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ABSTRACT

Human professional transcription services provide a variety of tran-
scription styles to customize different needs. To accommodate dif-
ferent users and facilitate seamless integration with downstream ap-
plications, we propose a framework to generate multi-style transcrip-
tion in an attention-based encoder-decoder model (AED) using three
different architectures: (A) style-dependent layers; (B) mixed-style
output; (C) style-dependent prompt. In this framework, both the
verbatim lexical transcription and the readable transcription of vari-
ous styles can be generated simultaneously or separately, through a
single decoding pass or multiple decoding passes on-demand. We
conduct experiments in a large-scale AED-based speech transcrip-
tion system trained with 50k hours speech. The proposed framework
can achieve nearly on-par performance compared to the single-style
AED with significant savings in model footprint and decoding cost.
Moreover, it provides an efficient data sharing mechanism across
different styles through knowledge transfer.

Index Terms— attention-based encoder-decoder model (AED),
verbatim lexical transcription, readable transcription

1. INTRODUCTION

Human professional speech transcription services provide a variety
of transcription styles [1], ranging from phonetic transcription to
intelligent edited transcription, to address varying customer needs.
Traditional automated speech transcription systems usually produce
unformatted verbatim lexical transcription. It is subsequently con-
verted to the display format with proper punctuation, capitalization,
and inverse text normalization (ITN) through a display formatting
process (DPP) [2–7]. For conversation speech, disfluency and gram-
matical errors are removed to further improve readability [8–10]. We
refer to this type of transcription as readable transcription.

Inferring the readable transcription merely from the unformatted
text is not always sufficient. For instance, speech prosodic features
were found to be helpful in improving sentence boundary detec-
tion [8, 11]. Instead of pursuing this two-stage approach, end-to-end
models (E2E) [12–19], jointly modeling the acoustic and language
dependencies, provide a promising way to produce the readable tran-
scription end-to-end. One of the first attempt to generate the readable
transcription directly from speech was reported on the Earnings call
transcription task [20]. Whisper extended the success to a domain-
independent large-scale multi-lingual setup [21]. Examples of some
recent work include [22, 23].

Despite the recent success of Whisper, in a practical speech
recognition service, different applications may require different
types of transcription. For example, an automated closed-captioning
service usually adopts the verbatim transcription rendered in the
display format; nevertheless, a meeting summarization system
would prefer the readable transcription with disfluency removed.

To customize the need from different users and facilitate seamless
integration with downstream applications, we propose a framework
for generating the multi-style speech transcription in an attention-
based encoder-decoder model (AED). In this framework, both the
verbatim lexical transcription and the readable transcription of vari-
ous styles can be generated simultaneously or separately, through a
single-decoding pass or multiple decoding passes on-demand.

Specifically, we propose three multi-style AED architectures
with style-dependent layers, mixed-style output, and style-dependent
prompt. The AED with style-dependent layers uses a stack of
style-dependent layers for each individual style, while keeping the
rest network components shared [24, 25]. At decoding time, we
only need to combine the shared network with the style-dependent
branch to generate the transcription of a particular style. The AED
with mixed-style output was inspired by the joint decoding and
translation model [26–28]. In this approach, we use a single AED
to generate the mixed-style output decorated with style tags. During
training, the mixed-style transcription can be organized by concate-
nating the utterance-level or token-level multi-style transcription
with style tags. At decoding time, mixed-style transcription can
be generated through a single decoding pass. The style-dependent
transcription can be subsequently extracted from it using a simple
style decoder. In the third architecture, we use a single AED with
the style-dependent prompt inserted at the decoder to generate
different style transcription. In addition, one-hot style embedding
can be inserted at various encoder and decoder layers. Here multiple
decoding passes are needed to generate multi-style transcription.

