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Modern analytical database systems predominantly rely on column-oriented storage, which offers superior
compression efficiency due to the nature of the columnar layout. This compression, however, creates challenges
in decoding speed during query processing. Previous research has explored predicate pushdown on encoded
values to avoid decoding, but these techniques are restricted to specific encoding schemes and predicates,
limiting their practical use. In this paper, we propose a generic predicate pushdown approach that supports
arbitrary predicates by leveraging selection pushdown to reduce decoding costs. At the core of our approach
is a fast select operator capable of directly extracting selected encoded values without decoding, by using
Bit Manipulation Instructions, an instruction set extension to the X86 architecture. We empirically evaluate
the proposed techniques in the context of Apache Parquet using both micro-benchmarks and the TPC-H
benchmark, and show that our techniques improve the query performance of Parquet by up to one order
of magnitude with representative scan queries. Further experimentation using Apache Spark demonstrates
speed improvements of up to 5.5X even for end-to-end queries involving complex joins.
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1 INTRODUCTION
Column-oriented data storage increasingly dominates the analytical database system landscape
in this Big Data era. Unlike traditional row-oriented storage formats where tables are stored in a
row-by-row manner, such formats employ a columnar storage layout in which values in the same
column are stored contiguously. One example of such approach is Apache Parquet [4], an open-
source column-oriented storage format. With the growing trend of moving analytical databases to
the cloud, we are seeing increased consensus in the industry with respect to using Parquet as a
standard format across major cloud vendors and analytical platforms [1, 10, 16, 18, 38, 45].
Since consecutive values in the columnar layout are similar to each other, column stores use a

variety of aggressive encoding schemes to compress column values [14]. The most widely-used
encoding scheme is dictionary encoding, where each distinct value in a column is mapped to a
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Fig. 1. Time breakdown of TPC-H Q6

unique small code according to a dictionary built for the column. These small codes of column
values are usually stored in a bit-packed manner, using as many bits as needed to represent each
code. This encoding scheme, though effective in reducing storage cost, imposes challenges on query
processing as these codes must be decoded before they can be further processed.

Previous research [41] has focused on accelerating the decoding process by unpacking a group
of bit-packed codes in parallel via SIMD vectorization. This approach, though obviously better
than a naïve implementation, is still not fast enough due to a fundamental limitation: the produced
decoded values (e.g., 64-bit integers) are much larger than the input encoded values (typically
just a few bits), limiting the degree of data parallelism that can be achieved in this operation. To
demonstrate this observation, Figure 1 shows the time breakdown of TPC-H Q6 in Parquet (ignoring
Parquet-Select for now), which adopts this method for decoding. We see that decoding dominates
the overall query time even with this state-of-the-art decoding technique.

In an effort to alleviate this challenge, a line of research attempts to avoid decoding by leveraging
the idea of predicate pushdown [23, 25, 26, 29, 40]. The basic idea of this rich line of work is to
evaluate a converted predicate on the encoded values directly, essentially pushing down predicate
evaluation to avoid the costly decoding. In spite of the high performance they achieve, these
techniques rely on two key assumptions: 1) the encoding is order-preserving; 2) the predicates are
simple enough (e.g., basic comparison predicates) such that they can be converted to equivalent
ones in the encoded domain. Unfortunately, neither of these two assumptions may hold in practice,
significantly limiting their applicability. For example, although Parquet makes extensive use of
dictionary encoding, the dictionary encoding employed is not order-preserving, which eliminates
the possibility of adopting these techniques in Parquet. Moreover, even with an order-preserving
encoding, many complex predicates, such as string matching, user-defined functions, and cross-table
predicates (e.g., [32]), cannot be supported.

In this paper, we propose a different predicate pushdown approach for column stores. Our broad
approach supports arbitrary predicates even without an order-preserving encoding. The approach
is based on a simple observation: a query on a table typically involves multiple predicates across
multiple columns; when evaluating a predicate on a column, records failing to meet prior predicates
can be bypassed directly. In column stores, this short-circuit optimization can be implemented
using a select operator, which selects all values in a given column that satisfy all previous predicates.
The key insight of this paper is that we can push down the select operator to directly select encoded
values, rather than decoded values, ensuring that only the selected values need to be decoded
for full predicate evaluation. We call this technique selection pushdown. With this approach, all
relevant values are still decoded first and then evaluated against the original predicates, making
this approach applicable for arbitrary predicates.

Despite the seemingly simple idea, a key technical challenge lies in designing a fast select operator
capable of operating directly on encoded values, moving all selected values from a vector of encoded
values packed in a processor word simultaneously. It turns out that this goal is unattainable, if
not impossible, without using special hardware capabilities [27]. A key finding in this paper is
the recognition that the Bit Manipulation Instructions (BMI), which were introduced by Intel in
2013 and are now available in nearly all Intel and AMD processors, are well-suited to address this
challenge. To the best of our knowledge, this is the first paper that leverages BMI for database
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applications. It is important to note that applying BMI to this application is nontrivial, which likely
explains why BMI has been largely ignored in database systems over the past decade.

Additionally, we find that the role of BMI goes well beyond the select operator. In fact, BMI plays
a crucial role in all the key techniques proposed in this paper, as summarized below.

• Select operator (Section 3). A select operator copies all selected values, indicated by a select
bitmap, from a vector of bit-packed values to contiguous bits in the output. Our BMI-based
implementation can process all encoded values packed in a 64-bit processor word using a total of
only four instructions, regardless of how many encoded values are packed in a word (e.g., 64
1-bit values, 32 2-bit values, or even 21 13 3-bit values), by fully exploiting the parallelism available
inside a processor word. This fast operator lays the foundation for our solution.

• Selection pushdown framework (Section 4). To take full advantage of the fast select operator,
we develop a selection pushdown framework for evaluating an arbitrary scan query on a table,
which typically involves a sequence of filter and project operations on various columns. In this
framework, both filter and project operations take as input a select bitmap generated by previous
filter operations, and make use of the fast select operator to select encoded values upfront before
decoding them. Additionally, each filter operation also needs to refine the select bitmap according
to the evaluation of its predicate. To achieve this, specific transformations on the select bitmap
are required, because the predicate is evaluated on selected values only and the results must
be aligned to the original select bitmap. Interestingly, these transformations, though previously
considered to be expensive, can now be performed efficiently using BMI (Section 4.3).

• Supporting complex structures (Section 5). Modern columnar storage, such as Parquet, offers
support for complex structures, including nested and/or repeated structures. Parquet adopts
the columnar representation from Google’s Dremel [31], using two small integers per value to
encode structure information. Due to the presence of null or repeated values in each column
within complex structures, column values of the same record may not be fully aligned across
columns. Consequently, in our framework, an intermediate select bitmap generated by a filter
operation on one column cannot be directly applied to another column. Instead, these bitmaps
require sophisticated transformations based on the structural information represented by the
small integers. Another key finding of this paper is the recognition that BMI is also well-suited to
evaluate these encoded small values (Section 5.3) and transform these bitmaps accordingly (Sec-
tion 5.4). Based on this finding, we develop BMI-based techniques for these necessary operators
and extend our framework to have full support for complex structures in Parquet.

By combining all these techniques, we built a library called Parquet-Select that enables predicate
pushdown in Parquet (Section 6). Importantly, Parquet-Select makes no changes to the Parquet
format and can, therefore, read any file conforming to the format specification. Figure 1 compares
the time breakdown between Parquet and Parquet-Select. It is clear that by selecting encoded values
upfront, the decoding cost in Parquet-Select is significantly reduced. In the meantime, the selection
cost decreases as well, thanks to our fast selector operator and the selection pushdown framework.
Our detailed evaluation (Section 7) using both micro-benchmarks and the TPC-H benchmark shows
that Parquet-Select always outperforms Parquet, improving the query speed by up to more than
one order of magnitude for individual scan queries. The results with Spark further show a speedup
of up to 5.5X, even for end-to-end queries involving complex joins, which opens up new potential
for faster database processing for similar critical workloads.
Finally, we note that although we present our techniques in the context of Parquet, these

techniques can be adapted to other on-disk or in-memory columnar storage formats, such as
Apache ORC [3], Apache Arrow [2], or internal formats of analytical database systems.
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2 BACKGROUND
2.1 Bit Manipulation Instruction Set (BMI)
The Bit Manipulation Instruction set (BMI) is an extension to the X86 architecture for Intel and
AMD processors. As the name suggests, the goal of BMI is to accelerate common bitwise operations
by using dedicated hardware instructions. Unlike SIMD instruction sets (e.g., AVX2 or AVX512),
BMI instructions operate on 64-bit general-purpose registers. BMI contains a total of 14 instructions.
Most bitwise operations supported by BMI have a sufficiently fast software implementation.

For example, the BLSI instruction extracts the rightmost 1 from a 64-bit operand 𝑥 , which can
be implemented by using two arithmetic instructions: 𝑥& − 𝑥 [27]. Consequently, even before
the advent of BMI, these bitwise operations were used in various scenarios including database
applications (e.g., [28, 29]). With the advent of BMI, these software-implemented operations in
existing software can be easily replaced by their BMI counterparts through compiler techniques or
manual optimizations, without rethinking the algorithm design.

