
Grace: Language Models Meet Code Edits
Priyanshu Gupta∗

priyansgupta@microsoft.com
Microsoft
India

Avishree Khare∗†
akhare@seas.upenn.edu

University of Pennsylvania
USA

Yasharth Bajpai
ybajpai@microsoft.com

Microsoft
India

Saikat Chakraborty
saikatc@microsoft.com
Microsoft Research

USA

Sumit Gulwani
sumitg@microsoft.com

Microsoft
USA

Aditya Kanade
kanadeaditya@microsoft.com

Microsoft Research
India

Arjun Radhakrishna
arradha@microsoft.com

Microsoft
USA

Gustavo Soares
gsoares@microsoft.com

Microsoft
USA

Ashish Tiwari
astiwar@microsoft.com

Microsoft
USA

ABSTRACT

Developers spend a significant amount of time in editing code for
a variety of reasons such as bug fixing or adding new features. De-
signing effective methods to predict code edits has been an active
yet challenging area of research due to the diversity of code edits
and the difficulty of capturing the developer intent. In this work, we
address these challenges by endowing pre-trained large language
models (LLMs) with the knowledge of relevant prior associated ed-
its, which we call the Grace (Generation conditioned on Associated
Code Edits) method. The generative capability of the LLMs helps
address the diversity in code changes and conditioning code gener-
ation on prior edits helps capture the latent developer intent. We
evaluate two well-known LLMs, codex and CodeT5, in zero-shot
and fine-tuning settings respectively. In our experiments with two
datasets, Grace boosts the performance of the LLMs significantly,
enabling them to generate 29% and 54% more correctly-edited code
in top-1 suggestions relative to the current state-of-the-art symbolic
and neural approaches, respectively.

CCS CONCEPTS

• Software and its engineering→ Software evolution; Auto-
matic programming; • Computing methodologies→ Artificial

intelligence.

KEYWORDS

Code editing, Associated edits, Large language models, Pre-trained
model, Programming language processing

∗Both authors contributed equally to this work.
†Work done while at Microsoft

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616253

ACM Reference Format:

Priyanshu Gupta, Avishree Khare, Yasharth Bajpai, Saikat Chakraborty,
Sumit Gulwani, Aditya Kanade, Arjun Radhakrishna, Gustavo Soares, andAshish
Tiwari. 2023. Grace: Language Models Meet Code Edits. In Proceedings of

the 31st ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE ’23), December

3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/3611643.3616253

1 INTRODUCTION

Maintaining and modifying existing code takes up a considerable
portion of a developer’s time compared to writing new code [9, 39].
Due to the high cost of software maintenance [31, 34], popular Inte-
grated Development Environments (IDEs) have tooling to support
developers as they refactor code [25, 26, 44], fix defects, adapt code
to changes in the environment, or add support for new or changed
requirements [33, 44]. One desirable feature is code edit suggestions
wherein the tools use the location where the developer is editing
code, and the surrounding code context, to generate candidate edits
to recommend [43, 67].

To automate code edit suggestions, researchers have proposed
several approaches to learn edit patterns from edits in source code
repositories [7, 19, 35, 55]. However, these approaches suffer from
two key limitations: (1) They focus on individual edits and learn
program transformation rules for them. We note that edits are not
performed in isolation. Developers make changes at one location,
then jump to another, and then maybe back to the first location to
make further changes [36]. The edits that developers make to the
code at different locations may not be identical, but they are often
interrelated. In fact, the next edit often depends on the previously
performed edits [67]. Learning one-step edit patterns limits the
ability of these approaches to accurately predict the most likely
next edit. (2) The symbolic program transformation rules can only
slice and dice the existing code and compose its pieces to create
code – they cannot generate new code whose pieces do not already
occur in the existing version. This limits the expressiveness of these
approaches in terms of the types of edits that they can predict.

Unlike symbolic program transformation rules, neural language
models have the capability to generate new code that does not

https://doi.org/10.1145/3611643.3616253
https://doi.org/10.1145/3611643.3616253

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

necessarily occur in the surrounding code context. The pre-trained
large language models (LLMs) like codex [16] and CodeT5 [62]
have been shown to be highly proficient at generating code. In
fact, they are already impacting software engineering in significant
ways, e.g., through popular code completion tools like GitHub
Copilot [28]. However, when it comes to editing code, without the
knowledge of previous edits, these models are unable to infer the
developers’ intent and fail to generate code that should be used to
replace existing code in the next edit. In this work, we explore ways
to predict code edits using LLMs by conditioning code generation
on prior, relevant edits. We call such prior edits associated edits