We conduct experiments on a large-scale speech transcription
system trained with 50k hours speech with both lexical and readable
transcription. We use the token error rate (TER) and the segmen-
tation F-measure to evaluate the performance of the readable tran-
scription, and the word error rate (WER) for the verbatim lexical
transcription. We found that the end-to-end readable AED outper-
forms the two-stage based approach with a lexical AED followed by
the display format processing. This confirms that leveraging speech
audio helps in generating transcription with improved readability.
Second, the proposed multi-style AED can achieve nearly on-par
performance compared to multiple single-style AEDs. Neverthe-
less, the total number of model parameters and the run-time cost are
significantly smaller. Lastly, the AEDs with style-dependent layers
or style-dependent prompt can facilitate knowledge transfer across
styles. This is especially beneficial when training data is scarce.

To the best of our knowledge, this is the first proposed work
in generating both verbatim lexical and readable multi-style tran-
scription in an end-to-end system. A highly relevant work can be
found in [29], which primarily focuses on generating rich transcrip-
tion with laugh, cough, and other acoustic events.

The rest of this paper is organized as follows: Section 2 intro-
duces the multi-style AED framework; Section 3 presents the exper-
iments and results; Section 4 concludes the paper.



Fig. 1. Diagram of attention-based encoder-decoder model.

2. METHODOLOGY

In this section, we first introduce the foundation of AED, then
present the architecture of the multi transcription-style AEDs.

2.1. Foundations of AED model

The attention-based encoder-decoder model, as depicted in Fig. 1,
consists of an encoder, decoder, and an attention network [30, 31].
The encoder network converts the input feature sequence (X1:T ) to
the hidden feature sequence (ht). The attention module computes the
attention weights between the previous decoder output (d1:u−1) and
the encoder output (ht) using an attention function. These weights
are then used to compute a context vector (cu) as weighted sum of
the encoder feature sequence (hu). The decoder network takes the
context vector (cu) and the previous output label (yu−1) to com-
pute p(yu|x, y1:u−1). The final output is obtained by minimizing
− log p(yu|x, y1:u−1). To mitigate the alignment issue, an AED is
often optimized together with CTC as a multi-task learning task [32].

Next we will describe the proposed multi transcription-style
AEDs depicted in Fig. 2. To illustrate the proposed approach, we
focus on modeling two styles (the verbatim lexical and the readable
transcription) throughout this paper, though the proposed approach
is general and can be extended to more styles.

2.2. Multi-Style AED with Style-Dependent Layers

The multi-style AED with style-dependent layers is an AED with
style-dependent network branches. It utilises a stack of style-
dependent top encoder layers (encoder1) and decoder to map the
low-level speech features to different styles of transcription as in
Fig. 2 (a). The bottom encoder layers (encoder0), located closer
to the raw speech input layer, performing the low-level feature
mapping, are believed to be mostly agnostic to styles. Such an
architecture can be jointly trained with the combined objective from
each style. Alternatively, one can train a style-agnostic model first,
then fine-tune the style-dependent layers separately.

The model footprint and the decoding run-time cost are deter-
mined by where to branch out the style-dependent layers. The more
the different styles can share, the smaller the additional run-time cost
is needed to generate multi-style transcription. This architecture is
flexible in consuming training data with different styles of transcrip-
tion. Data in a certain style can be used to improve its own style
branch with the potential to be transferred to the others through the
shared style-agnostic bottom layers. We will present detailed exper-
imental results in Section 3.3.

Fig. 2. Architecture of the proposed multi transcription-style AEDs
with: (A) style-dependent layers; (B) mixed-style output; (C) style-
dependent prompt. Encoder0: style-agnostic bottom encoder layers,
Encoder1: style-dependent top encoder layers.

2.3. Multi-Style AED with Mixed-Style Output

In the second architecture, we use a standard AED to generate the
mixed-style transcription simultaneously as in Fig. 2 (b). The mixed-
style transcription can be composed in different ways with the intro-
duction of a new descriptive language for multi-style transcription.

The concatenated mixed-style transcription M0 simply concate-
nates the different style utterance-level transcription with style tags:

Us1⟨Ts1⟩ Us2⟨Ts2⟩, (1)

where U is the utterance-level transcription, ⟨T ⟩ is the style-end tag,
si is the style index. An example of M0 is illustrated in Fig. 2 (b).
It roughly doubles the transcription length (in case of two styles),
which is inefficient especially when modeling more than two styles.

