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Abstract

Multi-objective reinforcement learning (MORL) has been proposed to learn control1

policies over multiple competing objectives with each possible preference over2

returns. However, current MORL algorithms fail to account for distributional3

preferences over the multi-variate returns, which are particularly important in real-4

world scenarios such as autonomous driving. To address this issue, we extend the5

concept of Pareto-optimality in MORL into distributional Pareto-optimality, which6

captures the optimality of return distributions, rather than the expectations. Our7

proposed method, called Distributional Pareto-Optimal Multi-Objective Reinforce-8

ment Learning (DPMORL), is capable of learning distributional Pareto-optimal9

policies that balance multiple objectives while considering the return uncertainty.10

We evaluated our method on several benchmark problems and demonstrated its11

effectiveness in discovering distributional Pareto-optimal policies and satisfying12

diverse distributional preferences compared to existing MORL methods.13

1 Introduction14

Multi-Objective Reinforcement Learning (MORL) has recently received extensive attention in the15

artificial intelligence realm due to its adeptness at managing intricate decision-making issues with16

multiple conflicting objectives [1, 2, 3, 4]. In many multi-objective tasks, the relative preferences of17

users over different objectives are typically indeterminate a priori. Consequently, MORL’s primary18

aim is to learn a variety of optimal policies under different preferences to approximate the Pareto19

frontier of optimal solutions. It has been demonstrated that MORL can significantly reduce the20

reliance on scalar reward design for objective combinations and dynamically adapt to the varying21

preferences of different users.22

However, numerous real-world situations involve not only unknown relative preferences across multi-23

ple objectives, but also uncertain preferences in return distributions. These may include preference in24

risk [5, 6], safety conditions [7], and non-linear user’s utility [8]. Consider, for instance, autonomous25

driving scenarios where agents need to strike a balance between safety and efficiency objectives.26

Different users might possess varying levels of risk tolerance. Some may demand high safety perfor-27

mance, tolerating lower expected efficiency, while others may seek a more balanced performance28

between safety and efficiency. Current MORL methods, by focusing exclusively on expected values29

with linear preferences, may not adequately capture multi-objective risk-sensitive preferences, hence30

being unable to deliver diverse policies catering to users with varied risk preferences.31

In this work, we broaden the concept of Pareto-optimality in MORL to encompass distributional32

Pareto-optimality, which prioritizes the optimality of return distributions over mere expectations.33

From a theoretical perspective, we define Distributional Pareto-Optimal (DPO) policies, which capture34

the optimality of multivariate distributions through stochastic dominance [9, 10]. Distributional35
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(a) MORL’s Pareto-front (b) Distributional MORL’s Pareto-
front

Figure 1: The comparison of learning targets between the traditional MORL tasks and distributional
MORL tasks, in which f1 and f2 are two (conflicting) objectives.

Pareto-Optimality delineates the set of policies with optimal return distributions, which we formally36

establish as an extension of Pareto-optimality in MORL.37

On the practical side, we propose a novel method named Distributional Pareto-Optimal Multi-38

Objective Reinforcement Learning (DPMORL). It aims to learn a set of DPO policies. We demonstrate39

that a policy achieving the highest expected utility for a given utility function is a DPO policy. We40

suggest an iterative process to learn diverse non-linear utility functions and optimize policies under41

them [11]. Experimental outcomes on several benchmark problems attest to DPMORL’s effectiveness42

in optimizing policies that meet preferences on multivariate return distributions. We posit that our43

proposed method significantly addresses the challenge of managing multiple conflicting objectives44

with unknown preferences on multivariate return distributions in complex decision-making situations.45

Our main contributions are listed as follows:46

1. We introduce the concept of Distributional Pareto-Optimal (DPO) policies. This expands47

the notion of Pareto optimality in MORL to include preferences over the entire distribution48

of returns, not just their expected values. This enables agents to express more nuanced49

preferences over policies and align their decisions more closely with their actual objectives.50

