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Abstract
The infinite capacity of cloud computing is an illusion: in
reality, cloud providers cannot always have enough capacity
of the right type, in the right place, at the right time to
meet all demand. Consequently, cloud providers need to
implement admission-control policies to ensure accepted
capacity requests experience high availability. However,
admission control in the public cloud is hard due to dynamic
changes in both supply and demand: hardware might become
unavailable, and actual VM consumption could vary for a
variety of reasons including tenant scale-outs and fulfillment
of VM reservations made by customers ahead of time. In
this paper, we design and implement Kerveros, a flexible
admission-control system that has three desired properties:
i) high computational scalability to handle a large inventory,
ii) accurate capacity provisioning for high VM availability,
and iii) good packing efficiency to optimize resource usage.
To achieve this, Kerveros uses novel bookkeeping techniques
to quickly estimate the capacity available for incoming VM
requests. Our system has been deployed in Microsoft Azure.
Results from both simulations and production confirm that
Kerveros achieves more than four nines of availability while
sustaining request processing latencies of a few milliseconds.

1 Introduction
Cloud capacity appears to be limitless. However, in reality,
cloud providers need to deal with the limitations of data-
centers with a finite number of machines while respecting
contractual service-level agreements (SLAs) that provide
availability guarantees to customer VMs. These SLAs might
be severely compromised if the provider runs out of resources.
Additionally, users expect predictability: not being able to
launch new VMs when required can critically impact a
customer’s business [31]. An admission-control system is
thus necessary to ensure cloud providers do not overcommit
resources, provide seamless elasticity, and are robust to
capacity loss due to failures. This paper describes the design
and implementation of Kerveros: a scalable and efficient

admission-control system for Microsoft Azure.
Admission control in the cloud is hard because it needs

to account for a variety of fluctuations in both supply and
demand across a large number of workload and machine types.
On the supply side, datacenter machines and racks regularly
fail at scale and maintenance tasks like software updates
may also require rebooting machines. The cloud provider
needs to maintain high availability amidst both deterministic
and stochastic events by keeping enough resources free
to provide seamless failover if necessary. On the demand
side, to facilitate predictability, cloud providers have recently
introduced the notion of “reserved resources” (or capacity
reservations) [4, 6, 7, 20, 35] to guarantee the availability of
capacity in the future. With such reservations, customers
pay to have the provider set aside resources that can be
claimed later. Accordingly, admission-control systems need to
accommodate both on-demand VM requests and reservations.

The goal of our cloud admission-control system is to ensure
that it simultaneously achieves high computational scalability
and a low rate of SLA violations while avoiding inefficient
capacity usage (which can lead to negative margins). One
possible approach to accomplish this is to re-use existing VM
allocators [21, 43] to directly allocate space for reservations,
maintenance, and potential tenant growth (scale-outs). How-
ever, such a “placeholder” approach is slow and inherently
inflexible, since the capacity allocated to such placeholders
cannot be immediately used for other incoming VM requests
that can pack well in the reserved space.

Instead, our solution is based on an approximate buffer
approach that avoids early binding of placeholders. At a high
level, we maintain buffers of resources for handling failures,
maintenance, growth, reservations, etc., and track the total
number of remaining resources after accounting for currently
running VMs and buffers. Implementing this idea involves
several algorithmic challenges, such as reasoning about the
capacity required by VMs with multi-dimensional resource
demands (e.g., CPU, memory, disk), quantifying the impact
of buffers on a large variety of possible VM requests (e.g.,
Azure has more than 1000 VM types; see Figure 3 for details),
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Figure 1: Consider an empty cluster of two machines with capacity 100 units each. Suppose one reservation with total size of
120 has already been accepted. We consider two cases: (i) the reservation consists of two VMs of size 60; (ii) the reservation
consists of six VMs of size 20. A new single VM request of size 50 enters the system. Note that by solely taking the available
capacity units into account (i.e., 200−120 = 80 ≥ 50), the system would accept the new request in both cases. However, when
accounting for packing considerations, the request should be accepted only in case (ii). Further, if the underlying allocation
algorithm was designed to load balance the VMs corresponding to a reservation, then the request should be rejected in both cases.

simultaneously accounting for buffers defined at different
levels of the datacenter hierarchy (e.g., cluster vs. zone), and
mimicking how the allocator would place VMs belonging to
admitted reservations. Indeed, simple back-of-the-envelope
buffer calculations might result in two undesired scenarios:
(i) rejecting a request that can actually fit in the cloud, or
worse, (ii) accepting a request at the cost of compromising
reservation and availability guarantees; Figure 1 illustrates
this scenario.

To address these challenges, we introduce a novel admis-
sion control mechanism which relies on Allocable VM (AV)
counts, a bookkeeping technique for quickly determining the
capacity available for an incoming VM request or reservation.
The AV count, defined per VM type, quantifies the number of
VMs that can fit in the inventory at a given time, and reduces
the multi-dimensional problem into a formulation with a
single dimension (the AV count). Kerveros exposes AV counts
to the allocator, which can then accept or reject incoming VM
or reservation requests based on a simple comparison (i.e.,
is the requested capacity less than the current AV count?).
Importantly, this allows the allocator to respond to requests
with high throughput and low latency, a critical requirement
for extreme-scale VM allocation platforms [21, 43].

To enable these highly efficient capacity checks, we de-
sign the Conversion Ratio Algorithm (CRA), which allows
Kerveros to quickly translate all buffer sizes to a common
unit: the AV count of the incoming request’s VM type.
We supplement CRA with a data-driven Linear Adjustment
Algorithm (LAA), which periodically emulates the allocator
to reduce potential biases of CRA. We implement these
algorithms in Azure’s resource-allocation platform, while
selectively reusing and enhancing existing allocator infras-
tructure (e.g., data stores, request handling agents, etc.). We
further accelerate the algorithm with a caching layer that
allows for incremental AV count updates.

Our results from both simulation and production mea-
surements demonstrate that Kerveros sustains at least four
nines of availability without any significant degradation

in request-processing throughput. Our admission-control
strategy estimates the available capacity with less than 1%
error at the 95th percentile. Importantly, this level of accuracy
enables Azure to avoid capacity wastage, leading to high
return on investment (ROI). We emphasize that for today’s
global-scale cloud providers, even a 1% improvement in such
a capacity-efficiency metric can be worth 100s of millions of
dollars in saved hardware expenditure, translating to sizable
impact on the cloud provider’s bottom-line margin.

To the best of our knowledge, this paper is the first to
describe the design, implementation and evaluation of an
admission-control system deployed in a large public cloud.
Prior research on datacenter resource management (e.g.,
Protean [21] and Borg [43,45]) focuses mostly on on-demand
VM placement. The closest work available is Meta’s RAS
system [34], which partitions resources at the granularity of
machines to different sub-organizations and periodically re-
assigns machines across partitions by solving a mixed integer
linear program. While this approach can suit a first-party
workload with a modest number of partitions, it is less efficient
for dynamic public-cloud workloads (§5).

In summary, our main contributions are:

• The design of scalable and efficient admission-control
algorithms for a large and heterogeneous public cloud
inventory (§3).

• A robust system design that separates the admission-control
logic from the components that enforce it, allowing for
latencies of a few milliseconds for admission and placement
decisions (§4). Our system has been successfully deployed
in Microsoft Azure.

• Our extensive evaluation using measurements from both
simulations and production demonstrate that our design
achieves scalable and accurate admission control (§5).

