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While social networks greatly facilitate information dissemination, they are well known to have contributed to
the phenomena of filter bubbles and echo chambers. This in turn can lead to societal polarization and erosion
of trust in public institutions. Mitigating filter bubbles is an urgent open problem. Recently, approaches based
on the influence maximization paradigm have been proposed in our community for mitigating filter bubbles
by balancing exposure to opposing viewpoints. However, existing works ignore the inherent competition
between the adoption of opposing viewpoints by users.
In this paper, we propose a realistic model for the filter bubble problem, which unlike previous work, captures
the competition between opposing opinions propagating in a network as well as the complementary nature of
the reward for exposing users to both those opinions. We formulate an optimization problem for mitigating
filter bubbles under our model. We establish several evidences of the intrinsic difficulty in developing constant
approximation to the problem and develop a heuristic and two instance-dependent approximation algorithms.
Our experiments over 4 real datasets show that our heuristic far outperforms two state-of-the-art baselines
as well as other algorithms in both efficiency and mitigating filter bubbles. We also empirically demonstrate
that our best heuristic performs close to the optimal objective, which is obtained by utilizing the theoretical
bounds of our approximation algorithms.
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1 INTRODUCTION
With the proliferation of social networks, new ways have emerged to provide users with an
abundance of information [16] and engage them in the sharing of information [3, 14]. Although
access to information has never been easier, social media have also led to increased societal
polarization [6, 22, 25]. Users are often found to be confined in filter bubbles, where, in an attempt
to improve users’ engagement, algorithms present to users only those types of information that
align with the users’ viewpoint [45, 46]. Existence of such filter bubbles impedes natural and fair
opinion formation [42]. This can in turn inhibit free and open discourse among people with different
viewpoints and can lead to one-sided policy decisions [47], and potentially lead to reduced social
trust [43]. Attempts to address these issues have resulted in research across several dimensions.
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Earlier works focused on measuring the extent of polarization [1, 4]. Later, by identifying the
groups of users to whom “counter-information" could be propagated [21, 27, 57], and by creating
new links between users of opposing viewpoints, researchers have attempted to mitigate filter
bubbles [5, 42, 55, 60]. To address the filter bubble problem, a recent body of research has explored
the use of the influence propagation paradigm in social networks [23, 41, 48, 58]. Please see [2, 36]
for detailed surveys on this topic.
Influence propagation is extensively studied in the context of the influence maximization (IM)

problem. Starting from a small set of users, called seeds, in a given social network, influence
cascades unfold following a stochastic diffusion model which specifies how influence propagates
from one user to another in the network. IM based approaches have been found to be effective in
solving a myriad of real-world problems such as gang violence [49], promotion of new prescription
drugs using genuine social contagion [32], and IM for social good, i.e., public health and welfare of
marginal communities [59]. This trend has motivated researchers to apply IM in the context of
solving the filter bubble problem [23, 41, 58]. While the classical IM objective is to select 𝑘 seeds
to maximize the expected number of influenced users, some works on the filter bubble problem
aimed at developing methods for balancing [23, 58] and diversifying [41] information exposure.
These works assume that information spreads through the network following the same stochastic
information propagation model used in the classical IM literature. As a result, they suffer from
several limitations specific to the filter bubble problem.

Many studies on the filter bubble problem have reported that items containing opinion-challenging
information spread less readily than other items [25, 56]. That is, from the propagation point of view,
items contributing to different filter bubbles are competing by nature. We illustrate this using an
example next.

Example 1. Suppose that a user has been exposed to article 𝐴 arguing for relaxing gun control.
Assume that the user is swayed by the article and has adopted the viewpoint that it promotes.
Consider an article 𝐵 arguing that gun ownership should be more restricted, citing studies revealing
a strong correlation between gun ownership and violent crime. If the user is exposed to article
𝐵 later, she may not readily “adopt" the viewpoint of 𝐵 at the same time and may not propagate
information about article 𝐵 to her social peers. □
Earlier works completely ignore this competition aspect. Instead, they tacitly assume that a user,

once influenced by her peers, and exposed to two opposing viewpoints, will happily adopt both
of them! Thus, earlier works focus on maximizing the objective of balancing users’ exposure to
opposing viewpoints, assuming no competition between their adoption. We argue that in order to
truly capture the goal of countering filter bubbles, it is necessary to model two seemingly conflicting
requirements: (i) in terms of propagation, the items (e.g., opposing viewpoints on an issue) need to
be competing, and (ii) the objective function measuring the effectiveness of a strategy for countering
the filter bubble needs to treat the two items as complementary in that the reward for a user adopting
both items should be significantly greater than the sum of rewards for two users adopting each of
the items alone. To our knowledge, none of the existing works is able to capture this.

In addition to ignoring competition, the problem settings studied in prior works such as [41, 58]
do not consider the task of mitigating the filter bubble, instead aiming to minimize the formation
of bubbles altogether. Consequently, they require that seeds for all the items are selected and the
corresponding campaigns launched synchronously, to minimize the formation of bubbles. However,
for various reasons, filter bubbles may already exist in social networks. To illustrate, consider
Example 1 again. Suppose article 𝐴 was published before article 𝐵. A campaign based on 𝐴 could
well be started early by choosing its seeds, which could result in filter bubbles involving 𝐴. Later
when 𝐵 is published in response to article 𝐴, the network host may want to select its seeds such
that the existing bubbles of 𝐴 can be mitigated. Therefore, in the mitigation task, seeds of one item
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are fixed, while the seeds of the other item need to be selected so as to minimize the effect of filter
bubbles. Our paper considers such a mitigation objective. Further, in [58] it was noted that the
objective of [23] is not natural as it rewards a strategy for every user who does not adopt any item!
Similarly, [41] uses an objective where the score improves even when users adopt more items that
have the same or similar (political) leaning, which is contrary to the intuition behind balancing
exposure.
Recent works [7, 40] on IM have used propagation models where influence is decoupled from

item adoption. Users become aware of the items via influence, and then adopt a subset of the items
they are aware of, following a separate adoption decision logic. We leverage the expressive power
of the newly proposed models to address the filter bubble problem. In particular, we introduce a
model where reward is based on a combination of complementary and competitive aspects. The
first component of the reward is a deterministic complementary function that awards a reward
for a user adopting two items from opposite viewpoints, which is often significantly higher than
the sum of rewards for two users, each adopting any one item. However, the second component is
a stochastic competition parameter which controls the probability of a user adopting the second
item when she has already adopted the first item. That is, the user’s adoption decision captures
the inherent competition between opposing viewpoints. We formulate an optimization problem
FBRewMax involving two items: given seed placement for a first item 𝑎, find 𝑘 seed users for a
second, opposing item 𝑏, such that the net reward, i.e., the sum of expected rewards of all the users
at the end of the propagation, is maximized. In many real-world scenarios, such as in two-party
elections, information is already limited to two topics (pro party 𝑎 or 𝑏). Further, even when there
are more than two candidate topics (such as in gun control: pro, anti, assault rifles, background
check, etc.), we can pick any one topic (e.g., assault rifles ban) and label content as leaning for or
against it. Prior works on filter bubble have similarly studied two item propagation [23, 58], but
ignored the competition aspect.

While competition based adoption helps to realistically model the requirements of the filter bubble
problem, it poses some unique technical challenges in terms of effectively solving FBRewMax.
In the context of the IM problem, maximization of welfare, i.e., sum of expected user utilities,
has been studied in [7, 8]. However, these works do not study the filter bubble problem and are
restricted either to only complementary [7] or only competing items [8]. Even in the case of only
competing items, welfare maximization is NP-hard to approximate within any constant factor [8].
Hence it is no surprise that in our case, for a reward which is a combination of competing and
complementary functions, the optimization problem is difficult. Specifically, the objective function
is neither monotone nor submodular, hence an approximation algorithm cannot be obtained by
leveraging these properties. In fact, we show that it remains non-monotone and non-submodular
even under several natural simplifying assumptions.

We therefore develop two instance-dependent approximation algorithms for the general problem.
Our first algorithm, SpreadGRD, has an approximation bound that is tight. As a result, using this
algorithm we can upper bound the optimal value of our objective which helps to empirically
compare the performance of all the algorithms (which include a heuristic) with the optimal. Our
second algorithm, SandwichGRD, leverages sandwich approximation [40] after bounding the non-
submodular objective function with submodular functions. However, none of the above algorithms
explicitly optimizes for the reward maximization objective. To that end, we design a non-trivial
heuristic – RewGRD using the reverse influence sampling (RIS) approach, which is extensively
used by the state-of-the-art IM algorithms [44, 51]. RewGRD owes its efficiency to the fact that it
directly extends the RIS approach for the net reward maximization problem.
In sum, we make the following contribution: (1) We introduce a model supporting both com-

petitive aspect of item adoption and complementary aspect of item exposure. Then we formally
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develop the FBRewMax problem to mitigate the filter bubble problem (§ 3). (2)We show that the
objective of FBRewMax is neither monotone nor submodular for the general case and even under
several natural simplifying assumptions. Thus, it is difficult to design a constant approximation
algorithm for our problem (§ 4). (3) Since it is difficult to get a constant approximation, we devise
two instance-dependent approximation algorithms for FBRewMax – SpreadGRD and SandwichGRD
(§ 5). SpreadGRD helps calibrate an upper bound of our objective using which the effectiveness of
other algorithms w.r.t. the optimal is measured empirically in § 6. (4) We also develop an effective
heuristic called RewGRD. RewGRD makes non-trivial extensions to RIS samples such that RIS
samples can be used for net reward maximization per FBRewMax (§ 5). (5) We conduct extensive
experiments on four real-world networks. Our experiments reveal that RewGRD outperforms four
state-of-the-art baselines on various experiment configurations (§ 6). We discuss related work in
§ 2 and summary and future work in § 7.

2 BACKGROUND & RELATEDWORK
In this section, we introduce the basic concepts of the classical influence maximization (IM) problem
and review related work.
Influence Maximization. A social network is represented as a directed graph 𝐺 = (𝑉 , 𝐸, 𝑝) with
users (nodes) 𝑉 and connections (edges) 𝐸, where function 𝑝 : 𝐸 → [0, 1] specifies the influence
probabilities between users. Influence propagates following a diffusion model stating from a seed
set 𝑆 ⊂ 𝑉 . Under a budget constraint 𝑘 , the influence maximization (IM) problem is to find a seed
set 𝑆 ⊂ 𝑉 with |𝑆 | ≤ 𝑘 such that the expected influence spread under the specified diffusion model
is maximized [35].