2. We propose DPMORL, a new algorithm for learning DPO policies under non-linear utility51

functions. This algorithm accommodates a broad range of distributional preferences, thus52

offering a more flexible and expressive approach to MORL.53

3. We execute extensive experiments on various MORL tasks, demonstrating the effectiveness54

of our approach in learning DPO policies. Our findings show that our algorithm consistently55

surpasses existing MORL methods in terms of optimizing policies for multivariate expected56

and distributional preferences, underscoring its practical benefits.57

2 Related Work58

Multi-Objective Reinforcement Learning. MORL has emerged as a vibrant research area in the AI59

community owing to its adeptness in managing intricate decision-making scenarios involving multiple60

conflicting objectives [1, 2]. A plethora of MORL algorithms have been put forth in the literature.61

For instance, [12] proposed the utilization of Generalized Policy Improvement (GPI) to infer a set of62

policies, employing Optimistic Linear Support (OLS) for dynamic reward weight exploration [13].63

This GPI-based learning process was further enhanced by [3] through the incorporation of a world64

model to augment sample efficiency. [4] proposed an evolutionary approach to learn policies with65

diverse weights. However, our proposed approach diverges from these by leveraging utility functions66

to guide policy learning [14, 15]. The utility-based paradigm, inspired by axiomatic approaches,67

accentuates the user’s utility in decision-making problems, capitalizing on known information about68

the user’s utility function and permissible policy types. Such methods scalarize the multi-dimensional69

objectives into a single reward function, enabling traditional RL algorithms to infer desirable policies,70

while also respecting axiomatic principles where necessary [2]. Several studies have utilized non-71

linear utility functions to guide policy learning, catering to more intricate preferences compared to72

linear ones [8, 16]. However, conventional MORL methodologies concentrate on optimizing the73

expected returns, neglecting the distributional characteristics of the returns. In contrast, our work74
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extends the utility-based MORL framework by learning a set of utility functions with distributional75

attributes to guide policy learning.76

Distributional Reinforcement Learning. Distributional RL extends traditional RL by modeling77

the entire distribution of returns, rather than just their expected values [17]. This approach has been78

shown to improve both learning efficiency and policy quality in a variety of single-objective RL79

tasks [18, 19]. Key algorithms in this area include Categorical DQN (C51) [17], Quantile Regression80

DQN (QR-DQN) [18], and Distributional MPO [19]. Despite the success of these distributional RL81

algorithms in single-objective settings, their direct extension to MORL has been limited due to the82

added complexity of handling multiple conflicting objectives and expressing preferences over the83

distribution of returns. On the other hand, the insights and techniques developed in distributional84

RL can provide a valuable foundation for incorporating distributional preferences into MORL, as85

demonstrated by our proposed approach.86

Risk-Sensitive and Safe Reinforcement Learning. Risk-sensitive and safe RL are special cases87

of MORL that accentuate specific facets of reward distributions [2]. Risk-sensitive RL primarily88

considers reward variance, striving to optimize policies that negotiate the trade-off between expected89

return and risk [20, 21, 22]. Conversely, safe RL prioritizes constraints on the agent’s behavior,90

ensuring adherence to specified safety criteria throughout the learning process [23, 24, 25]. Some91

studies have proposed the integration of constraints into the state space, constructing new Markov92

Decision Processes [7]. Others have explored the distributional aspects of rewards, investigating93

the implications of distributional RL on risk-sensitive and safety-oriented decision-making [18, 17].94

However, our proposed setting is more general in terms of objectives, as it considers a broader range of95

user preferences and captures the entire distribution of rewards, rather than focusing solely on specific96

aspects such as risk, variance, or constraints. By extending MORL to incorporate distributional97

properties, our approach enables the learning of distributional Pareto-optimal policies that cater to98

diverse user preferences and offer better decision-making in a wide range of real-world applications.99

3 Preliminaries: Multi-Objective Reinforcement Learning100

In Multi-Objective Reinforcement Learning (MORL), the agent interacts with an environment101

modeled as a Multi-Objective Markov Decision Process (MOMDP) with multi-dimensional reward102

functions. A Multi-Objective MDP is defined by a tuple (S,A, P, P0,R, γ, T ), where S is the state103

space, A is the action space, P is the state transition function, P0(s) is the initial state distribution,104

R : S × A × S → RK is a vectored reward function and K is the number of objectives, γ is the105

discount factor, T is the total timesteps1. The goal of the agent is to learn a set of Pareto-optimal106

policies, which represent the best possible trade-offs among the different objectives.107