• Supplementary to this paper, we release a new trace that
can be used by the research community to design and
test different packing and admission-control algorithms:
https://github.com/Azure/AzurePublicDataset.

https://github.com/Azure/AzurePublicDataset
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Figure 2: Cloud topology. A zone contains one or more
datacenters that house a heterogeneous mix of clusters. Each
cluster is comprised of homogeneous machines organized in
racks. Racks provide isolation for fault tolerance.

2 Background and Motivation
Microsoft Azure is a large public geo-distributed cloud
provider with a massive global footprint. Resources in Azure
are organized into regions, each of which consists of one
or more availability zones (Figure 2). Every zone contains
one or more datacenters. Each datacenter is further divided
into clusters and racks. Each cluster has a homogeneous
set of machines (or servers); however, a zone can have a
heterogeneous mix of clusters. As Figure 3 shows, zones
can have tens of different hardware types. A zone can have
hundreds of thousands of machines, while a cluster is much
smaller (at most a few thousand machines).

Each zone has its own allocation service (or simply, alloca-
tor) that assigns VMs to physical machines. The assignment
(or placement) considers a set of hard and soft constraints,
which are evaluated sequentially for each VM. Examples of
hard constraints include not violating the physical capacity of
a machine and not running a VM type on hardware that does
not support it. An example of a soft constraint is to prefer an
already-occupied machine to increase packing efficiency [21].

In this section, we discuss the general resource manage-
ment problem in Azure by focusing first on challenges arising
from both dynamic and diverse demand patterns (§2.1), as
well as fluctuations in the available compute supply (§2.2).
These challenges, coupled with the fact that demand might
exceed supply, motivate the need for a robust admission-
control system; we outline its requirements in §2.3.

2.1 Demand Versatility
Azure has multiple different offerings for compute, which
each impose specific requirements on the underlying alloca-
tion system.

VM requests. Azure has multiple hardware generations in
its datacenter and offers over a thousand VM types. The
majority of VM types are supported on most hardware
generations, but some types require specialized hardware (e.g.,
GPUs for ML). We note that other major cloud providers like
AWS and GCP also offer a large number of VM types [5, 19].
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Figure 3: Histograms for number of different hardware types
(left) and supported VM types (right) across Azure zones.

New VM types are regularly introduced as new hardware
types and scenarios are onboarded to the cloud.

On-demand VM requests are the most common capacity
consumption mode. A VM request specifies the type of the
VM (which in turn determines the number of CPU cores,
memory, disk, network requirements for the VM, and optional
accelerators) and the VM’s priority. Multiple VM requests
may be grouped into a tenant request. A tenant request is
accompanied by a tenant service model, where additional
constraints can be imposed on the collection of VM requests
(e.g., fault-domain requirements).

By default, VMs are spread across an entire zone. However,
a tenant may request all its VMs be co-located within specific
inventory boundaries such as a cluster or datacenter. A tenant
using legacy Azure services can also be pinned to a single
cluster; this means that such a tenant cannot create new VMs
outside its cluster.

A tenant request succeeds only if all its associated VM
requests are successfully allocated. There is no explicit SLA
on allocation time, but it is desirable to keep these times
as low as possible to ensure a fast and reliable deployment
experience. The volume of VM requests is large: a zone can
handle more than two million requests in a day. The demand
pattern can be quite bursty: Figure 4 shows that a zone can
easily receive a few thousand requests per minute. Hence, low
latency and high throughput are critical requirements for the
VM allocation service (see §2.3).

Higher-order consumption modes, such as Function-as-a-
Service (FaaS or serverless computation [39]) are internally
provisioned through VMs.

Customer scale-outs. Customers may decide to increase
the number of VMs in their tenants; these are termed tenant
scale-outs. Any allocation request, including a scale-out
request, must be handled within milliseconds; the system can
either accept or reject the scale-out request based on available
capacity. Though there is no external acceptance SLA for
scale-outs, Azure internally tracks the acceptance rate of these
requests and attempts to sustain very high acceptance rates (at
least 4 nines). Towards this end, the admission-control logic
must explicitly reserve capacity within individual clusters
for scale-out of pinned tenants (see §3.1). We note that
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Figure 4: Number of high-priority allocations per minute for
a zone over a day, aggregated over a 2-week period. Demand
in the tail is bursty with large spikes.
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Figure 5: Tenant size versus allocator’s acceptance rate. Data
is obtained from one zone during a busy month. Tenant
requests above 300 VMs are currently offered only internally.

Azure does not distinguish between scale-outs and new tenant
requests for tenants that can span across an entire zone.

Reservations. Consider a scenario where a user wishes to
terminate their VMs for the day, but expects to re-instantiate
the VMs the following morning. Doing so through a regular
on-demand tenant request might result in delays if capacity
is not immediately available in the morning. As Figure 5
shows, this issue is exacerbated for large tenant requests. To
address such scenarios, Azure offers the reservation option.
A reservation request includes the VM type and the quantity.
A reservation need not result in actual allocation of VMs;
instead, it serves as a commitment from Azure to provide the
desired number of VMs in the future, whenever the customer
decides to materialize the reservation.

Reservations are active as soon as the request is accepted
(i.e., we do not support reservation requests with future start
dates). The user can terminate a reservation at any time. To
support economy of scale, VMs that are created against a
reservation cannot be pinned to a single cluster. This basic
reservation model is offered by large public clouds as an
On-Demand Capacity Reservation [4, 7]. We briefly discuss
direct extensions of this basic reservation model, such as
reservations with a future start date, in §6. Other reservation
models are surveyed in §7.

2.2 Supply Fluctuations
Supply in Azure can change dynamically. In this subsection,
we outline the situations that can trigger these changes.
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Figure 6: Network and machine failures across 30 days. The
average network failure is around 0.01%, but each network
failure can affect several machines. Outside of network
failures, ~3.5% of machines are in a failed state every day.

Machine and other hardware failures. Figure 6 shows the
failure frequencies for machines and network hardware over a
period of 30 days. As the figure demonstrates, a network
failure is much less probable. However, network failures
impact more machines (e.g., a top-of-rack switch can affect
around 50 machines). The cloud provider has to account
for such failures and set aside capacity to migrate the VMs
in affected machines to respect availability SLAs. It is thus
crucial to both predict and have readily available mitigation
for such failures.

Additional events affecting supply. Azure, like any other
large cloud supplier, experiences other events that affect
the available supply. One can roughly classify these events
based on their predictability. Deterministic events include
planned maintenance of machines (e.g., software updates)
and decommissioning of hardware. Stochastic events include
urgent security updates to patch a zero-day vulnerability,
hotfixes to handle software bugs, and malicious attacks that
overload the system.

2.3 Admission Control
We now describe the problem of admission control, and
highlight requirements and design challenges for Kerveros.
Admission control can be defined as the set of decisions that
determine the acceptance of any form of resource request (new
tenant, scale-out, reservation). Admission-control decisions
need to take into account not only the present state of the zone,
but also potential realizations of future state. Future state
is influenced by a variety of factors including reservations
that have been admitted but not yet materialized, potential
hardware failures, tenant scale-outs, etc.

Challenges. As mentioned earlier, admission control in the
cloud presents several challenges:

1. Multiple elements affecting demand and supply.
Kerveros has to consider multiple elements with different
characteristics: on the demand side, one has to consider



different modes of consumption (e.g., tenant vs. reser-
vation requests) as well as potential tenant growth. On
the supply side, we have different types of events (e.g.,
machine failures, rack maintenance) that affect inventory
availability.