The interlaced mixed-style transcription is designed to reduce
the length of the mixed-style transcription. Specifically, we first
align the token-level multi-style transcription (u), then linearize the
aligned transcription at each alignment location (Lj) according to a
pre-defined style order (si):

uL1
s1 u

L1
s2 uL2

s1 u
L2
s2 · · · uLj

s1u
Lj
s2 . (2)

To compose M1, at each alignment location Lj , if different
styles share the same transcription, simply include one copy of the
shared transcription; otherwise, add different style transcription in
the pre-defined order with a leading style-alternative tag ⟨T ⟩:

uLj−1 ⟨T⟩uLj
s1u

Lj
s2 uLj+1 . (3)

M2 is an extension of M1. In M2, the contiguous ⟨T ⟩-tagged
segments in Eq. 3 is further merged into a style alternative section
delimited by ⟨T ⟩ and ⟨/T ⟩. Inside this section, transcription of dif-
ferent styles are separated by a style separator tag (|), formally

uLj−1 ⟨T⟩uLj:j+m
s1 |uLj:j+m

s2 ⟨/T⟩ uLj+m+1 . (4)

An example of M1 and M2 can be found in Fig. 2 (b).
To extract the style-dependent transcription, we only need to

write a simple style parser to decode the mixed-style decoding result



Table 1. Comparison of the proposed multi-style AEDs with: (A) style-dependent layers; (B) mixed-style output; (C) style-dependent prompt.

Type Model #Decoders #Decoding Passes Tag Inference Data Consumption #Styles (> 2)
(A) Style-dependent layers Branched AED Multi Multi No Flexible Yes
(B) Style-mixed output Single AED Single Single Yes Co-existence Limited
(C) Style-dependent prompt Single AED Single Multi No Flexible Yes

following the same protocol used to compose the training transcrip-
tion. As the style tags are to be predicted at the inference time, we
need to keep the tags as simple and error-tolerant as possible. To fur-
ther improve the robustness of the style parser, we introduce a simple
mechanism to ignore the erroneous tags, thus the style parser can al-
ways resume from the next legitimate style session. Empirically we
found the tag prediction is highly accurate.

One particular aspect of this approach is that it requires all inter-
ested styles of transcription be available; otherwise the mixed-style
transcription could not be properly composed during training.

It is to be noted that we focus on the non-streaming AED in
this paper. Nevertheless, the interlaced mixed-style architecture can
be extended to a streaming model such as the conformer transducer.
Generating multi-style transcription simultaneously in a streaming
model is appealing for applications where multi-style transcription
is always desired.

2.4. Multi-Style AED with Style-Dependent Prompt

In the third architecture, we use a single AED with style-dependent
prompts inserted at the beginning of the decoder to generate multi-
style transcription as in Fig. 2 (c). During training, we create mul-
tiple instances of a training utterance by inserting a style prompt at
the beginning of different style transcription:

⟨Ts1⟩Us1

⟨Ts2⟩Us2
(5)

An example of the style-dependent prompt is provided in Fig. 2 (c).
At decoding time, to generate the transcription of a specific style

si, we simply add a style prompt ⟨Tsi⟩ at the beginning of the de-
coder, then the decoder continues to decode the transcription in style
si. We note that tags in this architecture are not to be predicted,
instead they are provided as prompts to the system. In addition to
the prompt, we can add one-hot embedding at different encoder and
decoder layers to explicitly model different styles.

To generate transcription of multiple styles, multiple decoding
passes are needed. Nevertheless, the total run-time cost is reduced
as the encoder is shared across different decoding passes. Should
one-hot embedding of different styles be inserted at the encoder lay-
ers, re-computing some encoder layers for different styles would be
needed at a cost of computation efficiency.