One popular methodology for MORL problems is the utility-based method, which combines the108

multi-dimensional reward functions into a single scalar reward function using a weighted sum or109

another aggregation method [26]. The intuition is to map the agent’s preferences over different110

objectives to a scalar value for the agent training. Given a weight vector w = (w1, w2, . . . , wK),111

with wi representing the importance of the i-th objective, the scalarized reward function is defined112

as rscalar(s, a) =
∑K

i=1 wiri(s, a). The agent then solves the scalarized MDP by optimizing its113

policy to maximize the expected scalar reward, using standard reinforcement learning algorithms114

like Q-learning or policy gradient methods. This approach can be straightforward to implement and115

has been shown to be effective in various MORL settings under expected preferences [27]. However,116

such a linear combination of each dimension of the reward cannot deal with the preferences with117

distributional considerations.118

4 Distributionally Pareto-Optimal Multi-Objective Reinforcement Learning119

In this section, we introduce our proposed theoretical framework and algorithms for extending MORL120

to handle distributional preferences.121

4.1 Distributionally Pareto-Optimal Policies122

In this work, we consider the reward as a K-dimensional vector, where each element represents the123

reward for a specific objective. Given the MOMDP and a policy π, we define the random variable of124

1We assume that current time t is a part of state to accommodate for the finite horizon setting.
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multi-objective return as Z(π) =
∑T

t=0 γ
trt, where rt is the multi-dimensional reward at step t, and125

the states s0, s1, · · · , sT and actions a0, a1, · · · , aT are sampled from the MOMDP and the policy π126

respectively. The return distribution of policy π, denoted as µ(π), represents the joint distribution of127

the returns Z(π) following policy π. The utility function f is a non-decreasing function that maps a128

K-dimensional return into a scalar utility value, capturing the user’s distributional preferences over129

the different objectives. The expected utility of policy π under the utility function f , represented as130

Ez∼µ(π)f(z), is the expected value of applying f to the return distribution µ(π).131

Our goal is to learn a set of policies that are distributionally Pareto-optimal, which means that their132

return distributions of each policy cannot dominate that of another. To measure such a relationship,133

here we first introduce the concept of stochastic dominance:134

Definition 1 (Stochastic Dominance for Multivariate Distribution). A multivariate distribution135

µ1 dominates another distribution µ2, denoted as µ1 ≻SD µ2, if and only if µ1 ̸= µ2 and for136

any non-decreasing utility function f : RK → R, µ1 has greater expected utility than µ2, i.e.137

Ez∼µ1
f(z) ≥ Ez∼µ2

f(z).138

Definition 2 (Stochastic Dominance for Policies). A policy π1 stochastically dominates another139

policy π2, denoted as π1 ≻SD π2, if and only if µ(π1) ≻SD µ(π2), indicating π1 has greater140

expected utility than π2 under any non-decreasing utility function f .141
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(b) Stochastic Dominance Example 2
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(c) Stochastic Dominance Example 3

Figure 2: Three 2D examples of stochastic dominance given synthetic returns of two policies. (a)
π2 ≻SD π1, since any non-decreasing utility function satisfies Ef(Z(π2)) ≥ Ef(Z(π1)). (b) π1

and π2 cannot dominate each other. For example, there exists f(z) = ReLu(z0 − 5.0), such that
Ef(Z(π2)) > Ef(Z(π1)), thus π1 cannot dominate π2. Similarly, π2 cannot dominate π1. Thus
there is no dominant relationship between the two policies. (c) π1 and π2 cannot dominate each other,
which is similar to (b).

The definition of stochastic dominance extends univariate first-order stochastic dominance [9] into142

multivariate cases. Figure 2 provides some examples of stochastic dominance given 2D returns of two143

policies. The definition of stochastic dominance in policies allows for comparing the optimality of144

distributions between policies, which allows us to define the Distributionally Pareto-optimal policy:145

Definition 3 (Distributionally Pareto-Optimal Policy). Formally, π1 is Distributionally Pareto-146

Optimal Policy if there does not exist a policy π2 such that µ(π2) ≻SD µ(π1).147

In other words, π1 is considered Distributionally Pareto-Optimal (DPO) if it is not stochastically148

dominated by any other policy. This implies that π1 offers the highest expected utility under some149

non-decreasing utility function f and cannot be outperformed by any other policy in the problem.150

DPO policies are essential in our framework as they represent the most desirable policies for users151

with different distributional preferences. To find such a policy, we have the following theorem:152

