition, (pi = Ck y)
y ∩ f = ∅ since S contains no functions

ei = T [f ] assumption

ei [x:=y] = T [f ] by lemma 37
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Case match! x { pi ↦→ Ti [f ] }:
S, x ↦→Ck y | match! x {p → e} −→s S,⋄k | ei [x:=y] definition, (pi = Ck x)
y ∩ f = ∅ since S contains no functions

ei = T [f ] assumption

ei [x:=y] = T [f ] by lemma 37

Case drop x; T [f ]:
S, x ↦→Ck x | drop x; e −→s S | drop x; e definition

x ∩ f = ∅ since S contains no functions

e = T [f ] assumption

Case free k; T [f ]:
S,⋄k | free k; e −→s S | e definition

e = T [f ] assumption

We can now prove the main lemma of this section:

Lemma 40. (Second order stack bound)
Let Σ be non-empty and fully-in-place such that for all functions f in Σmutually recursive with f we
have f (y; x) = T [f ]. If e = T [f ],Δ | Γ ⊢ Σe and |e | ⩽ |𝑒max | · |Σ|, and Γ, rng(S) ∩ dom(Σ) = ∅,

then at any intermediate step S | e −→∗
s S′ | E′[e′] we have |E′ | ⩽ |𝑒max | · |Σ|2.

Proof. By induction on Σ. In both the base and the inductive case, we use another induction on all

subderivations of S | e −→∗
s S′ | E′[e′]. Our induction hypothesis is then:

• Either Σ = f or the lemma holds for all derivations on Σ′ ⊆ Σ.
• The lemma holds for Σ and all derivations S2 | e2 −→∗

s S′ | E′[e′] such that S | e −→∗
s S2 | e2,

e2 = T [f ], Δ′ | Γ′ ⊢ Σe2, Γ′, rng(S2) ∩ dom(Σ) = ∅ and |e2 | ⩽ |𝑒max | · |Σ|.
Case Base case S | e −→∗

s S | E′[e′] with e = E′[e′]: Clear, since |E′ | ⩽ |e | ⩽ |𝑒max | · |Σ| and
|Σ| ⩾ 1.

If S | e −→∗
s S′ | E′[e′] even without the anon rule, we have

e = T̃ [f ] clear, since e = T [f ]
$D G

|e | ⩽ |𝑒max | · |Σ| by assumption

|E′ | ⩽ |𝑒max | · |Σ| by lemma 34

Else, we choose the longest subderivation from E[e] that does not involve the anon rule S | e −→∗
s Sg | Eg [g(x2)].

Then:

Eg [g(x2)] = T [f ] by lemma 39

g ̸∈ f by lemma 38

g ∈ Σ − f by above

Case If evaluation never leaves g and E′ = Eg [E′′], then:
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|Eg | ⩽ |𝑒max | · |Σ| since the derivation involves no (anons)
g(xs2) = T [gs] definition of T [gs], where gs is g’s recursive group
g | xs2 ⊢ g(xs2) bapp

xs2, rng(Sg) ∩ dom(Σ) = ∅ repeatedly apply lemma 36

|g(xs2) | = 1 ⩽ |𝑒max | definition of length

Sg | Eg [g(x2)] −→∗
s S′ | Eg [E′′[e′]] since we chose a subderivation

Sg | g(x2) −→∗
s S′ | E′′[e′] by the (eval) rule

|E′′ | ⩽ |𝑒max | · |Σ − f | · |Σ − f | by the inductive hypothesis (1)

|Σ − f | + 1 ⩽ |Σ| definition of Σ − f
|E′ | = |Eg [E′′] | = |Eg | + |E′′ | ⩽ |𝑒max | · |Σ| · |Σ| as above

Case If evaluation leaves g and Sg | Eg [g(x2)] −→s S′g | Eg [x3], then:
|Eg [g(xs2)] | ⩽ |𝑒max | · |Σ| since the derivation involves no (anons)
|Eg [xs3] | ⩽ |𝑒max | · |Σ| substitution of variables does not increase length

Eg [g(xs2)] = T [f ] by lemma 39

Eg [xs3] = T [f ] substitution of variables does not introduce calls

Δ′ | Γ′ ⊢ Eg [xs3] repeatedly apply lemma 33

Γ′, rng(S′g) ∩ dom(Σ) = ∅ repeatedly apply lemma 36

|E′ | ⩽ |𝑒max | · |Σ|2 by the inductive hypothesis (2)

Finally, the theorem:

Theorem 8. (An FIP program uses constant stack space)
Let Σ be fully in-place such that for all functions f in Σ mutually recursive with f we have

f (y; x) = T [f ] and let S be a store that contains no functions. Then at any intermediate step

S | f (y; x) −→∗
s S′ | E[e′], we have |E | ⩽ |𝑒max | · |Σ|2.

Proof. Apply lemma 40 to f (y; x).
Σ nonempty since f (y; x) = e ∈ Σ

f (y; x) = T [f ] by assumption

y | x ⊢ f (y; x) call

|f (y; x) | = 1 ⩽ |𝑒max | definition of length

x, rng(S) ∩ dom(Σ) = ∅ since S contains no functions
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f (y; x) = e
f ′(y; x, k) = J e Kf ,k

app(y; k, x ′) = match! k
H → x ′

AccE (Γ; k′) → J EG [x ′] Kf ,k′

(tctx) J T[e] Kf ,k = T[J e Kf ,k]
(tail) J E[f (y; e0)]Kf ,k = f ′(y; e0, AccE (Γ2; k)) iff (★)
(base) J e0 Kf ,k = app(y; k, e0) where f ̸∈ fv(e0)

(★) : for Δ, y | Γ1, Γ2 ⊢ E[f (y; e)], we have Δ, y | Γ1 ⊢ f (y; e) and y | Γ2 ⊢ E[□]

T : := □ | let x = e0 in T | match e0 { pi ↦→ Ti } | match! e0 { pi ↦→ Ti }
| drop x; T | free k; T (where f ̸∈ fv(e0))

AccE (∅; k′) = k′

AccE (Γ,⋄k, x1, . . ., xn; k′) = Ck
E x1 . . . xn AccE (Γ; k′) Cunit . . . Cunit where 0 ⩽ n < k

Fig. 12. Generalized TRMC with reused contexts

D TRMCWITH REUSE TRANSLATION
In this section, we prove the soundness of the TRMC translation with reused context. We base our

formalization on the slightly generalised presentation in figure 12. In particular, the constructors of

our zipper are generated by an accumulator function AccE , which the version in the paper would

always call on ⋄k, zi with k = |zi |. But what if k ≥ |zi | + 1? We can still represent this by padding

the accumulator with atoms Cunit . Similarly, if several reuse credits are available, we create a list of

accumulators that jointly stores all free variables.

D.1 Soundness

Lemma 41. (Accumulators are FIP)
If AccE (Γ; k) exists, then ∅ | Γ, k ⊢ AccE (Γ; k).

Proof. By induction on AccE (Γ; k):
Case AccE (∅; k) = k: By the var rule we have ∅ | k ⊢ k.

Case AccE (Γ,⋄k, x1, . . ., xn; k) = Ck
E x1 . . . xn AccE (Γ; k) Cunit . . . Cunit :

∅ | Γ, k ⊢ AccE (Γ; k) (1), by inductive hypothesis

∅ | ∅ ⊢ Cunit (2), atom

∅ | xi ⊢ xi (3), var

∅ | Γ,⋄k, x1, . . ., xn, k ⊢ Ck
E x1 . . . xn AccE (Γ; k) Cunit . . . Cunit (4), reuse

Lemma 42. (Matching accumulators is FIP)
If AccE (Γ; k′) ≠ k′ exists and Δ | Γ1, Γ2, k′ ⊢ e then Δ | Γ1, k ⊢ match! k { AccE (Γ2; k′) ↦→ e }.

Proof. We recursively expand match! k { AccE (Γ; k′) ↦→ e } as:
• e[k′:=k] if AccE (∅; k′) = k′

• match! k { Ck
E x1 . . . xn k′ u1 . . . um ↦→ drop u1; . . . drop um; match! k′ { AccE (Γ; k′′) ↦→ e } ifAccE (Γ,⋄k, x1, . . ., xn; k′) = Ck

E x1 . . . xn AccE (Γ; k′) Cunit . . . Cunit .

Notice that we could also match on the ui as match! ui Cunit ↦→ . . . instead of dropping them, to

obtain a solution without deallocation.
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Then, by induction on AccE (Γ2; k′):
CaseAccE (∅; k′) = k′: By assumptionwe haveΔ | Γ1,∅, k′ ⊢ e. Use lemma 11 to obtainΔ | Γ1,∅, k ⊢ e[k′:=k].
Case AccE (Γ′2 ,⋄k, x1, . . ., xn; k′) = Ck

E x1 . . . xn AccE (Γ′2 ; k′) Cunit . . . Cunit :

Δ | Γ′
1
, k′ ⊢ match! k′ { AccE (Γ′2 ; k′′) ↦→ e } (1), by inductive hypothesis

Δ | Γ′
1
, k′, u1, . . ., um ⊢ drop u1; . . . drop um;
match! k′ { AccE (Γ′2 ; k′′) ↦→ e } (2), drop rule

Γ′
1
= Γ1, ⋄k, x1, . . ., xn (3), as xi ̸∈ Γ′

2
and Δ | Γ′

1
, Γ′

2
, k′ ⊢ e

Δ | Γ1, k ⊢ match! k { Ck
E x1 . . . xn k′ u1 . . . um ↦→

drop u1; . . . drop um; match! k′ { AccE (Γ; k′′) ↦→ e } (4), by match!