Regarding the training data usage, the data consumption is fairly
flexible as it does not require co-existence of all interested styles
of transcription. The model is maximally shared across different
styles. Another distinct property of this architecture is that it can be
conveniently extended to multiple styles (e.g. > 2), as compared to
the mixed-style output AED, where the transcription length increase
poses a limitation on its extension to many styles.

2.5. Three Approaches in Comparison

We compare the proposed three approaches in Table 1 from the
model structure, number of decoders, number of decoding passes
needed to generate multi-style transcription, whether it involves tag

inference, how flexible it is in consuming multi-style transcription
data, and whether it can be extended to more styles conveniently.

The AEDs with style-dependent layers and with style-dependent
prompt share several common aspects. For example, they both re-
quire multiple decoding passes to generate different style transcrip-
tion. No tag inference is needed during decoding. They are both
flexible in data consumption and can be conveniently extended to
more styles. A major difference between them is that the latter uses
a single decoder for all styles. The AED with the mixed-style output
differs from the above two in many aspects. In particular, this model
can generate multi-style transcription within a single decoding pass
and therefore has the most benefit in run-time cost. The limitation of
this approach is that it is less flexible in data consumption and less
convenient when extending to many more styles.

In practice, the model complexity, model footprint, decoding
cost, flexibility in data usage, capability of extending to more styles,
and most of all the salient customer need are important considera-
tions we take when choosing a specific architecture.

3. EXPERIMENTS AND RESULTS

In this section, we present experiments and results.

3.1. Training Data and Metrics

The training data consists of 50k hours anonymized speech with per-
sonal information removed. The verbatim lexical model was trained
on the verbatim lexical transcription, which is provided by profes-
sional speech transcribers. To train the readable style model, we
apply the internally developed DPP processing [6, 7] to convert the
verbatim lexical transcription to its readable form, with proper capi-
talization, punctuation, and ITN. The editing disfluency, such as hes-
itation and filler words, are also removed.

For evaluation, we use two internally collected anonymized test
sets with both verbatim lexical and readable transcription provided
by professional transcribers. Test set A consists of 5 hours dicta-
tion monologue speech; Test set B consists of 4 hours conversation
speech from real meetings.

For metrics, we use the token error rate (TER) to measure the
performance of the readable transcription and the traditional word
error rate (WER) for the verbatim lexical transcription. TER is the
token-level editing distance between the hypothesis and the read-
able reference, without applying any forms of text normalization.
In addition, to calibrate segmentation quality in readable transcrip-
tion, we map a set of sentence ending punctuations (e.g. ;.?!) to
a common segmentation mark, then compute the F-measure of the
mapped segmentation mark. Properly segmenting a word sequence
into sentences or sub-sentences is one of the most important factors
affecting readability.

3.2. Experimental Setup and Baseline Models

The various AED models studied in this paper share the following
similar setup: the audio encoder consists of two convolutional layers



that sub-sample the time frame by a factor of 4, followed by 18 con-
former layers. Each conformer layer has a multi-head attention with
8 heads, and a depth-wise convolution with kernel size of 3. The
multi-head attention and the depth-wise convolution are sandwiched
between two 1024-dim feed-forward layers. The decoder consists of
6 conformer layers and the feed-forward layer dimension is 2048.
The embedding dimension is 512. The AED is trained to optimize
the combined cross-entropy loss and the CTC loss (weighted by 0.2).

We train a pair of a verbatim lexical AED (s.L) and a readable
AED (s.R) using the 50k hour training data as our baseline models.
To simulate the traditional two-stage based approach, we apply the
DPP post-processing to convert the lexical hypothesis to its readable
form and thus obtain the two-stage based readable hypothesis (s.L+
DPP ).

The end-to-end readable model (s.R) outperforms the two-stage
based approach (s.L + DPP ) on both the dictation (A) and the
conversation (B) tasks, as shown in Table 2. This suggests that it
is beneficial to learn the readable transcription directly from speech
as compared to only using the textual information in the two-stage
based approach. In particular, the improvement in segmentation F-
measure confirms that leveraging the speech-level information helps
in improving segmentation. This can be seen in some decoding ex-
amples in Section 3.6.