A set function 𝑓 : 2𝑉 → R is monotone if 𝑓 (𝑆) ≤ 𝑓 (𝑇 ) whenever 𝑆 ⊆ 𝑇 ⊆ 𝑉 ; it is submodular if
for any 𝑆 ⊆ 𝑇 ⊆ 𝑉 and any 𝑥 ∈ 𝑉 \𝑇 , 𝑓 (𝑆 ∪ {𝑥}) − 𝑓 (𝑆) ≥ 𝑓 (𝑇 ∪ {𝑥}) − 𝑓 (𝑇 ). Under the classical
diffusion models, IM is NP-hard and also it is #P-hard to compute the spread for a given 𝑆 [18, 19, 35],
but the spread function is monotone and submodular. Hence, using Monte Carlo (MC) simulations
for estimating the spread, a simple greedy algorithm delivers a (1 − 1/𝑒 − 𝜖)-approximation to
the optimal solution, for any 𝜖 > 0 [33–35]. The MC simulation, however is slow and shown to
be unscalable for real world large social networks [18]. Borgs et al. [15] proposed the concept
of Reverse Influence Sampling (RIS), that has contributed to a family of scalable state-of-the-art
approximation algorithms for IM [31, 37, 44, 50, 51].
Competitive IM has been studied extensively [12, 39, 61] mostly focusing on pure competition

between two or more items, from a follower perspective [39] or a host perspective [8]. In the
former, given seeds of some items, the goal is to choose seeds for the “follower" item so as to
either block the influence of the previous item(s) or maximize the spread of the follower item. In
the host perspective, the network host chooses seeds for multiple items synchronously. Recently,
complementary item propagation has been studied [7, 40]. [53] studies IM under dynamic personal
affinity for different items. None of the above works study or are directly applicable to filter bubbles
as they do not aim to maximize the co-exposure of opposing viewpoints.
Filter bubbles. When search and recommendation algorithms present personalized content to
users for improved accuracy or relevance, users tend to get exposed to a narrow world view, as
a result of which filter bubbles are formed [6, 46, 54]. They are exacerbated by echo chambers
wherein users only interact with like-minded individuals and get exposed to information only from
them [6, 25]. This leads to polarization in discourse [1, 4, 20, 24].

Mitigating filter bubbles and more generally polarization is important. The mitigation task raises
multifaceted research questions such as which users to target, what viewpoints to promote, or how
best to present opposing viewpoints to users [38]. Some works [5, 42, 55, 60] attempted to solve
the problem by building connections between users from groups of opposing viewpoints. These
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works use the opinion-formation model and assume that the underlying graph can be manipulated
by adding or removing edges.
In contrast, our work leverages the power of influence cascade using a propagation model, to

solve the filter bubble problem. A recent body of work [10, 23, 41, 58], which is most similar to our
work, aims to tackle the problem using an influence propagation setting; they aim for a balanced
exposure of conflicting opinions on an issue, for the maximum number of users in the network.
However, these works do not differentiate between exposure and adoption: in real life, a user being
exposed to opposing viewpoints is not guaranteed to adopt both viewpoints and certainly not to
share both of them on with her social peers. One significant aspect lacking in the above body of
works is the competition among the different opinions that are spreading. These works assume that
when exposed to conflicting viewpoints, a user will adopt and share all of them with their peers!
There are several studies on filter bubbles that have established that items containing opinion-
challenging information spread less than other items [25, 26, 56]. Our reward based propagation
model adequately captures the competition effect, by separating awareness from adoption. Further,
as pointed out in § 1, the objectives studied in the previous papers do not align well with mitigating
the filter bubbles problem. In our work, we address these concerns by using reward parameters
that provide a higher reward only for adopting items of the opposite polarity.

Fairness in IM has recently received significant attention [21, 27, 57]. These studies, where there
are no competing items, are orthogonal to filter bubbles.

In summary, to our knowledge, our study is the first to use the power of an influence propagation
model where both competition and complementarity are incorporated to accurately model the unique
requirements of the filter bubble mitigation problem.

3 RIC-FB MODEL FOR FILTER BUBBLE
In this section, we first present our propagation model, called reward driven independent cascade
model for the filter bubble problem, RIC-FB for short. Similar to prior works on filter bubbles
[23, 58], we consider two opposing opinions. Let a and b denote the two opposite opinions (items)
on a polarizing issue, being propagated through a network. We first describe the propagation model
and formally state the new problem that we study under the RIC-FB model; then we discuss our
design decisions in detail in § 3.3.

3.1 The RIC-FB Model
Independent Cascade (IC) is used extensively in the literature to model information adoption
and propagation [17, 51, 52]. IC bears a close resemblance with propagation models used in
marketing research [28, 29] where models similar to IC have been found to be useful to capture
the advertisement spread. Our model, RIC-FB, builds on IC by distinguishing between awareness
and adoption, where item adoption decision by users recognizes the competition between the
two propagating items. Specifically, we have a social network 𝐺 = (𝑉 , 𝐸, 𝑝), where for each edge
(𝑢, 𝑣) ∈ 𝐸, 𝑝𝑢𝑣 := 𝑝 (𝑢, 𝑣) denotes the influence probability of 𝑢 over 𝑣 . Each node maintains two
sets of items – an awareness set and an adoption set. The awareness set of a node is the set of items
it has been made aware of. Propagation or seeding populates the awareness set of a node. The node
then adopts a subset of its awareness set which constitutes its adoption set. A node’s awareness set
could be any subset of {a, b}. Only nodes adopting an item can propagate it to its peers.
Competition. Recall that items a and b are polarizing opinions and hence users adopting any one
of them may typically experience some resistance or hesitancy in adopting the second item. To
capture this, we use a competition parameter 0 ≤ ^ ≤ 1 associated with adopting a second item.
Specifically, a node certainly adopts the first item it is made aware of. Once it adopts a first item,
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which may be a or b, the probability that it adopts the second item is ^ , i.e., 𝑃𝑟 [a|∅] = 𝑃𝑟 [b|∅] = 1
and 𝑃𝑟 [a|b] = 𝑃𝑟 [b|a] = ^. In § 3.3 we discuss our design decisions and consequences of relaxing
them.
Reward.While there is competition between the two items a, b for adoption by a node, from the
perspective of solving the filter bubble problem, as noted in § 1, a solution that makes a node adopt
both items is preferable to one that makes the node adopt only one item. Our reward parameters
capture this complementary aspect – a node that adopts both items contributes a higher reward
toward the solution, than one adopting only one item. Further, the network owner, i.e., the host,
would like to maximize its revenue, which is driven by nodes adopting (one or more) items. Hence
a node adopting (any) one item contributes a positive reward, compared to a node adopting no item,
which contributes zero reward. Notice that this is orthogonal to the two items being competitive.
We stress that this is a necessary requirement for faithfully capturing the effect of polarization and
filter bubble. Specifically, the reward for adopting no items is R({}) = 0, for adopting one item
is R({𝑎}) = R({𝑏}) = 𝛿 , and for adopting both items is R({𝑎, 𝑏}) = 𝛿 + Δ, where Δ > 𝛿 > 0. We
will explain our rationale for choosing these reward parameter values in discussion on our design
choices in § 3.3.
Propagation. For an item 𝑖 ∈ {𝑎, 𝑏}, let 𝑆𝑖 denote the corresponding seed nodes of 𝑖 . In a social
network, filter bubbles may be formed because of existing campaigns, whereby groups of nodes
may adopt only one item. To make this concrete, we assume w.l.o.g. that the seed set of item 𝑎, 𝑆𝑎
is fixed. Given a budget 𝑘 , up to 𝑘 seeds of item 𝑏, 𝑆𝑏 , are to be selected.
The diffusion proceeds in discrete time steps. Let 𝑆 = (𝑆𝑎, 𝑆𝑏) be a given seed allocation where

𝑆𝑏 may possibly be empty. Let I𝑆 (𝑣, 𝑡) and A𝑆 (𝑣, 𝑡) denote the awareness and adoption sets of
node 𝑣 at time 𝑡 for the given seed allocation 𝑆 . At 𝑡 = 1, the seed nodes have their awareness sets
initialized according to 𝑆 as: I𝑆 (𝑣, 1) = {𝑖 | 𝑣 ∈ 𝑆𝑖 , 𝑖 ∈ {a, b}}, ∀𝑣 ∈ 𝑉 . Notice that awareness sets
of non-seed nodes are initially empty.
These seed nodes then adopt the items from the awareness set following the competition

parameter. If a seed node becomes aware of the two items simultaneously, then it breaks the tie
arbitrarily to decide which one of the two it adopts first. The propagation then unfolds recursively
for 𝑡 ≥ 2 in the following way.

Once a node 𝑢 adopts an item 𝑖 at time 𝑡 − 1, it makes one attempt to influence its out-neighbor
𝑣 , which succeeds w.p. 𝑝𝑢𝑣 . If it fails then the edge is permanently blocked. If it succeeds, then 𝑖 is
added to the awareness set of 𝑣 at time 𝑡 , if it’s not already present in that set. If 𝑣 has not adopted
any item yet, then 𝑣 adopts 𝑖 , (w.p. 1); if 𝑣 has already adopted an item 𝑗 ≠ 𝑖 , it adopts item 𝑖 w.p. ^ .
If a node 𝑢 has not adopted any item and is influenced by multiple in-neighbors at the same

time 𝑡 , then a random permutation 𝜋𝑢 of 𝑢’s in-neighbors is generated. Then 𝑢 adopts the item
(first) adopted by its first active in-neighbor in the permutation. There is no time delay between
becoming aware and adopting an item. That is, after becoming aware, a node makes its adoption
decision instantly. Adoption is progressive, i.e., once a node adopts an item, it cannot unadopt it
later. The propagation converges when there is no new adoption in the network.
Stochastic reward from adoption.Owing to the competition between items a and b, the expected
reward after a node becomes aware of both items is ^ (𝛿 +Δ) + (1−^)𝛿 = 𝛿 +^Δ. This follows from
the fact that 𝑃𝑟 [b|a] = 𝑃𝑟 [a|b] = ^.

3.2 Reward maximization to counter filter bubble
Given a social network𝐺 = (𝑉 , 𝐸, 𝑝) and a seed allocation 𝑆 , we consider an objective based on net
reward, which is the sum of expected rewards of itemsets adopted by all network nodes after the
propagation converges. Formally, E[R(A𝑆 (𝑢))] is the reward that the network (host) attains from
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a user𝑢 in expectation when the propagation ends, under a seed allocation 𝑆 . If the propagation and
adoptions are deterministic, then the reward is simply R(A𝑆 (𝑢)). The expected net reward for 𝑆 , is
𝜌 (𝑆) = ∑

𝑢∈𝑉 E[R(A𝑆 (𝑢))], where the expectation is over both the randomness of propagation
and adoption.
In this paper, we take the follower’s perspective on countering the filter bubble problem. Thus,

we assume the seeds of one item, say a, 𝑆a, are fixed. The campaign manager for item b approaches
the network host for selecting seeds for b so as to maximize the net reward. We next formally state
the problem we study.

Problem 1 (FBRewMax). Given 𝐺 = (𝑉 , 𝐸, 𝑝), competition parameter ^ , reward values 𝛿 and Δ, a
fixed seedset 𝑆𝑎 of item a, and a budget 𝑘 for item b, find the optimal seedset for item b:

𝑆∗
𝑏
= argmax𝑆𝑏 : |𝑆𝑏 | ≤𝑘 𝜌 (𝑆), where 𝑆 = (𝑆𝑎, 𝑆𝑏).