2.1.1 PEXT and PDEP. Two BMI instructions, namely PEXT and PDEP, do not fall into the above-
mentioned category. The PEXT (parallel bit extract) instruction extracts the bits selected by a select
mask operand from a source operand and copies them to the contiguous low-order bits in the
destination, with the high-order bits set to 0s. The PDEP (parallel bit deposit) instruction does the
opposite of PEXT: the contiguous low-order bits from the source operand are copied to the selected
bits of destination, indicated by the select mask operand, while other bits in the destination are
set to 0s. Figure 2 shows examples of PEXT and PDEP on 16-bit operands. Notice that we use the
little-endian view throughout this paper, which means the first bit, value, or word is the rightmost
one in all figures and the last one is the leftmost one.

mask:
src:

dest:

0101000100111001

0100110110100101

0000000001011001

(a) PEXT (parallel bit extract)

src:

dest:

mask:

0000000001011001

0100000100100001

0101000100111001

(b) PDEP (parallel bit deposit)

Fig. 2. Examples of PEXT and PDEP

Unlike other BMI instructions such as BLSI, it remains an open question on how to efficiently
implement PEXT and PDEPwithout using dedicated hardware instructions. A naïve implementation,
which iterates over each bit and moves selected bits one at a time, is extremely inefficient. To
demonstrate this, Table 1 compares the software and BMI implementations of BLSI, PEXT, and
PDEP on both Intel and AMD processors. Unsurprisingly, BMI is two orders of magnitude faster
than our software implementation on both Intel and AMD processors. By contrast, the software
implementation of BLSI runs at significantly higher throughput and is even surprisingly faster than
its BMI counterpart.

Throughput Intel Xeon Gold 6140 AMD EPYC 7413
(ops/s) BLSI PEXT PDEP BLSI PEXT PDEP
Software 3100M 8.1M 8.7M 6214M 18.3M 18.5M
BMI 1381M 1150M 1143M 1243M 1713M 1651M

Speedup 0.46X 142X 131X 0.2X 94X 89X
Table 1. BMI vs. software implementation

Due to the prohibitively low performance of the software implementation of PEXT and PDEP,
existing algorithms or systems tend to avoid these expensive bitwise operations in performance-
critical tasks, making it rare to find opportunities to apply PEXT/PDEP directly in existing programs.
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Consequently, the advent of BMI requires us to fundamentally rethink the algorithm/system design
with these powerful instructions. In this paper, we explore this opportunity for predicate pushdown
in column stores.

PEXT/PDEP support has beenwidely available in server processors for years. Intel first introduced
PEXT and PDEP with the Haswell processors in 2013. AMD added support for these instructions
through microcode starting with the Zen microarchitecture in 2017, followed by a full hardware
implementation in the Zen 3 microarchitecture in 2020. However, ARM-based server processors,
such as AWS Graviton [5] and Nvidia Grace [11], have yet to offer PEXT/PDEP support. One of the
objectives of this paper is to motivate ARM engineers to assess the possibility of adding similar
instructions in upcoming ARM-based processors.

2.2 Apache Parquet
Apache Parquet [4] is an open-source columnar storage format, developed based on the storage
techniques from Google’s Dremel [31]. It has arguably become the de-facto columnar storage
format for data analytics in the Big Data ecosystem. We briefly describe the data model, columnar
encoding, and storage format of Parquet.

Data Model and Schema. Parquet inherits the data model from Protocol Buffers [12], which is
based on strongly-typed nested structure. In Parquet, each record consists of one or more fields,
each of which can be an atomic field or a group field. Group fields contain nested fields, which can
recursively be either atomic or group fields. Each field is defined with two types: data type, which
specifies the primitive data type such as int32 or byte array, and repetition type, which defines the
number of occurrences of the field in its parent group field and can be labeled as one of the three
types: required (1 time), optional (0 or 1 time), and repeated (>1 times).

Repetition andDefinition Levels. To represent complex structure in a columnar representation,
Parquet stores two additional integer numbers, called repetition level and definition level, to encode
this structural information. We refer the readers to the original Dremel paper [31] for the definitions
and the algorithm to reconstruct the original tree-structured records. For the purpose of this paper,
repetition and definition levels are used to find: 1) null field values; and 2) the number of repeated
values for each record.

Encodings. Field values, repetition and definition levels are compressed independently using
common encoding schemes [14]. In particular, Parquet extensively uses a hybrid encoding scheme
that adaptively switches between run-length encoding (RLE) and bit-packing encoding: a long run
of the same value is stored as a RLE run; other values are encoded in bit-packing runs. Thus, an
encoded column typically contains interleaved RLE and bit-packed runs. Repetition and definition
levels are directly encoded using this hybrid encoding. Field values, regardless of data types, are
first mapped to codes using dictionary encoding, which are then encoded using this hybrid scheme.
If the size of the dictionary reaches a certain threshold, Parquet falls back to use the plain encoding.
The dictionary used in Parquet is not order-preserving, meaning that most predicates cannot be
evaluated on dictionary codes directly.
Storage Format. In Parquet, data is first partitioned into blocks in row-major order, called

row-groups. Within each row-group, data is stored contiguously in column-major order, i.e., similar
to the PAX layout [15]. Each root-to-leaf field path in the schema corresponds to a column in a row
group, which includes three components: field values, repetition levels, and definition levels. The
three components are stored independently in separate data pages. Unnecessary information is
never physically stored in Parquet: null values are omitted from the field values; definition levels
are not physically stored if the field is a required field; similarly, repetition levels are omitted for
non-repeated fields.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 178. Publication date: June 2023.



178:6 Yinan Li, Jianan Lu, and Badrish Chandramouli

3 BIT-PARALLEL SELECT OPERATOR
We begin by describing our fast select operator, which lays the foundation for efficient selection
pushdown in column stores.

3.1 Problem Statement
A select operator takes as input a byte array consisting of 𝑛 𝑘-bit values and an 𝑛-bit select bitmap.
It extracts all selected values where their corresponding bits in the select bitmap are 1s, and copies
them into the contiguous bits in an output byte array, just as if the bits of all unselected values had
been removed from the input.

Figure 3 shows the input and the expected output when selecting 3 out of 8 example 4-bit values
(ignoring the computation steps for now). As the 3rd, 7th, and 8th bits from the right in the bitmap
are 1s, the output should contain v2, v6, and v7. Similarly, an example with 3-bit values is shown in
Figure 4. Note that in this example, as the word size (32) is not a multiple of the bit width (3), some
values such as v10 and v21 are placed across the word boundaries, which makes this problem even
more challenging.
An obvious solution to this problem would be to scan over all bit-packed values, extracting

and gathering selected bit-packed values one at a time, which runs in 𝑂 (𝑛) instructions. However,
considering that each value is typically only a few bits long and much smaller than the processor
word (e.g., 64 bits), this simple implementation does not fully utilize the width of a processor word,
thus wasting the parallelism available in processors.

Hence, our goal is to design a bit-parallel select operator. Intuitively, this means that the algorithm
is able to simultaneously process all values that are packed into a processor word, moving all
selected values to appropriate positions in parallel. The formal definition of a bit-parallel algorithm
is given in Definition 1.

Definition 1. For a given word size 𝑤 , an algorithm is a bit-parallel algorithm if it processes 𝑛
𝑘-bit values in 𝑂 ( 𝑛𝑘

𝑤
) instructions.

3.2 Simplified Algorithm
We first describe a simplified bit-parallel algorithm for the cases where the bit width 𝑘 of values is
a power of 2 such that no value is placed across word boundaries. We will extend this algorithm to
support arbitrary bit widths in Section 3.3.
We initially use a special case of the problem to illustrate the basic idea behind the algorithm.

Suppose that each value has only 1 bit (𝑘 = 1). In this special case, we want to extract all bits that
correspond to 1s in the bitmap from the values. Interestingly, this is precisely what PEXT does by
placing the values in the source operand and using the bitmap as the mask operand (Section 2.1.1).
This observation can be generalized to handle wider values. For 𝑘-bit values, instead of using

the select bitmap as the mask operand of PEXT directly, we need an extended bitmap that uses 𝑘
bits to represent each bit in the original bitmap, enabling us to extract all 𝑘 bits for every selected
value. Conceptually, this extended bitmap can be generated by duplicating each bit in the select
bitmap 𝑘 times.
Figure 3 shows the algorithm to select 3 4-bit values from 8 4-bit values. In the figure, we

switch the background color to distinguish adjacent elements corresponding to different values.
As seen in the figure, the algorithm runs in two steps. In the first step, it converts the input select
bitmap 11000100 to an extended bitmap 11111111000000000000111100000000. In step 2, since
all corresponding bits of the selected value have been set in the extended bitmap, we now can apply
this extended bitmap and use PEXT to copy all selected bits to the output, essentially moving only
the selected values v7, v6, and v2 to the output.
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v7 v6 v5 v4 v3 v2 v1 v0
input values: 01011011101101000001001111001010

select bitmap: 1 1 0 0 0 1 0 0

constant mask: 00010001000100010001000100010001

step 1: transform the select bitmap to an extended bitmap
low = PDEP(bitmap, mask): 00010001000000000000000100000000

high = PDEP(bitmap,mask-1): 00010000000000000001000000000000
extended = high - low: 11111111000000000000111100000000