and this methodology as Generation conditioned on Associated Code

Edits (Grace).
In recent times, there have been a few attempts to leverage

past history of code evolution to learn to edit code [10, 54, 67].
overwatch [67] is a symbolic technique that mines "edit sequence
patterns". Such a pattern is essentially a program transformation
rule whose application is conditioned on the prior application of
some other program transformation rules. Being a pattern-based
technique, overwatch suffers from the inability to generate new
code, and it also requires significant engineering effort to build
the underlying symbolic pattern-learning engine. c3po [10] is a
neural model to predict the next edit at a location, given the edits
only in the spatial vicinity of that location. While reliance on such
spatially related edits shows initial promise towards automation in
code editing, the hypothesis may not always hold true—developers
may edit two locations simultaneously that are far away from each
other spatially [36]. In this work, we attempt to relax this reliance,
and do not restrict associated edits to be the ones that occur in
the spatial vicinity of the location under consideration. We show
that associated edits obtained from temporal history can also be
useful. Further, the c3po model is a custom model that generates
the edited code by copy-pasting existing code fragments and is
therefore unable to generate new code (similar to the symbolic
techniques including overwatch).

EditPro [54] is a recent neural model that aims to learn the edit
process for natural language documents and code files. It proposes
a special multi-step procedure where the model first predicts token-
wise edit actions (insert, delete, etc.), which are then subsequently
applied to the code. The edit actions requiring code generation,
such as insert and replace, require a separate decoding step. Edit-
Pro experiments with single-line edits, whereas our datasets con-
tain multi-line edits. Instead of training a new type of model from
scratch, which can be expensive and requires a significant amount
of data, Grace allows us to repurpose the already powerful LLMs
to generate edited code.

We demonstrate the benefits of our approach in two settings:
(1) zero-shot setting in which the LLM is used out-of-the-boxwithout
additional training but with an informative prompt about associated
edits and (2) fine-tuning setting in which the LLM is fine-tuned on
data annotated with associated edits. In both cases, our results show
significant benefits of conditioning existing LLMs on associated
edits without having to pay the price of designing and training
specialized models from scratch.

In our experiments, we use the code-editing benchmarks from
overwatch and c3po. As the baseline LLMs, we use the codex-
davinci model in the zero-shot setting and the CodeT5 model

(220M params) in the fine-tuning setting. We show that the use of
associated edits helps boost the ability of these models to predict
the next edit compared to the pre-trained models used without
associated edits. In the case of codex-davinci, we get improve-
ments of 17% and 30% (in absolute terms) for the Overwatch and
C3PO datasets, and improvement of 7.45% and 9.64% in the case
of CodeT5. We also compare codex-davinci with associated-edit
prompting and the fine-tuned CodeT5 model with the overwatch
and c3po methods on the respective datasets. All our models sub-
stantially outperform these methods on their own datasets by a
significant margin. Our best models outperform overwatch on its
dataset by 10.92% and c3po on its dataset by 28.63% (absolute): this
is 28.61% and 53.82% relative improvement respectively. EditPro
dataset and model have not been released by the authors yet, there-
fore, we were unable to compare against it. Both overwatch and
c3po construct edited code from existing or past code, whereas we
use LLMs that are capable of generating new code. We show that
this makes our approach more general, and we can predict code
edits that are often out-of-scope for these approaches.

In summary, we make the following contributions:

(1) We consider a practically important software-engineering
problem of predicting code edits and propose Grace, a novel
method of leveraging powerful LLMs to predict code edits
by conditioning them on prior edits.

(2) Through experimentation on two datasets, we show that
using Grace we can substantially improve performance of
LLMs in zero-shot or fine-tuning settings.

(3) Grace is superior to the state-of-the-art symbolic or neural
methods designed specifically to handle code edits.

(4) We conduct experiments to thoroughly evaluate Grace and
report insights gleaned from them.

2 MOTIVATING EXAMPLE

In this section, we motivate Grace by using a concrete code
development scenario. We further discuss how this approach differs
from existing approaches.

Illustrative example: Consider a developer refactoring code
shown in Figure 1a as Version 𝑣1. The goal of the developer is to use
SerializationException provided by the System.Runtime.Serialization

namespace to get to Version 𝑣3 shown in Figure 1c. Let us say that
the developer first replaces Exception on line 250 in Version 𝑣1 with
SerializationException to create Version 𝑣2 shown in Figure 1b. This
edit required to go from Version 𝑣1 to Version 𝑣2 is denoted as 𝛿1,2.
The developer’s cursor then moves to Line 3 of Version 𝑣2 and our
goal is to predict the next edit the developer will perform to reach
Version 𝑣3, namely the edit 𝛿2,3.