3.3 Design choices and Novelty
A key goal of a campaign for countering filter bubbles is to encourage more users to be exposed to
both items (opposite opinions). Our choice of Δ > 𝛿 reflects this, as the reward of adopting both
items is greater than the sum of rewards of adopting each item. Choosing zero reward for adopting
no items is natural; besides, it avoids the unnatural behavior of favoring strategies that can make
users adopt no items, unlike previous work on filter bubbles such as [23]. Also, users adopting
no items is incompatible with the fundamental objective of a network host which may want to
maximize user engagement via item adoptions. Previous work has motivated this by assuming
either social conscience or law enforcement may force a network owner to sacrifice revenue in
order to reduce polarization. By contrast, we propose a more realistic model whereby the host
can control the reward parameters 𝛿,Δ to balance their trade-off between revenue and reducing
polarization. In § 6, we report on experiments with varying values of the reward parameters 𝛿,Δ,
including the special case 𝛿 = 0, which gives no reward for single item (i.e., solo) adoption.
In our problem, we consider the follower perspective, analogously to competitive IM literature

[13, 39, 61]: given a fixed seedset for one item, the seedset of the second item is to be selected.
However, the goals are considerably different. Unlike in competitive IM, the goal of our counter
campaign is not to neutralize (or block) the first (i.e., “leader") campaign or even maximize adoption
of the second item. This follows from our choice of the reward function, which is more aligned
with exposing users to both items.

Lastly, our competition parameter captures the reluctance of users to adopt opposing viewpoints.
Such reluctance could stem from prior bias as well, possibly causing 𝑃𝑟 [𝑎 | ∅] < 1 (or 𝑃𝑟 [𝑏 | ∅] < 1).
If 𝑃𝑟 [𝑎 | ∅] = 𝑃𝑟 [𝑏 | ∅] < 1, we can create an equivalent model by adding shadow nodes and
turning 𝑃𝑟 [𝑎 | ∅] = 𝑃𝑟 [𝑏 | ∅] into edge probabilities; our algorithms and approximation results
continue to hold. Under the more general case when 𝑃𝑟 [𝑎 | ∅] ≠ 𝑃𝑟 [𝑏 | ∅] or 𝑃𝑟 [𝑎 | 𝑏] ≠ 𝑃𝑟 [𝑏 | 𝑎],
the approximation guarantees of our algorithms becomes worse. Proof for this general case can be
found in our full report here.
Under an even more general case, where the parameters are local, i.e., are user-dependent, if

local parameters can be upper and lower bounded by some global parameters, we can use these
global bounds and the sandwich approximation to achieve an approximation guarantee. However,
directly using the local parameters it is difficult to achieve an approximation guarantee. A similar
difficulty is also noted in earlier works such as [7, 8]. Our algorithms, however, do apply even to
this general case, albeit without the guarantees.
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3.4 Practicality of RIC-FB
As discussed before, RIC-FB extends the classic IC model used extensively in IM literature to model
influence propagation [17, 51]. IC uses edge probability 𝑝𝑢𝑣 between node pair 𝑢 and 𝑣 to model
how influence propagates from 𝑢 to 𝑣 . There is a line of research on learning these probabilities
from real propagation cascades [9, 30], which is orthogonal to the IM problem. We experimentally
study RIC-FB using learned probabilities in §6.5.
One simplifying assumption that the classic IC model makes is that a node influenced with

an item necessarily adopts the item, while influence and adoption are distinguished in RIC-FB.
In practice, influence and adoption can be measured as follows. Notice that between end users,
campaign advertisers, and the network host, the host is the party most interested in filter bubble
mitigation. Whenever a user 𝑢 clicks (or likes) a post related to an item, the host counts that as 𝑢
being influenced by the item. Whenever 𝑢 sends a post about item 𝑎 or replies to such a post, then
the host treats that as 𝑢 adopting item 𝑎 (and starting to try to influence her friends in the network).
Similar to earlier works [8], the parameter ^ can be learned using works on utility choice theory
[11]. The two additional parameters 𝛿 and Δ are not learned but are set by the network host as
needed to control the trade-off between revenue and filter bubble mitigation.
IC-like models have been found to be useful in several real world problems ranging from gang

violence [49], to drug promotions [32], and to social good [59], which in turn has recently motivated
researchers to apply similar models to solve the filter bubble problem [23, 41, 58]. By combining
the competition and the reward aspects with the propagation, RIC-FB makes IC more realistic in
the application context of the filter bubble mitigation problem.

3.5 An equivalent possible world model
For our analysis later, it will be useful to have a possible world interpretation of the RIC-FB
propagation model.
An instance of FBRewMax is a pair ⟨𝐺,𝑀⟩, where 𝐺 = (𝑉 , 𝐸, 𝑝), and𝑀 = (^, 𝛿,Δ) denotes the

set of model parameters.
A possible world 𝑤 = (𝑤1,𝑤2), consists of an edge possible world (edge world)𝑤1, and an adoption

possible world (adoption world)𝑤2. Here,𝑤1 is obtained by sampling a deterministic graph from
the distribution associated with 𝐺 , where each edge (𝑢, 𝑣) ∈ 𝐸 is sampled with an independent
probability of 𝑝𝑢𝑣 ; 𝑤2 is obtained by (i) choosing, for each node 𝑣 ∈ 𝑉 , a random permutation
𝑜𝑣 over its in-neighbors and (ii) sampling a value 𝑡𝑣 ∈ [0, 1]. If 𝑣 is influenced by more than one
in-neighbor at the same timestep 𝑡 , it selects an in-neighbor 𝑢 following the order 𝑜𝑣 and adopts
the item (first) adopted by 𝑢 as the first item. Node 𝑣 adopts the second item after becoming aware
of it, only if 𝑡𝑣 ≤ ^.
Note that propagation and adoption in a given possible world𝑤 is fully deterministic. The net

reward of a given seed allocation 𝑆 in𝑤 is 𝜌𝑤 (𝑆) :=
∑

𝑣∈𝑉 R(A𝑆
𝑤 (𝑣)), whereA𝑆

𝑤 (𝑣) is the adoption
set of 𝑣 at the end of the propagation in world 𝑤 . The expected net reward of an allocation 𝑆 is
𝜌 (𝑆) := E𝑤 [𝜌𝑤 (𝑆)] = E𝑤1 [E𝑤2 [𝜌𝑤 (𝑆)]] = E𝑤2 [E𝑤1 [𝜌𝑤 (𝑆)]].

Further, given a seed set 𝑆 ′ (for any item) and an edge world𝑤 , we use 𝜙𝑤 (𝑆 ′) to denote the set
of nodes reachable from 𝑆 ′ in𝑤 . Note that 𝜙𝑤 (𝑆 ′) does not depend on the adoption world sampled.

4 PROPERTIES OF RIC-FB
In this section, we show not only that FBRewMax is intractable but several natural attempts at
designing approximation algorithms are beset with difficulties.

Proposition 1. FBRewMax in the RIC-FB model is NP-hard.

Proof. IM in the IC model is a special case of FBRewMax. □
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Given this, we examine whether net reward satisfies monotonicity or submodularity.

Theorem 1. Given a fixed seedset 𝑆𝑎 for item a, the net reward is neither monotone nor submodular,
with respect to seedset 𝑆𝑏 for item b under the RIC-FB model.

Proof. We show a counterexample for both properties. Consider the network shown in Figure 1a.
The edge probabilities are all 1.
Monotonicity: Consider the fixed 𝑎 seedset 𝑆𝑎 = {𝑣1}. Let 𝑆1𝑏 = {𝑣4, 𝑣5} and 𝑆2𝑏 = {𝑣3, 𝑣4, 𝑣5}. Clearly
𝑆1
𝑏
⊂ 𝑆2

𝑏
. Let 𝑆𝑖 = (𝑆𝑎, 𝑆𝑖𝑏), for 𝑖 ∈ {a, b}. Under 𝑆1, 𝑣1, 𝑣2 and 𝑣3 adopt 𝑎 w.p. 1; both 𝑣4 and 𝑣5 adopt

𝑏 w.p. 1, and later when 𝑣3 adopts a, 𝑣4 and 𝑣5 adopt a w.p. ^ . Thus 𝜌 (𝑆1) = 3𝛿 + 2(𝛿 +^Δ). However
under 𝑆2, 𝑣1 and 𝑣2 adopt aw.p. 1; 𝑣3 adopts 𝑏 w.p. 1 and then 𝑎 w.p. ^; 𝑣4 and 𝑣5 adopt 𝑏 w.p. 1, and 𝑎
w.p.^2 ( because they can adopt 𝑎 only after 𝑣3 also adopts 𝑎). Thus 𝜌 (𝑆2) = 2𝛿+(𝛿+^Δ)+2(𝛿+^2Δ);
𝜌 (𝑆1) − 𝜌 (𝑆2) = ^Δ(1 − 2^) > 0, for any ^ < 1

2 which violates monotonicity.
Submodularity: Again consider the fixed 𝑎 seedset 𝑆𝑎 = {𝑣1}. Let 𝑆1𝑏 = {𝑣4, 𝑣5} and 𝑆2𝑏 = {𝑣2, 𝑣4, 𝑣5}.
Clearly 𝑆1

𝑏
⊂ 𝑆2

𝑏
. Let 𝑥 = 𝑣3 ∉ 𝑆2

𝑏
be an additional 𝑏 seed node. Note that adding 𝑥 to 𝑆2 does not

change the adoption of any node. Therefore, 𝜌 (𝑥 | 𝑆2) = 0. Whereas, from the counterexample to
monotonicity above, we have 𝜌 (𝑥 | 𝑆1) < 0 = 𝜌 (𝑥 | 𝑆2), (when ^ < 1

2 ). This breaks submodularity.
□

(a) (b)

(c)

Fig. 1. Example networks showing (a) Net reward is non-monotone and non-submodular (b) RIC-FB is worse
than RIC-FB-seq and (c) RIC-FB-seq is worse than RIC-FB.

The lack of these properties makes FBRewMax difficult to approximate. In our attempts to
alleviate this, we explore a restricted propagation model and a surrogate objective next.
A restricted model. We examine the following question. Can we identify a restriction to the
original RIC-FB model which is well behaved and admits a net reward which upper or lower bounds
that under RIC-FB? If so, it would help design an approximation algorithm. One such restriction is
obtained by assuming that the propagation of one item, say b, is not started until propagation of the
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other item, a, completes. We call this restricted model RIC-FB-seq. We next show that monotonicity
and submodularity hold for RIC-FB-seq.

Theorem 2. Given a fixed 𝑎 seedset 𝑆𝑎 , the net reward is monotone and submodular, with respect to
𝑏 seedset 𝑆𝑏 under the propagation model RIC-FB-seq.