step 2: select values based on the extended bitmap
output v7 v6 v2

PEXT(values, extended): 010110110011

Fig. 3. Bit-parallel selection on 8 4-bit values

With BMI, we design an elegant way to convert a select bitmap to the extended bitmap using only
three instructions (two PDEP and one subtraction), regardless of the bit width of values. Figure 3
shows this computation on the example values in step 1. The first PDEP instruction moves each
bit in the select bitmap to the rightmost position in the corresponding 𝑘-bit field in the extended
bitmap, according to the mask 0𝑘−11...0𝑘−11 (we use exponentiation to denote the bit repetition, e.g.,
1402 = 111100). The second PDEP instruction uses a modified mask (𝑚𝑎𝑠𝑘 − 1), where the rightmost
1 is removed from𝑚𝑎𝑠𝑘 . As a result, each bit in the select bitmap is now moved to the rightmost
position in the next 𝑘-bit field in the extended bitmap. Thus, in the result mask ℎ𝑖𝑔ℎ, each moved
bit is actually outside its corresponding 𝑘-bit field, and can be thought of as a “borrowed” bit from
the next field. With the two result masks 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ, we now perform a subtraction between the
two masks (ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤 ) to produce an extended bitmap. This last step relies on the propagating of
the carries to set all bits between a pair of 1s to 1s, as illustrated below:

high: 1

𝑘︷      ︸︸      ︷
00...000

low: 000...001
high - low: 011...111

.

Notice that the 1-bit in ℎ𝑖𝑔ℎ prevents carries from propagating to the next 𝑘-bit field. As a result,
the calculations are safely performed inside each 𝑘-bit field and never interfere with each other.
Thus, the subtraction acts as if it processes all 𝑘-bit fields in parallel.

The abovementioned algorithm is summarized in Algorithm 1 and Algorithm 2 (we show the
extend operator as a separate operator, as it will be reused in Section 5.4.1). In addition to the
input values and bitmap, it takes a mask as input. For 𝑘-bit values where 𝑘 is a power of 2, we
set 𝑚𝑎𝑠𝑘 = 0𝑘−11...0𝑘−11. If the input contains a large number of values packed into multiple
processor words, we run Algorithm 1 on each word and concatenate the output through bit shifting.

Algorithm 1 select (𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑏𝑖𝑡𝑚𝑎𝑝 ,𝑚𝑎𝑠𝑘)
1: 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 := extend(𝑏𝑖𝑡𝑚𝑎𝑝 ,𝑚𝑎𝑠𝑘)
2: return PEXT(𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑)

Algorithm 2 extend (𝑏𝑖𝑡𝑚𝑎𝑝 ,𝑚𝑎𝑠𝑘)
1: 𝑙𝑜𝑤 := PDEP(𝑏𝑖𝑡𝑚𝑎𝑝 ,𝑚𝑎𝑠𝑘)
2: ℎ𝑖𝑔ℎ := PDEP(𝑏𝑖𝑡𝑚𝑎𝑝 ,𝑚𝑎𝑠𝑘 - 1)
3: return ℎ𝑖𝑔ℎ - 𝑙𝑜𝑤
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word 2 (word 1 & 0)
v31v30v29v28v27v26v25v24v23v22v2 1...

input values: 11000101110110000000101110111101 ...
select bitmap: 1 0 1 0 0 0 0 1 0 0 0 ...

constant mask: 00100100100100100100100100100101 ...

step 1: transform the select bitmaps to extended bitmaps
low = PDEP(bitmap,mask): 00100000100000000000000100000000 ...

high = PDEP(bitmap, mask-1): 00000100000000000000100000000000 ...
extended = high-low: 11100011100000000000011100000000 ...

step 2: select values based on the extended bitmaps
output v31v29v24 ...

PEXT(values, extended): 110011011 ...

(word 2) word 1 word 0
...v2 1v20v19v18v17v16v15v14v13v12v11v 10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

values: ... 11011100010000111111010010111000 11101000001110010101110010100011
bitmap: ... 0 0 0 1 0 0 0 0 0 0 11 1 1 0 0 0 0 0 1 0 0 0

mask: ... 10010010010010010010010010010011 01001001001001001001001001001001

step 1: transform the select bitmaps to extended bitmaps
low: ... 00000000010000000000000000000011 01001000000000000000001000000000

high: ... 00000010000000000000000000010010 01000000000000000001000000000000
extended: ... 00000001110000000000000000001111 11111000000000000000111000000000

step 2: select values based on the extended bitmaps
... v18v11v 10 v9 v3

output: ... 0011000 11101110

Fig. 4. Bit-parallel selection on 32 3-bit values (v10 and v21 span over multiple words)

The length of the output for each word can be calculated by performing the POPCNT instruction
(counting 1s in a processor word) on the input select bitmap.

3.3 General Algorithm
We next extend the simplified algorithm to support an arbitrary bit width 𝑘 . Figure 4 shows an
example of selecting 8 values from 32 3-bit values that are packed into 3 32-bit words. Since the
bit width 𝑘 = 3 is not a power of 2, there are values (v10 and v21) placed across word boundaries.
The key challenge of the general algorithm lies in dealing with these partial values with minimal
overhead.

Interestingly, we find that Algorithm 1 remains valid even for words containing partial values, as
long as the masks meet the two requirements shown as follows. First, the mask needs to be shifted
to be aligned with the layout of the word. In Figure 4, the mask in word 2 is left shifted by 2 bits, as
there are 2 remaining bits in the partial value v21 in word 2. Similarly, the mask in word 1 is left
shifted by 1 bit to accommodate the 1 remaining bit of v10 in word 1. Second, the least significant
bit in a𝑚𝑎𝑠𝑘 must be 1, even though it corresponds to a bit in the middle of a value. For a word with
a partial value on the right end, this extra 1 at the rightmost position ensures that the subtraction
instruction is able to generate a sequence of 1s for the partial value in the extended bitmap. For
example, in Figure 4, the rightmost bit of𝑚𝑎𝑠𝑘 in word 1 is set to 1 though it corresponds to the
third bit of v10. This extra 1-bit guides the first PDEP instruction to move the rightmost bit from
the select bitmap to the rightmost position in 𝑙𝑜𝑤 , which then results in the expected 1-bit on the
right end of the extended bitmap.
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In general, Algorithm 3 shows the steps to generate masks for an arbitrary word size𝑤 and bit
width 𝑘 . For a given𝑤 and 𝑘 , we put𝑤 values in one group that span over 𝑘 processor words. It is
clear that the words at the same position in these groups can use the same mask as they share the
same layout of values. As a result, we only need to generate 𝑘 masks, one for each word in a group.
These masks are always pre-created and reused repeatedly.

Algorithm 3 generate_masks (𝑤 , 𝑘)
1: 𝑚𝑎𝑠𝑘𝑠 := ∅
2: for 𝑖 := 0 to 𝑘 do
3: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 := 𝑘 − (𝑖 ×𝑤) % 𝑘

4: 𝑚𝑎𝑠𝑘𝑠 .add((0𝑘−11...0𝑘−11 ≪ 𝑜 𝑓 𝑓 𝑠𝑒𝑡) ∨ 1)
5: return 𝑚𝑎𝑠𝑘𝑠

With this approach, the general algorithm needs to run the same four instructions described in
Algorithm 1 and 2 on each word, and surprisingly, it does not introduce any additional overhead
compared to the simplified algorithm. It is also worth noting that the simplified algorithm is a
specialization of the general algorithm. When the bit width 𝑘 is a power of 2, the general algorithm
will generate the same𝑚𝑎𝑠𝑘 for all words in a group and the mask generated by Algorithm 3 is
identical to the one described in Section 3.2.

According to Definition 1, the proposed algorithm is clearly a bit-parallel algorithm since it runs
a constant number of instructions on each processor word, regardless of the bit width of values or
the selectivity of the select bitmap.

4 SELECTION PUSHDOWN
Given the fast select operator described in Section 3, we next present how to take full advantage of
it in evaluating an arbitrary scan query. In this section, we will also introduce the second use case
of BMI, which is critical in enabling selection pushdown in the framework.

4.1 Framework
Our framework aims to accelerate arbitrary scan queries by making the best use of the select
operator. A scan query returns the values of the projection columns (i.e., in the SELECT clause)
from the records that match the filters on a list of filter columns (i.e., in the WHERE clause). For
the sake of simplicity, we first assume that the WHERE clause is a conjunction of filters, which is
the most common case. We will relax this assumption in Section 4.5, extending the framework to
allow conjunctions, disjunctions, negations, or an arbitrary boolean combination of them.

The framework is built upon a simple yet crucial observation: when performing a filter or project
operation, records failing to meet prior predicates can be bypassed directly. While this observation
is undeniably obvious, previous approaches have not leveraged it effectively. Indeed, in the case
of filter operations, previous work tends to perform predicate evaluation on all values [29, 34],
intentionally ignoring the fact that some values might have been filtered by prior filters. This
is primarily because the additional cost associated with the select operator often outweighs the
potential savings in predicate evaluation. However, given the fast select operator that operates
on encoded values (Section 3), it has become more favorable to select values upfront, even for
filter operations. Consequently, our framework is designed to take full advantage of the BMI-based
select operator in both project and filter operations. Interestingly, this design also introduces new
technical challenges that can be addressed by using BMI (Section 4.3).