Conditioning on prior edits: The task of predicting the edit
𝛿2,3 is non-trivial. The code in Version 𝑣2 has some useful informa-
tion; for example, the code indicates that SerializationException is
defined on Line 250 of Version 𝑣2 but the required System.Runtime

.Serialization namespace hasn’t been imported anywhere. This
signal, however, is faintly present within 250 lines of additional
spatial context and the relationship between the added Exception
and the required import is lost. This relationship is an important
piece of information that is required to insert the using statement

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 using System;

2 using System.Linq;

3 using System.Text; ...

250 catch (Exception)

251 ...

(a) Version 𝑣1

1 using System;

2 using System.Linq;

3 using System.Text; ...

250 - catch (Exception)

250 + catch (SerializationException)

(b) Version 𝑣2 with associated edit 𝛿1,2

1 using System;

2 using System.Linq;

3 + using System.Runtime.Serialization;

4 using System.Text; ...

251 catch (SerializationException)

(c) Version 𝑣3 with target edit 𝛿2,3

Figure 1: The developer performs edit 𝛿1,2 to go from Version 𝑣1 of their code to Version 𝑣2. This edit serves as an associated edit

that helps with predicting the edit 𝛿2,3 needed to go from Version 𝑣2 to 𝑣3.

Table 1: Comparison of different approaches on the example from Figure 1

Technique Prediction Correct?

c3po No Response (alien insertion) ✗

overwatch No Response (no matching pattern) ✗

code-davinci-edit-1 Empty Response ✗

codex-davinci without associated edits using System.Net.Http; ✗

CodeT5 without associated edits using System.Threading; ✗

codex-davinci with associated edits (Our approach) using System.Runtime.Serialization; ✓

CodeT5 with associated edits (Our approach) using System.Runtime.Serialization; ✓

on Line 3 of Version 𝑣3. Our first key observation for improving pre-

diction of code updates is that it should be conditioned on related edits

from the past. In the above scenario, we want to predict the update
to Version 𝑣2 by also looking at the how Version 𝑣2 was created
from Version 𝑣1. The edit 𝛿1,2 is an associated edit. In this example,
there is just one associated edit, but in general there can be multiple
previous edits picked as associated edits.

There has been some recent work on predicting code changes
conditioned on previous changes [10, 67]. We now discuss how
these approaches work on the illustrative example. Table 1 shows
the predictions of various techniques on the target.

c3po: c3po is a path-based edit prediction method that generates
an edit script to predict subsequent edits. It uses a pointer network
to pick valid target edits at 𝑣2 by attending to 𝛿1,2, represented
as an edit path in the AST. As these target edits can only refer to
nodes in the ASTs at 𝑣2 and 𝛿1,2, the pointer network does not have
access to the Serialization token needed to be inserted on Line 3.
Therefore, c3po would filter out above-mentioned example in its
training and testing pipelines categorizing it as an ‘alien insertion’.
When c3po finetuned on the overwatch train set is used to predict
𝛿2,3, it incorrectly suggests picking an existing using statement.

overwatch: overwatch is a symbolic procedure that learns
(abstract syntax) tree transformation rules from example edit se-
quences in the training data, and then makes predictions by apply-
ing those rewrite rules. The above-mentioned example does not
match any of the ∼ 50 patterns that the authors released in [67].
Thus, out of the box, overwatch would not be able to provide any
suggestion because of unavailability of a matching pattern for the
target edit in the example. If we provide enough edit sequences
similar to “𝛿1,2 followed by 𝛿2,3” as training data to overwatch,
then it might learn a few edit patterns depending on the examples
it gets and the order in which they are generalized. The only two
useful patterns that could be learned would be either (1) “the substi-
tution of Exception by SerializedException is followed by importing
the System.Runtime.Serialization namespace”, or (2) “the substitution

of Exception by a placeholder Type is followed by importing a place-
holder namespace.” While pattern (1) would return the correct re-
sponse, it is an “overfit pattern” that does not generalize to other
changes in the substituted type. Pattern (2) is too general and cannot
generate a concrete suggestion due to the unbound placeholder.

Using LLMs: The approaches discussed above cannot gener-
ate the right predictions either when the target requires a new
token (c3po) or when it cannot match an existing learned pattern
(overwatch). LLMs of Code have emerged as competitive code
completion tools that offer generative capabilities. This leads to
our second key observation: LLMs can handle diverse editing sce-

narios including those that involve generation of new tokens.We now
discuss how these models work on the illustrative example.

LLMs without associated edits: First, let us consider how a
modern code completion tool (based on powerful LLMs) will at-
tempt to predict the new code at Line 3 of Version 𝑣3. Code com-
pletion tools, like codex-davinci, look at the current snapshot of
the code to make predictions. In other words, the tool will look
at Version 𝑣2 to predict Version 𝑣3. When we provide code from
version 𝑣2 to codex-davinci, it correctly predicts that something
should be imported, but it predicts an incorrect namespace. If we
use code-davinci-edit-1, the editing variant of codex-davinci
that allows you to provide instructions for editing, the prediction
continues to remain incorrect.