2. Zone heterogeneity. Beyond the inherent stochasticity
in demand and supply, it is hard to determine how much
capacity to set aside since not all machines can serve all
VM types. For example, a new VM series might be served
only on new hardware generations.

3. Numerous VM sizes and fragmentation. Unlike tra-
ditional resource allocation problems, which are often
“single dimensional”, admission control for the cloud needs
to make decisions for VMs that request different types
of resources (e.g., CPU, memory, disk). These multiple
dimensions can cause fragmentation.

4. Accounting for unclaimed capacity. Reservations and
other types of capacity protection impose an additional
challenge since we would ideally like to “late bind”
resources to such requests. This makes machine utilization
an imperfect metric to determine if enough capacity is
available for a new request.

Requirements. An admission-control system also has to
meet several requirements to operate effectively within the
context of a large cloud provider:
1. Scalability. Even for very large zone inventories, the deci-

sion of whether to accept or reject a tenant or reservation
request has to be made within milliseconds.

2. Respect admitted reservations. All VMs that are re-
quested against a previously accepted reservation should
be fulfilled (i.e., assigned to machines) whenever the user
opts to materialize the reservation.

3. Availability. The cloud provider must ensure high avail-
ability to customers. Accordingly, capacity must be set
aside to facilitate the migration of VMs to other machines
in case of machine failures or other events affecting supply.

4. Elasticity. An admission-control system should reserve
capacity to allow tenants pinned to clusters to scale out.

5. Accuracy. The system should not reject requests when
capacity is in fact available.

6. Efficiency. The system should set aside as little capacity
as possible while satisfying the above properties (i.e.,
increase the return on investment).

Time scale of decision making. We observe that the above
challenges and requirements necessitate that decisions be
made at different time scales. For example, estimating how
much capacity to set aside for failures or growth requires com-
prehensive data analysis that is inherently time consuming.
On the other hand, the VM allocation service itself has to
remain highly performant and process requests at low latency.
Consequently, a natural design choice is to decouple the
overall admission-control responsibility between fast- and
slow-twitch systems. Accordingly, the allocator only executes

low-overhead capacity limit checks to determine whether to
accept or reject a resource request (i.e., admission control
enforcer)1. The entire logic for estimating the available
capacity is performed by Kerveros, the focus of this paper,
and is performed off the critical path.

3 Design of Kerveros
The high-level goal of Kerveros is to answer the following
question: How much capacity is available for an incoming
tenant or reservation request? As described earlier, this
information is used by the allocator to accept / reject requests.

To address the complexities of demand and supply fluctu-
ations (§2), our approach relies on two main concepts: (i)
buffers, to specify a need for capacity; and (ii) allocable
VM count, an auxiliary bookkeeping technique to quickly
determine the available capacity for an incoming tenant or
reservation request.

3.1 Buffers
A buffer is an accounting of capacity that must be protected for
a specific purpose. The allocator treats this capacity as unavail-
able when admitting tenant or reservation requests. Kerveros
supports three buffer types: (i) Reservation buffers to accom-
modate already admitted reservations; (ii) Growth buffers to
accommodate existing tenant growth; (iii) Healing buffers to
accommodate currently-running VMs that might need to be
migrated in case of hardware failures.

As we detail below, we use appropriate counts of VM types
to quantify the size of each buffer. Formally, a buffer is defined
as a tuple (t,x), where t is the VM type and x is the number
of VMs of that type that ought to be protected. The size of
each buffer may change over time. For instance, a reservation
buffer can become smaller as the customer gradually starts
using VMs corresponding to that reservation. On the other
hand, a healing buffer may become larger over time, e.g., as
hardware ages and failures become more likely.

We make an important design choice for buffers: although
capacity is protected, it is not mapped to specific physical
machines. Buffers are defined at higher levels of the cloud
hierarchy (e.g., cluster or zone) to reflect the amount of
capacity that must be protected in aggregate at that level. The
physical allocation occurs only when the protected capacity
is needed to fulfill its purpose. For example, after hardware
failures, healing buffer capacity can be used for migrating
VMs from the affected machines. To ensure maximum
utilization of resources, we use unclaimed protected capacity
to offer spot VMs [2,3], which can be immediately preempted
to free up capacity whenever buffer capacity is claimed.

1For a tenant request, the capacity limit check is immediately followed
by an actual allocation of the VMs to physical machines. For reservation
requests, the allocator performs only the limit check since placement is late-
bound for reservations in our design.



We next provide more details on how Kerveros sets sizes
of buffers of different types.

Reservation buffers. Setting reservation buffers is straight-
forward: the buffer size is set exactly according to the user-
provided reservation requirement. That is, suppose reservation
k requires x VMs of type t within a certain zone; Kerveros
sets the respective zone-level buffer as Rk = (t,x). When the
user claims u VMs of that reservation, the buffer is updated
to Rk = (t,x−u).

Growth buffers. Growth buffers are used at a cluster level
to account for the expansion of existing tenants pinned to
each cluster. Kerveros defines a single growth buffer for each
VM type. Intuitively, the buffer size should be proportional to
the current consumption of that VM type. More specifically,
for a given cluster c and VM type t, let xtc be the current
number of active VMs belonging to tenants pinned to cluster
c. Then we set the corresponding growth buffer to Gtc =
(t,αtcxtc), where αtc > 1 is the effective growth rate. We use
a ML model to set this parameter. In a nutshell, we consider a
small set of possible effective growth rates (e.g., five values
in the range between 1.03 and 1.1). The input features to the
ML model consist of tenants’ information (e.g., account IDs,
VM lifetimes), hardware details (e.g., generation, SKU), and
cluster-specific fragmentation details (intuitively, a cluster
that is “badly” packed would induce higher effective growth
rates); the statistics on fragmentation are obtained from the
allocator. The ML model (implemented using XGBoost) is
trained daily using historical growth data.

Healing buffers. Kerveros uses healing buffers to account
for hardware failures and other events affecting supply (§2).
For example, the protected capacity may be used to migrate
VMs away from non-functional hardware. Since tenants
can be constrained to specific clusters, healing buffers are
maintained at the cluster level. Since full-machine VMs are
the hardest to allocate (as they require a completely empty
machine), the healing buffer is defined in units of full-machine
VMs; formally, the buffer is of the form Hc = (L,xc), where
L denotes the full-machine VM type, and xc is the quantity.

We calculate xc using a data-driven approach. The high-
level idea is to set xc in proportion to the hardware failure
probability (i.e., the buffers should be larger if the failure
probability is higher). More specifically, we would like to
ensure that the total number of non-functional machines
does not exceed the buffer size xc with high probability;
let pc denote that probability (e.g., pc = 99.9%). Towards
this end, we extract from historical failure data the empirical
distribution of the total number of non-functional machines
over a given period of time (e.g., a day). The total number
accounts for a variety of events including machine and
network failures as well as maintenance events. Then, xc is
simply derived as the pc-percentile value of this distribution.
Kerveros may add some slack to the obtained value (e.g.,
10%) for clusters that are highly fragmented (as perceived

by the allocator). The choice of pc is specific to the cluster,
and depends on various factors. For example, Kerveros uses
higher pc values for clusters that have a high ratio of tenants
pinned to that cluster, since such tenants have fewer fallback
options in case of failures.

In rare cases, the healing buffer capacity is increased to
allow completion of urgent software updates.

3.2 Allocable VMs
Kerveros uses the notion of allocable VM counts (AV counts)
to reason about available capacity. Specifically, the AV count,
A[t], gives the number of additional VMs of type t that can
currently fit in the zone. For an incoming VM request of type
t and demand x, Kerveros first calculates2 A[t], and then the
allocator rejects the request if A[t]< x.