Γ2 := Γ′
2
,⋄k, x1, . . ., xn (5), define

Δ | Γ1, k ⊢ match! k { AccE (Γ2; k′) ↦→ e } (6), by definition

Lemma 43. (Replacement lemma for tail contexts)
LetΔ | Γ ⊢ T[e] withΔ′ | Γ′ ⊢ e. For all expressions e′withΔ′ | Γ′, Γ′′ ⊢ e′, we haveΔ | Γ, Γ′′ ⊢ T[e′].

Proof. By induction on E.
Case □: By assumption, as Δ = Δ′, Γ = Γ′.

Case let x = e0 in T
Δ | Γ1, Γ2, Γ3 ⊢ T[e] (1), given

Δ | Γ2, Γ3 ⊢ T′[e] (2), by (1) and let

Δ | Γ2, Γ3, Γ′′ ⊢ T′[e′] (3), by inductive hypothesis

Δ | Γ1, Γ2, Γ3, Γ′′ ⊢ T[e′] (4), by let

Case match e0 { p ↦→ T }:
Δ | Γ1, Γ2 ⊢ T[e] (1), given

Δ, x i | Γ2 ⊢ T′[e] (2), by (1) and match!

Δ, x i | Γ2, Γ′′ ⊢ T′[e′] (3), by inductive hypothesis

Δ | Γ1, Γ2, Γ′′ ⊢ T[e′] (4), by match!

Case match! e0 { p ↦→ T }:
Δ | Γ1, Γ2 ⊢ T[e] (1), given

Δ | Γ2, x i ⊢ T′[e] (2), by (1) and match!

Δ | Γ2, x i, Γ′′ ⊢ T′[e′] (3), by inductive hypothesis

Δ | Γ1, Γ2, Γ′′ ⊢ T[e′] (4), by match!

Case drop x; T | free k; T
Δ | Γ, x ⊢ T[e] (1), given

Δ | Γ ⊢ T′[e] (2), by (1) and the relevant FIP rule

Δ | Γ, Γ′′ ⊢ T′[e′] (3), by inductive hypothesis

Δ | Γ, x, Γ′′ ⊢ T[e′] (4), by the relevant FIP rule

Lemma 44. (The TRMC translation preserves FIP)
Fix a function f (y; x). If Δ, y | Γ ⊢ e, JeKf ,k exists and assuming that app(y; k, x ′) is in the signature,

then Δ, y | Γ, k ⊢ JeKf ,k .

Proof. Show that the claim holds for any Δ, Γ, e by induction on the translation rules,

Case (tctx).
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Δ, y | Γ ⊢ T[e] given

Δ, y,Δ′ | Γ′ ⊢ e unwrap T
Δ, y,Δ′ | Γ′, k ⊢ JeKf ,k inductive hypothesis

Δ, y | Γ, k ⊢ T[JeKf ,k] wrap T by lemma 43

Case (tail).
Δ, y | Γ1, Γ2 ⊢ E[f (y; e)] (1), given

Δ, y | Γ1 ⊢ f (y; e) (2), given by (★)
y | Γ2 ⊢ E[□] (3), given by (★)
Δ, y | Γ1, k ⊢ f ′(y; e, k) (4), by (2)

Δ, y | Γ1, Γ2, k ⊢ f ′(y; e,AccE (Γ2; k)) (5), by (4) and lemma 41

Case (base).
Δ, y | Γ ⊢ e0 (1), given

Δ, y | Γ, k ⊢ app(y; k, e0) (2), by assumption

Lemma 45. (Value replacement lemma)
Let Δ | Γ ⊢ E[□] and ∅ | Γ′ ⊢ v, then Δ | Γ, Γ′ ⊢ E[v].

Proof. By induction on E.
Case □: By assumption, as Δ, Γ = ∅.

Case Ck x1 . . . E′ . . . vk | (x1, . . ., E′, . . ., vn) | E′ e | x E′ | f (y; E′) | match! E′ { p ↦→ e }:
Δ | Γ ⊢ E[□] (1), given

Δ | Γi ⊢ E′[□] (2), by (1) and the relevant FIP rule

Δ | Γi, Γ′ ⊢ E′[v] (3), by inductive hypothesis

Δ | Γ, Γ′ ⊢ E[v] (4), by the relevant FIP rule

Case let x = E′ in e: (special as we add to the borrowed environment)

Δ | Γ ⊢ E[□] (1), given

Δ, Γ2 | Γ1 ⊢ E′[□] (2), by (1) and let

Δ, Γ2 | Γ1, Γ′ ⊢ E′[v] (3), by inductive hypothesis

Δ | Γ, Γ′ ⊢ E[v] (4), by let

Lemma 46. (The app function is FIP.)
Fix a function f (y; x). If Δ, y | Γ ⊢ e and JeKf ,k exists, then y | x ′, k ⊢ app(y; k, x ′).

Proof. We have:

app(y; k, x ′) = match! k
H → x ′

AccE (Γ; k′) → J EG [x ′] Kf ,k′
Apply the match! rule.

Case H: Cleary ∅ | x ′ ⊢ x ′.

Case AccE (Γ):
y | Γ ⊢ EG [□] (1), by (★) rule
y | Γ, x ′ ⊢ EG [x ′] (2), by lemma 45

y | Γ, x ′, k′ ⊢ J EG [x ′] Kf ,k′ (3), by lemma 44

y | x ′, k ⊢ match! k { AccE (Γ; k′) ↦→ J EG [x ′] Kf ,k′ } (4), by lemma 42
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Theorem 9. (The TRMC transformation is sound.)
Let f be a function with y | x ⊢ f (y; x) and f (v1; v2) −→∗ w. If it can be transformed into f ′, then
y | x, k ⊢ f ′(y; x, k), y | k, x ⊢ app(y; k, x) and f ′(v1; v2,H) −→∗ w.

Proof. Our transformation follows the general framework of TRMCwherewe use a defunctionalized

evaluation context (section 4.2 of [Leijen and Lorenzen 2023]). Note that we generalize the (tlet)
and (tmatch) rules of the TRMC translation (figure 2 in [Leijen and Lorenzen 2023]) to a (tctx)
rule. In particular, we include drops and frees in the tail context. However, the correctness of

these additional cases is clear. We thus have f ′(v1; v2,H) −→∗ w by the correctness of the context

transformation and the context laws for defunctionalized evaluation contexts.

We have y | x, k ⊢ f ′(y; x, k) by lemma 44 and y | k, x ′ ⊢ app(y; k, x ′) by lemma 46.
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E SOUNDNESS OF HEAP SEMANTICS
This section contains the soundness result for the heap semantics. Since the heap semantics extends

the store semantics, we will follow the same proof structure. In particular, many lemmata hold

unchanged (just replacing −→∗
s by −→∗

h , S with H, using ⊗, etc). Thus we only add the extra

cases to each lemma. We extend the free variables as usual:

fv(dup x; e) := fv(e), x
fv(dropru x; e) := fv(e), x
fv(alloc k; e) := fv(e)
fv(_z x . e) := fv(e) − x

E.1 Properties of Heaps
As before, we will often need to focus on a specific part of the heap that corresponds to all values

reachable from a root set Γ. In this section, we generalize the properties of stores to heaps using

the join operator:

∅ ⊗ H2 = H2

H1,⋄k ⊗ H2 = H1 ⊗ H2,⋄k
H1, x ↦→n v ⊗ H2 = H1 ⊗ H2, x ↦→n v iff x ̸∈ dom(H2)
H1, x ↦→n v ⊗ H2, x ↦→m v, z ↦→k+1w = H1 ⊗ H2, x ↦→n+m v, z ↦→kw iff z = fv(v)
This definition still works if H1 contains cycles. We can move the elements of the cycle in any order

into H2. It might be attractive to decrease the counts of z in H1 itself, since this would correspond

to “deleting” the element x from H1. However, with that modification, we could not handle cycles,

because then the children z of the last cycle element would be in H2 instead of H1.

We write #
x Γ to denote the number of times x occurs in Γ, #x H1 to denote the number of

times it occurs free in rng(H1) and #
x (H1 ∩ H2) to denote the number of times it occurs free in

rng(H1) ∩ rng(H2).
Lemma 47. (Counts in joined heaps)
We have #

x (H1 ⊗ H2) = #
x H1 + #

x H2 − #
x (H1 ∩ H2).

Proof. Since the join operator merges compatible v ∈ rng(H1) ∩ rng(H2).

Lemma 48. (Distributivity of counting)
We have #

x ((H1 ⊗ H2) ∩ H3) = #
x (H1 ∩ H3) + #

x (H2 ∩ H3) − #
x (H1 ∩ H2 ∩ H3).

Proof. By lemma 47 on those v also in H3.

Lemma 49. (Joining heaps)
Let H1 be a sound/linear heap with roots Γ1 and H2 a linear heap with roots Γ2. Then H1 ⊗ H2 is a

sound/linear heap with roots Γ1, Γ2.

Proof.
Case Well-definedness: The reference counts of the z can become zero temporarily. The count can

not become negative, because we only decrease the count of z if their parent is also in H2. This can

only happen as often as the z occur free in rng(H2). Since H2 is linear, the count of z is at least the
number of times z occurs free in rng(H2). Furthermore, since z has a reference count of at least
one in H1, we will end up with a positive reference count in the end.

Case Soundness: The invariant that x ∈ dom(H1 ⊗ H2) iff x ∈ dom(H1) or x ∈ dom(H2) is main-

tained in all cases of the definition ⊗. Since H1 and H2 are sound, then so is H1 ⊗ H2.

64



Anton Lorenzen, Daan Leijen, and Wouter Swierstra

Case Linearity: Assume that H1 is linear and x ↦→n v ∈ H1, x ↦→m v ∈ H2. The final reference

count of x is n + m − #
x (H1 ∩ H2).

n = #
x Γ1 + #

x H1 (1), since H1 linear

m = #
x Γ2 + #

x H2 (2), since H2 linear

n + m − #
x (H1 ∩ H2) (3), final reference count

= #
x Γ1 + #

x Γ2 + #
x H1 + #

x H2 − #
x (H1 ∩ H2) (4), by (1) and (2)

= #
x Γ1 + #

x Γ2 + #
x (H1 ⊗ H2) (5), by lemma 47

This shows that Γ1, Γ2 are the roots of H1 ⊗ H2.