LLMs with Grace: Following our two key observations, we
present the edit 𝛿1,2 to codex-davinci, along with Line 3 of Version
𝑣2 that needs to be updated. Now, the model successfully predicts
that the updated code would be Line 3 of Version 𝑣3. We discuss
the prompt design in detail in Section 4.2.

We found that this utility of associated edits for edit prediction
also extends to other models: a base CodeT5 model fine-tuned
to predict 𝛿2,3 using 𝑣2 incorrectly predicts System.Threading while
the same model fine-tuned to additionally use 𝛿1,2 to make the
prediction gets the import right.

By building a code change prediction model over a code gener-
ation model, we are able to extend the scope of edit predictions.
Moreover, we are able to also perform better than the existing works

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

on the subset of the benchmarks that are in their scope. We dis-
cuss our quantitative performance on these benchmarks compared
to c3po and overwatch in Sections 5.4 and 5.5 respectively. We
further present a qualitative analysis of the results in Section 5.6.

3 ASSOCIATED CODE UPDATES

We define the associated code update task in this section. The
associated code update task is inspired from the EditCompletion
task [10] and the edit likelihood prediction task [54].

Let 𝑣0, . . . , 𝑣𝑛 be a sequence of versions of a source code file. An
edit 𝛿𝑖, 𝑗 is the difference between two versions, 𝑣𝑖 and 𝑣 𝑗 . We view
𝛿𝑖, 𝑗 as a function that returns 𝑣 𝑗 on the input 𝑣𝑖 , i.e., 𝛿𝑖, 𝑗 (𝑣𝑖) = 𝑣 𝑗 .
Furthermore, an associated edit Δ𝑖 is 𝛿 𝑗,𝑘 , for some 0 ≤ 𝑗 < 𝑘 < 𝑛.
Given the𝑚 associated edits Δ1,Δ2, . . . ,Δ𝑚 and the version 𝑣𝑛−1
along with locations 𝐿 in 𝑣𝑛−1, the associated code update task is
to predict version 𝑣𝑛 assuming only the locations 𝐿 in 𝑣𝑛−1 are
updated. We thus want to model the probability

𝑃 (𝑣𝑛 | 𝐿, 𝑣𝑛−1,Δ1,Δ2, . . . ,Δ𝑚)

We next make a few remarks about the problem formulation above.
First, the 𝑛 − 1 versions 𝑣0, 𝑣1, . . . , 𝑣𝑛−2 need not necessarily match
the history of the underlying source code file. The actual historical
versions can be different, and in fact, in the formulation above, it is
not the complete versions themselves, but the edits Δ𝑖 that are used
in the prediction task. The only version that is important here is
the current version 𝑣𝑛−1. Furthermore, the set of𝑚 past edits need
not even be the exhaustive set of all temporally consecutive edits;
they could be a subset of the edits that have been performed so far.
Hence, Δ𝑖 doesn’t necessarily have to be 𝛿𝑖−1,𝑖 .

Second, the edits are allowed to be spatially far away from each
other and from the target locations 𝐿 in Version 𝑣𝑛−1. While an edit
Δ𝑖 that modifies locations close to the target locations 𝐿 is likely to
be useful to include in the set𝑚 of edits, edits farther away from 𝐿

may also be relevant. We makes no assumption on spatial locality
of edits in contrast to the EditCompletion task in [10].

3.1 Assumptions about Sub-Problems

Our problem formulation above abstracts away three important
and challenging related sub-problems that are crucial to build an
end-to-end tool. These three sub-problems are: (1) edit localization,
(2) edit granularity, and (3) associated edits identification. The as-
sociated code update problem formulation assumes that we have
some solution for these three related problems.

Edit localization: The edit localization problem seeks to find
the locations 𝐿 where the developer should make edits. How we
get these locations is dependent on the application. For example,
in an IDE, cursor location is a good indicator of where the devel-
oper wants to make changes. Another option is to build a model
that predicts the next edit location given prior associated edits. In
overwatch [67], locations were picked based on whether certain
learned patterns matched the code at those locations. The patterns
that were matched against were selected conditioned on the past
applications of associated edit patterns.

Edit granularity: The edit granularity problem refers to the
issue of defining what constitutes an “edit”. We assume that we have
heuristics to define when a local code change qualifies as a single

edit. All changes between two versions that successfully parse can
be used as a definition of a single edit, as in the work [45]. Another
heuristic could be to combine all changes that occur within a small
spatial vicinity of each other (in a commit) as a single edit [10].