In this section, we describe how Kerveros calculates the
AV counts across entire clusters and zones. The calculations
are non-trivial because they require a conversion mechanism
that accounts for buffers of different VM types t defined at
different hierarchies of the datacenter (cluster versus zone).
We note that other approaches that do not explicitly account
for multiple resource dimensions might result in either under-
or over-estimating the available capacity.

3.2.1 Overview

The high-level pseudocode of our AV count calculation is pro-
vided in Algorithm 1. Informally, the algorithm implements
the following calculation:

A[t]=
[

available capacity for
type t across clusters

]
−
[

buffers converted from
type t ′ to type t

]
.

The algorithm starts by initializing the AV counts, ex-
cluding buffers, and accounting only for the active VMs in
the system (Step 1). Since certain buffers are defined only
at a zone level, the algorithm then proceeds to transform
them to cluster-level buffers (Step 2), so that all buffers can
be analyzed at the same level of the cloud hierarchy. The
remaining calculations are done at a cluster level, except a
final aggregation step. The heart of the algorithm is converting
buffers of other VM types into buffers of type t (Step 7) and
then deducting them from the current AV count (Step 8). This
conversion step is the subtle part of the algorithm. We term
the full algorithm the Conversion Ratio Algorithm (CRA).

3.2.2 CRA Algorithmic Details

We next describe each of these steps in detail.

AV count initialization (Step 1). The initialization step
calculates A[t,c]: the number of VMs of type t that can
fit in cluster c, excluding buffers. Each VM type requires
different quantities of the various compute resources (e.g.,
CPU, memory) available in a machine; thus these non-
buffered AV counts are obtained by calculating the maximum

2In practice, we update the AV counts only periodically (every minute),
and use caching to track the updated AV counts. See §4 for details.



Algorithm 1 CRA: Calculating AV Counts for a VM type t.

1: Calculate the AV counts excluding buffers: A[t ′,c] for all t ′.
2: Distribute zone-level buffers to clusters.
3: for each cluster c do ▷ Calculate per-cluster counts.
4: ac = A[t,c]
5: Aggregate buffers per VM type.
6: for each aggregate buffer (t ′,x) do
7: Convert buffer from t ′ into type t: C(t ′→ t,x,c).
8: ac −= C(t ′→ t,x,c) ▷ Deduct from current total.
9: Aggregate cluster counts for zone: A[t]= ∑c ac.

number of VMs that can fit in each machine (considering all
resource dimensions) and taking the sum over all machines
in the cluster:

A[t,c]= ∑
machine in

cluster c

min
d

⌊
Available resource d on machine

Required resource d for type t on machine

⌋
.

Going from zone- to cluster-level (Step 2). Kerveros
temporarily breaks down the zone-level reservation buffers
into cluster-level buffers, so that all buffers can be analyzed at
the cluster level. The apportioning to cluster-level buffers is
done by mimicking how the allocator would spread the VMs
across multiple clusters when reservations are materialized.
Considerations that are taken into account include load
balancing, prioritizing newer-generation hardware for new
VM types, and more. We omit details for brevity.

Aggregating cluster buffers per VM type (Step 5). Each
cluster may have multiple buffers of the same VM type. We
aggregate all buffers of the same type into a single buffer by
summing their sizes. Intuitively, having a single buffer makes
the conversion across types (discussed next) less lossy and
more efficient.

Converting buffers into other VM types (Step 7). We
convert a buffer from one type (t ′) to another (t) to estimate
the impact that the original buffer has on allocations of type t.

One way to accomplish this is by using conversion ratios
that encode the relative sizes of VM types t and t ′. However,
naïve conversion ratios have issues, since VMs have multi-
dimensional sizes. To illustrate this, consider a simplified
example with the following assumptions:
• Two requested resource types: CPUs and memory.
• Two VM types: large (2 CPUs, 4 GB) and small (1 CPU, 1

GB).
• Two machine sizes: M1 (25 CPUs, 40 GB) and M2 (25

CPUs, 25 GB).
Table 1 shows the counts of each VM type that can fit in one
empty M1 and M2 machine, and also the counts after adding
10 and 20 small VMs using various counting methods. Simple
conversion ratios based on resource ratios in isolation (CPU
and RAM in Table 1) can lead to sub-optimal (yellow bars)
or incorrect outcomes (red bars). This has repercussions on
packing efficiency and SLA adherence: underestimates can

Machine AV Counts
State Method Large on M1 Large on M2 Small on M1 & M2

Empty Actual 10 6 25

10 small

Actual 7 3 15
CPU 5 1 15
RAM 7 3 15
CRA 6 3 15

20 small

Actual 2 1 5
CPU 0 0 5
RAM 5 1 5
CRA 2 1 5

Table 1: Counts of large and small VMs that can fit in two
machines M1 and M2 using various other conversion-ratio-
based methods compared to the true count (Actual). CPU
treats 1 small VM as 1/2 a large VM, and RAM treats 1 small
VM as 1/4 a large VM.

strand resources (leading to fragmentation and worse packing
efficiency) and overestimates can violate hardware constraints
(leading to SLA violations). The optimal conversion ratio
depends both on the machine size and the VMs already
allocated (i.e., resources remaining on the machine).

We use the ratio of AV counts as a low-dimensional
approximation instead. Formally, a buffer of type t ′ with size
x is converted to a buffer of type t with size:

C
(
t ′→ t,x,c

)
=

⌈
A[t,c]
A[t ′,c]

· x
⌉
.

This works well in practice (empirical results in §5).

Example. To illustrate CRA, we return to the example in
Figure 1. As a quick recap, we consider a single cluster
with two empty machines, each with size of 100 units (for
simplicity, we assume only a single resource dimension). The
three VM types small (S), medium (M), and large (L) have
sizes 20, 50, and 60 units respectively. A single medium-sized
VM is requested – this request is rejected if A[M]< 1. We
first initialize the counts for our VM types (S, M and L):

A[S,c]= 2 ·
⌊

100
20

⌋
= 10, A[M,c]= 2 ·

⌊
100
50

⌋
= 4,

A[L,c]= 2 ·
⌊

100
60

⌋
= 2.

In both scenarios in Figure 1, there is a single incoming
request of size 50 and buffers of 120 units total that need
to be taken into account; the only difference between the
scenarios is the VM type of these buffers:

• Large buffers. Assume that we have two large buffers.
We convert these buffers to type medium, which yields
C(L → M,2,c) = 4 medium VMs. This results in
A[M]= 0 < 1, so we reject the request.

A[M]= A[M,c]−C(L → M,2,c)

= A[M,c]−
⌈
A[M,c]
A[L,c]

·2
⌉
= 4−

⌈
4
2
·2
⌉
= 0.
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Figure 7: CRA versus emulation for two VM types, where the
AV count is expressed as a percentage of the total capacity.
Simulated results from a single trace.

• Small buffers. Assume that we have six small buffers.
We convert these buffers to type medium, which yields
C(S → M,6,c) = 3 medium VMs. This results in
A[M]= 1 ̸< 1, so we accept the request.

A[M]= A[M,c]−C(S → M,6,c)

= A[M,c]−
⌈
A[M,c]
A[S,c]

·6
⌉
= 4−

⌈
4

10
·6
⌉
= 1.

In Appendix A, we provide a theoretical analysis of CRA
under simplified assumptions; specifically, we prove that the
conversion results in a bounded waste of resources.