Lemma 50. (Associativity of joining heaps)
Let H1 be a sound heap and H2,H3 be linear heaps. Then (H1 ⊗ H2) ⊗ H3 = H1 ⊗ (H2 ⊗ H3).

Proof. As before x ∈ dom((H1 ⊗ H2) ⊗ H3) iff x ∈ dom(H1), x ∈ dom(H2) or x ∈ dom(H3) iff
x ∈ dom(H1 ⊗ (H2 ⊗ H3)). Let us consider the reference count of one such x with reference count

n,m, k in H1,H2,H3 respectively. Then:

n + m + k − #
x (H1 ∩ H2) − #

x ((H1 ⊗ H2) ∩ H3) (1), reference count in (H1 ⊗ H2) ⊗ H3

= n + m + k − #
x (H1 ∩ H2) − #

x (H1 ∩ H3)
− #

x (H2 ∩ H3) + #
x (H1 ∩ H2 ∩ H3) (2), lemma 48

= n + m + k − #
x (H1 ∩ (H2 ⊗ H3)) − #

x (H2 ∩ H3) (3), reference count in H1 ⊗ (H2 ⊗ H3)

Lemma 51. (Symmetry of joining heaps)
Let H1,H2 be linear heaps. Then H1 ⊗ H2 = H2 ⊗ H1.

Proof. Clearly, dom(H1 ⊗ H2) = dom(H1), dom(H2) = dom(H2), dom(H1) = dom(H2 ⊗ H1). By
lemma 47, the reference counts are the same.

We can define a category of linear, compatible heaps, where there is a uniquemorphism f : H1 → H2

between H1,H2 iff dom(H1) ⊆ dom(H2) and roots(H1) ⊆ roots(H2). In that case we just write

H1 → H2.

Lemma 52. (Monotocity of joining heaps)
Let H1 → H2 and H3 → H4. Then H1 ⊗ H3 → H2 ⊗ H4.

Proof. As before, the variables of H1 ⊗ H3 are those of H1,H3. Those variables occur in H2,H4 and

thus H2 ⊗ H4. By lemma 49, the roots of H1 ⊗ H3 is the disjoint union of the roots of H1 and H3. By

assumption, these are a subset of the roots of H2 and H4, which give the roots of H2 ⊗ H4.

This shows that the category is monoidal with the join operator as the tensor product and the

empty heap as tensor unit. For a linear heap with Γ ⊆ roots(H), we write H[Γ] for the smallest

linear subset of H containing Γ. Next we want to define a heap subtraction operator, which will

become the internal hom:

[(H1,⋄k), (H2,⋄k)] = [H1,H2]
[(H1, x ↦→n v), (H2, x ↦→n v)] = [H1,H2] iff x ̸∈ fv(rng(H2))
[H1,H2] = JH1,H2K iff dom(H1) ⊆ fv(rng(H2))

J∅, H2K = H2

J(H1, x ↦→n v), (H2, x ↦→n+m v, z ↦→kw)K = JH1, (H2, x ↦→m v, z ↦→k+1w)K iff z = fv(v)
Lemma 53. (Heap subtraction)
If H1 and H2 are linear heaps with roots Γ1, Γ2 and H1 → H2, then [H1,H2] is a linear heap with

roots Γ2 − Γ1.
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Proof.
Case Well-definedness: The operator acts in two stages. In the first stage, all reuse credits are

removed from H1. Since roots(H1) ⊆ roots(H2), each reuse credit in H1 has a matching one in H2.

Then we recursively remove all x ∈ dom(H1) which do not occur free in rng(H2). Since H1 → H2,

any x ∈ dom(H1) is also in dom(H2) with no bigger reference count. In the second stage, we adjust

the reference counts of all other such x.

Case Soundness: H2 is sound by assumption and we only delete x from H2 if it is not free in rng(H2).
Case Linearity: Clearly, [H1,H2] contains all reuse tokens of H2 not contained in H1. Let us focus

on the reference counts. After the first stage, H1 and H2 are still linear, even if both have new roots.

In the second stage, the reference count of any x ∈ dom(H2) becomes:

n = #
x Γ1 + #

x H1 (1), since H1 linear

n + m = #
x Γ2 + #

x H2 (2), since H2 linear

m + #
x (H1 ∩ [H1,H2]) (3), final reference count

= #
x Γ2 + #

x H2 − #
x Γ1 − #

x H1 + #
x (H1 ∩ [H1,H2]) (4), by (1) and (2)

= #
x Γ2 + #

x H2 − #
x Γ1 + #

x [H1,H2] − #
x (H1 ⊗ [H1,H2]) (5), by lemma 47

= #
x Γ2 − #

x Γ1 + #
x [H1,H2] (6), by lemma 57

Lemma 54. (Hom isomorphism)

If H2 → H3, then H1 ⊗ H2 → H3 iff H1 → [H2,H3].

Proof.
CaseDomain:We have dom( [H2,H3]) ⊆ dom(H3). If dom(H1) ⊆ dom( [H2,H3]) and dom(H2) ⊆ dom(H3),
then dom(H1), dom(H2) ⊆ dom(H3).

IfH1 ⊗ H2 → H3, then not only dom(H1), dom(H2) ⊆ dom(H3), but in particular any x ∈ dom(H3)
will only be deleted in the first phase if not in dom(H1): Deletion requires that x and all its parents

have the same reference count in H2 and H3, and that x or one of its parents is a root in H3. But

then x or one of its parents will also be a root in H1, so the reference count would have to be higher

in H3 than in H2. Thus dom(H1) ⊆ dom( [H2,H3]).
Case Roots: Let Γ1, Γ2, Γ3 be the roots of H1,H2,H3 respectively. Clearly, Γ1, Γ2 ⊆ Γ3 iff Γ1 ⊆ Γ3 − Γ2.
By lemma 49 the first term gives the roots of H1 ⊗ H2 and by lemma 53 the second term gives the

roots of [H2,H3].

Lemma 55. (Monotocity of subtracting heaps)
If H3 → H1 → H2 → H4 then [H1,H2] → [H3,H4].

Proof.
Case Domain: The domain of [H3,H4] consists of all variables in H4 which are not deleted. Any

such variable will be a root of or reachable from a root in H3. Since H3 → H1, the reference counts

of H1 are at least as big as those in H3. Thus any deletion in the construction of [H3,H4] will also
happen during the construction of [H1,H2].
Case Roots:
roots( [H1,H2]), roots(H1) = roots(H2) (1), by lemma 53

⊆ roots(H4) = roots( [H3,H4]), roots(H3) (2), by lemma 53

roots(H3) ⊆ roots(H1) (3), by assumption

roots( [H1,H2]) ⊆ roots( [H3,H4]) (4), by (2) and (3)

Notice that this does not quite give us a closed monoidal category, since the internal hom [H1,H2]
is only defined if H1 → H2. Nonetheless, many results about closed monoidal categories also hold in
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our setting. As an example of the usefulness of the categorical perspective, we show that subtracting

two heaps one-by-one yields the same result as subtracting them as one joined heap:

Lemma 56. (Internalized hom isomorphism)

If H2 → H3 and H1 → [H2,H3], then [H1 ⊗ H2, H3] = [H1, [H2, H3]].

Proof. Let H be a heap with H→ [H1 ⊗ H2, H3]. Then:
H → [H1 ⊗ H2, H3] (1), by assumption

iff (H ⊗ (H1 ⊗ H2)) → H3 (2), by lemma 54

iff ((H ⊗ H1) ⊗ H2) → H3 (3), by lemma 50

iff (H ⊗ H1) → [H2, H3] (4), by lemma 54

iff H → [H1, [H2, H3]] (5), by lemma 54

By instantiating H to [H1 ⊗ H2, H3] and [H1, [H2, H3]] using reflexivity, we obtain the equality.

And we can show the existence of the universal morphisms:

Lemma 57. (Existence of counit)
If H1 → H2 then [H1,H2] ⊗ H1 = H2.

Proof. [H1,H2] ⊗ H1 → H2: By lemma 54, we have [H1,H2] ⊗ H1 → H2 iff [H1,H2] → [H1,H2],
which is true by reflexivity.

H2 → [H1,H2] ⊗ H1:We have dom(H2) ⊆ (dom(H2) − dom(H1)), dom(H1) ⊆ dom( [H1,H2]), dom(H1).
Additionally, roots(H2) = (roots(H2) − roots(H1)), roots(H1).

Lemma 58. (Existence of unit)
For any heaps H1,H2 we have H1 → [H2, H1 ⊗ H2].

Proof. By lemma 54, we have H1 → [H2, H1 ⊗ H2] iff H1 ⊗ H2 → H1 ⊗ H2, which is true by reflex-

ivity.

Notice that the above inequality is strict since [H2, H1 ⊗ H2] contains all cycles from H2. However,

the cycles do not matter too much, since they will also be present in all other heaps which H2 was

subtracted from:

Lemma 59. (Universal morphism for unit)
If H2 → H3 and H1 → [H2, H3] then [H2, H1 ⊗ H2] → [H2, H3].

Proof. We have H1 ⊗ H2 → H3 by lemma 54, which implies the claim by lemma 55.

Our last lemma says that if it is possible to subtract H1 from H2, we can add any H3 equally before

or after the subtraction.

Lemma 60. (Joining distributes over subtraction)
If H1 → H2 then [H1,H2 ⊗ H3] = [H1,H2] ⊗ H3.