Associated edits: The associated edits problem seeks to find
edits from the past history that would be most useful in predicting
changes at the given locations 𝐿 in the current version 𝑣𝑛 of the
source code file. Edits that are spatially close to the target loca-
tions 𝐿 are likely relevant [10]. Similarly, edits that are temporally
close – that is, edits that happened in the recent past – are also
likely candidates for being relevant. We can use some combina-
tion of temporal and spatial proximity to obtain a candidate set
of relevant edits [67]. For predicting updates on a target location,
the temporally-proximal edits can indicate the developer’s editing
intent and the spatially-proximal edits can assist in providing mean-
ing to the target snippet. We can even further selectively choose
from the edits in the spatio-temporal vicinity of the target locations
using the approach in a recent work that mines relevant edits based
on their syntactic structure and their likelihood of occurring to-
gether [67]. We can use any or all of these approaches to construct
the set of relevant edits. Our goal is to show that even when the
relevant edits are heuristically generated, using them for associated
code update predictions can be very beneficial.

3.2 Related Problem Formulations

Existing auto-regressive LLMs, such as, gpt3 and codex, predict
completions for a given prompt. If the prompt contains the current
version 𝑣𝑛−1 of the artifact, then these LLMs predict text that is
meant to be appended to 𝑣𝑛−1 to generate the new version 𝑣𝑛 .
These models rely on the text in the spatial vicinity of the change-
locations 𝐿 to make predictions. In our terminology, these models
are modeling the probability 𝑃 (𝑣𝑛 | 𝑣𝑛−1). This is clearly different
from the problem we are considering. We demonstrate that the
associated code update formulation yields a simple yet effective
way of improving LLM performance on software development tasks.

The EditCompletion task in [10] is formalized as a study of
𝑃 (𝛿2,3 | 𝐿, 𝑣2, 𝛿0,1, 𝛿1,2) where the two given edits are edits per-
formed in the spatial vicinity of the current location, one before
and one after the current location. The EditCompletion task does
not consider relevant edits that may be spatially distant. Our prob-
lem formulation is a generalization of EditCompletion problem,
and in fact, we use the benchmarks from [10] for evaluation. As
discussed in the introduction, our approaches are different too.

The edit likelihood prediction problem [54] explicitly consid-
ers the study of 𝑃 (𝑣𝑛 | 𝑣0, 𝑣1, . . . , 𝑣𝑛−1), but it uses 𝑃 (𝛿𝑛−1,𝑛 |
𝑣0, 𝑣1, . . . , 𝑣𝑛−1) as a way to estimate the former. This problem dif-
fers from the associated code update problem in two ways: first, it
includes the sub-problem of finding the locations 𝐿 that need to be
edited as part of the larger problem, and second, it considers the
entire edit history as an ordered sequence (in an auto-regressive
way) whereas we focus on a small set of associated edits.

4 EXPLOITING ASSOCIATED EDITS

We propose Grace, a technique to use pre-trained language models
for solving the associated code update problem. There are two
possible ways of using these models to perform the associated

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

code update task. One approach is based on using the models as a
black-box, but with carefully designed prompts (Section 4.2). This
prompting strategy works for big LLMs, such as gpt3 and codex.
The second approach is based on fine-tuning a pretrained language
model, CodeT5 in our case, for our specific associated code update
task (Section 4.3).

4.1 Pre-trained Language Models

There is now a large collection of pre-trained language models.
These models are pre-trained on data collected from millions of
webpages, and treat all data as a sequence of tokens, which is
the natural choice for representing natural language text [49, 51,
52]. The reason for the popularity of this class of models is that
they exhibit ability to perform multiple different tasks with just
some instructions and zero examples (zero-shot task transfer) even
though they are not explicitly trained for these tasks.

It was observed that pre-trained LLMs are not as effective when
working with code because code has strict syntactic and semantic
correctness requirements. Different representations for code and
code edits have been developed and models have been trained to
work with those representations [5, 10]. However, as the size of
pretrained languagemodels has grown, their zero-shot performance
across tasks has improved. Moreover, these models have also shown
the ability to perform a new task given just a few demonstrations
in the prompt (few-shot learning) [11]. Using their zero-shot and
few-shot learning capabilities, these models are now being used
successfully on tasks that involve understanding, manipulating, or
generating code [16, 28, 62] while still viewing code just as text
(and not as an abstract syntax tree, for example).

4.2 Prompting LLMs

We experimented with a few different prompt designs and then
fixed one for our experiments. (The results were not significantly
different for other reasonable prompt designs.) Before we describe
the Grace prompt, we first describe the completion, insertion, and
editing variants of the codex family of models [8, 16].