3.2.3 Linear Adjustment Algorithm (LAA)

The Conversion Ratio Algorithm offers an efficient and
scalable approach for obtaining the AV counts. Nevertheless,
the output of this algorithm might sometimes be fairly
inaccurate. The main reasons for inaccuracy are potential
fragmentation issues while dealing with conversion between
multi-dimensional VM types and not explicitly modeling how
the VMs would be placed using the allocator (e.g., erroneously
assuming the rightmost outcome in Figure 1 and rejecting the
new request).

The above limitations can be mitigated if Kerveros could
emulate the placing of the different buffers and filling up of
the inventory by allocating VMs using the allocator. This
is the main idea behind the Linear Adjustment Algorithm
(LAA). Since such emulation is compute-intensive and time-
consuming, we run it periodically (every 30 minutes) and
in isolation, i.e., without interfering with the handling of
customer requests (more details in §4.1.2). We then use the
emulation result to calibrate CRA’s output.

To see how the emulation output should be accounted for,
we compare its output to CRA’s output. Figure 7 shows a time
series of emulation and CRA’s output for two different VM
types. We observe that the gap between the two methods is
steady at times, but is spiky at other times. The LAA should
account for both these phenomena.

Formally, for any VM type t, let A′[t] and E′[t] be the AV
counts obtained by CRA and the allocator emulation at the
time when the emulation was run last, respectively. We then
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Figure 8: Kerveros system architecture.

adjust the current VM count estimate A[t] (result of CRA)
to obtain a new estimate:

Aadjusted[t] := β
t
1 ·A[t]+β

t
2 ·A′[t]+β

t
3 ·E′[t]+β

t
4, (1)

where the coefficients βt
i are learnt using standard linear

regression, with the emulation outputs serving as ground truth
for training. βt

2 and βt
3 incorporate information on the gap

between ground-truth and CRA in the previous time step, and
βt

4 models the constant gap between the two methods. In §5,
we show that LAA substantially decreases AV count error,
while maintaining scalability.

4 System Implementation
In this section, we first describe Kerveros’s various microser-
vices that allow it to respond to allocation and reservation
requests in an availability zone and enforce its admission-
control logic in an efficient and scalable manner (§4.1). We
then discuss tradeoffs that arise from various design decisions
made in our implementation (§4.2).

4.1 Architecture
Kerveros’s microservices work in concert to handle alloca-
tion and reservation requests, estimate AV counts, execute
emulation runs for AV count adjustment, persist state when
allocations and reservations are accepted by the system, and
train ML models as required (Figure 8). The microservices
primarily use a distributed publish-subscribe (pub-sub) plat-
form [42] to transfer state among themselves.

4.1.1 Allocation Worker Instances

Multiple stateless allocation worker instances AW are used
to handle both reservation and tenant allocation requests. An
allocation worker instance is a process typically running on
a dedicated machine. Each instance has two types of agents:



request-handling (RH) agents to serve requests, and an AV
count estimation agent to periodically compute the number
of allocable VMs. The number of worker instances and RH
agents deployed in a zone is configured based on the request
demand in the zone and size of the allocation inventory.

Request handlers RH . A RH handles both reservation and
tenant requests.

Reservation requests. For a reservation request, the RH
performs a zonal admission-control check. The zonal check
evaluates whether there is enough capacity in the zone by
comparing the number of requested VMs with the zonal AV
count. All buffer types (reservation, healing, and growth)
are considered for this check. On success, the reservation
metadata is persisted to the placement store (see below).

Tenant requests. For new tenant requests, the same zonal
admission-control check is executed. The agent then proceeds
to filter and sort the inventory machines for each requested
VM, following a series of hard and soft constraints respec-
tively, to assign a specific machine for each VM. One of the
filtering steps involves performing cluster-scope admission-
control checks to ensure clusters have sufficient capacity for
the requested VMs.

The buffers used in the admission-control steps are adjusted
based on the nature of the request and scope of the check. For
example, at cluster scope, only healing and growth buffers
are considered for new tenants when computing AV counts.
Similarly, only healing buffers are considered for tenant
growth requests. As another example, all admission-control
checks are skipped for reservation-backed VM requests (i.e.,
requests for VMs against an already-accepted reservation)
and healing requests, since these requests have already been
accepted (either as part of the reservation or as part of the
original VM / tenant request before hardware failure).

On success, the “VM → machine” mapping is persisted in
the placement store.

AV count estimator AV . The AV count estimator executes
both CRA (§3.2.2) and the linear adjustments (§3.2.3). To
avoid adding latency to the RH response time, the estimator
is implemented as a separate agent off the critical path of the
RH. It runs in a tight loop (every minute), and updates the
RHs with new AV counts through in-memory state transfer.

To obtain the AV counts, the estimator requires information
about machine occupancy and health, reservation metadata,
adjustment coefficients, and reservation-VM maps for VMs
allocated against reservations. Each estimator learns about this
information through the pub-sub platform. This information
is organized through multiple pub-sub topics. Given the
distributed nature of the platform, each estimator works with
a somewhat stale view of the inventory and reservations (we
discuss the impacts of this in §4.2).

4.1.2 LAA Instance

The LAA instance performs periodic emulation to obtain
more accurate AV counts (§3.2.3). To do so, it listens to the
same pub-sub topics as the worker instance, but does not
handle customer requests and does not persist any results
to the placement store. It starts each emulation run from a
snapshot of the entire inventory (with buffer information). It
then creates allocation requests corresponding to the buffers
and allocates them using the snapshot of the inventory state.
These results are stored as local in-memory modifications on
the initial inventory snapshot. Once the buffers are allocated,
the LAA instance computes more accurate AV counts for
each VM type from the remaining available capacity by
repeatedly allocating (till failure) and deallocating VMs for
each type. We note that these operations do not interfere
with the critical path of real request handling or admission-
control enforcement. Finally, the LAA instance sends relevant
estimation data to the ML platform, which runs the linear
regression required to tune the βi parameters in Equation 1;
the training is performed at a coarser time granularity (every
day, using a week’s worth of emulations results).

4.1.3 Offline ML Platform

The offline ML platform ML performs relevant ML training
tasks; its output is consumed by the AV count estimators.
In addition to updating the LAA coefficients, the platform
provides the predictions required for buffer management (e.g.,
determining the effective growth rate for a cluster).

4.1.4 Placement Store

A stateful microservice, called the placement store PS ,
persists the results of the computations performed by the
RH agents in the worker instances.

Correctness of the VM→machine assignment is critical
since incorrect assignments can lead to VM start failures and
violation of explicit guarantees provided to customers. Hence,
the PS validates each VM→machine assignment to check
for conflicting assignments made by other concurrent RH
agents, and returns a retry if validation is not successful.
This ensures that the RH’s stale view of the inventory does
not lead to correctness issues. PS uses fine-grained machine-
level locking to allow results from multiple machines to be
checked and persisted concurrently.

On the other hand, validating admission-control checks at a
zonal level with concurrent allocation workers would require
the PS to take a global lock on the entire inventory. This
would severely compromise scalability. Hence, the PS does
not perform any global capacity checks, which means that
buffer enforcement is not guaranteed to be correct for every
request. We note however that temporary reductions in buffer
capacity are rarely seen in practice and are more acceptable
(see discussion below).



4.2 Practical Considerations
We now briefly discuss the implications of some of these
design decisions.

Dependence on underlying allocator. While we build and
design Kerveros within the context of Azure, we note that
other major public clouds face similar challenges (e.g., a multi-
tude of VM types and consumption modes, hardware failures,
efficiency requirements). Moreover, Kerveros’s algorithms
are agnostic to the details of the underlying allocator (e.g.,
exact hard and soft constraints enforced).