Proof.We show that monotonicity and submodularity hold for any arbitrary but fixed possible
world𝑤 . Recall in𝑤 both edges and adoption are deterministic.
Monotonicity: Consider any fixed 𝑎 seedset 𝑆𝑎 . Let 𝑆1𝑏 and 𝑆2

𝑏
be two 𝑏 seedsets where 𝑆1

𝑏
⊂ 𝑆2

𝑏
. We

show that for any node 𝑣 , A𝑆1
𝑤 (𝑣) ⊆ A𝑆2

𝑤 (𝑣), from which it follows that 𝜌𝑤 (𝑆1) ≤ 𝜌𝑤 (𝑆2).
If 𝑎 ∈ A𝑆1

𝑤 (𝑣), then 𝑣 ∈ 𝜙𝑤 (𝑆𝑎), hence 𝑎 ∈ A𝑆2
𝑤 (𝑣) because 𝑆𝑎 is fixed and RIC-FB-seq lets 𝑎

propagate first, so propagation of 𝑎 in RIC-FB-seq is monotone. If 𝑏 ∈ A𝑆1
𝑤 (𝑣), then 𝑣 ∈ 𝜙𝑤 (𝑆1𝑏). By

monotonicity of spread, we have 𝑣 ∈ 𝜙𝑤 (𝑆2𝑏). Also if the same node 𝑣 adopted 𝑎 under allocation
𝑆1, that implies 𝑡𝑣 ≤ ^ in𝑤 . Since𝑤 remains fixed, 𝑏 ∈ A𝑆2

𝑤 (𝑣) must be true as well. Monotonicity
of 𝜌𝑤 (.) follows from this.
Submodularity: Let the fixed 𝑎 seedset be 𝑆𝑎 and let 𝑆1

𝑏
and 𝑆2

𝑏
be two 𝑏 seedsets where 𝑆1

𝑏
⊂ 𝑆2

𝑏
. Let

𝑥 = 𝑢 ∉ 𝑆2
𝑏
be an additional 𝑏 seed. Consider any node 𝑣 ∈ 𝜙𝑤 (𝑥 | 𝑆2

𝑏
). By submodularity of spread,

we have 𝑣 ∈ 𝜙𝑤 (𝑥 | 𝑆1
𝑏
). Therefore, if 𝑣 adopts only 𝑏 under {𝑥} ∪ 𝑆2, 𝑣 will adopt 𝑏 under {𝑥} ∪ 𝑆1

as well. If 𝑣 adopted 𝑏 as a second item after adopting 𝑎 under 𝑆2, then since 𝑆𝑎 is fixed, 𝑣 would
adopt 𝑎 under 𝑆1, and also since 𝑡𝑣 ≤ ^, 𝑣 will adopt 𝑏 as well under 𝑆2. Submodularity of 𝜌𝑤 (.)
follows from this. □

The net reward is monotone and submodular under RIC-FB-seq, hence a simple greedy algorithm
achieves (1 − 1

𝑒
)-approximation under this model. While this is good news, as we show below,

surprisingly, net reward under RIC-FB-seq is neither an upper nor a lower bound for that under
RIC-FB. Thus, unfortunately this does not translate to an approximation guarantee for net reward
under RIC-FB.

Lemma 1. Given a seed allocation 𝑆 , 𝜌 (𝑆) under RIC-FB can be arbitrarily worse than 𝜌 (𝑆) under
RIC-FB-seq and vice versa.

Proof.
RIC-FB arbitrarily worse than RIC-FB-seq: Consider the network shown in Figure 1b, where all edge
probabilities are 1. Let 𝑆𝑎 = {𝑣𝑎} and 𝑆𝑏 = {𝑣𝑏}.

Under RIC-FB-seq, 𝑎 propagates first. Therefore, all𝑚 + 1 nodes 𝑣𝑎, 𝑣1, ..., 𝑣𝑚 adopt 𝑎. Later, when
propagation of 𝑏 starts from 𝑣𝑏 , 𝑣1, ..., 𝑣𝑚 adopt it with probability ^. Therefore the net reward
2𝛿 +𝑚(𝛿 + ^Δ).

Under RIC-FB, 𝑎 and 𝑏 start propagating at the same time. They arrive only at 𝑣1 at the same time,
but for all the other nodes 𝑣2, ..., 𝑣𝑚 , 𝑏 arrives first. The net reward in this case 2𝛿 +∑𝑚

𝑖=1 (𝛿 + ^𝑖Δ).
As𝑚 increases the net reward under RIC-FB becomes arbitrarily worse than that of RIC-FB-seq.
RIC-FB-seq arbitrarily worse than RIC-FB: Consider the network in Figure 1c where all edge proba-
bilities are 1. Again, 𝑆𝑎 = {𝑣𝑎} and 𝑆𝑏 = {𝑣𝑏}.
Under RIC-FB-seq when 𝑎 propagates first, all the nodes in the network, including 𝑣𝑏 , adopt 𝑎.

Later when propagation of 𝑏 begins, at node 𝑣𝑏 , the expected reward is 𝛿 + ^Δ. Every other node
earns an expected reward of 𝛿 + ^2Δ. Therefore the net reward is (𝛿 + ^Δ) + (𝑚 + 1) (𝛿 + ^2Δ).
Under RIC-FB at time 𝑡 = 1 𝑣𝑎 adopts 𝑎 and 𝑣𝑏 adopts 𝑏, at 𝑡 = 1 all nodes experience first level

competition. Therefore the expected reward is (𝑚 + 2) (𝛿 + ^Δ). Thus for a large𝑚 and small ^ the
net reward is arbitrarily better than that under RIC-FB-seq. □

A Surrogate objective. Next, we explore whether we can bound the net reward under the RIC-FB
model with a well-behaved surrogate objective. Consider an arbitrary but fixed edge possible world,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 175. Publication date: June 2023.



RIC-FB 175:11

𝑤1. The maximum expected reward any node can achieve in𝑤1 is 𝛿 + ^Δ. Intuitively, a node 𝑣 can
achieve this reward provided 𝑣 adopts an item (say 𝑎) first and there is a path from a seed node of
the other item (say 𝑏) to 𝑣 on which every node except 𝑣 adopts the other item (i.e., 𝑏) first. Thus, at
node 𝑣 , there is a first level competition between 𝑎 and 𝑏. The surrogate objective aims to maximize
the number of such first level competition (FLC) nodes. Notice that given a seed allocation 𝑆 , the
FLC nodes are reached by both the items, and also every FLC node adopts the second item with
a probability of at least ^. Let𝜓𝑤1 (𝑆) denote the set of FLC nodes in𝑤1. Our surrogate objective
aims to maximize the size of the set 𝐸𝑤 [|𝜓𝑤 (𝑆) |]. Since the expected reward at a FLC node is the
maximum possible under the RIC-FB model, maximizing 𝐸𝑤 [|𝜓𝑤 (𝑆) |] indeed helps maximize the
net reward. In fact, it can be shown that for any allocation 𝑆 , the objective 𝐸𝑤 [|𝜓𝑤 (𝑆) |] · (𝛿 + ^Δ)
lower bounds our original objective 𝜌 (𝑆). However, as it turns out, 𝐸𝑤 [|𝜓 (𝑆) |] is not monotone
nor submodular.

Theorem 3. Given a fixed 𝑎 seedset 𝑆𝑎 , the expected number of FLC nodes, 𝐸𝑤 [|𝜓𝑤 (𝑆) |], is neither
monotone nor submodular with respect to the 𝑏 seedset 𝑆𝑏 under the propagation model RIC-FB.

Proof.
Monotonicity: Revisit the graph in Figure 1a, where all edge probabilities are 1. Thus, the only
edge possible world 𝑤1 is the entire graph. Let 𝑆𝑎 = {𝑣1}, 𝑆1𝑏 = {𝑣4, 𝑣5} and 𝑆2

𝑏
= {𝑣3, 𝑣4, 𝑣5};

𝑆1
𝑏
⊂ 𝑆2

𝑏
. Under allocation 𝑆1, both 𝑣4 and 𝑣5 are FLC nodes. Therefore𝜓𝑤1 (𝑆1) = {𝑣4, 𝑣5}. Under 𝑆2,

𝜓𝑤1 (𝑆2) = {𝑣3}. Since |𝜓𝑤1 (𝑆2) | < |𝜓𝑤1 (𝑆1) | and𝑤1 is the only edge possible world, it follows that
monotonicity does not hold for 𝐸𝑤 [|𝜓𝑤 (𝑆) |].
Submodularity: Let 𝑆𝑎 = {𝑣1}, 𝑆1𝑏 = {𝑣4, 𝑣5}, 𝑆2𝑏 = {𝑣2, 𝑣4, 𝑣5} and 𝑥 = 𝑣3 ∉ 𝑆2

𝑏
be the additional

𝑏 seed. 𝜓𝑤1 (𝑆2) = 𝜓𝑤1 ({𝑥} ∪ 𝑆2) = {𝑣2}. 𝜓𝑤1 (𝑆1) = {𝑣4, 𝑣5}, but 𝜓𝑤1 ({𝑥} ∪ 𝑆1) = {𝑣3}. Hence
|𝜓𝑤1 ({𝑥} ∪ 𝑆2) | − |𝜓𝑤1 (𝑆2) | = 0 > |𝜓𝑤1 ({𝑥} ∪ 𝑆1) | − |𝜓𝑤1 (𝑆1) | = −1. Since 𝑤1 is the only edge
possible world, it follows that submodularity does not hold for 𝐸𝑤 [|𝜓𝑤 (𝑆) |]. □

In this section, we explored ways of bounding the original objective with well-behaved objectives
in two ways: (i) using a restricted propagation model and (ii) using a simpler objective. They
both fail, but for different reasons. Approach (i) fails since the resulting objective funtion, while
monotone and submodular, does not bound our desired objective; approach (ii) while being a lower
bound for our desired objective, is neither monotone nor submodular. This attests to the inherent
difficulty of solving FBRewMax.

5 ALGORITHMS
In this section, we develop several algorithms having non-constant approximation guarantees as
well as an efficient heuristic that is later shown to have good empirical performance (§ 6). Our first
algorithm SpreadGRD ignores the reward objective and chooses seeds based on spread, and yet
satisfies an approximation guarantee. The second algorithm SandwichGRD leverages the sandwich
approximation proposed in [40]. It also produces a larger net reward than SpreadGRD. Our last
algorithm RewGRD extends the state-of-the-art Reverse Influence Set based method for our reward
maximization objective. It is not only efficient but it is also found to produce the highest net reward
in all our experiments (§ 6).

5.1 SpreadGRD Algorithm
For a given seed set 𝑆 ′, let 𝜎 (𝑆 ′) denote the expected spread, i.e., 𝜎 (𝑆 ′) = E𝑤 [|𝜙𝑤 (𝑆 ′) |], where the
expectation is taken over the set of all possible worlds. Given graph 𝐺 , fixed 𝑎 seeds 𝑆𝑎 , budget of
item 𝑏 as 𝑘 , accuracy parameter 𝜖 , tolerance parameter ℓ as inputs, SpreadGRD selects 𝑆𝑏 such that
𝜎 (𝑆𝑏 |𝑆𝑎) ≥ (1 − 1

𝑒
− 𝜖)𝜎 (𝑆∗

𝑏
|𝑆𝑎) w.p. at least 1 − 1

|𝑉 |ℓ , where 𝑆
∗
𝑏
is the optimal 𝑏 seedset of size 𝑘 ,
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Fig. 2. Node clusters

and 𝜎 (𝑆𝑏 |𝑆𝑎) = 𝜎 (𝑆𝑎 ∪ 𝑆𝑏) −𝜎 (𝑆𝑎). To achieve this, SpreadGRD uses a marginal sampling proposed
in [8], which runs in time 𝑂 (𝑘𝑎 + 𝑘 + ℓ) (𝑛 +𝑚) log 𝑛 · 𝜖−2), where |𝑆𝑎 | = 𝑘𝑎 .
Even though SpreadGRD ignores reward objective and focuses only on maximizing marginal

spread, it still has a non-constant approximation guarantee. We show that the bound is tight, and
this bound enables us to compute the upper bound of the optimal objective. Therefore we can
compare the performance of our other algorithms and the baselines in regards to the optimal value
that can be achieved.