Proof.
CaseDomain: SinceH1 → H2, an x ∈ dom(H3) can not get deleted in the construction of [H1,H2 ⊗ H3].
Thus dom( [H1,H2 ⊗ H3]) = dom( [H1,H2]), dom(H3).
Case Roots:
roots( [H1,H2 ⊗ H3]) (1)

= (roots(H2), roots(H3) − roots(H1)) (2)

= (roots(H2) − roots(H1)), roots(H3) (3)

= roots( [H1,H2] ⊗ H3) (4)
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E.2 Simple Invariant
Our simple invariant maintains that the heap remains “well-formed” during evaluation. We use

two heaps: a “borrowed” heap H1 which is unchanged by evaluation and an “owned” heap which

can be changed. Our simple invariant I (e,Δ, Γ,H1,H2) is defined as:

• Δ | Γ ⊢ e
• H1,H2 are compatible heaps

• Δ ⊆ dom(H1) and H1 sound

• Γ = roots(H2) and H2 linear

That invariant makes it safe to modify H2, as all values that the heap semantics destroys are in Γ
and not used anywhere else in the heap (Γ = roots(H2)). It would be enough for soundness to

demand Γ ⊆ roots(H2). However, the stronger assertion directly gives us the garbage-free theorem

and by the weakening lemma 64 we can always add separated memory to the heap later.

Unlike in the store semantics, the weaking lemma does not hold for every step. If we have an

expression like drop x, this will lead to different steps depending on whether the reference count is

one or not. Therefore, we need to characterize dropping and dupping in terms of the final heap:

Lemma 61. (Dupping joins a root)
If H | dup x; e −→h H′ | e then H′ = H ⊗ H[x].

Proof. We haveH, x ↦→n v | dup x; e −→h H, x ↦→n+1 v | e. Since dom(H ⊗ H[x]) = dom(H) and
roots(H ⊗ H[x]) = roots(H), x, we have the claim.

Lemma 62. (Dropping subtracts a root)
If x is a root of H and H | drop x; e −→∗

h H′ | e then H′ = [H[x], H].

Proof. We show the statement for all x by induction over all H with H[x] → H. In the inductive

hypothesis, we can assume the claim for all y and H′ ⊊ H with H′[y] → H′
.

Case If the reference count of x in H is one, then H1, x ↦→1 v | drop x; e −→h H1 | drop z; e. Since
H1 ⊊ H and the z are roots ofH1, we can apply the inductive hypothesis to obtainH′ = [H1 [z1], . . . [H1 [zn], H1]] = [H1 [z1] ⊗ . . . ⊗ H1 [zn], H1].
Since H[x] = (H1 [z1] ⊗ . . . ⊗ H1 [zn]), x ↦→1 v this implies the claim.

Case If the reference count of x inH is bigger than one, thenH1, x ↦→n+1 v | drop x; e −→h H1, x ↦→n v | e.
Since [H[x], H] = JH[x],HK, every variable except x will have an unchanged count and only the

count of x will be decreased by one.

Lemma 63. (Dropru subtracts a root and adds a credit)
If H | dropru x; e −→∗

h H′ | e then H′ = [H[x], H] ⊗ ⋄k .

Proof. The rule for dropru acts like the rule for drop, except that it puts a space credit into the

heap. The claim thus follows from lemma 62.

Then we can weaken an evaluation if it completes all dropping procedures: we over-approximate

this by requesting that the final e′ does not start with a drop. The interesting part of the proof is
that we can move H1 out of the joins and subtractions induced by dups/drops by lemma 50 and 60.

Lemma 64. (Weakening for heap semantics)
If H | e ↦−→∗

h H′ | e′ and e′ ≠ E[drop x; e′′], then H ⊗ H1 | e ↦−→∗
h H′ ⊗ H1 | e′ for any compat-

ible H1.

Proof. By induction on the judgement H | e −→∗
h H′ | e′. The reflexive case is obvious. Assume

that H | e ↦−→∗
h H′ | e′ ↦−→h H′′ | e′′ and H ⊗ H1 | e ↦−→∗

h H′ ⊗ H1 | e′. Use case analysis on the

last step. Then H′ ⊗ H1 | e′ ↦−→h H′′ ⊗ H1 | e′′ holds trivially for the cases which do not modify
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the heap: (leth), (callh), (bmatchh), (apph).
Case (atomh, reuseh).
H′ | E[Ck x1 . . . xk] ↦−→h [⋄k, H′], x ↦→1Ck x1 . . . xk | E[x] (1), by assumption

[⋄k, H′ ⊗ H1], x ↦→1Ck x1 . . . xk
= ( [⋄k, H′] ⊗ H1), x ↦→1Ck x1 . . . xk (2), by lemma 60

= ( [⋄k, H′], x ↦→1Ck x1 . . . xk) ⊗ H1 (3), since x ̸∈ dom(H1)

Case (lamh).
H′ | E[_z x . e] ↦−→h [⋄k, H′], x ↦→1_z x . e | E[x] (1), by assumption

[H′ ⊗ H1], x ↦→1_z x . e
= (H′, x ↦→1_z x . e) ⊗ H1 (2), since x ̸∈ dom(H1)

Case (alloch).
H′ | E[alloc k; e] ↦−→h H′ ⊗ ⋄k | E[e] (1), by assumption

H′ ⊗ H1 ⊗ ⋄k = H′ ⊗ ⋄k ⊗ H1 (2), by lemma 51

Case (freeh).
H′ | E[free k; e] ↦−→h [⋄k, H′] | E[e] (1), by assumption

[⋄k, H′ ⊗ H1] = [⋄k, H′] ⊗ H1 (2), by lemma 60

Case (duph).
H′ | E[dup x; e] ↦−→h H′ ⊗ H′[x] | E[e] (1), by lemma 61

H′ ⊗ H1 ⊗ (H′ ⊗ H1) [x]
= H′ ⊗ H1 ⊗ H′[x] (2), since x ∈ dom(H′)
= H′ ⊗ H′[x] ⊗ H1 (3), by lemma 51

Case (dconh), (dlamh), (droph).
H′ | E[drop x; e] ↦−→h [H′[x], H′] | E[e] (1), by lemma 62

[(H′ ⊗ H1) [x], H′ ⊗ H1]
= [H′[x], H′ ⊗ H1] (2), since x ∈ dom(H′)
= [H′[x], H′] ⊗ H1 (3), by lemma 60

Case (dconruh), (dropruh).
H′ | E[dropru x; e] ↦−→h [H′[x], H′] ⊗ ⋄k | E[e] (1), by lemma 63

[(H′ ⊗ H1) [x], H′ ⊗ H1] ⊗ ⋄k
= [H′[x], H′ ⊗ H1] ⊗ ⋄k (2), since x ∈ dom(H′)
= [H′[x], H′] ⊗ H1 ⊗ ⋄k (3), by lemma 60

= [H′[x], H′] ⊗ ⋄k ⊗ H1 (4), by lemma 51

E.3 Progress
In this section we want to show that the heap semantics can progress if the simple invariant

is true and operational semantics can progress. We assume throughout that for any function

f (y; x) = e ∈ Σ, we have fv(e) ⊆ y, x. This is true if Σ is fully in-place:

Lemma 65. (Free variables of FIP expressions are in Δ, Γ)
If Δ | Γ ⊢ e, then fv(e) ⊆ Δ, Γ.

Proof. By induction on the judgement Δ | Γ ⊢ e.
Case dup:
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Δ | Γ ⊢ dup x; e (1), given

Δ | Γ, x ⊢ e (2), by dup

x ∈ (Δ, Γ) (3), by dup

fv(e) ⊆ Δ, Γ, x (4), inductive hypothesis

fv(dup x; e) ⊆ Δ, Γ (5), by (3) and (4)

Case dropru:

Δ | Γ, x ⊢ dropru x; e (1), given

Δ | Γ,⋄k ⊢ e (2), by dropru

fv(e) ⊆ Δ, Γ,⋄k (3), inductive hypothesis

fv(dropru x; e) ⊆ Δ, Γ, x (4), by (3)

Case alloc:

Δ | Γ ⊢ alloc k; e (1), given

Δ | Γ,⋄k ⊢ e (2), by alloc

fv(e) ⊆ Δ, Γ,⋄k (3), inductive hypothesis

fv(alloc k; e) ⊆ Δ, Γ (4), by (3)

Case match:

Δ | Γ ⊢ match x { Ci x i ↦→ dup x i; ei } (1), given

Δ | Γ, x i ⊢ ei (2), by match

x ∈ (Δ, Γ) (3), by match

fv(ei) ⊆ Δ, Γ, x i (4), inductive hypothesis

fv(match x { Ci x i ↦→ ei) = x, fv(e1) − x1, . . ., fv(en) − xn ⊆ Δ, Γ (5), definition and (3)

Case app:

Δ | Γ1, Γ2 ⊢ e1 e2 (1), given

Δ | Γ1 ⊢ e1 (2), by app

Δ | Γ2 ⊢ e2 (3), by app

fv(e1), fv(e2) ⊆ Δ, Γ (4), inductive hypothesis

fv(e1 e2) = fv(e1), fv(e2) ⊆ Δ, Γ (5), definition

Case lam:

Δ | z ⊢ _z x . e (1), given

∅ | z, x ⊢ e (2), by lam

fv(e) ⊆ x, z (3), inductive hypothesis

fv(_z x . e) ⊆ z (4), definition

We define [H − x]e as the substitution which replaces every variable y ∈ fv(e) − x by [H]y.
Notice that this is different from formally subtracting x from the heap ([[H[x],HKe), since the
substitution [H − x]e can still work on children of x, which might get deleted in [H[x],H]. Then:
Lemma 66. (Heap Substitution on unused variables)
If x ̸∈ fv(e) or x ̸∈ dom(H), then [H]e = [H − x]e.

Proof. As before

Lemma 67. (Heap Substitution commutes)
If H sound and [H]z = v, then [H] (e[x:=z]) = ( [H − x]e) [x:=v].