Caching. As described in §3.2, AV counts are computed
for every machine separately and then aggregated to derive
the allocable VMs that can fit in the cluster. Instead of
computing AVs for every machine from scratch, the AV counts
are maintained in an in-memory cache per machine and per
cluster. This cache is initialized when the AV count estimator
starts, and then is updated incrementally only for the machines
that are modified because of changes in machine occupancy
or health. Caching the AV counts in this manner massively
reduces the computation overhead because the number of
machines altered between consecutive AV count updates is
orders of magnitude smaller than the total number of machines
in the inventory. The periodic nature of AV count computation
(as opposed to calculating AV counts for every request) might
lead to using protected capacity.

Optimistic concurrency. As noted earlier, Kerveros uses
optimistic concurrency control for better scalability, which
allows allocation worker instances to see stale versions of
state in the system. This is a limitation, since it allows the
possibility of accepting multiple requests eating into the
“same” protected capacity. This can occur, for example, when
multiple worker instances accept requests or reservations
simultaneously while not being aware of each other.

Due to dynamic churn (in particular VM shutdowns) in
the workload (Figure 9), usages of protected capacity are
temporary and rarely result in SLA violations. Running out of
capacity due to stale AV counts or optimistic concurrency is
rare, but if it happens, we have multiple knobs for mitigation,
such as temporarily eating into healing buffers, evicting
internal non-critical workloads, restricting the creation of new
VMs, and migrating VMs to reduce fragmentation.

5 Evaluation
In this section, we seek to answer the following questions:

• Does Kerveros perform better than relevant baselines on the
following dimensions: packing efficiency, SLA violations,
and runtime?

• How well do Kerveros’s various optimizations work to
count AVs accurately (e.g., LAA)?

• How does Kerveros trade off accuracy vs. compute effort?

SUN MON TUES WED THU FRI SAT

−0.5

0

0.5

1

W
or

kl
oa

d
(%

)

Arrivals Departures

Figure 9: Churn for high-priority workloads in a single zone.
Average is computed over 5-minute intervals, and computed
over a 2-week period. Workload is weighted by the size of
VM requested and normalized by the total volume of the zone.
That is, roughly an average of 0.3% of total workload arrives
and exits the zone every 5 minutes.

5.1 Experimental Setup
In this section, we outline the metrics of comparison, the
baselines, as well as details on how we run experiments in
production and simulation.

Metrics. We use the following metrics to measure
Kerveros’s effectiveness:

• Packing efficiency. This metric estimates the capacity
wasted by resource fragmentation due to inefficient packing.
To measure packing efficiency, we temporarily fill the sys-
tem with full-node VM requests, and set packing efficiency
to be the final system load (including unused buffers) as a
percentage of total cores (proxy). We choose full-node VM
requests since they are generally the hardest to place.

• Scalability. The runtime (latency) of Kerveros’s AV count
estimator.

• SLA violations. The proportion of requests where SLAs
(machine failures, growth, reservation) are violated.

• AV error. The deviation in AV counts between offline
emulation (which serves as an oracle) and other approaches.
We use this metric to study the effectiveness of Kerveros’s
approximate AV counting approaches.

Baselines. We compare Kerveros against the following:

• Offline emulation (Oracle). In the event of a tenant or
reservation request, the allocator first makes temporary
allocations for all unused buffers in the system. The
allocator then checks the feasibility of accepting the current
request; if there are not enough resources to satisfy the
request, it is rejected. All temporary allocations for unused
buffers are then discarded. This is slow but gives an accurate
AV count, which can then be used as ground truth to
estimate the AV error described above.

• Placeholder (PH). All buffers are allocated and assigned
to physical machines at the time of request (or update).
For example, an accepted reservation is allocated all of its
required resources at admission time.



0 20 40 60 80
60

70

80

90

100

Days

E
ffi

ci
en

cy
(%

)
LAA CRA PH PT

Figure 10: Comparison of packing efficiency across various
baselines against the inventory partitioning algorithm (PT).
The results are computed over a single trace. As can be seen,
PT does not work well with our workloads.
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Figure 11: Packing efficiency vs. unused buffer size. We show
the median and 25/75th percentiles, aggregated over all traces.

• Inventory partitioning (PT). Each buffer is allocated its
own set of dedicated machines, enough to satisfy demand.
The partitioning approach is similar to the method used by
RAS [34], where machines are dynamically partitioned as
new reservations arrive.

Production. Azure collects telemetry on different aspects
of VM resource management in an internal data analytics
platform. We use this data to measure healing and growth
failures as well as latencies (§5.2). All production metrics are
gathered for a period of one month in 2022.

Simulator. Production data is not sufficient to provide a
full evaluation of Kerveros. In particular, comparison against
other approaches requires a simulator since the baselines we
consider are not deployed in our production setting.

To this end, we use our event-driven simulator to test
various aspects of the entire admission control system (includ-
ing both the allocator and Kerveros). Due to the allocator’s
relative complexity, the simulator includes only a lightweight
version, which supports the key constraints of the allocator
logic. The simulator handles both tenant and reservation
events (arrival, departure, and updates). Despite supporting
a subset of the allocator’s logic, the simulator provides an
excellent approximation of the system in production and
is able to scale adequately to large inventories. We have
extended the simulator to support the above baselines.
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Figure 12: Latency (25/50/75th percentiles) versus inventory
size, extracted from Azure over a month. Randomly-sampled
allocation times are included for further context. End-to-end
allocation latency is more significantly affected by inventory
size compared to the AV count computations.

Simulation traces. We run simulation experiments on
twenty traces that include both tenant and reservation requests.
The traces use historical production data for tenant requests.
Reservations, on the other hand, are a relatively new offering
without significant traffic yet. Consequently, we synthetically
add reservations to augment the historical data. The reserva-
tion characteristics, such as VM type and size, are extrapolated
from real reservations.

5.2 End-to-End Experiments
Our goal here is to show that Kerveros’s CRA and LAA
approaches outperform other baselines along three axes:
packing efficiency, scalability, and SLA adherence.

5.2.1 Packing Efficiency

Figure 10 shows a timeline view of packing efficiency for
one of the traces. The partitioning (PT) approach of splitting
by machine is inefficient for our workloads: PT might work
well in other limited settings (e.g., small number of total
tenants). However, our general setting includes a large number
of requests which require many fractions of machines. We
therefore exclude PT from the rest of the analysis.

We now further explore the remaining baselines and aggre-
gate results over all traces. Figure 11 illustrates how unused
buffer sizes influence packing efficiency. As the unused
buffer size increases, CRA suffers from accumulated rounding
errors, and the PH algorithm can lock into sub-optimal
packing decisions, resulting in inferior packing efficiency.
LAA can compensate for rounding errors, and sustains high
packing efficiency even with large unused buffers.

5.2.2 Scalability

Figure 12 shows the latency of the AV count computation
for various inventory sizes. For reference, we also show
the allocator’s latency for a single VM. We observe that
Kerveros’s approximate AV counting algorithm scales well
with inventory size, taking less than ten milliseconds even
for inventories of over a hundred thousand machines. Ap-
proximate AV counting is cheap because the underlying
computation is proportional to the number of VM types; in
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Figure 13: Cumulative density function (CDF) of AV error
from LAA. SLA violations can occur when the AV error
is positive (i.e., the algorithm overestimates AV counts, or
asserts that there is more available capacity than reality).
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Figure 14: The impact on availability due to healing and
growth failures. Note that these values are not weighted by
time, but represent a normalized count of all failures within
each day. The actual loss of availability to each customer
is less than what is indicated above. This historical data is
aggregated over the entire cloud for a month in 2022.

contrast, the allocator runtime depends on the inventory size
(since the allocator has to choose the most suitable machine
for allocation). Overall, the results indicate that Kerveros’s
AV-based approach is not the computational bottleneck.