The codex family of models is available in the “completion”,
“insertion” and “editing” variants. The completion model takes a
prompt, which usually contains code before a cursor location, and
predicts the code that will follow that prompt. Apart from the
prompt, the insertion model also takes a suffix prompt, which usu-
ally contains the part of code that should come after the code the
model predicts. Thus, the insertion models perform the infilling
task - predict the code that should come after the prompt but before
the suffix. Finally, the editing variant of the codex models has two
different input prompts: an input that is the string that needs to be
edited, and an instruction that tells the model how to edit the input.

We treat the associated code update task as an infilling prob-
lem and hence use the codex insert family of models for our
experiments. The reasons for this choice are as follows:
(1) The insertion model allows us to include code that is spatially

after the target location in the suffix.
(2) The editing variant (code-davinci-edit-1) requires instruction

on how to edit the given piece of code. Our experiments with
providing the associated edits in this instruction prompt failed
to generate good results. This is possible because the editing

1 <CurrentEdit >

2 <Prefix > . . . </Prefix >

3 <Before > . . . </Before >

4 <After > . . . </After >

5 <Suffix > . . . </Suffix >

6 </CurrentEdit >

7 <CtxEdits >

8 <Edit >

9 <Prefix > . . . </Prefix >

10 <Before > . . . </Before >

11 <After > . . . </After >

12 <Suffix > . . . </Suffix >

13 </Edit >

14 <Edit >...</Edit >

15 . . .

16 </CtxEdits >

Figure 2: Grace Prompt for the associated code update task.

model is better suited only for instructions given in natural
language1.
Figure 2 shows the Grace prompt we provided codex models

for the associated code update task. Let 𝑣𝑛−1 be the current version
of the file, 𝐿 be the locations where code needs to be updated, and
𝛿0,1, 𝛿1,2, . . . , 𝛿𝑛−2,𝑛−1 be the 𝑛 − 1 associated edits. We assume that
each edit 𝛿𝑖−1,𝑖 can be partitioned in four parts: (1) <Prefix> , which
contains the fragment of code in version 𝑣𝑖−1 that is untouched
by the edit, but occurs before the edited code, (2) <Before> , which
contains the fragment of code in version 𝑣𝑖−1 at locations 𝐿 that
is replaced by the edit, (3) <After> , which contains the fragment
of code in version 𝑣𝑖 at locations 𝐿 in place of before in 𝑣𝑖−1, (4)
<Suffix> , which contains the fragment of code in version 𝑣𝑖1 that is
untouched by the edit, but occurs after the edited code. These four
parts are included in the prompt for each edit as shown in Figure 2.
The associated edits are all included within the <CtxEdits> tag. The
edit to be predicted is included inside the <CurrentEdit> tag.

In this prompt format, the current edit is written out first fol-
lowed by the associated edits. This style ensures that if the prompt
gets bigger than what can fit in the input to the model, the to-
kens from the associated edits are pruned. We also experimented
with variants where certain associated edits were placed before
the current edit and some after depending on where they occurred
spatially. Most such changes did not cause any significant change
in our experimental observations.

The insertion model is expected to predict the string that should
occur between <After> and </After> that occurs under <CurrentEdit> .
The prefix of the prompt string up until <After> goes in the prompt,
and the suffix of the prompt string starting from </After> is included
in the suffix prompt of the insertion model.

The prompt design above is reminiscent of few-shot learning
prompts where the prompt contains a few examples of the task to
be performed. Technically speaking, the above prompt is not a few-
shot prompt since we are not providing one or more examples of the
“associated code update task”. However, if we view the associated
code update problem as a means of providing few-shot examples for

the “code update task”, then a natural question is whether associated
edit update task can just be viewed as a few-shot prompting for
code update task. We answer this question in Section 5.

One of the central goals of the paper is to find how using associ-
ated edits compares with not using it when predicting code updates.
To enable this comparison, we need a prompt for the case when
1We do not include code-davinci-edit-1 in our experiments

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

1 <CurrentEdit >

2 <Prefix > . . . </Prefix >

3 <Before > . . . </Before >

4 <After > . . . </After >

5 <Suffix > . . . </Suffix >

6 </CurrentEdit >

Figure 3: Prompt when associated edits are not used.

Table 2: The models used in our experiments.

Name Base Model Fine-tuned on

codex-davinci code-davinci-002 -
codeT5-u CodeT5-base unfiltered c3po train
codeT5-uf codeT5-u filtered c3po train
codeT5-uo codeT5-u overwatch train

associated edits are unavailable. Here, we use the prompt shown in
Figure 3. Specifically, we remove the <CtxEdits> section in Figure 2.
Note that the current code context is still available to the model in
the <Prefix> and <Suffix> tags within <CurrentEdit> .