Proof. As before

Lemma 68. (Heap semantics reads values)
If I (v,Δ, Γ,H1,H2) thenH1 ⊗ H2 | v −→∗

h H1 ⊗ H ′
2
| x with [H2]v = [H ′

2
]x and all names in dom(H ′

2
) − dom(H2)
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are fresh.

Proof. Using the (x1, . . .,□, . . ., vn) context, view each value v individually. By induction on v.
Unlike in stores, our values now also include lambdas:

Case _z x . e:
Δ | z ⊢ _z x . e (1), by lam

z = roots(H2) (2), by invariant

H1 ⊗ H2 | _z x . e −→h H1 ⊗ (H2, x ↦→_z x . e) | x (3), (lamh), fresh x
[H2, x ↦→_z x . e]x = [H2] (_z x . e) (4), since x fresh

Lemma 69. (Dropping can progress)
If I ((drop x; e),Δ, Γ,H1,H2) thenH1 ⊗ H2 | drop x; e −→∗

h H1 ⊗ H ′
2
| ewith [H1 ⊗ H2]e = [H1 ⊗ H ′

2
]e.

Proof.
Δ | Γ, x ⊢ drop x; e (1), by invariant

Δ | Γ ⊢ e (2), by drop

fv(e) ∈ Δ, Γ (3), by lemma 65

Γ, x = roots(H2) (4), by invariant

(H1 ⊗ H2) [x] = H2 [x] (5), by (4)

H1 ⊗ H2 | drop x; e −→∗
h [(H1 ⊗ H2) [x], H1 ⊗ H2] | e (6), by lemma 62

[(H1 ⊗ H2) [x], H1 ⊗ H2] = [H2 [x], H1 ⊗ H2] (7), by (5)

= [H2 [x], H2] ⊗ H1 = H1 ⊗ [H2 [x], H2] (8), by lemma 60

[H1 ⊗ H2]e = [H2 ⊗ [H2 [x], H2]]e (9), by (3) and soundness

Lemma 70. (Dropping can progress)
If I ((drop x; e),Δ, Γ,H1,H2) thenH1 ⊗ H2 | drop x; e −→∗

h H1 ⊗ H ′
2
| ewith [H1 ⊗ H2]e = [H1 ⊗ H ′

2
]e.

Proof. Like proof of lemma 70, using lemma 63.

Lemma 71. (Heap semantics can progress (no eval ctx))
If I (e,Δ, Γ,H1,H2) and [H1 ⊗ H2]e −→ e′, thenH1 ⊗ H2 | e −→∗

h H1 ⊗ H ′
2
| e′′with e′ = [H1 ⊗ H ′

2
]e′′.

Proof. By case-analysis on [H1 ⊗ H2]e −→ e′. We omit the cases which are unchanged from the

store semantics.

Case (dup).
H1 ⊗ H2 | dup x; e −→h H1 ⊗ H2 ⊗ (H1 ⊗ H2) [x] | e (1), by lemma 61

dom((H1 ⊗ H2) [x]) ⊆ dom(H1 ⊗ H2) (2), by definition

[H1 ⊗ H2]e = [H1 ⊗ H2 ⊗ (H1 ⊗ H2) [x]]e (3), by (2)

Case (drop).
H1 ⊗ H2 | drop x; e −→∗

h H1 ⊗ H ′
2
| e (1), by lemma 69

[H1 ⊗ H ′
2
]e = [H1 ⊗ H2]e (2), by lemma 69

Case (dropru).
H1 ⊗ H2 | dropru x; e −→∗

h H1 ⊗ H ′
2
| e (1), by lemma 70

[H1 ⊗ H ′
2
]e = [H1 ⊗ H2]e (2), by lemma 70

Case (alloc).
H1 ⊗ H2 | alloc k; e −→h H1 ⊗ (H2,⋄k) | e (1), by (alloch)
[H1 ⊗ H2]e = [H1 ⊗ (H2,⋄k)]e (2), clear

71



FP
2
: Fully in-Place Functional Programming

Case (beta).
H1 ⊗ H2 | (y) y −→h H1 ⊗ H2 | dup z; drop y; e[x:=y] (1), by (apph), (_z x . e) ∈ H1 ⊗ H2

y, y = roots(H2) (2), by invariant

(H1 ⊗ H2) [z] = H2 [z] and (H1 ⊗ H2) [y] = H2 [y] (3), by (2)

H1 ⊗ H2 | (y) y −→h H1 ⊗ [H2 [y], H2 ⊗ H2 [z]] | e[x:=y] (4), by (3)

roots( [H2 [y], H2 ⊗ H2 [z]]) = y, z (5), by (2)

fv(e) = y, z (6), by lemma 65

e′ = [H1 ⊗ H ′
2
]e′′ (7), by (5) and (6)

E.4 Heap semantics preserves linearity and roots
In this section, we wish to maintain the invariant I (e,Δ, Γ,H1,H2) which makes lemma 71 work.

Lemma 72. (Variable substitution preserves FIP typing)
Assuming that y does not occur in e. (1) If Δ | Γ, x ⊢ e, then Δ | Γ, y ⊢ e[x:=y]. (2) If Δ, x | Γ ⊢ e,
then Δ, y | Γ ⊢ e[x:=y].

Proof. By induction on the FIP judgement for any such x, y.
Case lam:

Δ | z, x ⊢ _z,x x ′. e (1), given

∅ | z, x, x ′ ⊢ e (2), by lam

z, x = fv(_ x ′. e) (3), by lam

∅ | z, y, x ′ ⊢ e[y:=x] (4), by lam

z, y = fv(_ x ′. e[y:=x]) (5), by (3)

Δ | z, y ⊢ _z,y x ′. e[y:=x] (6), by (4),(5)

Other cases are clear.

Lemma 73. (The delta environment can be weakened)
If Δ | Γ ⊢ e, then Δ, x | Γ ⊢ e.

Proof. By straight-forward induction on the judgement Δ | Γ ⊢ e. Unlike as in the proof of store

semantics, we do not have to require x ̸∈ Γ as Δ and Γ need not be disjoint.

The next lemma is the main lemma of our soundness proof. It says that the individual steps of the

heap semantics take sound/linear heaps to sound/linear heaps. As usual, the judgement −→h does

not include the eval rule. We assume a slightly modified (apph) rule, where we execute the dups
immediately. This is equivalent to the (apph) rule given in the paper:

(apph) H, z ↦→n v | (y) y −→h H, z ↦→n+1 v | drop y; e[x:=y] (y ↦→m_zx . e ∈ H)

Lemma 74. (Heap semantics preserves linearity and roots (no eval ctx))
If I (e,Δ, Γ,H1,H2) and H1 ⊗ H2 | e −→h H1 ⊗ H3 | e′, then I (e′,Δ′, Γ′,H1,H3).

Proof. By case analysis on the rules of the heap semantics.

Case (apph).
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Δ | y, y ⊢ (y) y (1), by app

∅ | x, z ⊢ e (2), by lam

∅ | y, z ⊢ e[x:=y] (3), by 72

∅ | y, y, z ⊢ drop y; e[x:=y] (4), by drop

H ′
2
, z ↦→n v := H2 (5), define

H3 := H ′
2
, z ↦→n+1 v (6), define

y, y = roots(H2) (7), given

y, y, z = roots(H3) (8), by (7) and (6)

Case (alloch).
Δ | Γ ⊢ alloc k; e (1), given

H3 := H2,⋄k (2), define

Δ | Γ,⋄k ⊢ e (3), by alloc

Γ = roots(H2) (4), by (1)

Γ,⋄k = roots(H3) (5), by (2)

H3 linear (6), by (5)

Case (lamh).
Δ | z ⊢ _z x . e (1), given

H3 := H2, x ↦→_z x . e (2), define

Δ | x ⊢ x (3), by var

x = roots(H3) (4), by (2) and since x is fresh

z = roots(H2) (5), by (1)

H3 linear (6), by (5)

Case (dconh).
Δ | Γ, x ⊢ drop x; e (1), given

H3 := H2 − x (2), define

x ↦→1Ck y ∈ roots(H2) (3), given

H3 sound (4), by (3)

Γ, y = roots(H3) (5), since H2 is linear

Δ | Γ, y ⊢ drop y; e (6), by (1), drop

Case (dconruh).
Δ | Γ, x ⊢ dropru x; e (1), given

H3 := H2 − x,⋄k (2), define

x ↦→1Ck y ∈ roots(H2) (3), given

H3 sound (4), by (3)

Γ,⋄k, y = roots(H3) (5), since H2 is linear

Δ | Γ,⋄k, y ⊢ drop y; e (6), by (1), drop

Case (dlamh).
Δ | Γ, x ⊢ drop x; e (1), given

H3 := H2 − x (2), define

x ↦→1_z x . e ∈ roots(H2) (3), given

H3 sound (4), by (3)

Γ, y = roots(H3) (5), since H2 is linear

Δ | Γ, y ⊢ drop z; e (6), by (1), drop

Case (droph).
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Γ, x = roots(H2) (1), given

H ′
2
, x ↦→n+1 v := H2 (2), define

H3 := H ′
2
, x ↦→n v (3), define

Δ | Γ, x ⊢ drop x; e (4), given

H3 sound (5), by (3)

Γ = roots(H3) (6), since H2 is linear

Δ | Γ ⊢ e (7), by (4)

Case (dropruh). Exactly as case (droph).
Case (duph).
Δ | Γ ⊢ dup x; e (1), given

x ∈ (Δ, Γ) (2), by (1)

H3 := H2 ⊗ (H1 ⊗ H2) [x] (3), by lemma 61

x ∈ dom(H1 ⊗ H2) (4), by (2)

H3 linear (5), by (3),(4)

Γ, x = roots(H3) (6), where Γ = roots(H2)
Δ | Γ, x ⊢ e (7), by (1)

E.5 Main Invariant
As before, we want to generalize lemma 74 to arbitrary evaluation contexts and use the more

complicated invariant. The simple invariant fails here for the same reason it failed in the store

semantics – and all results from that section transfer directly to the heap semantics. This is due to

the fact that the heap and store semantics use the same evaluation context and borrowing strategy

(in the let-bindings).