Theorem 1. If a policy π has optimal expected utility under some non-decreasing utility func-153

tion f , then it is a Distributionally Pareto-Optimal policy. Also, any Pareto-Optimal policy is a154

Distributionally Pareto-Optimal policy.155

This theorem guarantees that a policy achieving the highest expected utility for a given utility function156

will be a DPO policy, making it a suitable candidate for deployment in MORL problems. In the157

next section, we base on the result of this theorem to find optimal policies for a diverse set of utility158

functions, in order to learn the set of DPO policies. This result also shows that our definition of159

Distributional Pareto-Optimal policies is an extension of Pareto-optimal policies, allowing for a more160

diverse set of optimal policies to be captured.161
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We also formally prove that optimal policies for risk-sensitive and safe constraint objectives belong162

to the set of Pareto-Optimal policies. This proves that DPO policies can successfully cover policies163

with diverse distributional preferences. The detailed proof is provided by Theorem 2 in Appendix A.164

4.2 Distributionally Pareto-Optimal Multi-Objective Reinforcement Learning165

We now present our proposed algorithm, Distributionally Pareto-Optimal Multi-Objective Reinforce-166

ment Learning (DPMORL). The main idea of DPMORL is to learn a set of non-linear utility functions167

that can guide the agent to discover distributional Pareto-optimal policies. The algorithm proceeds in168

two stages: (1) generating the utility functions and (2) training the policies.169

4.2.1 Utility Function Generation with Diversity-based Objective170

The first component of our algorithm focuses on generating a diverse set of plausible utility functions,171

upon which we find the optimal policies to find a diverse set of optimal policies. This is essential172

to ensure our method can accommodate various distributional preferences and adapt to different173

problem settings. To achieve this, we propose (1) Non-decreasing Neural Network for parameterizing174

a diverse set of non-linear utility functions (2) an objective function of minimum distance which175

encourages generating a diverse set of utility functions.176

Non-decreasing Neural Network. We employ non-decreasing neural network to parameterize177

the utility function. The use of a neural network allows us to represent complex, non-linear, and178

arbitrary continuous utility functions, while the non-decreasing constraint ensures that the utility179

function satisfies the desired properties for multi-objective problems. We ensure the non-decreasing180

property in neural networks by constraining the weight matrix to be non-negative and the activation181

function to be non-decreasing following existing work in convex neural networks [28] and QMIX182

[29], which can approximate any multivariate non-decreasing function with arbitrary small errors183

[30]. The implementation details of the Non-decreasing Neural Network are provided in Appendix B.184

Diversity-based Objective Function. We propose an objective function based on diversity for185

learning a diverse set of plausible utility functions. Specifically, we define fθ1 , fθ2 , · · · , fθM to be186

the set of candidate utility functions, parameterized by θ1, · · · , θM . For any given utility function187

fθi , the learning objective is defined as188

Jvalue(θi) = min
j ̸=i

Ez∼U([0,1]K)[fθi(z)− fθj (z)]
2 (1)

Jgrad(θi) = min
j ̸=i

Ez1,z2∼U([0,1]K)

[
fθi(z2)− fθi(z1)

∥z2 − z1∥
−

fθj (z2)− fθj (z1)

∥z2 − z1∥

]2
(2)

J(θi) = αJvalue(θi) + (1− α)Jgrad(θi) (3)

189 Optimizing this objective function can encourage diversity among the generated utility functions190

within range [0, 1]K in both value and derivative, leading to more comprehensive coverage of potential191

user preferences. We maximize the objective function by gradient descent on non-decreasing neural192

networks to generate a set of N utility functions.193

4.2.2 Optimizing Policy with Utility-based Reinforcement Learning194

Once we have generated a diverse set of utility functions, the second component of our algorithm195

focuses on optimizing policies to maximize the expected utility. This process, known as utility-based196

RL, leverages the generated utility functions to guide the optimization of policies. By focusing on the197

expected utility, our method can efficiently balance the trade-offs between multiple objectives and198

distributions, ultimately yielding policies that are more likely to align with user preferences.199

We show that the following utility-based reinforcement learning algorithm can effectively optimize200

the policy with respect to a given utility function.201
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Algorithm 1 Utility-based Reinforcement Learning
Input: policy π, an environment M = (S,A, P, P0,R, γ, T ), utility function f
Output: new policy π′

1: Augment state space with S̃ = S × Z , where Z is the space of cumulative multivariate returns.
2: Let transition P̃0(·) and P̃ (·|(st, zt), at) with s0 ∼ P (s0), z0 = 0, and st+1 ∼ P (·|st, at),

zt+1 = zt + γtrt.
3: Let scalar reward function R as R((st, zt), at, (st+1, zt+1)) = γ−t[f(zt+1)− f(zt)].
4: Optimize policy π under environment M̃ = (S̃, A, P̃ , P̃0, R, γ, T ) under off-the-shelf RL

algorithm (such as PPO or SAC) to π′.