4.3 Fine-tuning LLMs

We now describe how we create fine-tuned models for predicting
code updates with and without associated edits. We started with the
CodeT5-base model [38, 62], a pre-trained encoder-decoder Trans-
former model. This base model was trained on CodeSearchNet [32]
that contains source code in 6 common programming languages,
extended with two additional C/C# datasets from BigQuery [29].
We further fine-tuned several variants of this model on the task of
predicting code edits (see Table 2). There are two versions of each
variant – one that is fine-tuned using the given associated edits and
one that only uses the current version of the code. The two types
of fine-tuning use the same dataset and base model weights, the
only difference being how the data was prepared. The variants are
discussed in detail in Section 5.1.

We prepare data for fine-tuning by turning each training example
into the Grace prompt, as shown in Figure 2. We adapt the CodeT5
tokenizer by adding special tokens: <Prefix>, </Prefix>, <Suffix>, </

Suffix>, <CurrentEdit>, </CurrentEdit>, <CtxEdit>, </CtxEdit>, <Edit>

</Edit>, <After>, </After>, <Before>, </Before> . We formulate the
training as a masked span prediction task where we replace the
contents between <After> and </After> under <CurrentEdit> with a
sentinel token and ask the model to predict the masked span.

When fine-tuning CodeT5 to predict code update without using
associated edits , we use the prompt shown in Figure 3. Again, we
formulate the training as a masked span prediction task replacing
the contents between <After> and </After> under <CurrentEdit> with
a sentinel token and asking the model to predict the masked span.

4.4 Deployment

We now discuss how the sub-problems discussed in Section 3.1 can
potentially be solved and integrated with our approach to create
an IDE-based edit prediction tool:

Setup: As discussed in Section 3.1, the editing target could be
the line corresponding to the user’s cursor location. overwatch
can be used to extract temporal edits from patterns that match the
target location and these edits can serve as our associated edits.

Worklow: Consider a user editing code in an IDE. The tool will
get triggered on the line where the user’s cursor resides and the

Table 3: The datasets used for fine-tuning and testing.

Dataset #training #eval #test

c3po filtered 39.5K 4.4K 5.9K
c3po unfiltered 1.67M 180K 210K
overwatch 9K 1k 1K

associated edits would be retrieved using overwatch. Our edit
prediction prompt will be generated as discussed in Section 4.2. The
prompt will then be sent as an input to an LLM (say, codex-davinci)
and the predicted edit (or top-k predicted edits) will be suggested to
the user. We have designed an interactive tutorial to walk readers
through this workflow using the various examples discussed in
Section 2 and Section 5.6 (see Section 8 for instructions).

5 EXPERIMENTS & RESULTS

5.1 Experimental Setup

We use two datasets from prior work for our experiments, the c3po
dataset [10] and the overwatch dataset [67]; see Table 3.

c3po dataset: The c3po dataset [10] was created by scraping
all commits in 53 most popular C# GitHub repositories. Each edit
in a commit would create a single example, and the edits, if any,
on the 10 lines above and 10 lines below the edit would make up
the associated edits. The task is to predict the code after an edit is
performed, given the code before the edit and the associated edits.
Thus, the c3po dataset is an instance of the associated code update
task, where spatial locality is used to define associations between
edits. Note that the c3po paper refers to these edits as contextual
edits which translate to edits with spatial associations in our work.

The c3po dataset was further filtered by its creators into a fil-
tered c3po dataset by removing “simple” benchmarks (e.g. those
containing only deletion or renaming). Further, they removed all
benchmarks where the target edit involved insertion of new code

as their approach cannot handle those. The filtered set was further
partitioned into train, validation, and test benchmarks, containing
respectively 39.5K, 4.4K, and 5.9K benchmarks; see Table 3. We used
the same partitions in our evaluation.

overwatch dataset: The dataset described in [67] was gath-
ered from versions of source code files taken as they were being
edited in an IDE session over two separate periods. In the first
period, 134.5K versions were collected over 682 sessions. In the
second period, 201.1K versions were collected over 399 sessions.
The versions in the first period were mined in [67] to get a set of
9.9K edit sequences which are further used to learn a collection of
symbolic rules representing commonly occurring Edit Sequence
Patterns. These learned rules are used to generate code suggestions
in the second period, and they are found to be capable of producing
suggestions at 1048 file versions. For the purpose of this work, we
are considering 90% of the 9.9K edit sequences from the first period
as the overwatch training set, keeping other 10% as the overwatch
evaluation set; and the points of applications as the overwatch test

set. We discuss these datasets further in Section 5.5.
Models: We used two models as starting points. The first is

code-davinci-002 (referred to as codex-davinci in this text), a
decoder-only transformer model which is a part of the OpenAI gpt-
3.5 series [8, 16]. This model is presented with the prompts based
on either Figure 2 or Figure 3 depending if we want to use use