We define IE (e,Δ, Γ,H1,H2) by induction on E:
Case E = □:

I□ (e,Δ, Γ,H1,H2) := I (e,Δ, Γ,H1,H2)
Case E[E′] = Ck x1 . . . E′ . . . vk | (x1, . . ., E′, . . ., vn) | E′ e | x E′ | f (y; E′) | match E′ { p ↦→ e }:
IE [E′ ] (e,Δ, (Γi, Γ),H1,H2) := IE′ (e,Δ′, Γi, (H1 ⊗ [H2 [Γi], H2]),H2 [Γi]) and I (E[()],Δ, Γ,H1, [H2 [Γi], H2])

Case E[E′] = let x = E′ in e:
IE [E′ ] (e,Δ, (Γ1, Γ2, Γ3),H1,H2) :=

IE′ (e,Δ′, Γ1, (H1 ⊗ [H2 [Γi], H2]),H2 [Γ1])
and I (E[()],Δ, (Γ2, Γ3),H1, [H2 [Γi], H2])

All of lemmas about exchanging the two invariants continue to hold largely unchanged. The only

difference is that we have to join H2 [Γi] onto [H2 [Γi], H2] using lemma 57, which guarantees that

this yields the original H2.

Lemma 75. (Weakening the invariant)
If I (E[e],Δ, Γ,H1,H2), then IE (e,Δ, Γ,H1,H2).

Lemma 76. (Weakening the invariant)
If IE (E2 [e],Δ, Γ,H1,H2), then IE [E2 ] (e,Δ, Γ,H1,H2).

Lemma 77. (Values do not borrow)
If Δ | Γ ⊢ v, then ∅ | Γ ⊢ v.

Proof. By induction on Δ | Γ ⊢ v:
Case _z x . e:
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Δ | z ⊢ _z x . e (1), by lam

∅ | z, x ⊢ e (2), by (1)

∅ | z ⊢ _z x . e (3), by lam

Lemma 78. (Values do not borrow)
If I (v,Δ, Γ,H1,H2), then I (v,∅, Γ,H ′

1
,H2) for any H ′

1
.

However, notice that we introduce a Δ′
enviroment at every level of the evaluation context. That

means, that we can only remove a single level of the evaluation context at a time. To model this,

we call an evaluation context E flat if E = E′[E′′] implies that either E′
or E′′

is the hole. Then:

Lemma 79. (Strengthening the invariant)
If E is flat and IE (v,Δ, Γ,H1,H2), then I (E[v],Δ, Γ,H1,H2).

Lemma 80. (Strengthening the invariant)
If E2 is flat and IE [E2 ] (v,Δ, Γ,H1,H2), then IE (E2 [v],Δ, Γ,H1,H2).

E.6 Soundness
Now we can show the main soundness theorem. As earlier, we extend the progress and preservation

proofs to handle the step and eval cases. If we evaluate e1 under the context E1, we need to assume

the invariant IE1 (e1,Δ, Γ,H1,H2). But how can we obtain the invariant for this precise E1? The trick is
that we do not have to know E1, instead we can just assume IE2 (e2,Δ, Γ,H1,H2) for E1 [e1] = E2 [e2]:
Lemma 81. (Comparing evaluation contexts)
Let E1 [e1] = E2 [e2], then either:

• E1 = E′
1
[E′′

1
] with E′

1
= E2 and e2 = E′′

1
[e1]

• E2 = E′
2
[E′′

2
] with E′

2
= E1 and e1 = E′′

2
[e2]

Lemma 82. (Alignment of invariant)
If e1 −→ e′

1
, E1 [e1] = E2 [e2] and IE2 (e2,Δ, Γ,H1,H2), then IE1 (e1,Δ, Γ,H1,H2).

Lemma 83. (Heap semantics can progress)
If IE (e,Δ, Γ,H1,H2) and [H1 ⊗ H2]e −→ e′, thenH1 ⊗ H2 | e −→∗

h H1 ⊗ H ′
2
| e′′with e′ = [H1 ⊗ H ′

2
]e′′.

Proof.
IE (e,Δ, Γ,H1,H2) (1), given

I (e,Δ′, Γ′,H ′
1
,H ′

2
), with H1 ⊗ H2 = H ′

1
⊗ H ′

2
and H ′

2
⊆ H2 (2), by (1)

[H1 ⊗ H2]e = [H ′
1
⊗ H ′

2
]e (3), by (2)

H ′
1
⊗ H ′

2
| e −→∗

h H ′
1
⊗ H ′

3
| e′′ (4), by lemma 71

e′ = [H ′
1
⊗ H ′

3
]e′′ (5), by lemma 71

H3 := H ′
3
⊗ [H ′

2
, H2] (6), define

H1 ⊗ H2 | e −→∗
h H1 ⊗ H3 | e′′ (7), by (4)

e′ = [H1,H3]e′′ (8), by (5)

Lemma 84. (Heap semantics preserves linearity and roots)
If IE (e,Δ, Γ,H1,H2) and H1 ⊗ H2 | e −→h H1 ⊗ H3 | e′, then IE (e′,Δ′, Γ′,H1,H3).

Proof.
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IE (e,Δ, (Γ, Γ′),H1, (H2 ⊗ H ′
2
)) (1), given

I (e,Δ′, Γ, (H1 ⊗ H ′
2
),H2) (2), split (1)

IE ((),Δ, Γ′,H1,H ′
2
) (3), split (1)

H1 ⊗ H ′
2
⊗ H2 | e −→h H1 ⊗ H ′

2
⊗ H ′

3
| e′ (4), by assumption

I (e′,Δ′′, Γ′′, (H1 ⊗ H ′
2
),H ′

3
) (5), by lemma 74

H3 := H ′
3
⊗ H ′

2
(6), define

IE (e′,Δ, (Γ′′, Γ′),H1,H3) (7), merge (3) and (5)

Lemma 85. (Soundness lemma)
If IE (e,Δ, Γ,H1,H2) and [H1 ⊗ H2] (E[e]) ↦−→∗ v, thenH1 ⊗ H2 | E[e] ↦−→∗

h H1 ⊗ H3 | x with I (x,∅, x,∅,H3)
and [H3]x = v.

Proof. By induction on [H1,H2] (E[e]) ↦−→∗ v.
Case Reflexive case:
[H1 ⊗ H2] (E[e]) = v (1), given

E = □, e = w, [H1 ⊗ H2]w = v (2), by (1)

I□(w,Δ, Γ,H1,H2) (3), given

I (w,Δ, Γ,H1,H2) (4), by definition

H1 ⊗ H2 | w −→∗
h H1 ⊗ H ′

2
| x (5), by lemma 68

v = [H1 ⊗ H2]w = [H1 ⊗ H ′
2
]x (6), by lemma 68

I (x,Δ, Γ,H1,H ′
2
) (7), by lemma 74

I (x,∅, Γ,∅,H ′
2
) (8), by lemma 78

Case Transitive case:
[H1 ⊗ H2] (E[e]) ↦−→ e′ (1), given

e′ ↦−→∗ v (2), given

E′
1
[e′

1
] = [H1 ⊗ H2] (E[e]), e′1 −→ e′

2
, e′ = E′

1
[e′

2
] (3), by step

[H1 ⊗ H2]E1 := E′
1
, [H1 ⊗ H2]e1 := e′

1
(4), define

E1 [e1] = E[e] (5), by (4)

IE (e,Δ, Γ,H1,H2) (6), given

IE1 (e1,Δ, Γ,H1,H2) (7), by lemma 82

H1 ⊗ H2 | e1 −→∗
h H1 ⊗ H ′

2
| e′′ (8), by lemma 83

e′
2
= [H1 ⊗ H ′

2
]e′′ (9), by lemma 83

IE1 (e′′,Δ′, Γ′,H1,H ′
2
) (10), by lemma 84

[H1 ⊗ H ′
2
] (E1 [e′′]) = ( [H1 ⊗ H ′

2
]E1) ( [H1 ⊗ H ′

2
]e′′) (11), commute

= E′
1
[e′

2
] (12), by (4) and (9)

= e′ ↦−→∗ v (13), by (3) and (2)

H1 ⊗ H ′
2
| E1 [e′′] ↦−→∗

h H1 ⊗ H3 | x (14), inductive hypothesis

I (x,∅, x,∅,H3) and [H3]x = v (15), inductive hypothesis

H1 ⊗ H2 | E1 [e1] ↦−→∗
h H1 ⊗ H ′

2
| E1 [e′′] (16), eval on (8)

H1 ⊗ H2 | E[e] ↦−→∗
h H1 ⊗ H3 | x (17), append (16) and (14)

Theorem 10. (FIP programs are sound in heap semantics)
IfΔ | Γ ⊢ e and given compatible heapsH1,H2 withΔ ⊆ dom(H1),H1 sound, Γ = roots(H2) andH2

linear, and [H1 ⊗ H2]e −→∗ v, thenH1 ⊗ H2 | e −→∗
h H1 ⊗ H3 | x where [H3]x = v, x = roots(H3)

and H3 is linear.

Proof.

76



Anton Lorenzen, Daan Leijen, and Wouter Swierstra

Δ | Γ ⊢ e (1), given

H1,H2 compatible heaps (2), given

Δ ⊆ dom(H1) and H1 sound (3), given

Γ = roots(H2) and H2 linear (4), given

I (e,Δ, Γ,H1,H2) (5), by (1)-(4)

e = E[e′] (6), for some E, e′

IE (e′,Δ, Γ,H1,H2) (7), lemma 75

H1 ⊗ H2 | E[e′] ↦−→∗
h H1 ⊗ H3 | x (8), lemma 85

I (x,∅, x,∅,H3) (9), lemma 85

[H3]x = v (10), lemma 85

x = roots(H3) and H3 linear (11), by (9)
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F EXAMPLE CODE
This section contains the full examples discussed in Section 4. These examples do not use match!,

drop or free as they are automatically inferred by our implementation.