5.2.3 SLA Violations

We also want to verify that Kerveros’s approach results in
a low number of SLA violations. We verify this in both
production and simulation.

Reservation. Figure 13 shows the cumulative density func-
tion (CDF) of AV errors obtained from simulation. When
the AV error is positive, Kerveros overestimates the avail-
able capacity. This behavior might lead to reservation SLA
violations in some extreme cases (for example, if all users’
reservations, healing buffers, and growth buffers are claimed
almost simultaneously). As the LAA curve shows, Kerveros
reserves sufficient capacity to cover all promised resources
around 86% of the time; Kerveros requires less than 1%
additional capacity to satisfy requests about 99.7% of the
time. With typical workload churn, we expect to obtain this
additional capacity promptly.

Healing. Figure 14a shows production data over a month
for instantaneous SLA violations due to healing failures.
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Figure 15: Illustration of healing buffer size, where xc =
⌈13.4⌉ = 14 machine-equivalent buffers are prepared to
satisfy the desired 99.99% SLA.
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Figure 16: Tradeoff between healing buffer size and healing
success rate.

We observe that Kerveros is able to sustain four nines of
availability through the entire month by appropriately sizing
healing buffers.

As Figure 15 shows, we calculate the healing buffer
size based on a data-driven method (see §3.1). To better
understand the tradeoff between packing efficiency and SLA
adherence quantitatively for healing, we show how the healing
buffer size influences the healing success rate based on data
over a month in 2022, as shown in Figure 16. The x-axis
shows the ratio of the buffer size compared to the size used
in production, where 100% healing buffer size corresponds
to the current production’s decisions. When the ratio is zero,
Kerveros does not reserve any healing buffers, but can still
heal VMs affected by hardware failures if enough resources
are coincidentally available in the cluster.

Growth. Figure 14b shows production data on instantaneous
growth failures for the same month. We observe that growth
is supported more than 99.9% of the time.

5.3 Deep Dive on AV Counting Algorithms
We now further evaluate the various components used to
calculate AV counts.

Improvements from linear adjustment. Figure 17 shows
the AV error of CRA (top) and LAA (bottom) versus the size
of unused buffers. The estimation error with CRA increases
with the unused buffer size, as fragmentation is amplified.
LAA is more robust by fixing biases periodically (§3.2.3).
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Figure 17: AV errors when calculating AV counts for two VM
types (small and large) versus unused buffer size. The top
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Figure 18: AV errors versus adjustment frequency in LAA.
As we increase the frequency of adjustment, error is reduced
at the expense of additional computation. In the x-axis, ‘m’
stands for minute, ‘h’ for hour, and ‘d’ for day.

Adjustment frequency. Figure 18 shows how the AV error
changes with the frequency of LAA emulation. The figure
shows that emulating every few minutes does not drastically
reduce AV error. Consequently, we choose an emulation
frequency of 30 minutes. Interestingly, we find that even with
just one adjustment a day, the LAA algorithm still performs
better than the basic CRA approach.

6 Discussion
We briefly discuss additional considerations relevant to
Kerveros.

The public cloud eco-system. Modern public clouds have
a large number of components that interact with each other,
making multi-faceted decisions related to economically in-
centivizing usage, managing quota, provisioning capacity, etc.
For example, special permissions or quotas are needed for
very large customer demands; similarly, discounts are often
offered to incentivize prominent customers. Such decisions
are made on a slower time scale, often involving humans in

the loop, and influence the inputs to Kerveros.

Constraints beyond capacity checks. The decision of
admitting a tenant request is complex, and involves a variety
of constraints beyond capacity checks (e.g., fault domains,
locality). However, when Kerveros reserves buffers (healing,
growth, reservations), it can afford to take a simplified view,
relying on the economy of scale (large inventory, workload
churn) and mitigation actions as a last resort. Accordingly,
the basic CRA algorithm does not account for the entire set
of constraints. Nonetheless, CRA is supplemented by LAA.
LAA in turn strongly relies on emulating the allocator’s logic,
which does account for multiple preferences and constraints
and uses realistic tenant requests against unused reservations.
We note that the actual tenant requests against reservations
can only specify a limited set of constraints by design (e.g.,
limit the maximum number of fault domains). The net effect is
that Kerveros has proven to be reliable in production, despite
the simplifying assumptions.

Priorities. While some business priorities are enforced
at higher layers, allocation requests to Kerveros can have
different priorities based on preemption level: higher-priority
requests can preempt lower-priority ones to grab capac-
ity [21,45]. However, all buffers (reservation, growth, healing)
are maintained only for the highest (non-preemptible) priority.
Regardless of their priority, Kerveros handles all tenant and
reservation requests on a first-come-first-serve basis.

Predictive modeling. Having a large percentage of unused
buffers impacts resource efficiency; running preemptible
workloads (e.g., spot VMs) on unused buffers is a partial
mitigation. Currently, we avoid setting aside capacity in
anticipation for future new customers. Incorporating ML
models into Kerveros to predict resource usage and utilize
the unused capacity even more aggressively is an interesting
future direction.

Comparison to early binding. As an alternative to
Kerveros’s late-binding approach, an early-binding or place-
holder approach that exploits the existing allocation system to
allocate buffers when needed (e.g., when a reservation request
is accepted, or when a machine failure occurs) may seem like
a more natural solution. Our evaluation of Kerveros against
the baseline placeholder solution (PH) in §5 showed that this
strategy suffers from worse packing efficiency. In addition, it
introduces other various complications:

• Early binding requires lock-in of VM configuration pa-
rameters (e.g., VM type) when not necessary yet, reducing
flexibility on the clients’ side.

• Buffers like the healing buffer need to have their sizes
updated regularly, which is more inefficient with the early-
binding approach.

• Early binding makes it harder to support over-subscription
using spot VMs or harvest VMs.



• Early binding might require complex migration logic to
move “placeholder” VMs between machines to pack VMs
efficiently on the available physical machines.

• The early-binding approach incurs an additional caching
cost, even if live migrations are free, i.e., the corresponding
caches that reference the source and destination machines
for each placeholder migration need to be invalidated.

Reservations with future start dates. Kerveros only sup-
ports reservations starting immediately. To guarantee reser-
vations starting at future time t, we either need accurate
estimates of the capacity at t (high risk), or we can reserve
capacity now and hold it until t (high cost). Both approaches
have significant issues that become worse as t is pushed out
further into the future; these issues are also exacerbated by
larger reservations (both in terms of the number and size of the
reservation). It might be possible to estimate future capacity
using a probability distribution, but we expect the accuracy to
be poor without a reservation end time. Alternatively, rather
than requesting a specific start and end time for a reservation,
a user could specify a reservation with a demand profile that
indicates the desired usage and expected growth over time.