Table 2. Performance of the single-style AEDs: s.L is the verbatim
lexical AED, s.R is the readable AED, s.L+DPP is the two-stage
based approach with the DPP post-processing.

A B
Model TER F1 WER TER F1 WER
s.L NA NA 6.2 NA NA 9.0
s.L+DPP 17.6 0.65 NA 30.0 0.51 NA
s.R 16.7 0.71 NA 28.4 0.60 NA

We also made an interesting observation that, although the read-
able training transcription was generated from the lexical transcrip-
tion using the DPP process, the resulting readable model (s.R) out-
performs the two-stage based approach (s.L+DPP ), applying the
same DPP post-processing to convert the lexical hypothesis to its
readable form during test. We believe this is primarily due to the
benefit of end-to-end modeling of the acoustic and language depen-
dency in deriving the readable transcription.

3.3. Result of Multi-Style AED with Style-Dependent Layers

In this section, we discuss the multi-style AED experiments. Table 3
summarizes the multi-style AED results with style-dependent layer
(m.L), mixed-style output (m.M ), and style-dependent prompt
(m.P ).

For the mixed-style AED with style-dependent layers, we exper-
imented with branching out the style-dependent network component
at different depth of the encoder layers. m.LEi refers to a mixed-
style AED with style-dependent layer starting from the encoder layer
Ei. For example, in m.LE6, the bottom encoder layers E1 ∼ E6
are style-agnostic layers and the top encoder layer E7 ∼ E18 and
the decoder are style-dependent layers; in m.LE18, all the encoder
layers are style-agnostic layers; in m.LE0, all the encoder layers and
the decoder are style-dependent layers.

As shown in Table 3, the multi-style AED (m.LE6) can achieve
on-par performance with the separately trained single-style model
(s.R and s.L), but the overall model footprint and run-time cost is
reduced due to the shared style-agnostic encoder layers. When we

increase the number of shared encoder layers to E1 ∼ E12, we ob-
serve small negligible accuracy performance degradation in m.LE12

comparing to m.LE6. This suggests that we can largely leverage the
shared style-agnostic bottom encoder layers when modeling multi-
style transcription to save cost.

To illustrate the knowledge transfer behaviour of this architec-
ture, we train a new multi-style AED (m.L+

E6) with additional 50k
hours data with lexical transcription (100k hours data with lexical
transcription in total) and the same 50k hours with readable tran-
scription. As shown in Table 3, the additional 50k hours data with
lexical transcription not only helps in improving the performance
of the lexical transcription branch, but also improves the readable
branch. This confirms the knowledge transfer through the shared
bottom layers in this architecture.

Table 3. Performance of the proposed multi-style AEDs with
style-dependent layer (m.L), mixed-style output (m.M ), and style-
dependent prompt (m.P ). Ei is the starting layer of the style-
dependent encoder layer. for example, in E6, the bottom encoder
layers E1 ∼ E6 are style agnostic layers and top encoder layers
E7 ∼ E18 plus the decoder are style dependent layers.

A B
Model TER F1 WER TER F1 WER
m.LE6 16.6 0.71 6.2 28.5 0.60 9.0
m.LE12 16.7 0.71 6.2 29.3 0.60 9.0
m.L+

E6 15.9 0.72 5.5 27.0 0.62 8.3
m.M0 18.9 0.67 8.2 31.7 0.55 10.7
m.M1 19.0 0.66 6.7 29.0 0.57 9.4
m.M2 18.5 0.66 6.5 28.8 0.58 9.3
m.PE6 21.7 0.68 7.2 31.9 0.57 9.6

3.4. Result of Multi-Style AED with Style-Mixed Output

For the mixed-style AEDs with mixed-style output, we experimented
with three different ways to compose the mixed-style output. m.M0
is the concatenated mixed-style AED described in Eq. 1, m.M1 and
m.M2 are the two interlaced mixed-style AEDs described in Eq. 2
and Eq. 4. We found all three can generate reasonably good quality
readable and lexical transcription within one decoding pass. The
interlaced mixed-style AED with style alternative sessions (m.M2)
performs the best. It achieves nearly on-par performance with the
single-style AEDs especially on the conversation task (B). On the
dictation task (A), the gap is slightly larger.