F.1 Red-Black Trees

import std/num/int32

type color
Red
Black

type tree
Node(color : color, lchild : tree, key : int32, value : bool, rchild : tree)
Leaf

fip fun is-red(^t : tree) : bool
match t
Node(Red) -> True
_ -> False

type accum
Done
NodeL(color : color, lchild : accum, key : int32, value : bool, rchild : tree)
NodeR(color : color, lchild : tree, key : int32, value : bool, rchild : accum)

fip(1) fun ins(t : tree, key : int32, v : bool, z : accum) : exn tree
match t
Node(c, l, kx, vx, r)

-> if key < kx then ins(l, key, v, NodeL(c, z, kx, vx, r))
elif key > kx then ins(r, key, v, NodeR(c, l, kx, vx, z))
else balance(z, Node(c, l, key, v, r))

Leaf -> balance(z, Node(Red, Leaf, key, v, Leaf))

fip fun set-black(t : tree) : tree
match t
Node(_, l, k, v, r) -> Node(Black, l, k, v, r)
t -> t

fip fun rebuild(z : accum, t : tree) // Turn the zipper into a tree without rotating
match z
NodeR(c, l, k, v, z1) -> rebuild(z1, Node(c, l, k, v, t))
NodeL(c, z1, k, v, r) -> rebuild(z1, Node(c, t, k, v, r))
Done -> t

fip(1) fun insert(t : tree, k : int32, v : bool) : <exn> tree
ins(t, k, v, Done)

fip fun balance( z : accum, t : tree ) : exn tree
match z
NodeR(Red, l1, k1, v1, z1) -> match z1

NodeR(_,l2,k2,v2,z2) -> // black
if is-red(l2) then balance(z2, Node(Red, l2.set-black, k2, v2, Node(Black, l1, k1, v1, t) ))
else rebuild(z2, Node(Black, Node(Red,l2,k2,v2,l1), k1, v1, t))

NodeL(_,z2,k2,v2,r2) -> // black
if is-red(r2) then balance(z2, Node(Red, Node(Black,l1,k1,v1,t), k2, v2, r2.set-black))
else match t

Node(_, l, k, v, r) ->
rebuild(z2, Node(Black, Node(Red,l1,k1,v1,l), k, v, Node(Red,r,k2,v2,r2)))

Done -> Node(Black, l1, k1, v1, t)
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NodeL(Red, z1, k1, v1, r1) -> match z1
NodeL(_,z2,k2,v2,r2) -> // black

if is-red(r2) then balance(z2, Node(Red, Node(Black, t, k1, v1, r1), k2, v2, r2.set-black ))
else rebuild(z2, Node(Black, t, k1, v1, Node(Red,r1,k2,v2,r2)))

NodeR(_,l2,k2,v2,z2) -> // black
if is-red(l2) then balance(z2, Node(Red, l2.set-black, k2, v2, Node(Black,t,k1,v1,r1) ))
else match t

Node(_, l, k, v, r) ->
rebuild(z2, Node(Black, Node(Red,l2,k2,v2,l), k, v, Node(Red,r,k1,v1,r1)))

Done -> Node(Black, t, k1, v1, r1)
z -> rebuild(z, t)

F.2 Stable Merge Sort

import std/num/int32

alias elem = int32

ref type pad
Pad

type unit2
Unit2(a : pad, b : pad)

type sublist<a>
SCons(a : a, cs : sublist<a>)
STuple(a : a, b : a)

type partition<a>
Singleton(c : sublist<a>, z : partition<a>)
Sublist(c : a, z : partition<a>)
End

fip fun reverse-go(c : sublist<a>, acc : sublist<a>, u : unit2) : sublist<a>
match c
SCons(a, cs) -> reverse-go(cs, SCons(a, acc), u)
STuple(a, b) -> SCons(b, SCons(a, acc))

fip fun reverse-sublist(c : sublist<a>) : sublist<a>
match c
SCons(a, SCons(b, c)) -> reverse-go(c, STuple(b, a), Unit2(Pad,Pad))
SCons(a, STuple(b, c)) -> SCons(c, STuple(b, a))
STuple(a, b) -> STuple(b, a)

fip fun to-list(c : sublist<a>, u : unit2) : list<a>
match c
SCons(a, cs) -> Cons(a, to-list(cs, u))
STuple(a, b) -> Cons(a, Cons(b, Nil))

fip fun sequences(xs : list<elem>) : div partition<elem>
match(xs)
Cons(a, Cons(b, xs1)) ->

if(a > b) then descending(b, STuple(b, a), xs1, Unit2(Pad,Pad))
else ascending(b, STuple(b, a), xs1, Unit2(Pad,Pad))

Cons(a, Nil) -> Sublist(a, End)
Nil -> End

fip fun descending(a : elem, sublist : sublist<elem>, bs : list<elem>, u : unit2) : div partition<elem>
match(bs)
Cons(b, bs1) | a > b -> descending(b, SCons(b, sublist), bs1, u)
bs -> Singleton(sublist, sequences(bs))

fip fun ascending(a : elem, sublist : sublist<elem>, bs : list<elem>, u : unit2) : div partition<elem>
match(bs)
Cons(b, bs1) | (a <= b) -> ascending(b, SCons(b, sublist), bs1, u)
bs -> Singleton(reverse-sublist(sublist), sequences(bs))
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fip fun merge-all(xs : partition<elem>) : div list<elem>
match(xs)

Singleton(x, End) -> to-list(x, Unit2(Pad,Pad))
Sublist(x, End) -> Cons(x, Nil)
xs -> merge-all(merge-pairs(xs))

fip fun merge-pairs(xs : partition<elem>) : div partition<elem>
match(xs)
Singleton(a, Singleton(b, xs1)) ->

Singleton(merge(a, b, Unit2(Pad,Pad)), merge-pairs(xs1))
Singleton(a, Sublist(b, xs1)) ->

Singleton(merge-last-left(a, b, Unit2(Pad,Pad)), merge-pairs(xs1))
Sublist(a, Singleton(b, xs1)) ->

Singleton(merge-last-right(a, b, Unit2(Pad,Pad)), merge-pairs(xs1))
Sublist(a, Sublist(b, xs1)) ->

if a > b then Singleton(STuple(b, a), merge-pairs(xs1))
else Singleton(STuple(a, b), merge-pairs(xs1))

xs -> xs

fip fun merge(c1 : sublist<elem>, c2 : sublist<elem>, u : unit2) : div sublist<elem>
match c1
SCons(a, cs1) -> match c2

SCons(b, cs2) -> if a > b then SCons(b, merge(SCons(a, cs1), cs2, u))
else SCons(a, merge(cs1, SCons(b, cs2), u))

STuple(b, c) -> merge-last2-left(SCons(a, cs1), b, c, u, Unit2(Pad,Pad))
STuple(a, b) -> merge-last2-right(a, b, c2, u, Unit2(Pad,Pad))

fip fun merge-last2-right(a : elem, b : elem, c2 : sublist<elem>, u1 : unit2, u2 : unit2)
match c2
SCons(c, cs2) ->

if a > c then SCons(c, merge-last2-right(a, b, cs2, u1, u2))
else SCons(a, merge-last-right(b, SCons(c, cs2), u1))

STuple(c, d) ->
if a > c then

if a > d then SCons(c, SCons(d, STuple(a, b)))
elif b > d then SCons(c, SCons(a, STuple(d, b)))

else SCons(c, SCons(a, STuple(b, d)))
elif b > c then

if b > d then SCons(a, SCons(c, STuple(d, b)))
else SCons(a, SCons(c, STuple(b, d)))

else SCons(a, SCons(b, STuple(c, d)))

fip fun merge-last-right(a : elem, c2 : sublist<elem>, u1 : unit2) : div sublist<elem>
match c2
SCons(c, cs2) ->

if a > c then SCons(c, merge-last-right(a, cs2, u1))
else SCons(a, SCons(c, cs2))

STuple(b, c) ->
if a > b then

if a > c then SCons(b, STuple(c, a))
else SCons(b, STuple(a, c))

else SCons(a, STuple(b, c))

fip fun merge-last2-left(c2 : sublist<elem>, a : elem, b : elem, u1 : unit2, u2 : unit2)
match c2
SCons(c, cs2) ->

if a >= c then SCons(c, merge-last2-left(cs2, a, b, u1, u2))
else SCons(a, merge-last-left(SCons(c, cs2), b, u1))
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STuple(c, d) ->
if a >= c then

if a >= d then SCons(c, SCons(d, STuple(a, b)))
elif b >= d then SCons(c, SCons(a, STuple(d, b)))

else SCons(c, SCons(a, STuple(b, d)))
elif b >= c then

if b >= d then SCons(a, SCons(c, STuple(d, b)))
else SCons(a, SCons(c, STuple(b, d)))

else SCons(a, SCons(b, STuple(c, d)))

fip fun merge-last-left(c2 : sublist<elem>, a : elem, u1 : unit2) : div sublist<elem>
match c2
SCons(c, cs2) ->

if a >= c then SCons(c, merge-last-left(cs2, a, u1))
else SCons(a, SCons(c, cs2))

STuple(b, c) ->
if a >= b then

if a >= c then SCons(b, STuple(c, a))
else SCons(b, STuple(a, c))

else SCons(a, STuple(b, c))