Before proving the guarantee of SpreadGRD, we first show a bound on the expected net reward
for any arbitrary seed allocation 𝑆 .

Lemma 2. Given seed allocation 𝑆 = 𝑆𝑎, 𝑆𝑏 , its expected net reward has the following bound,
𝛿𝜎 (𝑆𝑎 ∪ 𝑆𝑏) ≤ 𝜌 (𝑆) ≤ (𝛿 + ^Δ)𝜎 (𝑆𝑎 ∪ 𝑆𝑏)

Proof. Consider an arbitrary but fixed edge possible world𝑤 . The minimum expected reward for
any node 𝑣 ∈ 𝜙𝑤 (𝑆𝑎 ∪ 𝑆𝑏) is 𝛿 , because 𝑣 must adopt at least one item. Thus we have,

𝜌𝑤 (𝑆) =
∑︁
𝑣∈𝑉

R(A𝑆
𝑤 (𝑣)) =

∑︁
𝑣∈𝜙𝑤 (𝑆𝑎∪𝑆𝑏 )

R(A𝑆
𝑤 (𝑣)) ≥ 𝛿𝜎𝑤 (𝑆𝑎 ∪ 𝑆𝑏)

The upper bound can be argued in the same way. Further, since it holds for every possible𝑤 , the
lemma follows. □
We now show the following guarantee for SpreadGRD.

Theorem 4. Let 𝑆𝑏 be the seedset returned by SpreadGRD. Given fixed 𝑆𝑎 and 𝜖, ℓ > 0, we have,
𝜌 (𝑆𝑎, 𝑆𝑏) ≥ 𝛿

𝛿+^Δ (1 −
1
𝑒
− 𝜖)𝜌 (𝑆𝑎, 𝑆∗𝑏) + ( 1

𝑒
+ 𝜖)𝜌 (𝑆𝑎, ∅), w.p. at least 1 − 1

|𝑉 |ℓ , where 𝑆
∗
𝑏
is the optimal

𝑏 seedset of size 𝑘 .

Proof. Using the upper bound of Lemma 2, for the optimal allocation 𝑆∗
𝑏
, we know that,

𝜌 (𝑆𝑎, 𝑆∗𝑏) ≤ (𝛿 + ^Δ)𝜎 (𝑆𝑎 ∪ 𝑆∗
𝑏
)

𝜌 (𝑆∗
𝑏
| 𝑆𝑎) + 𝜌 (𝑆𝑎, , ∅) ≤ (𝛿 + ^Δ) (𝜎 (𝑆∗

𝑏
| 𝑆𝑎) + 𝜎 (𝑆𝑎))
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where 𝜌 (𝑆∗
𝑏
| 𝑆𝑎) = 𝜌 (𝑆𝑎, 𝑆∗𝑏) − 𝜌 (𝑆𝑎, ∅). By rearranging the above we get,

𝜎 (𝑆∗
𝑏
| 𝑆𝑎) ≥

𝜌 (𝑆∗
𝑏
| 𝑆𝑎) + 𝜌 (𝑆𝑎, ∅)
𝛿 + ^Δ − 𝜎 (𝑆𝑎) (1)

Now for allocation 𝑆𝑏 we have,

𝜌 (𝑆𝑎, 𝑆𝑏) = 𝜌 (𝑆𝑏 | 𝑆𝑎) + 𝜌 (𝑆𝑎, ∅)

≥ 𝛿

𝛿 + ^Δ (1 − 1
𝑒
− 𝜖)𝜌 (𝑆𝑎, 𝑆∗𝑏) + ( 1

𝑒
+ 𝜖)𝜌 (𝑆𝑎, ∅)

The entire derivation can be found in our full report here. The theorem follows. □

Lemma 3. Bound of Theorem 4 is a tight bound.

Proof. Consider a network of nodes shown in Figure 2. Each 𝑣𝑖 and𝑤𝑖 node is directly connected
to all the nodes of row 𝑖 and there are 𝑝𝑖 number of nodes in row 𝑖 . Let 𝑝 =

∑
𝑖∈[𝑘 ] 𝑝𝑖 . Likewise,

each 𝑢 𝑗 node is directly connected to all the nodes of column 𝑗 and there are 𝑞 𝑗 number of nodes in
row 𝑗 (these nodes are different from row nodes). Let 𝑞 =

∑
𝑗∈[𝑘 ] 𝑞 𝑗 . Clearly,

𝑞

𝑝
= 1 − 1

𝑒
.

Now let 𝑘𝑎 = 𝑘 , 𝑆𝑎 = {𝑣1, ..., 𝑣𝑘 }. Therefore 𝜌 (𝑆𝑎) = 𝑝𝛿 . Also let 𝑘𝑏 = 𝑘 . Therefore 𝑆∗
𝑏

=

{𝑤1, ...,𝑤𝑘 }, then 𝜌 (𝑆𝑎 ∪ 𝑆∗
𝑏
) = 𝑝 (𝛿 + ^Δ).

SpreadGRD selects {𝑢1, .., 𝑢𝑘 } as the 𝑏 seeds. The welfare in this case,

𝜌 (𝑆𝑎, 𝑆𝑏) = 𝛿 (𝑝 + 𝑞) = 𝑝 (1 − 1
𝑒
)𝛿 + 𝑝𝛿

=
𝛿

𝛿 + ^Δ (1 − 1
𝑒
)𝑝 (𝛿 + ^Δ) + 𝑝𝛿

=
𝛿

𝛿 + ^Δ (1 − 1
𝑒
)𝜌 (𝑆𝑎, 𝑆∗𝑏) + 𝑜 (1) (

1
𝑒
)𝜌 (𝑆𝑎)

Hence the bound is tight. □

5.2 Sandwich Approximation Algorithm
The sandwich approximation (SA) was proposed in [40] to provide a data-dependent approx-
imation guarantee for non-submodular maximization under a cardinality constraint. Given a
non-submodular objective function 𝑓 : 2𝑉 → R≥0, let 𝑓𝑙 and 𝑓𝑢 be monotone submodular functions
on 2𝑉 such that, 𝑓𝑙 (𝐼 ) ≤ 𝑓 (𝐼 ) ≤ 𝑓𝑢 (𝐼 ), ∀𝐼 ⊆ 𝑉 . Then run the greedy algorithm on 𝑓𝑙 , 𝑓 , and 𝑓𝑢 and
let 𝑆𝑙 , 𝑆 , and 𝑆𝑢 be the corresponding greedy solutions. Set 𝑆𝑠𝑎𝑛𝑑 = argmax𝑇 ∈{𝑆𝑙 ,𝑆,𝑆𝑢 } 𝑓 (𝑇 ), then we
have:
𝑓 (𝑆𝑠𝑎𝑛𝑑 ) ≥ 𝑚𝑎𝑥{ 𝑓 (𝑆𝑢 )

𝑓𝑢 (𝑆𝑢 ) ,
𝑓𝑙 (𝑆∗ )
𝑓 (𝑆∗ ) }(1 −

1
𝑒
) 𝑓 (𝑆∗), where 𝑆∗ is the optimal solution that maximizes 𝑓 .

The above approximation ratio improves for tighter 𝑓𝑙 and 𝑓𝑢 . Even if we have just an upper bound,
SA can still be leveraged. We thus seek a tight upper bound for our objective 𝜌 .

5.2.1 Establishing upper bound. We slightly tweak our propagation model, solely for deriving an
upper bound. Recall that, according to our original model, RIC-FB, if a node 𝑢 has adopted item,
say 𝑎 first, and if it is influenced by 𝑏 later, then it does not adopt 𝑏 w.p. (1 − ^). When 𝑢 does not
adopt an item, in RIC-FB, it blocks the propagation by not propagating the item any further. In
the tweaked model, called RIC-Tattler, a node 𝑢 propagates all the items it is influenced by, even
if 𝑢 does not adopt all. We keep the reward function unchanged. Thus if both 𝑎 and 𝑏 are in the
awareness set of a node 𝑢 and 𝑢 adopts one item, the reward at 𝑢 is 𝛿 , but 𝑢 propagates both the
items.
We use 𝜌𝑇 (·) to denote the objective under RIC-Tattler. We now show that 𝜌𝑇 (·) is monotone

and submodular under RIC-Tattler. Towards that, we first prove the following lemma.
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Lemma 4. Given a possible world𝑤 , 𝑎 seed nodes 𝑆𝑎 and 𝑏 seed nodes 𝑆𝑏 , every node that is reachable
from a seed node, is influenced by the corresponding item.

ProofWe show it by induction on the hop count 𝑡 from seed nodes. As a base case, when 𝑡 = 0, the
claim holds. Let this be true for a node 𝑢 which is 𝑡 hops away from a seed node. An out-neighbor
of 𝑢, node 𝑣 , will also be influenced via 𝑢 irrespective of whether 𝑣 adopts the item. Hence for the
node 𝑣 that is 𝑡 + 1 hops away, the claim holds. □

Lemma 5. [Monotonicity] Given a fixed 𝑎 seedset 𝑆𝑎 , 𝜌 (𝑆) is monotone in 𝑆𝑏 , i.e., for 𝑆1𝑏 and 𝑆2
𝑏
,

where 𝑆1
𝑏
⊆ 𝑆2

𝑏
, 𝜌 (𝑆1) ≤ 𝜌 (𝑆2), where 𝑆𝑖 = (𝑆𝑎, 𝑆𝑖𝑏) for 𝑖 ∈ {1, 2}.

Proof We show that the claim holds for any arbitrary but fixed edge possible world𝑤 . Note that if
a node is influenced by one item only, then the expected reward of that node is 𝛿 , whereas if it is
influenced by both the items then the expected reward is (^Δ + 𝛿) > 𝛿 .

Let 𝜙𝑤 (𝑆𝑎) be the set of nodes reached by 𝑎 when the seed nodeset is 𝑆𝑎 . From Lemma 4, 𝜙𝑤 (𝑆𝑎)
remains the same, when the allocation is changed to 𝑆2. Also, 𝜙𝑤 (𝑆1𝑏) ⊆ 𝜙𝑤 (𝑆2𝑏), from monotonicity
of spread. Consequently, 𝜙𝑤 (𝑆𝑎) ∩ 𝜙𝑤 (𝑆1𝑏) ⊆ 𝜙𝑤 (𝑆𝑎) ∩ 𝜙𝑤 (𝑆2𝑏).