In this framework, each filter operation produces a select bitmap as the output, which uses one
bit per record to indicate if the corresponding record matches all filters that have been evaluated so
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far. The select bitmap can be fed into the next filter operation or the remaining project operations
to accelerate the subsequent operations.

Running example. To illustrate our methods, we use a running example throughout this section.
The query is shown below:

SELECT c FROM R WHERE a < 10 AND b < 4 .
Figure 5 shows the input and output of each operation to evaluate the example query. The query
is converted as a filter operation on column 𝑎, followed by another filter operation on column 𝑏,
and ended with a project operation on column 𝑐 . The first filter must read all column values and,
thus, has no input select bitmap. The produced bitmap, bitmap𝑎 , is then passed to the second filter
operation that now can skip the values in records that fail to satisfy the first predicate. The second
filter operation refines the select bitmap according to the predicate on column 𝑏, resulting in an
updated bitmap, bitmap𝑏 , with 4 bits set to 1. Finally, we pass bitmap𝑏 to the project operation as
an input to select values in column 𝑐 from matching records.

column a bitmap𝑎 = filter(a, null, < 10)
bitmap𝑎: 10100001000001000000111000001000

column b bitmap𝑏 = filter(b, bitmap𝑎, < 4)
bitmap𝑏: 00100001000001000000010000000000

column c selected𝑐 = project(c, bitmap𝑏)
selected𝑐: v29v24v18v10

Fig. 5. Operations in evaluating the example query

4.2 Operation Implementation
In our framework, filter and project operations can be implemented by composing four basic
operators, as shown below:
• Select. As the first step, we use the select operator described in Section 3 to remove irrelevant
values from the target column. Pushing down the select operator results in a reduced number of
values that need to be passed to the subsequent operators. This step can be skipped if the filter
or project operation has no input select bitmap (e.g., the first filter in a query).

• Unpack. Next, we use the unpack operator to convert the encoded values to their native repre-
sentation in primitive data types. We adopt the state-of-the-art SIMD-based implementation [41]
for this operator. For project operations, we can now return the unpacked results and skip the
remaining two operators/steps.

• Evaluate. For filter operations, we next evaluate all decoded values with the filter predicate and
generate a bitmap to indicate whether each (selected) value satisfies the predicate. Since all column
values have been unpacked and decoded, this operator allows arbitrary predicates. Furthermore,
since all (selected) column values are now stored in primitive data types, this enables a more
straightforward implementation of predicate evaluation using SIMD vectorization [34–36].

• Transform. The bitmap produced by an evaluate operator may not be directly used as a select
bitmap for the next operation. This is because the bitmap has as many bits as the selected records,
rather than all records. The transform operator is designed to convert such a bitmap into an
appropriate select bitmap that can be used for the subsequent operation(s). In Section 4.3, we
will describe an efficient way to implement this operator using BMI.
As an example, Table 2 shows the steps of the example filter and project operations. The first

filter operation is implemented as an unpack operator followed by an evaluate operator. The select
and transform operators are avoided because this is the first filter and has to read all values. In
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contrast, the second filter operation performs all four operators: it pre-selects the values based on
bitmap𝑎 , which, however, requires an additional bitmap transformation at the end of this operation.
The refined bitmap, bitmap𝑏 , is then used to accelerate the project operation on column c, which is
implemented as a select operator followed by an unpack operator.

column a filter(a, null, < 10) = evaluate<10(unpack(a))
column b filter(b, bitmap𝑎, < 4) =

transform(
evaluate<4(unpack(select(b, bitmap𝑎))),
bitmap𝑎)

column c project(c, bitmap𝑏) = unpack(select(c, bitmap𝑏))

Table 2. Implementation of example filter and project operations

4.3 Bitmap Transform Operator
To demonstrate the need for the transform operator, we first walk through the filter operation on
column b in the running example. Figure 6 breaks down the key steps of this operation. As the first
step, it applies bitmap𝑎 , i.e., the bitmap generated by the filter on column a, and selects 8 values (v3,
v9-11, v18, v24, v29, v31) that pass the first filter (see Figure 4 for detailed steps). Next, we unpack
these 3-bit encoded values and evaluate all decoded values, producing a 8-bit bitmap called filtered
(step 2). However, this bitmap indicates whether each selected value, rather than any value, in the
column satisfies the predicate, and thus needs to be transformed in order to be used as a select
bitmap for the next operation(s).
To transform the filtered bitmap, we need to deposit the bits in “filtered” to the bit positions

corresponding to the selected values in the select bitmap bitmap𝑎 (i.e., the 1s in bitmap𝑎). In other
words, we need to replace the 𝑖-th 1 in the select bitmap with the 𝑖-th bit in “filtered”, while retaining
all 0s in the select bitmap at their original bit positions. Interestingly, this is exactly what the PDEP
instruction performs by using “filtered” as the source operand and the select bitmap as the mask
operand (see Section 2.1 and Figure 2). Continuing the example from Figure 6 (step 3), we replace
the first (rightmost) 1 in bitmap𝑎 by the first (rightmost) bit 0 from “filtered”, indicating that the
first selected value v3 does not pass the predicate on column b. The use of PDEP enables us to move
all 8 bits from “filtered” to appropriate positions in the select bitmap in parallel. It is worth noting
that without the hardware-implemented BMI instruction, this transformation (as well as the select
operator) would be significantly more expensive as we showed in Table 1, which further highlights
the crucial role of BMI in the design of the entire solution.

input v31v30v29v28... v3 v2 v1 v0
values: 110001011101...110010100011
bitmap𝑎: 10100001000001000000111000001000

step 1: select values from column b (see Figure 4)
v31v29v24v18v11v10 v9 v3

selected = select(values, bitmap𝑎): 110011011001100011101110

step 2: unpack selected values and evaluate predicate <4
filtered = eval<4(unpack(selected)): 01110100

step 3: transform the filtered bitmap
output bitmap𝑏 = PDEP(filtered, bitmap𝑎): 00100001000001000000010000000000

Fig. 6. Selection pushdown on example column b
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4.4 Filter Ordering
Thus far we have assumed that all filters are evaluated in the same order as specified in the query.We
next address the query optimization problem of determining the order of filters. Unlike traditional
filter ordering problems, this problem requires the consdieration of both filter selectivity and the
bit width of columns, both of which affect scan performance (see Figure 12). To solve this problem,
we first develop a cost model and then propose a simple yet efficient greedy algorithm to determine
the best order. For simplicity, we assume that filter predicates are independent of each other and
the selectivity of each filter is pre-known, e.g., via selectivity estimation techniques such as [37].

4.4.1 Cost Model. Let 𝑘 denote the bit width,𝑤 denote the processor word size, and 𝑠 denote the
selectivity where 𝑠 ∈ [0, 1]. We assume a sequence of 𝑛 filters, 𝑓1 ... 𝑓𝑛 . Our objective is to minimize
the cost of running the filter sequence. The cost of any filter (except the first filter 𝑓1) is the sum of
the cost to run the select operator on all 𝑘-bit values and the cost to unpack and evaluate selected
values and the cost to transform the bitmap. According to Definition 1, its runtime is positively
correlated with the bit width. Thus, the cost of select for a filter 𝑓𝑖 is ∝ 𝑘𝑖

𝑤
. The unpack and evaluate

operators run on some subset of values that have been filtered by all prior filters. The number of
values that any filter will unpack and evaluate equals to the total number of values multiplied by
the product of selectivity of all prior filters. Thus, the cost of unpack and evaluate for a filter 𝑓𝑖 is
∝ ∏𝑖−1

𝑗=1 𝑠 𝑗 . The cost of transform can be ignored as it uses only one PDEP instruction. Finally, the
cost of a filter 𝑓𝑖 in a sequence (except the first filter 𝑓1) is ∝ ( 𝑘𝑖

𝑤
+∏𝑖−1

𝑗=1 𝑠 𝑗 ). The first filter 𝑓1 does
not use select and transform operators, but it needs to unpack and evaluate all values. Putting all
these pieces together, the cost of 𝑓1 ... 𝑓𝑛 is:

𝑐𝑜𝑠𝑡 (𝑓1) +
𝑛∑︁
𝑖=2

𝑐𝑜𝑠𝑡 (𝑓𝑖 ) ∝ 1 +
𝑛∑︁
𝑖=2

(𝑘𝑖
𝑤

+
𝑖−1∏
𝑗=1

𝑠 𝑗 ) ∝
𝑛∑︁
𝑖=2

𝑘𝑖

𝑤
+

𝑛∑︁
𝑖=2

𝑖−1∏
𝑗=1

𝑠 𝑗 (1)

4.4.2 Optimal Order. For a set of 𝑛 filters, our goal is to find a sequence with the lowest cost as
defined in Equation 1. We make two key observations from Equation 1 that can significantly prune
the search space: 1) for sequences starting with the same filter, the term

∑𝑛
𝑖=2

𝑘𝑖
𝑤

in Equation 1
remains unchanged and does not impact the overall cost, regardless of the order of the rest of the
filters; 2) to minimize the second term

∑𝑛
𝑖=2

∏𝑖−1
𝑗=1 𝑠 𝑗 , we should sort all filters in ascending order of

selectivity, assuming the first filter has been determined.
Based on these observations, it becomes evident that a simple greedy approach can find the

optimal order: we begin by selecting an arbitrary filter as the first filter; the optimal order of the
remaining filters can be found by sorting them in the ascending order of their selectivity, whose cost
can be calculated by using Equation 1; we then compare all 𝑛 possible choices for the first filter and
find the one with the lowest overall cost. This approach drastically reduces our search space from
𝑂 (𝑛!) to 𝑂 (𝑛) candidate sequences, and the obtained order is optimal under the aforementioned
assumptions. Relaxing these assumptions is an interesting direction for future work.