7 Related Work
Kerveros builds on a rich line of previous work on admission
control and reservations in the cloud.

Admission control. Admission control is a broad topic
that has been studied in a variety of contexts such as
cloud systems [9, 16, 26, 27, 29, 43, 45, 51, 52, 55], computer
networks [8, 11, 18, 28, 30, 36, 44, 46, 47, 53], cellular net-
works [37, 50], mobile edge computing [1, 23, 24], real-time
database systems [12, 22, 32, 38, 48], distributed systems [13–
15,41,49,54], and caching systems [10,33,40], among others.
Each domain provides unique challenges and requirements
that advocate for custom solutions to be developed. This
work focuses on datacenter-scale VM admission control with
support for VM reservations. To the best of our knowledge,
there is no published work in this space that explicitly covers
availability, scalability, and efficiency considerations. The
bulk of the related papers in this space is centered more
around VM allocation and placement, and admission control
is addressed only at a high level. Similarly, reservations
are a relatively new offering and are not directly addressed.
For example, Protean [21] describes Microsoft’s rule-based
zonal allocator, while focusing on systems enhancements to
reduce latencies. However, Protean does not address either
the problems of admission control or support for reservations.
Google’s Borg [43, 45] scheduler introduces efficient packing
and machine-sharing techniques to achieve high resource
utilization, but admission control is only briefly described in
terms of a quota system, and managing the fragmentation and
quota allocation of the admission control is outside the scope
of the paper. In terms of reservations, Borg uses the concept

of Borg Allocs, which are akin to the placeholder approach
that we compare against.

Reserving cloud resources. The (VM) reservations we
consider in this paper are a relatively new consumption mode
that has been introduced to provide predictability to customers.
Note that this mode is different from reserved instances
(RIs) [6, 7, 17, 20, 35], under which customers make a 1-3
year commitment in return for a significant discount over on-
demand offerings. For reservations in datacenters, we are
only aware of Meta’s RAS [34] system, which manages user
reservations at the granularity of a server. RAS works by
partitioning machines and dynamically migrating machines
between partitions, guided by a mixed-integer linear program.
While the partitioning approach works well for Meta’s internal
services, it is not well-suited for our public cloud setting (§5).

Resource reservations have also been proposed for internal
big data analytics systems (e.g., [16, 25]). However, the
provider there has more information about the jobs (e.g.,
job duration and deadline) and can better create an explicit
resource allocation plan over time.

8 Conclusion
This paper describes the design, implementation, and evalu-
ation of Kerveros, an admission-control system deployed in
a large public cloud. Our design accurately retains capacity
for hardware failures, tenant scale-out, and reservations while
being computationally scalable to large inventories and peak
loads. Kerveros can be extended to support additional scenar-
ios such as improving margin efficiency through reservation
overbooking and supporting enhanced reservation semantics
(e.g., reservations with a start date).
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Appendix
A Theoretical Guarantees
In this section, we show that the conversion ratio approach
does not lead to an excessive wastage of resources.

Notation. We start by defining some useful notation.

• Let yt
m denote the type-t VMs that can fit in a machine m,

ignoring buffers.
• Let xt

c denote the number of VMs of type t required for
buffers in cluster c, and let xt ′→t

c = C(t ′ → t,xt ′
c ,c) be the

converted number of VMs from type t ′ to type t.
• We define Ct ′→t =

A[t,c]
A[t ′,c] , which allows us to write the

conversion ratio from type t ′ to type t as

xt ′→t
c = C(t ′ → t,xt ′

c ,c) =
⌈
Ct ′→t · xt ′

c

⌉
.

Setting. Our analysis focuses on the following setting:
• We assume that one of the resources (e.g., CPU) is the main

bottleneck in a cluster; let qt denote the amount of that
resource that VM type t requires.

• When Ct ′→t < 1 (i.e., we are converting from “smaller”
to “larger” VMs), we omit the ceiling function from the
converted AV count calculation. Instead, xt ′→t

c =Ct ′→t · xt ′
c .

• Let Mt,t ′
c denote the set of machines in cluster c that can

currently fit both VM types t ′ and t. The conversion ratio
from t ′ to t is then calculated using only the machines
in Mt,t ′

c . Specifically, we let A[t,c] = ∑
m∈Mt,t′

c
yt

m and

A[t ′,c]= ∑
m∈Mt,t′

c
yt ′

m for calculating Ct ′→t .

Results. To quantify the waste in resources, we compare
the total capacity of the VMs that are being converted with
the total capacity of the AV counts that are deducted by this
conversion. In particular, let Uoriginal = ∑t ′ xt ′

c ·qt ′ denote the
total capacity of the VM types before conversion (i.e., “real”
capacity of buffers), and Uconverted = qt ·∑t ′ xt ′→t

c denote the
converted capacity of these VMs.

Theorem 1 The conversion guarantees at least 1
4−utilization

of the converted AV counts’ capacity; explicitly: Uoriginal ≥
1
4 ·Uconverted .

To prove Theorem 1, we will need the following auxiliary
lemma that relates the conversion ratio with the sizes of the
VM types.

Lemma 1 Under the above assumptions, Ct ′→t ≤ 2 · qt′
qt

.

Proof of Lemma 1. Consider a machine m that can currently
fit at least one VM of type t or one VM of type t ′. Let Qm
denote the available capacity of the bottleneck resource (e.g.,
CPU) of machine m. By definition, yt

m = ⌊Qm
qt
⌋ and yt ′

m = ⌊Qm
qt′

⌋.
Then, the following are true:

qt · yt
m ≤ Qm and qt ′ · (yt ′

m +1)> Qm.

Combining the above two inequalities, we obtain:

qt · yt
m < qt ′ · (yt ′

m +1)⇒ yt
m

yt ′
m
<

qt ′

qt
+

qt ′

qt · yt ′
m
≤ 2 · qt ′

qt

where the last inequality follows from the fact yt ′
m ≥ 1.

Since this is true for all machines m that fit both VM types,
we obtain:

A[t,c]= ∑
m∈Mt,t′

c

yt
m ≤ 2 · qt ′

qt
∑

m∈Mt,t′
c

yt ′
m = 2 · qt ′

qt
·A[t ′,c].

We can then easily see that:

Ct ′→t =
A[t,c]
A[t ′,c]

≤ 2 · qt ′

qt
.

Proof of Theorem 1. We need to consider two cases.
• Case 1: Ct ′→t < 1. In this case, we obtain the following:

xt ′→t
c =Ct ′→t · xt ′

c ≤ 2 · qt ′

qt
· xt ′

c .

We then get for the original and converted capacity of VM
type t ′:

qt ′ · xt ′
c ≥ 1

2
·qt · xt ′→t

c .

• Case 2: Ct ′→t ≥ 1. Similarly, in this case:

xt ′→t
c =

⌈
Ct ′→t · xt ′

c

⌉
≤Ct ′→t · xt ′

c +1 ≤Ct ′→t · (xt ′
c +1)

≤ 2 ·Ct ′→t · xt ′
c ≤ 4 · qt ′

qt
· xt ′

c .

In the above, the second inequality follows from Ct ′→t ≥ 1.
The third inequality is due to xt ′

c ≥ 1 (otherwise, no buffer
of type t ′ would exist, clearly leading to zero waste in
the conversion by default). Finally, the last inequality uses
Lemma 1. As a result,

qt ′ · xt ′
c ≥ 1

4
·qt · xt ′→t

c .

Putting both cases together, we can see that for all converted
VM types t ′, we have:

qt ′ · xt ′
c ≥ 1

4
·qt · xt ′→t

c .

Summing over all such VM types:

∑
t ′

qt ′ · xt ′
c ≥ 1

4
·∑

t ′
qt · xt ′→t

c ⇒Uoriginal ≥
1
4
·Uconverted .

which concludes the proof of Theorem 1.
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