Therefore, if a node is influenced by both the items under 𝑆1, the node will be influenced by two
items under 𝑆2 as well. Further, as a direct consequence of Lemma 4, if a node is influenced by one
item under 𝑆1, it will be influenced by at least one item under 𝑆2. Hence 𝜌 (𝑆) is monotone. □

Lemma 6. [Submodularity] Given a fixed 𝑎 seedset 𝑆𝑎 , 𝜌 (𝑆) is submodular in 𝑆𝑏 , i.e., for 𝑆1𝑏 and 𝑆2
𝑏
,

where 𝑆1
𝑏
⊆ 𝑆2

𝑏
, and 𝑥 = 𝑣 ∉ 𝑆2

𝑏
, 𝜌 (𝑥 | 𝑆2) ≤ 𝜌 (𝑥 | 𝑆1), where 𝑆𝑖 = (𝑆𝑎, 𝑆𝑖𝑏), for 𝑖 ∈ {1, 2}.

Proof. We show that the claim holds for any arbitrary but fixed edge possible world𝑤 . Consider
a node 𝑣 ∈ 𝜙𝑤 (𝑥 | 𝑆2

𝑏
). Using monotonicity of reachability, 𝑣 ∈ 𝜙𝑤 (𝑥 | 𝑆1

𝑏
) must be true. Further

since 𝑆𝑎 is fixed, if 𝑣 ∈ 𝜙𝑤 (𝑥 | 𝑆𝑎), it will be so under both 𝑆1 and 𝑆2. Therefore for any 𝑣 which is
in the reachable node set of 𝑥 | 𝑆2

𝑏
, its expected reward under 𝑥 | 𝑆1 is at least that of under 𝑥 | 𝑆2.

Hence submodularity holds. □
Therefore using a greedy algorithm we get 1 − 1

𝑒
approximation under RIC-Tattler.

We now show that the net reward under the RIC-Tattler model is an upper bound on the net
reward produced by our model, RIC-FB.

Lemma 7. Given seed allocation 𝑆 , 𝜌𝑇 (𝑆) ≥ 𝜌 (𝑆).
Proof.We show this holds in any arbitrary edge possible world𝑤 . In RIC-FB model, if a node 𝑣
in𝑤 has expected reward greater than 𝛿 , then 𝑣 definitely is reachable from 𝑆𝑎 and 𝑆𝑏 . Therefore
under RIC-Tattler model, 𝑣 will have a expected reward of 𝛿 + ^Δ.

Alternatively if 𝑣 has expected reward 𝛿 in RIC-FB, then 𝑣 is reachable from at least one node of
𝑆𝑎 ∪ 𝑆𝑏 . Therefore under the RIC-Tattler, 𝑣 will have a expected reward of at least 𝛿 .

Since this is true for every node 𝑣 in𝑤 , the claim follows. □
Let 𝑆𝑇 and 𝑆𝐺 be the greedy solutions on 𝜌𝑇 and 𝜌 respectively and 𝑆 = argmax𝑇 ∈{𝑆𝑇 ,𝑆𝐺 } 𝜌 (𝑇 ).

Then from SA we get,

𝜌 (𝑆) ≥ 𝜌 (𝑆𝑇 )
𝜌𝑇 (𝑆𝑇 )

(1 − 1
𝑒
)𝜌 (𝑆∗)

where 𝑆∗ is the optimal set of 𝑏 seeds for 𝜌 (·).

5.3 RewGRD
Our previous algorithms, although they have approximation guarantees w.r.t. their own objectives,
do not attempt to maximize our reward objective directly. Since maximizing expected reward is
difficult to approximate, in this section, we propose a non-trivial heuristic, called RewGRD (Net
Reward Greedy) to that effect.
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RewGRD uses RR-sets, which are used in all state-of-the-art IM algorithms. However, our reward
based objective poses some unique challenges as compared to traditional spread based objectives.
Further, the stochastic competition parameter between items requires some additional steps in the
sampling process. To address this, we modify the standard RR set construction process and develop
an efficient node weighing technique that helps us estimate the marginal reward of a potential new
seed node.

In what follows, we first formally describe the new RR set construction process. We then present
an efficient recursive method to compute node weights of a RR set. Then we present RewGRD,
which uses node weights of RR sets to greedily select seed nodes.

RR set construction In classical IM, RR sets are sampled to compute an unbiased estimate of
the spread. Since propagation is deterministic in a sampled RR set, any node in the RR set, when
selected as seed, certainly influences the root node. Thus, after sampling enough number of RR
sets, in classical IM, nodes are greedily selected so as to influence the most number of root nodes.
In contrast, we need to estimate the marginal reward using RR sets. Towards that, we define

a notion of weight for each node in an RR set. The node weight denotes the node’s marginal
contribution to the reward of the root of the RR set, if the node is selected as a seed node. These
weights are non-uniform and cannot be computed efficiently if the RR set is an arbitrary graph.
Hence we restrict an RR set to be a tree. In addition, we fix the randomness associated with the
competition parameter while constructing RR tree. The process is described below.
Given a graph 𝐺 = (𝑉 , 𝐸, 𝑝) and an 𝑎 seedset 𝑆𝑎 , we randomly select a node 𝑣 ∈ 𝑉 as the root

of the RR tree 𝑅𝑇𝑣 . Set 𝑅𝑇𝑣 = {𝑣}, then start a BFS such that: for 𝑢 ∈ 𝑅𝑇𝑣 , sample each incoming
edge (𝑢′, 𝑢) w.p. 𝑝 (𝑢′, 𝑢) and add it to 𝑅𝑇𝑣 if 𝑢′ ∉ 𝑅𝑇𝑣 . Stop when no new nodes can be added. For
each 𝑢 ∈ 𝑅𝑇𝑣 , set: (i) 𝑡𝑢 = 2 w.p. ^, or 𝑡𝑢 = 1 w.p. (1 − ^); (ii) 𝑜𝑢 as a random permutation of 𝑢’s
in-neighbors; (iii)𝑤𝑢 as the weight of 𝑢, denoting the reward contribution of node 𝑢 to the root 𝑣
when 𝑢 is selected as a 𝑏 seed. We next elaborate on how to compute the weight𝑤𝑢 .

Node weight assignment Since propagation is fully deterministic in a RR tree, each node can
contribute one of the three possible marginal reward values – 0, 𝛿 , or Δ, which is set as𝑤𝑢 . The
following lemmas identify the conditions that determine the𝑤𝑢 values.

Lemma 8. If 𝑅𝑇𝑣 ∩ 𝑆𝑎 = ∅, then for any node 𝑢 ∈ 𝑅𝑇𝑣 ,𝑤𝑢 = 𝛿

Proof. Since 𝑅𝑇𝑣 ∩ 𝑆𝑎 = ∅, root 𝑣 cannot adopt 𝑎. Thus when any node 𝑢 is selected as a 𝑏 seed,
𝑣 definitely adopts 𝑏 and the marginal reward gain is 𝛿 . □

Lemma 9. If 𝑅𝑇𝑣 ∩ 𝑆𝑎 ≠ ∅ and 𝑡𝑣 = 1, then for any node 𝑢 ∈ 𝑅𝑇𝑣 ,𝑤𝑢 = 0

Proof. Since 𝑡𝑣 = 1, 𝑣 can never adopt two items. Also 𝑅𝑇𝑣 ∩ 𝑆𝑎 ≠ ∅, 𝑣 adopts 𝑎 already and
obtains a reward of 𝛿 which is the maximum reward 𝑣 can have. Therefore in this case, for every
𝑢 ∈ 𝑅𝑇𝑣 ,𝑤𝑢 = 0. □

Lemma 10. If 𝑅𝑇𝑣 ∩ 𝑆𝑎 ≠ ∅ and 𝑡𝑣 = 2, then for a node 𝑢 ∈ 𝑅𝑇𝑣 ,𝑤𝑢 can be either 0 or Δ.

Proof. Without any 𝑏 seed, 𝑣 definitely adopts 𝑎 as 𝑅𝑇𝑣 ∩ 𝑆𝑎 ≠ ∅. Given a 𝑏 seed node 𝑢, root
𝑣 adopts one item if 𝑢 entirely blocks propagation of 𝑎, or the existing 𝑎 seed blocks 𝑏 to reach 𝑣

from 𝑢. In that case𝑤𝑢 = 0. Otherwise selecting 𝑢 as a 𝑏 seed causes 𝑣 to adopt both 𝑎 and 𝑏 then
for that 𝑢. Hence,𝑤𝑢 = Δ. □

Checking the conditions of Lemmas 8 and 9 is straightforward. However, for Lemma 10, we
need to know the existing 𝑎 propagation paths. Since 𝑅𝑇𝑣 is a tree, there is a unique path from
each 𝑢𝑎 ∈ 𝑆𝑎 to any 𝑢; let 𝑎(𝑢) be the count of total number of such paths to 𝑢. Further, let 𝑟 be the
total number 𝑎 paths to root 𝑣 , i.e., 𝑎(𝑣) = 𝑟 . We then begin computing the weights for the case of
Lemma 10 using recursion starting from the root 𝑣 . See Algorithm 1.
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Algorithm 1: 𝑅𝑒𝑤𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢, 𝑟, 𝑆𝑎)
1 Set𝑤𝑢 = Δ

2 for 𝑢′ ∈ 𝑣 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
3 if 𝑡𝑢′ = 1 and 𝑎(𝑢′) = 𝑟 then
4 𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢′, 0)
5 if 𝑡𝑢′ = 1 and 𝑎(𝑢′) < 𝑟 then
6 𝑠𝑒𝑡𝐴𝐵𝑎𝑠𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 (𝑅𝑇𝑢′ , 𝑆𝑎)
7 if 𝑡𝑢′ = 2 then
8 𝑅𝑒𝑤𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢′, 𝑟 , 𝑆𝑎)

Each child is categorized into one of the following three subcases.
(i) Consider a child 𝑢 such that 𝑡𝑢 = 1 and 𝑎(𝑢) = 𝑟 . This means that all the 𝑎 paths to the root pass
via 𝑢, and 𝑢 can adopt only one item. Then for all the nodes 𝑢′, of the subtree rooted at 𝑢 (including
𝑢),𝑤𝑢′ = 0 (line 4). This holds because if for any 𝑏 seed selected in this subtree, 𝑢 adopts 𝑏, then 𝑣

cannot adopt 𝑎 as there is no other path via which 𝑣 can adopt 𝑎. Thus, 𝑣 only adopts 𝑏 in this case.
Otherwise, if 𝑢 does not adopt 𝑏, then 𝑣 only adopts 𝑎.

Example 2. Consider a sample 𝑅𝑇𝑣 shown in Figure 3. Let 𝑆𝑎 = {𝑎1, 𝑎2} and thus 𝑎(𝑣) = 𝑎(𝑢1) = 2,
and 𝑎(𝑢2) = 1. Let 𝑡𝑣 = 2, and assume the tie-breaking rule : (a) if a seed node is assigned both items,
then it adopts and propagates item 𝑎 first; and (b) at node 𝑢1 its random permutation of in-neighbors
orders 𝑎2 first before 𝑢2. Following Algorithm 1, 𝑅𝑒𝑤𝑊𝑒𝑖𝑔ℎ𝑡 (𝑣, 𝑟, 𝑆𝑎) will set𝑤𝑣 = Δ. Since 𝑡𝑢1 = 1 and
𝑎(𝑢1) = 𝑎(𝑣) = 2, all the 𝑎-paths go through 𝑢1 but 𝑢1 can adopt at most one item, so assigning any
node in 𝑅𝑇𝑢1 will not make 𝑣 to adopt more than one items. In this case we will call 𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢1, 0)
(line 4) to set all nodes rooted at 𝑢1 with weight 0, namely𝑤𝑢 = 0 for 𝑢 ∈ 𝑅𝑇𝑢1 = {𝑢1, 𝑢2, 𝑎1, 𝑎2}.