4.5 Supporting Disjunctions and Negations
Finally, we extend our framework to allow conjunctions, disjunctions, negations, or an arbitrary
boolean combination of them. For each disjunction in the WHERE clause, we always convert it to a
combination of conjunctions and negations by applying De Morgan’s laws: 𝑎 ∨𝑏 = ¬(¬𝑎 ∧¬𝑏). To
support negations, we add a boolean flag, namely negate, as an addition input parameter to the
filter operation. If this flag is true, we need to flip the bitmap produced by the evaluate operator. All
other operators within a filter operation remain unchanged. With this approach, our framework
supports disjunctions and negations with negligible overhead.
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5 SELECTION PUSHDOWN IN PARQUET
The techniques described in the previous sections are general techniques that can be applied to
most column stores. In this section, we adapt and extend these techniques to enable selection
pushdown in one specific but widely adopted storage format, Apache Parquet.

5.1 Overview
As we described in Section 2.2, each column value in Parquet is a triple: ⟨repetition level, definition
level, field value⟩. Repetition and definition levels are metadata that is used to represent complex
structure in a columnar manner. A select operation in Parquet takes as input a column that includes
encoded repetition and definition levels as well as field values, and a bitmap indicating the records
to be selected, and outputs the repetition/definition levels and the field values of all selected records,
as if we use the standard reader to read a Parquet file that contains the matching records only.

The challenge arises from the way that Parquet encodes the structure information to represent
optional, nested, or repeated fields (Section 2.2). As Parquet never explicitly stores null values and
all repeated values are stored contiguously in the same array, the number of levels or values in
the column may not be the same as the number of records, meaning that the select operation we
presented in Section 3 is not directly applicable to Parquet.

In this section, we present our techniques to efficiently transform the input select bitmap to the
ones that can be applied to the field values and repetition/definition levels. This transformation
requires the knowledge of the structure of data, which is represented by repetition and definition
levels. In the interest of space, we omit the formal definitions of these concepts, but introduce two
simple facts that we will use throughout this section: 1 a column value is null if its definition level
is not equal to the maximum definition level of the column; 2 a column value belongs to the same
record of the previous column value if its repetition level is not 0.

Running example. Figure 7 shows an example repeated column that contains 32 column values
belonging to 24 records. Each column value has one definition level and one repetition level. So
there are 32 definition/repetition levels. The mapping between levels and records can be built by
looking at the repetition levels according to 2 : the 1st and 2nd levels belong to the first record as
the 2nd repetition level is non-0; the 2nd and 3rd records have only one value; the next three levels
all belong to the 4th record, etc. Half of the 32 column values have a definition level that is not
equal to 2 (the maximum definition level in this column), meaning that there are 16 null values
( 1 ). These null values are not explicitly stored in the field values. As a result, even though the
column contains 32 column values, it has only 16 non-null field values stored in the value array.
In Figure 7, we also include a 24-bit select bitmap. Each bit in the bitmap indicates whether each
record, i.e., all column values belonging to the record, need to be selected. We connect each bit in
the select bitmap to the corresponding repetition and definition levels, and the non-null field value
in solid lines. Thus, a level or value needs to be included in the selected column if and only if it is
connected to a 1 in the select bitmap.

select
bitmap:

rep
levels:

def
levels:

values:

010000010001100000100001

01000000000011100001000001100010

12211012011222221012201212221022

7352103660243251

Fig. 7. Selecting an example repeated column in Parquet
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5.2 Workflow
Algorithm 4 shows the workflow to select repetition/definition levels and field values from a Parquet
column based on a select bitmap. The basic idea of the algorithm is to transform the input select
bitmap to two auxiliary select bitmaps, called level bitmap and value bitmap, that can be used to
select the definition/repetition levels and values, respectively. The level bitmap is generated by
copying each bit in the select bitmap as many times as the number of levels in the corresponding
record. Then, the value bitmap can be created by removing the bits corresponding to null values
from the level bitmap. Figure 8 illustrates the transformations from the select bitmap to the level
and value bitmaps for the example column.

Algorithm 4 select-parquet (𝑟𝑒𝑝𝑠 , 𝑑𝑒 𝑓 𝑠 , 𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑏𝑠𝑒𝑙𝑒𝑐𝑡 )
1: 𝑏𝑙𝑒𝑣𝑒𝑙 := 𝑏𝑠𝑒𝑙𝑒𝑐𝑡
2: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑒𝑝𝑠 := ∅
3: if 𝑟𝑒𝑝𝑠 ≠ ∅ then
4: 𝑏𝑟𝑒𝑐𝑜𝑟𝑑 := equal(𝑟𝑒𝑝𝑠 , 0) ▷ Section 5.3
5: 𝑏𝑙𝑒𝑣𝑒𝑙 := extend(𝑏𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑏𝑟𝑒𝑐𝑜𝑟𝑑 ) ▷ Section 5.4.1
6: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑒𝑝𝑠 := select(𝑟𝑒𝑝𝑠 , 𝑏𝑙𝑒𝑣𝑒𝑙 ) ▷ Section 3
7: 𝑏𝑣𝑎𝑙𝑢𝑒 := 𝑏𝑙𝑒𝑣𝑒𝑙
8: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑑𝑒 𝑓 𝑠 := ∅
9: if 𝑑𝑒 𝑓 𝑠 ≠ ∅ then
10: 𝑏𝑣𝑎𝑙𝑖𝑑 := equal(𝑑𝑒 𝑓 𝑠 ,𝑚𝑎𝑥_𝑑𝑒 𝑓 _𝑙𝑒𝑣𝑒𝑙 ) ▷ Section 5.3
11: 𝑏𝑣𝑎𝑙𝑢𝑒 := compress(𝑏𝑙𝑒𝑣𝑒𝑙 , 𝑏𝑣𝑎𝑙𝑖𝑑 ) ▷ Section 5.4.2
12: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑑𝑒 𝑓 𝑠 := select(𝑑𝑒 𝑓 𝑠 , 𝑏𝑙𝑒𝑣𝑒𝑙 ) ▷ Section 3
13: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒𝑠 := select(𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑏𝑣𝑎𝑙𝑢𝑒 ) ▷ Section 3
14: return ⟨𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑟𝑒𝑝𝑠, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑑𝑒 𝑓 𝑠, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒𝑠⟩

select
bitmap:

level
bitmap:

value
bitmap:

010000010001100000100001

01100000100011111000000100000011

1100111100100011

Fig. 8. Transformations on the select bitmap

In the first part of the algorithm (Line 1-5), we produce the level bitmap for selecting the repetition
and definition levels. This step can be skipped for the simple cases where the column has no repeated
values: we can reuse the input select bitmap directly (Line 1) as the number of levels matches the
number of records. To produce the level bitmap, we first produce a bitmap called record bitmap by
finding the first levels of all records, i.e., all repetition levels that are 0s ( 2 ) (Line 4), and then extend
the input select bitmap to the level bitmap using the produced record bitmap (Line 5). In Section 5.3,
we will describe a bit-parallel operator for the former step, and present a way to reuse an existing
operator (extend) for the latter step in Section 5.4.1. Now, with the produced level bitmap that has
been aligned to the levels, we can reuse the select operator presented in Section 3 to select both
repetition levels (Line 6) and definition levels (Line 12).

Similarly, to accommodate the fact that all null values are not physically stored in the field values,
we also need to generate the value bitmap (Line 7-11). According to 1 , we can find all null values
by comparing the definition levels to the maximum definition level of the column (Line 10). The
result bitmap, called valid bitmap, is then used to compress the input select bitmap, by removing all
bits that correspond to null values (Line 11). We describe this step in more details in Section 5.4.2.
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Finally, we select the field values by using the value bitmap as the select bitmap (Line 13), and
return all selected field values along with the repetition/definition levels. Note that for the arguably
most common cases where the column is simply a required column, all bitmap transformations
are not needed, and only the field values are selected. In this case, the Parquet select operator is
reduced to the standard select operator that we presented in Section 3.
It is worth pointing out that, according to Definition 1, all operators used in Algorithm 4 are

bit-parallel algorithms. Additionally, all operators rely on either the PDEP or PEXT instruction to
achieve the full data parallelism available in processor words.

5.3 Predicate Pushdown on Levels
We describe a bit-parallel equal operator to compare a sequence of bit-packed values to a constant
value and output an equality bitmap. It operates on encoded values directly and thus evaluates all
values packed in a processor word in parallel. We use this operator to find: 1) all definition levels
that are equal to the maximum definition level ( 1 ); and 2) all repetition levels that are 0s ( 2 ). In
Parquet, repetition and definition levels are small integer values that are typically encoded with no
more than a few bits. Consequently, applying this operator on levels is remarkably efficient due to
the higher degree of data parallelism.