Briefly, Algorithm 1 augments the state space with the cumulative multi-objective returns, and202

transforms the multi-dimensional rewards into a scalar reward by the difference in the utility function203

f . The following result shows that the new scalar-reward environment M̃ generated by Algorithm 1204

has the same optimal policy as the optimal policy under utility function f :205

Theorem 2. The optimal policy π∗ under environment M̃ = (S̃, A, P̃ , P̃0, R, γ, T ), with scalar206

reward function207

R((st, zt), at, (st+1, zt+1)) = γ−t[f(zt+1)− f(zt)]

is the optimal policy in the utility function f , i.e.208

Ez∼µ(π∗) [f(z)] = max
π

Ez∼µ(π) [f(z)] .

An advantage of Algorithm 1 is that we can directly utilize off-the-shelf RL algorithms, such as209

PPO [31] and SAC [32] without any modification, which makes the algorithm easy to implement210

using widespread existing implementations of online RL algorithms.211

It is also important to note that our algorithm simplifies to optimizing the weighted sum of rewards212

in MORL when the utility function is linear. This implies that our method is a generalization of213

the linear utility function MORL approaches by accommodating a wide range of non-linear utility214

functions. This flexibility makes our algorithm particularly suited for problems where the user’s215

preferences may not be adequately captured by a linear utility function.216

4.2.3 Iterative Generation of Utility Function and Policies Optimization217

The range of multi-objective returns may not be known prior to policy optimization, which could218

make it challenging to generate relevant utility functions for a specific task. To mitigate this issue, we219

introduce an iterative process that alternates between generating currently plausible utility functions220

and optimizing policies based on these functions. During each iteration, we gather return samples221

throughout the optimization process and update the utility function. This update is particularly aimed222

at enhancing the diversity of the utility function with respect to the returns observed during the223

optimization process. A detailed outline of the algorithm can be found in Appendix C.224

In the next experimental section, DPMORL only undergoes a single iteration: we initially generate a225

set of N utility functions as per the methodology detailed in Section 4.2.1. Subsequently, it optimizes226

a set of N policies using these generated utility functions, as outlined in Section 4.2.2. In Appendix227

C, we provide a case study demonstrating the application of DPMORL in an iterative training context.228

5 Experiments229

In this section, we conducted several experiments under the setting of MORL. Through the experi-230

ments, we want to investigate the following questions:231

1. Can Utility-based RL effectively learn policies with diverse distributional preferences?232

2. Can DPMORL generate a set of diverse non-linear utility functions?233

3. Can DPMORL obtain promising performance compared with state-of-the-art MORL meth-234

ods in view of expected and distributional preferences?235
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(a) (b)

Figure 3: (a) The map of the DiverseGoal environment. (b) Reward distribution within each goal
position.

(a)

(b)

(c)

Figure 4: (a) Utility function used for training policies. (b) Return distribution of policy learned
by Algorithm 1 to maximize expected utility for each utility function. (c) The trajectory of policies
learned by maximizing expected utility for each utility function.

5.1 Case Study on DiverseGoal Environment236

To answer the first question, we train policies with a diverse set of utility functions on DiverseGoal,237

an environment that provides a diverse set of reward distributions.238

DiverseGoal is a MORL environment in Figure 3 with multiple goals that the agent can take multiple239

steps to reach, where each goal has its unique reward distributions. Upon reaching a particular goal,240

the agent secures a 2D reward. This reward is sampled from the specific distribution associated with241

that goal, as illustrated in Figure 3b. Conversely, if the agent reaches the boundary of the map, it242

incurs a negative 2-dimensional reward. The environment requires the agent to navigate the trade-offs243

between various reward distributions, underscoring the complexity and nuance inherent to the task.244