F.3 Quick Sort

import std/num/int32

alias elem = int32

ref type pad
Pad

ref type unit2
Unit2(a : pad, b : pad)

type maybe2<a>
Nothing2
Just2(a : a, b : pad)

type sublist<a>
SCons(a : a, cs : sublist<a>)
STuple(a : a, b : a)

type partition<a>
Singleton(c : sublist<a>, bdl : partition<a>)
Sublist(c : a, bdl : partition<a>)
End

fip fun quicksort(xs : list<elem>) : div list<elem>
quicksort-go(xs, End)

fip fun quicksort-go(xs : list<elem>, b : partition<elem>) : div list<elem>
match xs
Nil -> quicksort-app(b)
Cons(p, xx) ->

val (lo, hi) = split-list(p, xx, Done, b, Unit2(Pad,Pad))
quicksort-go(lo, hi)

fip fun quicksort-sublist(xs : sublist<elem>, bdl : partition<elem>, u : unit2) : div list<elem>
match xs
SCons(p, xx) ->

val (lo, hi) = split-sublist(p, xx, Done, bdl, u, Unit2(Pad,Pad))
quicksort-go(lo, hi)

STuple(a, b) ->
if a <= b

then Cons(a, Cons(b, quicksort-app(bdl)))
else Cons(b, Cons(a, quicksort-app(bdl)))
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fip fun quicksort-app(bdl : partition<elem>) : div list<elem>
match bdl

End -> Nil
Sublist(p, b) -> Cons(p,quicksort-app(b))
Singleton(c, b) -> quicksort-sublist(c, b, Unit2(Pad,Pad))

type accum<a>
MkLo(x : a, k : accum<a>)
MkHi(x : a, k : accum<a>)
Done

fip fun split-list(p : elem, xs : list<elem>, k : accum<elem>, b : partition<elem>, u : unit2)
match xs
Nil -> split-app1(k, p, Nil, Nothing2, b, u)
Cons(x, xx) ->

if x < p
then split-list(p, xx, MkLo(x, k), b, u)
else split-list(p, xx, MkHi(x, k), b, u)

fip fun split-sublist(p : elem, xs : sublist<elem>, k : accum<elem>, b : partition<elem>, u : unit2, u1 : unit2)
match xs

STuple(x, y) -> split-list(p, Cons(x, Cons(y, Nil)), k, b, u)
SCons(x, xx) ->

if x < p
then split-sublist(p, xx, MkLo(x, k), b, u, u1)
else split-sublist(p, xx, MkHi(x, k), b, u, u1)

fip fun split-app1(k : accum<elem>, p : elem, lo : list<elem>, hi : maybe2<elem>, b : partition<elem>, u : unit2)
match k

MkLo(x, k) -> split-app1(k, p, Cons(x, lo), hi, b, u)
MkHi(x, k) -> match hi

Nothing2 -> split-app1(k, p, lo, Just2(x, Pad), b, u)
Just2(y, _) -> split-app2(k, p, lo, STuple(x,y), b, u, Unit2(Pad,Pad))

Done -> match hi
Just2(x, _) -> (lo, Sublist(p, Sublist(x, b)))
Nothing2 -> (lo, Sublist(p, b))

fip fun split-app2(k : accum<elem>, p : elem, lo : list<elem>, hi : sublist<elem>, b : partition<elem>, u : unit2, u1 : unit2)
match k
MkLo(x, k) -> split-app2(k, p, Cons(x,lo), hi, b, u, u1)
MkHi(x, k) -> split-app2(k, p, lo, SCons(x,hi), b, u, u1)
Done -> (lo, Sublist(p, Singleton(hi, b)))

F.4 Finger Trees

// Adapted from "Finger Trees Explained Anew, and Slightly Simplified (Functional Pearl)", Claessen
import std/num/int32

ref type pad
Pad

type reuse3
Reuse3(a : pad, b : pad, c : pad)

type afew<a>
One(a : a, b : pad, c : pad)
Two(a : a, b : a, c : pad)
Three(a : a, b : a, c : a)

type tuple<a>
Pair(a : a, b : a, c : pad)
Triple(a : a, b : a, c : a)
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type seq<a>
Empty
Unit(a : a, b : pad, c : pad)
More0(l : a, s : seq<tuple<a>>, r : afew<a>)
More(l : tuple<a>, s : seq<tuple<a>>, r : afew<a>)

type buffer
BNil
BCons(next : buffer, b : pad, c : pad)

value type bseq<a>
BSeq(s : seq<a>, q : buffer)

// Isomorphic to („,) but unboxed
value type tuple4<a,b,c,d>

Tuple4(fst:a,snd:b,thd:c,field4:d)

fun bhead(^bs : bseq<a>) : exn a
match bs

BSeq(s, _) -> head(s)

fun head(^s : seq<a>) : exn a
match s
Unit(x) -> x
More0(x, _, _) -> x
More(Pair(x, _, _), _, _) -> x
More(Triple(x, _, _), _, _) -> x

fip fun bcons(x : a, u3 : reuse3, bs : bseq<a>) : exn bseq<a>
match bs
BSeq(s, b) ->

val (s’, b’) = cons(x, u3, s, b)
BSeq(s’, b’)

fip fun cons(x : a, u3 : reuse3, s : seq<a>, b : buffer) : exn (seq<a>, buffer)
match s
Empty -> (Unit(x, Pad, Pad), b)
Unit(y, _, _) -> (More0(x, Empty, One(y, Pad, Pad)), b)
More0(y, q, u) -> (More(Pair(x, y, Pad), q, u), b)
More(Pair(y, z, _), q, u) -> (More(Triple(x, y, z), q, u), BCons(b, Pad, Pad))
More(Triple(y, z, w), q, u) ->

match b
BCons(b’, _, _) ->

val (q’, b”) = cons(Pair(z, w, Pad), u3, q, b’)
(More(Pair(x, y, Pad), q’, u), b”)

fip fun buncons(bs : bseq<a>) : exn (a, reuse3, bseq<a>)
match bs
BSeq(s, b) ->

val Tuple4(x, u3, s’, b’) = uncons(s, b)
(x, u3, BSeq(s’, b’))

fip fun uncons(s : seq<a>, b : buffer) : exn tuple4<a, reuse3, seq<a>, buffer>
match s
Unit(x, _, _) -> Tuple4(x, Reuse3(Pad,Pad,Pad), Empty, b)
More(Triple(x, y, z), q, u) ->

match b
BCons(b’, _, _) -> Tuple4(x, Reuse3(Pad,Pad,Pad), More(Pair(y, z, Pad), q, u), b’)

More(Pair(x, y, _), q, u) -> Tuple4(x, Reuse3(Pad,Pad,Pad), More0(y, q, u), b)
More0(x, q, u) ->

val (q’, b’) = more0(q, u, b)
Tuple4(x, Reuse3(Pad,Pad,Pad), q’, b’)
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fip fun more0(q : seq<tuple<a>>, u : afew<a>, b : buffer) : <exn> (seq<a>, buffer)
match q

Empty -> match u
One(x, y, z) -> (Unit(x, y, z), b)
Two(y, z, _) ->

match b
BCons(b’, _, _) ->

(More0(y, Empty, One(z, Pad, Pad)), b’)
Three(y, z, w) ->

match b
BCons(b’, _, _) ->

(More0(y, Empty, Two(z, w, Pad)), b’)

Unit(p, _, _) -> match p
Pair(x, y, _) -> (More(Pair(x, y, Pad), Empty, u), b)
Triple(x, y, z) ->

match b
BCons(b’, _, _) ->

(More0(x, Unit(Pair(y,z,Pad),Pad,Pad), u), b’)

More0(p, q1, u1) -> match p
Pair(x, y) ->

val (q1’, b’) = more0(q1, u1, b)
(More(Pair(x, y, Pad), q1’, u), b’)

Triple(x, y, z) ->
match b

BCons(b’, _, _) ->
(More0(x, More0(Pair(y,z,Pad), q1, u1), u), b’)

More(Pair(p, y1), q1, u1) -> match p
Pair(x, y) -> (More(Pair(x, y, Pad), More0(y1, q1, u1), u), b)
Triple(x, y, z) ->

match b
BCons(b’, _, _) ->

(More0(x, More(Pair(Pair(y,z,Pad), y1, Pad), q1, u1), u), b’)

More(Triple(p, y1, z1), q1, u1) ->
match b

BCons(b’, _, _) -> match p
Pair(x, y) -> (More(Pair(x, y, Pad), More(Pair(y1, z1, Pad), q1, u1), u), b’)
Triple(x, y, z) -> (More0(x, More(Triple(Pair(y,z,Pad), y1, z1), q1, u1), u), b’)

fip fun bsnoc(bs : bseq<a>, u3 : reuse3, x : a) : exn bseq<a>
match bs

BSeq(s, b) ->
val (s’, b’) = snoc(s, b, u3, x)
BSeq(s’, b’)

fip fun snoc(s : seq<a>, b : buffer, u3 : reuse3, x : a) : exn (seq<a>, buffer)
match s
Empty -> (Unit(x, Pad, Pad), b)
Unit(y, _, _) -> (More0(y, Empty, One(x, Pad, Pad)), b)
More0(u, q, One(y, _, _)) -> (More0(u, q, Two(y, x, Pad)), BCons(b, Pad, Pad))
More0(u, q, Two(y, z, _)) -> (More0(u, q, Three(y, z, x)), BCons(b, Pad, Pad))
More0(u, q, Three(y, z, w)) ->

match b
BCons(b’, _, _) ->

val (q’, b”) = snoc(q, b’, u3, Pair(y, z, Pad))
(More0(u, q’, Two(w, x, Pad)), b”)

More(u, q, One(y, _, _)) -> (More(u, q, Two(y, x, Pad)), BCons(b, Pad, Pad))
More(u, q, Two(y, z, _)) -> (More(u, q, Three(y, z, x)), BCons(b, Pad, Pad))
More(u, q, Three(y, z, w)) ->

match b
BCons(b’, _, _) ->

val (q’, b”) = snoc(q, b’, u3, Pair(y, z, Pad))
(More(u, q’, Two(w, x, Pad)), b”)
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