Algorithm 5 shows the steps to perform bit-parallel comparisons. For 𝑘-bit levels, the first step is
to duplicate the literal value to all 𝑘-bit fields. In the next step, we use a formula adapted from [27]
to compare all 𝑘-bit values simultaneously. The results are stored in the most significant bit of each
𝑘-bit field: 1 means that the two values are the same. These result bits are then extracted by using
the PEXT instruction to generate a compact bitmap representation.

Algorithm 5 equal (𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 )

1: 𝑚𝑎𝑠𝑘𝑙𝑜𝑤 := 0𝑘−11...0𝑘−11
2: 𝑚𝑎𝑠𝑘ℎ𝑖𝑔ℎ := 10𝑘−1 ...10𝑘−1
3: 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 :=𝑚𝑎𝑠𝑘𝑙𝑜𝑤 × 𝑙𝑖𝑡𝑒𝑟𝑎𝑙

4: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 := ¬((𝑣𝑎𝑙𝑢𝑒𝑠 ⊕ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠)∨ ▷ adapted from [27]
5: (((𝑣𝑎𝑙𝑢𝑒𝑠 ⊕ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠) ∨𝑚𝑎𝑠𝑘ℎ𝑖𝑔ℎ) −𝑚𝑎𝑠𝑘𝑙𝑜𝑤))
6: return PEXT(𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ,𝑚𝑎𝑠𝑘ℎ𝑖𝑔ℎ)

Figure 9 shows an example of comparing the first 16 2-bit definition levels in the running example
to the maximum definition level (2). The results are the first 16 bits of the valid bitmap 𝑏𝑣𝑎𝑙𝑖𝑑 , which
indicates non-null values in the column.

input values (v): 01000110100001100110101001001010
literals (l): 10101010101010101010101010101010

constant mask𝑙𝑜𝑤 (lo): 01010101010101010101010101010101
maskℎ𝑖𝑔ℎ (hi): 10101010101010101010101010101010

results = ¬((v⊕l)∨(((v⊕l)∨hi)-lo)): 00000010100000100010101000001010

output b𝑣𝑎𝑙𝑖𝑑 = PEXT(results,hi): 0001100101110011

Fig. 9. Equality comparisons on 16 2-bit definition levels

5.4 Transforming the Select Bitmap
5.4.1 Select Bitmap to Level Bitmap. The upper part of Figure 8 illustrates the transformation from
the select bitmap to the level bitmap. For each bit in the select bitmap, we need to duplicate it as
many times as the number of values in the corresponding record. Interestingly, this transformation
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can be implemented by using the extend operator (Algorithm 2) we introduced in Section 3.2. In
the select operator, for 𝑘-bit values, we use the extend operator to copy each bit in the bitmap to 𝑘
bits by using a specific predefined bitmap 0𝑘−11...0𝑘−11 as the mask. In general, the extend operator
duplicates the 𝑖-th bit in the input 𝑘 times, where 𝑘 denotes the distance between the 𝑖-th 1 and
(𝑖 + 1)-th 1 in the mask bitmap. By performing the equality comparisons between the repetition
levels and 0s (Section 5.3), we have generated the record bitmap where each 1-bit represents the
first value in each record (according to 2 ). Thus, the distance between each pair of adjacent 1s
represents the number of values in the corresponding record. Based on this finding, we now can
extend the select bitmap by using the record bitmap as the mask of the extend operator, duplicating
each bit 𝑘 times where 𝑘 is the number of values in the corresponding record. The result bitmap is
the level bitmap. Figure 10 demonstrates the steps of this transformation for the running example.
In this figure, we alternate background color to distinguish values or bits in different records.

input b𝑠𝑒𝑙𝑒𝑐𝑡: 010000010001100000100001
b𝑟𝑒𝑐𝑜𝑟𝑑: 10111111111100011110111110011101

low = PDEP(b𝑠𝑒𝑙𝑒𝑐𝑡, b𝑟𝑒𝑐𝑜𝑟𝑑): 00100000100000011000000100000001
high = PDEP(b𝑠𝑒𝑙𝑒𝑐𝑡, b𝑟𝑒𝑐𝑜𝑟𝑑-1): 10000001000100010000001000000100

output b𝑙𝑒𝑣𝑒𝑙 = high - low: 01100000100011111000000100000011

Fig. 10. Transforming a select bitmap to a level bitmap

5.4.2 Level Bitmap to Value Bitmap. As described earlier, Parquet does not explicitly store null
values in the field values. Consequently, to produce a bitmap that can be used to select field
values, we need to extract all bits from the level bitmap that corresponds to non-null values. This
transformation is illustrated in the lower part of Figure 8. As we have generated the valid bitmap
by comparing the definition levels (Section 5.3), this transformation can be simply implemented
by applying PEXT on the level bitmap with the use of the valid bitmap as the mask (similar to
Section 4.3).
Figure 11 demonstrates that a single PEXT instruction transforms the level bitmap 𝑏𝑙𝑒𝑣𝑒𝑙 to the

value bitmap 𝑏𝑣𝑎𝑙𝑢𝑒 , removing all bits in 𝑏𝑙𝑒𝑣𝑒𝑙 that correspond to 0s in 𝑏𝑣𝑎𝑙𝑖𝑑 . The produced 𝑏𝑣𝑎𝑙𝑢𝑒
is then be used to select the non-null values from the example column.

input b𝑙𝑒𝑣𝑒𝑙: 01100000100011111000000100000011
b𝑣𝑎𝑙𝑖𝑑: 01100001000111110001100101110011

output b𝑣𝑎𝑙𝑢𝑒 = PEXT(b𝑙𝑒𝑣𝑒𝑙, b𝑣𝑎𝑙𝑖𝑑): 1100111100100011

Fig. 11. Transforming a level bitmap to a value bitmap

6 PARQUET-SELECT
We built a library, called Parquet-Select, that enables predicate pushdown in Apache Parquet and is
the full implementation of the techniques presented in this paper. Parquet-Select makes no changes
to the Parquet format and can, therefore, read any file conforming to the format specification. It
is designed to support arbitrary filters: each filter is a user-defined lambda function and can be
used to implement even the most complex predicates such as complex string matching, UDFs, or
cross-table predicates (e.g., [32]). For a given set of filters, Parquet-Select returns only the values in
the matching records, as if we use the standard Parquet library to read a Parquet file that contains
the matching records only.
Parquet-Select supports all data types available in Parquet, i.e., boolean, int32, int64, int96,

float, double, byte array, and fixed-length byte array. It also inherits the data model from Parquet,
supporting arbitrary nesting of required, optional, and repeated fields. However, in our current
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implementation, the fields referenced in filters must be required or optional fields. Supporting
filters on repeated fields is part of our plan for future work.

The techniques we presented in previous sections focus on the dictionary/bit-packing encoding.
RLE is another common encoding that is particularly favorable for encoding levels, which likely
have long runs of identical values (e.g., 0s). Additionally, plain encoding is often used as the fallback
option for the dictionary encoding. In Parquet-Select, we also implemented selection pushdown for
RLE and plain encodings by leveraging bitwise operators. These bitwise operators do not require
the use of BMI and are consequently beyond the scope of this paper. Therefore, we briefly outline
the approach: for an RLE run (𝑣, 𝑘) where 𝑣 denotes the value and 𝑘 denotes how many times the
value appears, to select values from it based on a select bitmap, we need to populate the value 𝑣 as
many times as the number of selected values in the run; this number can be calculated by using the
POPCNT instruction to count the number of 1s in the 𝑘 corresponding bits in the select bitmap.
POPCNT is not part of BMI and is available on most CPU architectures including X86 and ARM.
We implemented Parquet-Select in C++, based on the open-source C++ version of the Ar-

row/Parquet library1 (version 8.0.0). For all operators that use BMI instructions, we implemented a
dynamic dispatching mechanism to detect whether BMI support is available on the host processors
at run time and fall back to an alternative implementation if BMI support is missing.

7 EVALUATION
We ran our experiments on a server with a 2.6GHz AMD EPYC 7413 processor, and 256GB of
DDR4 memory. We used an NVMe SSD as the storage device, with a maximum I/O throughput of
3.5GB/s. The machine runs 64-bit Windows Server 2022 Datacenter operating system. We also ran
our experiments on another server with Intel Xeon Gold 6140 CPUs. The results are similar to that
with the AMD processor and are therefore omitted in this paper.

The configuration of the server is similar to a compute node running analytical data systems for
data warehouse or data lake applications [45]. These systems typically cache data read from cloud
object stores (e.g., Azure Storage and AWS S3) in local SSDs using techniques such as Databricks
Cache [30], Snowflake Cache Layer [21], or Crystal cache [22]. Below, we assume that all data files
are stored in local SSDs.
In the evaluation below, we compare Parquet-Select to the open-source C++ version of Ar-

row/Parquet2 (version 8.0.0). Parquet implements the SIMD-based unpack algorithm [41] for de-
coding. To compare with Parquet-Select, we also implemented the filter and selection operations
on decoded column values using SIMD instructions and optimized these operations with our best
efforts. Unless explicitly stated otherwise, all Parquet files used in our evaluation are generated
with default values from Parquet for all configuration parameters, e.g., row group size = 64MB,
data page size = 1MB, maximum dictionary size = 1MB, no page-level compression. We ran all
experiments using a single thread.