Here, we focus on showing the effectiveness of the Utility-based RL algorithm (Algorithm 1). We245

select six different non-linear functions f0, f1, · · · , f5, each in favor of distributions at one goal. We246

train policy πi with utility function fi with Algorithm 1 where i = 0, 1, · · · , 5, and show the policy’s247

trajectory and return samples. Ideally, the learned policy should reach the goal that yields the highest248

expected utility under the utility function. The results are illustrated in Figure 3. Under different type249

of utility function and return distributions, the utility-based RL algorithm is able to find the optimal250

policy with highest expected utility, which shows the effectiveness of the utility-based RL algorithm.251

5.2 Main Experiment252

In this section, we illustrate the performance of DPMORL on five environments based on MO-253

Gymnasium [33] to answer the latter two questions.254
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Figure 5: Illustration of 2D utility functions learned by our methods in Section 4.2.1.

Environments. We conducted experiments across five environments based on MO-Gymnasium [33]255

to evaluate the performance of our proposed method, DPMORL. These environments represent a256

diverse range of tasks, from simple toy problems to more complex continuous control tasks, and257

cover various aspects of multi-objective reinforcement learning:258

• DeepSeaTreasure: A classic MORL benchmark that requires exploration in a gridworld to259

find treasures with different values and depths.260

• FruitTree: A multi-objective variant of the classic gridworld problem, where an agent has to261

collect different types of fruits with varying rewards and penalties.262

• HalCheetah, Hopper, MountainCar: Three continuous control tasks that require controlling263

different agents for task solving and minimizing energy usage.264

More details about the environments are gathered in Appendix C.265

Baselines. We compare DPMORL with four state-of-the-art baselines in the context of distributional266

preferences of MORL: Optimistic Linear Support (OLS) [34, 12]; Prediction-Guided Multi-Objective267

Reinforcement Learning (PGMORL) [4]; Generalized Policy Improvement with Linear Support268

(GPI-LS) [3]; Generalized Policy Improvement with Prioritized Dyna (GPI-PD) [3].269

Training Details. For all methods, including DPMORL and the baselines, each policy was trained270

for 1× 107 steps. We learn a set of N = 20 policies for DPMORL and all of the baselines to ensure271

a fair comparison. Finally, we use the learned N = 20 policies in each method for evaluations.272

Implementation Details. We use PPO algorithms implemented in Stable Baselines 3 [35] in273

Algorithm 1. We use a normalization technique by linearly mapping the return into scale [0, 1]K274

without modifying the optimal policies. Detailed implementations are provided in Appendix B.275

Evaluation Metrics. To thoroughly evaluate the performance of DPMORL and compare it with276

the baseline methods, we employed four distinct metrics. These comprise two existing MORL277

metrics, HyperVolume and Expected Utility, in addition to two novel metrics developed specifically278

for assessing distributional preference, i.e., Constraint Satisfaction and Variance Objective. The latter279

two are designed to underscore the optimality of multivariate distributions associated with the learned280

policies. In terms of Constraint Satisfaction, we randomly generate M = 100 constraints for the281

policy set produced. The Constraint Satisfaction metric is then computed by considering the highest282

probability within the policy set that satisfies each individual constraint. The Variance Objective283

metric, on the other hand, involves generating M = 100 random linear weights. These weights284

are applied to both the expected returns and the standard deviations of returns in each dimension.285

This objective encourages attaining greater expected returns while simultaneously reducing variance,286

thereby catering to dynamic preferences. Further details about the implementation of these evaluation287

metrics are provided in Appendix B.288

5.3 Results289

Since PGMORL works on continuous action spaces, here we omit the results of PGMORL on290

environments with discrete action space, DeepSeaTreasure and FruitTree. More results are gathered291

in Appendix C.292
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Table 1: Experimental results of each method on each standard MORL metric on all five environments.
“EU” stands for Expected Utility, and “HV” stands for Hypervolume.