(ii) Now suppose 𝑡𝑢 = 1 and 𝑎(𝑢) < 𝑟 (note 𝑎(𝑢) > 𝑟 is impossible). In this case there is at least
one 𝑎 path that reaches 𝑣 but not via 𝑢. Hence any node in 𝑅𝑇𝑢 (i.e., the subtree rooted at 𝑢), that as
a seed makes 𝑢 adopt 𝑏, has weight Δ. All other nodes of the subtree 𝑅𝑇𝑢 have weight 0. We set
these weights by doing a level-order traversal on 𝑅𝑇𝑢 . The pseudocode of the traversal in shown in
Algorithm 3. Clearly, when there is no 𝑎 seed in 𝑅𝑇𝑢 (therefore 𝑎(𝑢) = 0), any node when selected
as a 𝑏 seed leads to 𝑏 adoption at 𝑢, hence it has weight Δ (Line 3). If there is an 𝑎 seed, then any
node that is at a level below the level of the first 𝑎 seed, has a weight 0, because 𝑎 would reach 𝑢
before 𝑏 can reach from any such node (Line 15). For a node 𝑢′ that is at the same level of the first
𝑎 seed 𝑠 , we compute the path from 𝑢′ and 𝑠 to the root of 𝑅𝑇𝑢 . If there is a node where these paths
intersect, then at that node both 𝑎 and 𝑏 arrive together. If there is a node in that intersecting path
that adopts only one item, and the first node of the intersecting point, say 𝑥 , has 𝑎 first in its order
𝑜𝑥 , it will block propagation of 𝑏, resulting in a weight of 0 for 𝑢′ (Line 24). If no such blocking
exists then 𝑢′ has weight Δ (Line 17).
(iii) Lastly, when 𝑡𝑢 = 2 (note this is the case for root 𝑣 as well), 𝑤𝑢 = Δ (Line 1). In this case, 𝑢
adopts both items, hence 𝑣 will do so. Further, for the subtree rooted at this node we can recursively
encounter one of the three subcases again as described above.

Example 3. Consider Figure 3 again. 𝑆𝑎, 𝑡𝑣 and the tie breaking rules remain the same as previous
example; but now consider 𝑡𝑢1 = 2. We will recursively call 𝑅𝑒𝑤𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢1, 𝑟 , 𝑆𝑎) (line 8), which
corresponds to the subcase (iii) above. In the recursive call, we set𝑤𝑢1 = Δ, because assigning it as one
𝑏 seed will cause 𝑣 to adopt both items, increasing 𝑣 ’s utility by Δ. Next, the algorithm investigates
the in-neighbors of 𝑢1. We consider 𝑢2 to continue our example. If 𝑡𝑢2 = 1, since 𝑎(𝑢2) = 1 < 𝑎(𝑣), we
call 𝑠𝑒𝑡𝐴𝐵𝑎𝑠𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 (𝑅𝑇𝑢2 , 𝑆𝑎) (line 6) to set the weights of nodes in the subtree 𝑅𝑇𝑢2 by determining
whether a candidate 𝑏-seed can be blocked by an 𝑎-path. This corresponds to the subcase (ii) above. In
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Fig. 3. Example RR tree

our example, 𝑢2 as a 𝑏-seed cannot be blocked by any 𝑎-path in the subtree 𝑅𝑇𝑢2 , so𝑤𝑢2 = Δ, but 𝑎1 as
one 𝑏-seed candidate will be blocked by 𝑎 due to tie-breaking, so 𝑤𝑎1 = 0. If 𝑡𝑢2 = 2, we will further
recursively call 𝑅𝑒𝑤𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢2, 𝑟 , 𝑆𝑎) to complete the weight assignment.

We now present the seed selection algorithm, RewGRD.

Algorithm 2: 𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢,𝑤)
1 Set𝑤𝑢 = 𝑤

2 for 𝑢′ ∈ 𝑣 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
3 𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢′,𝑤)

Seed selection Pseudocode of RewGRD is shown in Algorithm 4. Similar to the classical IM
algorithm, IMM [51], RewGRD first samples a set of RR trees R, where |R | = \ , and \ is provided as
an input parameter. Then for every node 𝑣 ∈ R, it computes the sum of its weight contributions in
each RR tree (Line 7). After that, it greedily finds the node that has the highest weight contribution
(Line 9). If the weight contribution of the found node is greater than 0, then it is selected as a 𝑏 seed.
Every time a new node is selected as a seed, the RR trees, where the node is present, are discarded
from future consideration (Line 16). This process is repeated 𝑘 times, where 𝑘 is the budget.

6 EXPERIMENTS
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Fig. 4. Expected net reward of the algorithms

6.1 Experiment Setup
Our experiments are performed on a Linux machine with Intel Xeon 2.6 GHz CPU and 128 GB
RAM. Code is available here.
Networks We conduct our experiments of this section on four real social networks: NetHEPT,

Douban-Book, Douban-Movie, and Orkut; properties of these networks are summarized in Table 1.
Among these networks, NetHEPT, Douban-Book, and Douban-Movie are benchmark datasets in
the IM literature [40]. Orkut is a large publicly available network that is made available here.
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Algorithm 3: 𝑠𝑒𝑡𝐴𝐵𝑎𝑠𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 (𝑅𝑇𝑢, 𝑆𝑎)
1 Set 𝑢 = 𝑟𝑜𝑜𝑡 (𝑅𝑇𝑢 )
2 if 𝑎(𝑢) = 0 then
3 𝑠𝑒𝑡𝑤𝑒𝑖𝑔ℎ𝑡 (𝑢,Δ)
4 Return
5 Set 𝑄 = ∅
6 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑢) while 𝑄.𝑛𝑜𝑡𝐸𝑚𝑝𝑡𝑦 () do
7 𝑢′ = 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒

8 𝑆 = 𝑢′ .𝑠𝑖𝑏𝑏𝑙𝑖𝑛𝑔𝑠 ∩ 𝑆𝑎

9 if 𝑆 = ∅ then
10 𝑤𝑢′ = Δ

11 for 𝑢′′ ∈ 𝑢′ .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
12 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑢′′)
13 else
14 for 𝑢′′ ∈ 𝑢′ .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
15 𝑠𝑒𝑡𝑊𝑒𝑖𝑔ℎ𝑡 (𝑢′′, 0)
16 else
17 𝑤𝑢′ = Δ

18 𝑃𝑏 = 𝑝𝑎𝑡ℎ(𝑢′, 𝑢)
19 for 𝑠 ∈ 𝑆 do
20 𝑃𝑎 = 𝑝𝑎𝑡ℎ(𝑠,𝑢)
21 𝑁𝑜𝑑𝑒𝑠 = 𝑃𝑏 ∩ 𝑃𝑎

22 for 𝑛𝑜𝑑𝑒 ∈ 𝑁𝑜𝑑𝑒𝑠 do
23 if 𝑡𝑛𝑜𝑑𝑒 = 1 and 𝑜𝑛𝑜𝑑𝑒 = {𝑎, 𝑏} then
24 𝑤𝑢′ = 0
25 break
26 if 𝑤𝑢′ = 0 then
27 break

Algorithm 4: 𝑅𝑒𝑤𝐺𝑅𝐷 (𝐺 = (𝑉 , 𝐸, 𝑝), \, 𝑆𝑎, 𝑘)
1 Sample \ number of RR trees from 𝐺 in R
2 for 𝑣 ∈ 𝑉 do
3 Set𝑤 (𝑣) = 0
4 Set 𝑆𝑏 = ∅
5 for 𝑅𝑇 ∈ R do
6 for 𝑣 ∈ 𝑅𝑇 do
7 add to𝑤𝑣 the weight of 𝑣 in 𝑅𝑇

8 for 𝑖 = 1 to 𝑘 do
9 𝑣𝑚𝑎𝑥 = argmax𝑣∈𝑉 𝑤 (𝑣)

10 if 𝑤 (𝑣𝑚𝑎𝑥 ) ≤ 0 then
11 break
12 𝑆𝑏 = 𝑆𝑏 ∪ 𝑣𝑚𝑎𝑥

13 for 𝑅𝑇 ∈ R do
14 if 𝑣𝑚𝑎𝑥 ∈ 𝑅𝑇 then
15 for 𝑣 ∈ 𝑅𝑇 do
16 subtract from𝑤𝑣 the weight of 𝑣 in 𝑅𝑇

17 Return 𝑆𝑏
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Fig. 5. Effect of ^ on the algorithms using Orkut network
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NetHEPT Douban-Book Douban-Movie Orkut
# nodes 15.2K 23.3K 34.9K 3.07M
# edges 31.4K 141K 274K 117M

avg. deg. 4.13 6.5 7.9 77.5
type undirected directed directed undirected

Table 1. Network Statistics

Algorithms compared We compare the three algorithms we developed , namely SpreadGRD,
SandwichGRD, and RewGRD against four baselines – TCIM [39], Balance-C [23], COEX [58],
TDEM [41].

Our first baseline TCIM maximizes influence under pure competition, where each node can adopt
at-most one item. Given a fixed seed set of the first item, TCIM selects seeds of the second item
under a budget constraint, such that the number of adoptions of the second item is maximized.
Balance-C does not assume pure competition, but it also includes nodes adopting no item in

its maximization objective. Given an initial seed placement of the two items, Balance-C chooses
the remaining seeds such that at the end of the propagation, the number of nodes seeing either
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both the items or none, is maximized. Thus for competing ideas, Balance-C ensures that there is a
balanced exposure of the two ideas to the most number of nodes.

COEX is an improvement over Balance-C, and it considers propagation of two items where the
goal is to select seeds of both items, such that at the end of the propagation, the number of nodes
influenced by both items (i.e., co-exposure) is maximized. Unlike the other algorithms, COEX has
an additional constraint that seed sets of the two items be disjoint. To ensure a fair comparison we
use two versions - (i) 𝐶𝑂𝐸𝑋𝑖 , which does not enforce the constraint, and (ii) 𝐶𝑂𝐸𝑋𝑖𝑖 , which does.

TDEM, by contrast, relies on the “leaning scores” of nodes (users) and items, provided as input.
An exposure quality function 𝑓 (·) is used to compute a score (i.e., reward) based on the leaning
scores of the items and of the node which is made aware of the items via propagation. The goal is
to maximize the sum of exposure qualities over all the nodes in the network. We will establish a
connection between this 𝑓 function and our reward parameters next for experimental comparison.
It is worth noting that no existing work on filter bubbles, including COEX and TDEM, distinguishes
awareness from adoption, and consequently does not model competition between items. In other
words, they assume ^ = 1.