7.1 Evaluating Selection Performance
In the first experiment, we compare the performance of Parquet-Select and Parquet on a project
operation with a given select bitmap, and evaluate how this comparison is affected by the charac-
teristics of the operation, including the bit width of the column values and the selectivity of the
select bitmap. To this end, we created a Parquet file with a single column containing 128 million
64-bit integer values. We ensure that there are only 2𝑘 distinct values in the column, where 𝑘 is the
bit width of the values encoded with dictionary encoding and is varying in this experiment. For

1The Parquet C++ library has been integrated into the Apache Arrow library.
2https://github.com/apache/arrow
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Fig. 12. Parquet vs. Parquet-Select: selection operation

Parquet, all encoded values are first unpacked to 64-bit integers and then selected into an output
buffer based on the select bitmap, while Parquet-Select selects encoded values directly followed by
unpacking the selected values. No evaluate or transform operators are involved in this experiment.

Figure 12 plots the speedup of Parquet-Select over Parquet by varying the selectivity and the bit
width of column values. Parquet-Select outperforms Parquet under all circumstances, with up to 10X
performance gains. As expected, Parquet-Select performs better as the selectivity increases. In the
extreme case where we select all values (selectivity = 1/1), both methods have similar performance,
as they have to unpack the same amount of values. The only difference is in the select operator:
Parquet-Select is slightly faster than Parquet with smaller values because the selection on bit-packed
values reads less amount of memory compared to the selection on decoded 64-bit values. As the
selectivity increases, the speedup of Parquet-Select dramatically improves for the obvious reason
that, in addition to the performance gain on the select operator, Parquet-Select also reduces the
number of values that need to be unpacked. These results confirm that the unpack operator, though
it has been highly optimized with SIMD vectorization [41], still acts as a performance bottleneck
since it has a lower degree of data parallelism due to the size of decoded values (64 bits).
The figure also shows that Parquet-Select achieves higher performance gains as the bit width

decreases. This is due to the fact that the select operator used in Parquet-Select can process all
values packed in a processor word in parallel (see Section 3) and thus achieves a higher degree of
data parallelism with smaller values. It is therefore more efficient than either the unpack or select
operators on 64-bit decoded values where the available data parallelism is limited by the size of
decoded values (64 bits). This effect is more pronounced when the selectivity is relatively low and
the unpack operator in Parquet-Select does not dominate the overall execution time.

7.2 Micro-Benchmark Evaluation
Wenext evaluate the two approaches with scan queries using amicro-benchmark. In this experiment,
we generated a Parquet table R with 20 columns (a1 ∼ a20) and 128 million rows. A scan query,
shown below, is used to evaluate how the performance comparison is affected by the characteristics
of a scan query, including the number of filters, the number of projections, the bit width of column
values, and the data types. The selectivity of each filter is fixed at 25%, but the overall selectivity
of the query is varied as we vary the number of filters. By default, we use the settings shown as
follows: #filters = 2 (overall selectivity = 6.25%), #projections = 3, bit width = 5, data type = int64.

SELECT MAX(a10), MAX(a11), ... FROM R

WHERE a1 < C1 AND a2 < C2 AND ...

Figure 13a compares the performance of Parquet-Select and Parquet by varying the bit width
from 1 to 16. Similar to the results in the previous experiment, Parquet-Select achieves higher
speedup with smaller column values. Interestingly, we observe that the execution time saved by
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Fig. 13. Parquet vs. Parquet-Select: scan micro-benchmark

Parquet-Select nearly remains the same regardless of the bit width. Since the gap between the two
lines is mainly due to the additional unpacking cost on unselected values in Parquet, this further
confirms that the unpacking cost is largely independent of the bit width of the input values due to
the fixed size of decoded values (64 bits).

As shown in Figure 13b and 13c, Parquet-Select is more effective when the scan query has more
projection or filter columns. This is because, as we evaluate the filters successively, the selectivity
on each column continues to increase, resulting in higher performance gains of Parquet-Select
on projection columns or filter columns evaluated later in the query. As a result, Parquet-Select
performs better when the query contains a long list of projection or filter columns. In addition
to this effect, adding more filters also further reduces the overall selectivity, which leads to even
higher speedup compared to adding projections (6.0X vs. 4.7X).
Figure 13d shows the query time of the two approaches with various data types including

int32, int64, int96, float, double, and byte array. The performance improvement is similar (3.0-3.6X)
with all data types except for byte array. The relatively lower speedup (2.5X) with byte array
is mainly because the more expensive predicates on byte array values particularly slow down
the first filter, where Parquet-Select has to select and evaluate all values, thereby hindering the
overall performance gain over Parquet. The costly data types, however, may also result in higher
improvement if there are more filter or projection columns. To show this effect, Figure 13e plots
the performance with byte array values by varying the number of filters. Compared to the results
with int64 values (Figure 13b), Parquet-Select achieves lower speedup when the query has only 1
filter, but becomes more effective as the number of filters increases.

7.3 Case Study: TPC-H Benchmark Q6
To understand the performance of Parquet-Select on a more realistic workload, in the following
experiments, we use the TPC-H benchmark [13] at the scale factor of 10. The total size of the
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Fig. 14. Parquet vs. Parquet-Select: TPC-H benchmark Q6

dataset is approximately 10GB. The largest table Lineitem contains 60 million rows. Before a more
complete evaluation with join queries, we first conduct a case study using a representative scan
query – Q6 in the TPC-H benchmark.
Q6 is a scan query that contains three filters on three different columns l_shipdate, l_discount,

and l_quantity, and two projections on columns l_extendedprice and l_discount. The three filter
columns are encoded with 12 bits, 4 bits, and 6 bits in Parquet, respectively. The selectivity of the
three filters is 15.2%, 27.3%, and 46.0%, respectively. The overall selectivity of the query is 1.9%.

7.3.1 Non-nullable Columns. As per the specification of the TPC-H benchmark, all column values
are not nullable. We first ran an experiment with this setting. Figure 14a shows the results of Q6
with three I/O settings: the Parquet file is either preloaded into main memory or loaded from disks
using asynchronous or synchronous I/O. As can be seen from the figure, Parquet-Select outperforms
Parquet by a factor of 3 when the file has been preloaded into memory. Interestingly, with the use
of asynchronous I/O, both Parquet-Select and Parquet maintain nearly the same query time even
though data is now loaded from disks. This is due to the fact that reading Parquet columns is CPU
bound, making the asynchronous I/O operations fully overlap with the CPU-intensive operations
such as select and unpack operators. This can be further confirmed by the results with synchronous
I/O: the time difference between Preloaded and Sync I/O indicates the I/O time, which is clearly
less than the computation time for both approaches. For storage devices with limited I/O speed
(e.g., magnetic disks or remote storage), the time difference between Parquet and Parquet-Select
should remain unchanged, while the speedup may be reduced accordingly.

7.3.2 Nullable Columns. To evaluate the performance with nullable column values, we modified
the Lineitem table by altering 12.5% of values in each column to nulls. Figure 14b shows the
query time of Q6 on this modified dataset. For Parquet, we observe a significant performance
degradation due to the added null values, with the query time up from 0.5s to 2.2s. The reasons for
this dramatic difference are twofold. First, in addition to column values, Parquet has to decode the
definition levels and evaluate a predicate on these decoded levels to find all null values. Second,
the select bitmap needs to be transformed in order to be used for selecting non-null values. In
contrast, Parquet-Select performs the predicate evaluation on encoded levels directly (Section 5.3)
and leverages BMI instructions to transform the select bitmap in a bit-parallel manner (Section 5.4).
With these techniques, it adds only marginal cost in Parquet-Select to handle nullable columns, as
shown by comparing the query time in Figure 14a and 14b. For the above reasons, Parquet-Select is
13.7X faster than Parquet with nullable values.

7.3.3 Repeated Columns. Next, we added two extra columns with repeated values to the Lineitem
table. In these two repeated columns, each record contains a variable number of values, following
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Fig. 15. Impact of filter ordering on TPC-H Q6

a uniform distribution between 0 and 8 with an average of 4 values per record. We further mod-
ified Q6 to replace the two projected columns (l_discount and l_extendedprice) accessed in the
aggregation with the two repeated columns. All filters and their selectivity in this modified query
remain unchanged. Figure 14c shows the query time of this modified Q6 with repeated columns.
Unsurprisingly, Parquet-Select achieves even higher speedup (around 20X) over Parquet. Selecting
a repeated column requires two additional steps: 1) reading and selecting repetition levels, which
are encoded and stored in the same way as the column values; and 2) transforming the select
bitmap according to the repetition levels. With the use of BMI, the techniques proposed in this
work substantially improve both the read/select step (Section 3) and the bitmap transformation
step (Section 5.4.1), resulting in over 20X reduction in the cost of processing repeated columns. In
light of these results, we envision that Parquet-Select could potentially encourage the broader use
of complex structured data in analytical data systems.