Environment Hopper HalfCheetah MountainCar DeepSeaTreasure FruitTree
Metric EU HV EU HV EU HV EU HV EU HV

GPI-PD 2374.44 5033458.34 412.62 1083227.57 -55.44 7367.59 5.93 9.75 6.98 0.14
GPI-LS 1398.00 1446705.10 98.31 2839051.60 -37.37 8052.58 5.04 9.36 3.84 1.49

OLS 175.07 3298.13 -580.38 1420270.13 -470.00 2.45 4.64 10.28 6.27 7.49
PGMORL 300.19 32621.25 111.30 383681.25 -429.48 94.45 - - - -

DPMORL (Ours) 3492.93 12154967.99 1189.68 8593769.62 -29.89 8663.80 6.70 8.68 6.89 16.39

Table 2: Experimental results of each method on Distributional metric on all five environments.
“Constraints” stands for Constraints Satisfaction, and “Var” stands for Variance Objective.

Environment Hopper HalfCheetah MountainCar DeepSeaTreasure FruitTree
Metric Constraints Var Constraint Var Constraint Var Constraint Var Constraint Var

GPI-PD 0.47 979.74 0.64 83.49 1.00 -31.15 0.85 2.59 0.65 3.42
GPI-LS 0.25 607.47 0.60 51.67 1.00 -22.73 0.85 1.99 0.33 1.35

OLS 0.05 75.48 0.43 -311.27 0.05 -244.21 0.80 1.86 0.50 2.98
PGMORL 0.05 98.47 0.50 45.48 0.11 -249.69 - - - -

DPMORL (Ours) 0.76 1645.89 0.82 431.26 1.00 -16.32 0.90 2.54 0.67 3.21

Generation of Utility Functions. In accordance with the methodology detailed in Section 4.2.1,293

we employ non-decreasing neural networks in conjunction with diversity-focused objectives to294

generate a diverse assortment of utility functions. The generated functions are visually represented in295

Figure 5. The outcomes clearly indicate that optimizing diversity-based objective functions allows296

for generating a broad range of non-linear utility functions, thereby encompassing an expansive array297

of preferences with respect to returns. Subsequently, we utilize the first N = 20 utility functions298

depicted in Figure 5 to train an equivalent number of policies under DPMORL.299

Standard MORL Metrics. The results under standard MORL metrics are shown in Table 1. Focusing300

on the Expected Utility, the performance of DPMORL is the highest in the Hopper, HalfCheetah,301

MountainCar, and DeepSeaTreasure environments (4/5), indicating that our method outperforms302

others in terms of expected utility. While for FruitTree environment, DPMORL also obtains consistent303

performance with the best contender, GPI-LS. In terms of the HyperVolume, DPMORL also performs304

the best in the Hopper, HalfCheetah, MountainCar, and FruitTree environments (4/5). The results show305

that DPMORL can yield better performance across both metrics and most environments (Hopper,306

HalfCheetah, MountainCar, and DeepSeaTreasure), meanwhile delivering robust and consistent307

results on the other one (FruitTree).308

Distributional MORL Metrics. The results under distributional metrics are shown in Table 2.309

DPMORL outperforms other methods in most environments on both Constraint Satisfaction (5/5)310

and Variance Objective (3/5), indicating its strong ability to handle the distributional multi-objective311

reinforcement learning problem. For the rest environments, DPMORL also obtained comparable312

results compared with the best contender, GPI-LS. The results show that the policies learned by313

DPMORL have a higher probability of satisfying randomly generated constraints, and can better314

balance the trade-off between expectations and variances.315

Return Distributions of Learned Policies by DPMORL. We provide visualizations of the multi-316

dimensional return distributions of each policy learned by DPMORL on all five environments. On317

Hopper, HalfCheetah, DeepSeaTreasure and FruitTree, DPMORL learns a diverse set of policies318

with different distributional properties in returns. We also visualize the learning process of different319

policies. We provide these results in Appendix C.320

6 Conclusion321

In this work, we initialized the study of distributional MORL, specifically when preferences over322

different objectives and their return distributions are uncertain. We introduced the concept of323

Distributional Pareto-Optimal (DPO) policies with rigorous theoretical analysis, which extend the324

notion of Pareto optimality in MORL to include preferences over the entire distribution of returns, not325

just their expected values. To obtain such desirable policies, we proposed a new algorithm, DPMORL,326

designed to learn DPO policies with non-linear utility functions. DPMORL allows for expressing327

a wide range of distributional preferences, providing a flexible and expressive approach to MORL.328

Experiment results showed that DPMORL consistently outperformed existing MORL methods in329

terms of optimizing policies for multivariate expected and distributional preferences.330
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