Default configuration Unless explicitly stated, all the parameters are set to the default values as
mentioned in this section. Following previous works [31, 44] we set probability of edge 𝑒 = (𝑢, 𝑣)
to 1/𝑑𝑖𝑛 (𝑣), where 𝑑𝑖𝑛 (𝑣) is the in-degree of node 𝑣 . This setting captures the intuition that as the
number of connections into a node increases, the probability of that node getting influenced by any
one specific in-neighbor decreases. Note that whether edge probabilities are learned from available
data or are being set and how they are set is orthogonal to our optimization problem (as well as to
IM in general). Nevertheless, in §6.5, we study the performance of the algorithms using Flixster
where real edge probabilities are learned from actual action traces [9]. We use 𝜖 = 0.1 and ℓ = 1 as
our default in all the algorithms that use these parameters.
The default value of the competition parameter is set as ^ = 0.5. Our default choice of reward

parameters is restricted by the leaning scores of TDEM so that a comparison with TDEM is possible.
TDEM requires the leaning scores to be in the range [−1, 1], where−1 and 1 denote the two extremes
and 0 denotes neutral. Therefore, for each node 𝑣 ∈ 𝑉 , we set 𝑙 (𝑣) = 0, considering each node as a
neutral node. Further, since 𝛿 needs to be the same for each of the two items, the leaning scores can
only be symmetrically positioned in [−1, 1], where the score 0 is already covered by the node. This
restricts the choice of 𝛿 andΔ that ourmodel permits. It is also known that the exposure quality is the
highest for TDEM, when the items’ leaning scores are evenly spaced out in [−1, 1] ([41]). Hence, we
select the leaning scores of items 𝑎 and 𝑏 as −0.5 and 0.5 respectively, to provide TDEMwith the best
possible configuration. Lastly, TDEM also assumes that each node adopts the two extreme (fictitious)
items, with leaning scores −1 and 1 by default. To offset that we add the corresponding reward
score 𝑓 ({−1, 0, 1}) = 0.5 to every adoption. Consequently, 𝛿 = 𝑓 ({−1,−0.5, 0, 1}) − 𝑓 ({−1, 0, 1}) =
𝑓 ({−1, 0, 0.5, 1})− 𝑓 ({−1, 0, 1}) = 0.125 and Δ = 𝑓 ({−1,−0.5, 0, 0.5, 1})−(𝛿+ 𝑓 ({−1, 0, 1})) = 0.1875.
Note that the difference between 𝛿 and Δ is very small, which puts our reward driven approach for
filter bubble mitigation at a disadvantage. Yet to enable a comparison with TDEM, we limit our
model in this way. In § 6.3, where we test the effect of different values of model parameters, we
vary the values of 𝛿 and Δ more widely.

Unless specified otherwise, the budget of an item 𝑖 is𝑘𝑖 = 50, where 𝑖 ∈ {𝑎, 𝑏}. Whenever marginal
gains are required, we run 5000 MC simulations and take the average result. If an algorithm does
not complete in six hours, it is omitted from comparison.

6.2 Seed quality experiment
We first compare the quality of the seeds selected by the algorithms in terms of the net reward
produced. For this experiment, the seeds of item 𝑎 are kept fixed. Given the default budget 𝑘𝑎 = 50,
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𝑆𝑎 is set to be the 𝑘𝑎 seeds returned by IMM [51]. Budget of item 𝑏 ranges from 10 to 50 in steps of
size 10.

As noted in §5.1, we can calibrate the upper bound on the optimal net reward that can be achieved,
based on the reward achieved by SpreadGRD and the approximation guarantee given in Theorem
4. For the sake of comparison we include this upper bound of the optimal reward, denoted as OPT,
in the results that are shown in Figures 4 and 5. Since RewGRD is competition aware and explicitly
maximizes the net reward, it dominates other algorithms across all the networks, producing up
to 50% more reward than the closest baseline 𝐶𝑂𝐸𝑋𝑖𝑖 . In fact, RewGRD achieves net reward upto
90% of OPT, indicating that RewGRD performs quite close to the best possible solution. In contrast,
SpreadGRD and TCIM ignore reward objective altogether. While TCIM aims to maximize the spread
of 𝑏, SpreadGRD aims to maximize the marginal spread of 𝑏, both of which result in low number
of co-adoptions. Consequently SpreadGRD and TCIM consistently attain the lowest net reward.
SandwichGRD indirectly focuses on the objective but does not take competition into account while
selecting the seeds. Hence it ends up selecting the same seeds for 𝑎 and 𝑏 to maximize co-adoption
which gives the highest reward at a specific node.

None of the baselines is designed with competition factored in. They focus on maximizing
co-adoptions pretending there is no competition. As a result, similar to SandwichGRD, 𝐶𝑂𝐸𝑋𝑖
selects the same seeds for 𝑎 and 𝑏 as that results in the most number of co-adoptions if there is
no competition. Since 𝐶𝑂𝐸𝑋𝑖𝑖 is explicitly constrained to choose disjoint seeds for 𝑎 and 𝑏, so it
partially bypasses the effect of competition and hence produces the best net reward amongst the
baselines.

10 20 30 40 50
Budget k

25

50

75

100

125

150

N
et

R
ew

ar
d

Sandwich

COEXi

COEXii

RewGRD

TDEM

SpreadGRD

OPT

TCIM

BAL-C

10 20 30 40 50
Budget k

100

101

102

103

R
un

ni
ng

T
im

e
(s

ec
)

(a) Net Reward (b) Running time

Fig. 8. Effect of using real edge probabilities on Flixster.

6.3 Impact of the model parameters
For the first subset of experiments, we hold all the parameters, except ^, at their default values.
Value of ^ is varied over – 0.2, 0.4, 0.6 and 0.8. The results corresponding to Orkut are shown in
Figure 5(a-d). The other networks showed a similar trend.

As ^ decreases, competition increases, and consequently net reward produced by any algorithm
decreases. However, the drop for SpreadGRD is the minimum because SpreadGRD optimizes
marginal spread, hence increasing competition has very little impact on its performance. In other
words, RewGRD already factors in the effect of competition in selecting seeds. Note that, since
the baselines are not designed for competition, their performance deteriorates fast for a low value
of ^. In fact for a value of ^ = 0.2, 𝐶𝑂𝐸𝑋𝑖 performs almost similar to SpreadGRD. RewGRD also
experiences a drop in its net reward. However, unlike some of the baselines, RewGRD does not
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blindly co-allocate the seeds. Hence even for a low value of ^ = 0.2, its performance is still much
better than others.
For a high value of ^, the performance of the baselines improves drastically. As expected, the

difference between the reward produced by RewGRD and the baselines reduces as ^ increases.
When ^ = 0.8, 𝐶𝑂𝐸𝑋𝑖 performs similar to 𝐶𝑂𝐸𝑋𝑖𝑖 and TDEM, because the effect of competition is
low for such a high value of ^.

6.4 Scalability
Using the same setup of §6.2, we next compare the running times of the algorithms on the four
networks. The results are presented in Figure 6. When the network size increases or when the
budget of 𝑏 increases, the running times of all the algorithms increase. However, it is seen that
COEX, SpreadGRD, TDEM, and RewGRD are orders of magnitude faster than SandwichGRD and
Balance-C. This is because SandwichGRD and Balance-C both use costly MC simulations to select
seeds. In comparison, COEX, SpreadGRD, TDEM, and RewGRD use a much faster alternative of
RIS sampling [31, 37, 44, 50, 51]. In fact, SandwichGRD and Balance-C do not complete after six
hours on Orkut, hence they are excluded from the last plot.

6.5 Study using real edge probabilities
Using real-world and publicly available datasets, Barbieri et al. [9] constructed the Flixster network
where the edge probabilities are learned from actual action traces. The network has 6, 353 nodes
and 84, 606 directed edges. We use this network to test the performance of the algorithms; the
results are shown in Figure 8.

We keep the parameters at their default values, whereas the budget of item 𝑏 is varied from 10 to
50. The overall trend is similar to our earlier findings: RewGRD dominates the other algorithms in
terms of net reward produced, while being efficient w.r.t. running time.

6.6 Effectiveness in bursting bubbles
After establishing the effectiveness of RewGRD in terms of net reward, we next test its behavior
in terms of reducing filter bubbles using adoption counts under various reward settings. For
comparison purposes and to minimize clutter, we choose COEXii, the strategy that produces the
highest net reward among the baselines (see §6.2), and include a comparison with COEXii. A direct
way to quantify the efficacy of filter bubble mitigation is to measure the ratio of the number of
co-adoptions over solo (i.e., single item) adoptions in the network. We call this ratio the Burst Factor
(BF); a higher BF (i.e., #co-adoptions/#solo-adoptions) intuitively indicates less prominent bubbles.
Values of BF closer to 0 indicate the presence of extreme filter bubbles. Figures 7 (a-b), and 7 (c-d)
show the effect of varying the reward parameters (Δ and 𝛿) on the BF achieved by RewGRD and
COEXii over two networks, NetHEPT and Orkut respectively. Parameter ^ is varied among three
values – 0.2, 0.5 and 0.8, while other parameters are kept at their default values. The ratio Δ

𝛿
is

increased from 1 to 15 in steps of 5. The 𝑦 axis shows the BF for different Δ
𝛿
ratios.

When Δ
𝛿
= 1, there is no incentive for co-adoption, hence the burst factor is low. As Δ

𝛿
approaches

a higher value, the reward incentive for co-adoption and thus for mitigating filter bubbles increases.
Hence both RewGRD and COEXii choose seeds that encourage more co-adoptions. Indeed, the BF
increases dramatically, by more than 10× when Δ/𝛿 is varied from 1 to 15, demonstrating increased
effectiveness in mitigating filter bubbles. In our experiment, we find that the BF significantly
increases as the Δ

𝛿
ratio goes up. E.g., on orkut, for ^ = 0.2, BF jumps from 0.09 to 0.82 for 𝑅𝑒𝑤𝐺𝑅𝐷 ,

and from 0.039 to 0.4 for 𝐶𝑂𝐸𝑋𝑖𝑖 . The host can thus set this ratio to control the desired level of
mitigation.
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Additionally, as ^ increases, the effect of competition decreases, hence co-adoption increases as
a whole for both algorithms. Note that since RewGRD is competition aware, its performance is
significantly better than COEXii for lower values of ^ . On the other hand, the marginal increase in
the BF of RewGRD over COEXii decreases as we increase ^ , which is understandable. Since in most
real-world settings where filter bubbles form around competing opinions, ^ is expected to have a
low value, applications will benefit more from using RewGRD over any of the baselines.

7 SUMMARY AND FUTUREWORK
Mitigating filter bubbles is an important and urgent open problem for which one of the exist-
ing approaches is to use the influence propagation paradigm to balance exposure. While prior
work ignores competition between opposing opinions for adoption, we take the first step toward
realistically modeling filter bubbles formed by opposing items (opinions) which are inherently
competitive, while encouraging co-adoption of the items via a reward function that treats the items
as complementary from a “bubble breaking" perspective. Breaking away from the co-allocation of
same seeds to both items that existing baselines generally end up making, we propose more effective
algorithms and demonstrate their superiority via experiments on real data. Further research is
needed for extending our framework to address filter bubbles formed by more than two competing
items and for learning the model parameters from available data.
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