7.3.4 Filter Ordering. In the next experiment, we study the impact of filter ordering on the perfor-
mance of Parquet-Select. For this purpose, we manually changed the order of filter evaluation and
tested all six different orders of the three filters in Q6. The results are shown in Figure 15. For this
query, the best order <l_shipdate, l_discount, l_quantity> is up to 30% faster than other orders. As
can be seen from the figure, the most critical choice is to evaluate the filter on l_shipdate first. One
reason is that this filter is more selective (15.2%) than other filters and thus evaluating this filter
earlier is beneficial for subsequent filters. Second, the column l_shipdate has the largest values (12
bits), making it less beneficial to evaluate it later in the plan even with a more selective bitmap.
Our order selection algorithm precisely captures these effects (see Section 4.4) and successively
picks the best order for this query.

7.4 TPC-H Benchmark Evaluation
We next extend our evaluation with the TPC-H benchmark by using Apache Spark [17, 44] (version
3.3.0). We study two approaches: 1) Spark + Parquet, which is the standard and deeply integrated
way to query Parquet files using Spark; and 2) Spark + Parquet-Select, which is a way to enable
predicate pushdown in Spark by leveraging Parquet-Select. To connect Parquet-Select to Spark as a
new data source, we built a connector by implementing the Spark Data Source V2 API. With this
approach, all records in Parquet files are filtered using the pushdown predicates in the Parquet-
Select library and only the matching ones are fed into Spark for the subsequent processing such as
joins and aggregates. Although the Data Source V2 API also allows aggregate pushdown, we did
not implement it as it is orthogonal to this work. The connector is implemented in Scala/Java and
interacts with the C++ Parquet-Select library through JNI (Java Native Interface).

In addition to Q6, we select 9 join queries from the TPC-H benchmark. All these queries, except
for Q19, have a conjunction predicate consisting of at least 1 filter on the Lineitem table. Q19 has a
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Fig. 16. Spark+Parquet vs. Spark+Parquet-Select: TPC-H

more complex predicate that is a disjunction of three predicates, each of which is a conjunction of
filters. The selectivity on the Lineitem table of these queries is summarized in the table below:

Q3 Q4 Q6 Q7 Q10 Q12 Q14 Q15 Q19 Q20
54% 63% 1.9% 30% 25% 0.5% 1.2% 3.8% 2.1% 15% .

Figure 16 shows the running time of the two solutions with the 10 TPC-H queries. Spark+Parquet-
Select outperforms Spark+Parquet for all queries, with speedup ranging from 1.1X to 5.5X. The
performance gains are highly correlated with the selectivity on the Lineitem table. In particular, it
achieves higher improvement (5.0X, 3.1X, 2.0X, 3.7X, 5.5X) for queries that have highly selective
predicates (Q6, Q12, Q14, Q15, Q19). This is because: 1) Parquet-Select is more effective with
selective predicates; 2) the subsequent joins are performed on a smaller portion of the Lineitem
table and thus have an insignificant impact on speedup achieved by Parquet-Select. For the rest of
the queries, the join operations are more expensive and dominate the overall query time, limiting
the performance gains of Parquet-Select (1.1X - 1.3X). It is worth pointing out that these queries
do have highly selective filters on the other side of the joins - the dimension tables. This presents
an opportunity to further push down the cross-table predicates, e.g., data-induced predicates [32],
which is an interesting direction for future work.

We also compare the query time of Q6 in Spark to that of the standalone implementation shown
in Figure 14a. Compared to the standalone implementation where the data produced by either
Parquet-Select or Parquet is processed in a hard-coded tight loop, Spark imposes a considerable
overhead to process the produced data for the obvious reason that the data must be fed into Spark
engine, meaning that it must be reformatted to the internal format and be deeply copied into a
buffer managed by Spark. Parquet-Select mitigates this overhead by feeding only the selected values
to Spark, resulting in higher speedup (5.0X) in Spark than in the standalone implementation (3.1X).
This indicates that the performance gains of Parquet-Select in real-world use cases could be even
higher than what we demonstrated in previous experiments.

7.5 Impact of Encoding and Compression
7.5.1 RLE encoding. Thus far, we have evaluated selection pushdown for bit-packed values. In
the next experiment, we investigate the efficiency of selection pushdown for RLE-encoded data.
Figure 17a plots the speedup of Parquet-Select over Parquet by varying the selectivity of the select
operation. Parquet-Select achieves up to 9X speedup over Parquet. Even with all values selected,
Parquet-Select remains 1.8X faster than Parquet, as it decodes and selects values in a single pass,
while Parquet requires two separate passes to complete these steps. As seen in comparison to the
results shown in Figure 12, selection pushdown is generally more efficient for RLE-encoded values
than for bit-packed values.
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Next, we study scenarios with interleaved bit-packing and RLE runs within the same column.
Figure 17b shows the results as the percentage of values encoded by RLE and bit-packing varies.
On average, both RLE and bit-packing runs contain 100 values. The bit-packed values are encoded
using 8 bits per value. As illustrated in the figure, Parquet-Select performs the best when the column
uses either RLE or bit-packing only. Its performance declines when Parquet-Select has to frequently
switch between processing RLE and bit-packing runs, due to the overhead associated with parsing
run metadata.

7.5.2 Page-level compression. In Parquet, encoded values are organized into data pages, which can
be further compressed optionally using a variety of compression schemes. In our final experiment,
we studied the impact of page-level compression on the performance comparison between Parquet
and Parquet-Select using Q6 from the TPC-H benchmark. We chose two widely-used and fast
compression schemes, LZ4 and Snappy, which both reduced the size of the Lineitem Parquet file by
approximately 30%.
Figure 18a and 18b compare the query time of Parquet and Parquet-Select with various com-

pression schemes in the standalone implementation and Spark, respectively. First, we observe
that both Parquet and Parquet-Select suffer from the use of page-level compression, as the decom-
pression cost outweights the saved I/O cost on NVMe SSDs. Second, as the decompression time
is independent of the two approaches, the time difference between Parquet and Parquet-Select
remains constant, but the speedup of Parquet-Select over Parquet is reduced when the Parquet
file is compressed. These findings suggest that, to fully benefit from BMI, data files on fast storage
devices should be stored in an uncompressed form. This conclusion is in line with recent work [45]
from Databricks, which recommends caching uncompressed Parquet files in compute nodes after
reading and decompressing them from remote storage.
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8 RELATEDWORK
We categorize the related work into the following broad lines of research: predicate pushdown and
column-oriented storage.
Predicate pushdown. Predicate pushdown is a well-known technique that has been widely

used in various use scenarios in Big Data, data warehouse, and data lake applications. In cloud,
cloud object stores such as AWS S3 [6] and Azure Storage [8, 20] recently are offering predicate
pushdown as cloud services, e.g., AWS S3 Select [7] and Azure ADLS query acceleration [9], to
reduce the amount of data that needs to be transferred to compute nodes. Such techniques have
been explored for database applications [42, 43].
Many techniques have also been developed to explore the idea of predicate pushdown for a

variety of data formats, motivated by the predicate pushdown capability in the input adapter of
database engines, e.g., the Spark data source API. For example, Mison [28] is a JSON parser that
is capable of pushing down filters and projections to the parser, avoiding expensive parsing on
unnecessary fields. Sparser [33] takes one step further and applies filters on textual formats even
before parsing. Another area for leveraging predicate pushdown is in the context of data caching.
Recent work [22] proposes to cache only parts of a table that match the predicates to improve
query performance and cache utilization. We complement this line of work by enabling predicate
pushdown in columnar data formats such as Parquet.
Column-oriented storage. Two influential pioneers in column stores are C-Store [39] and

MonetDB [19, 24]. The compression efficiency of common encoding schemes in column stores has
been studied in [14]. SIMD-Scan [40, 41] is a practical method to optimize the decoding process
using SIMD vectorization [34–36]. This method has been adopted in Parquet, and serves as the
baseline in our evaluation. Parquet-Select uses SIMD-Scan to decode encoded values as well, but
unlike Parquet, it pushes down the select operator to minimize the number of values that need to
be decoded.

There has been a large body of work on parallel predicate evaluation on encoded values [23, 25,
26, 29, 40]. All these techniques are based on two assumptions: 1) the encoding is order-preserving;
2) the predicates are simple enough such that they can be performed on the encoded values directly
(e.g., basic comparison operators). The techniques proposed in this paper are complementary to
these techniques, especially for the cases where either of the two assumptions does not hold. Parquet
is such an example, since the dictionary encoding used in Parquet is not order-preserving. However,
in Parquet-Select, we find one specific use case for these techniques: filtering levels (Section 5.3),
because all levels are small integers that are encoded with bit-packing encoding directly and are
always evaluated with pre-defined equality predicates.

9 CONCLUSIONS
With the increasing demand for data analytics, there is a critical need for efficient and generic
predicate pushdown in column stores. This paper presents techniques that address this need by
leveraging BMI instructions. At the core of our approach is a BMI-based select operator and a
framework that enables selection pushdown for arbitrary scan queries. Our experimental studies
in the context of Apache Parquet demonstrate that the proposed techniques substantially improve
query performance across a wide spectrum of queries.
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