In the mixed-style AEDs with mixed-style output, the model
needs to predict both the lexical/readable hypothesis and the tags
introduced in the mixed-style language. The predicted tags should
ideally follow the designated protocol so that the mixed-style tran-
scription can be properly decoded to form different style transcrip-
tion. We found the tag prediction is highly accurate, with occasional
mistakes in complicated readable and lexical mixed-style cases. To
address this, we introduced some simple mechanisms which allow
the style parser to skip the illegitimate tags in case of mistakes in
tag prediction and resume a normal style parsing. We can see some
examples shown in Fig. 3.

3.5. Result of Multi-Style AED with Style-Dependent Prompt

For the prompt-based AED (m.P ), the result seems to be not as
promising as the other approaches. After looking into the details,



Fig. 3. Example of decoding results of the proposed multi-style
AEDs. (D) refers to the raw decoding results, (R) and (L) refer to
the extracted readable and lexical transcription.

we found this model can proceed decoding with proper readable or
lexical transcription following the prompt, but it has a tendency to
hallucinate. Hallucination largely brings down the accuracy score
for the system, which would otherwise score comparably with the
other proposed approach disregarding the hallucination part.

We plan to experiment with adding one-hot based style-embedding
as in Fig. 2 (c) in addition to prompt in our future work to possibly
address the hallucination issue.

3.6. Discussion

Fig. 3 presents some real decoding examples of the proposed multi-
style AEDs. The readable and lexical style human transcription are
also provided as reference.

For the AED with style-dependent layer, we observe the read-
able branch output has better segmentation comparing to applying
DPP to the lexical hypothesis from the lexical branch. This is con-
sistent with our hypothesis that leveraging acoustic information can
help in segmentation comparing to using textual information alone.

For the AED with mixed-style output, we found that most of
the time, the system can successfully predict the tags following the
exact protocol used to compose the multi-style transcription during
training. However, when it fails, it can create an issue in extracting
the style-specific transcription. Fig. 3 shows such an example. For
m.M1, ⟨T ⟩ must be followed by one readable token and one lexi-
cal token including ⟨RN ⟩ and ⟨LN ⟩ for empty position. Noticeably,
in this example, the system failed to predict ⟨RN ⟩ in two locations,

which breaks the protocol and causes issues in properly decoding
numbers. Although the wordpieces for both readable and lexical
transcription are mostly correctly predicted, the style parser failed in
placing them in the right style, which results in transcription errors.
In comparison, m.M2 explicitly defines the starting and ending of
a section with different transcription using ⟨T ⟩ and ⟨/T ⟩. Inside the
section, different style transcription are separated by |. This design
covers longer span which can avoid the order mismatch between the
readable and lexical transcription. The above issue in m.M1 is re-
solved in m.M2. It is to be noted that the tag prediction is generally
highly accurate. As mentioned before, we also introduced simple
mechanisms to ignore the tag mistakes and resume the parsing from
the next mixed-style segment.

For the AED with style-dependent prompt, we observe some
segments are repeated, which is a kind of hallucination. Although it
is hard to identify the exact causes of hallucination, we believe one
contributing factor could be the complicated model sharing of dif-
ferent transcription styles in this architecture. Adding on-hot based
style embedding can potentially alleviate this issue.

4. CONCLUSIONS

We presented a framework to generate multi-style transcription in an
AED using three different architectures: (A) style-dependent layers;
(B) mixed-style output; (C) style-dependent prompt. In this frame-
work, multi-style transcription can be generated simultaneously or
separately, through a single or multiple decoding passes on-demand.
We show that the proposed framework can achieve nearly on-par per-
formance compared to the single-style AED. Moreover, it provides
an efficient data sharing mechanism across styles through knowl-
edge transfer. We provided comprehensive comparison of the three
approaches and pointed out the practical design consideration when
choosing a specific architecture.
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