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

associated edits for edit prediction. The second model is CodeT5
[38, 62], an encoder-decoder model introduced by Salesforce in the
base and large Variants. We use the CodeT5-base variant which
has 220M parameters with 12 transformer blocks in the encoder and
decoder each. This model is fine-tuned on the unfiltered c3po train-
ing dataset to create the model codeT5-u. The model codeT5-u is
further fine-tuned on the c3po filtered train set and overwatch
train set to create codeT5-uf and codeT5-uo, respectively; see
Table 2. We used this two step fine-tuning process since the over-
watch training data was limited. The fine-tuning and inference
setups for these models are described below.

Setup for codex-davinci experiments: We used the OpenAI
public API to perform the inference experiments with the codex-
davinci model. The insert mode of the model was used and the
input was divided into prompt and suffix following our prompting
strategy discussed in Section 4.2. Temperature sampling was used
to generate n=5 predictions, and the temperature was set to 0.1
after evaluating multiple candidate values. The maximum length
(maximum number of tokens to generate) was set to 256, stop token
to </After> and default values were used for all other parameters.

Setup for CodeT5 experiments: For our fine-tuning experi-
ments, we use a virtual machine with 16 AMD MI200 GPUs (each
with 64GiB of vRAM), 92 CPU cores and 1594 GB of RAM.We set the
input token length to 1024 tokens and truncate any longer inputs
from the end. There are two steps in our fine-tuning process: fine-
tuning on the unfiltered c3po dataset followed by dataset-specific
fine-tuning on the overwatch training and c3po filtered datasets.
For the initial fine-tuning with the unfiltered c3po dataset, we ini-
tialize the model with the publicly released CodeT5-base weights
and train it for 8 epochs with a batch size of 8 per device. The
optimization is done using the Adafactor[58] optimizer with learn-
ing rate initially set to 3𝑒−4 and gradually updated using a linear
scheduler after a warmup of 500 steps. The best model weights are
determined using the perplexity score by evaluating on the c3po
validation dataset at every 1000 steps. For further fine-tuning on the
overwatch training and c3po filtered datasets, we set the initial
learning rate to 1𝑒−4, the number of warmup steps to 50 and train
the model for 10 epochs while evaluating it every 50 steps. During
inference, we use beam search with a beam width of 5.

Metric: In order to stay consistent with the metrics used by
papers that curated the target datasets (namely the c3po and over-
watch datasets), we define a metric called the exact match. In the
experiments with the c3po dataset, a prediction is said to be an
exact match if it syntactically matches the ground truth modulo
whitespaces. We use Exact Match to also denote the percentage of
cases where a prediction was an exact match. More details on the
overwatch dataset evaluation can be found in Section 5.5. In all
our results, we report Exact Match for Top-1 predictions.

5.2 Grace Improves Prediction

A key question we set out to answer was whether associated edits
help predict future code changes. In other words:
RQ1. Does availability of associated edits improve code update

predictions? Does the answer depend on the prediction approach?

Table 4: Associated edits improve code prediction.

c3po test set overwatch test set

Model
Without

assoc. edits
With

assoc. edits
(Grace)

Without
assoc. edits

With
assoc. edits
(Grace)

codex-davinci 37.09 67.92 31.81 49.09

codeT5-u 64.52 74.16 22.25 34.00

codeT5-uf 73.46 81.83 40.78 48.23

To answer this question, we tested both codex-davinci and CodeT5
on both the c3po and overwatch test sets, once with associated
edits in the prompt and once without them.

Results: Table 4 shows the Exact Match obtained when we use
the different models on the different datasets with and without
associated edits. We see that codex-davinci shows a 30% absolute
increase in Exact Match when provided associated edits than when
not on the c3po dataset, and about 17% absolute increase on the
overwatch dataset. The fine-tuned CodeT5 models showed about
a 10% absolute increase in Exact Match on both datasets. Finally,
although Table 4 reports the trend for 2 models and one prompting
style, we tried other models (including other OpenAI models from
gpt3 and gpt-3.5 series) and different styling of the prompts (for
example, using C# comments, rather than tags, to delineate the
“before” and “after” versions), and in every case, there was at least
a 10% absolute increase in Exact Match – often it was much higher.
Result 1: Conditioning code prediction on associated edits helps,

across models and test datasets.

5.3 Relevance of Edits Matters

The associated code update problem conditions code prediction
on some associated edits. We have informally mentioned that the
associated edits should be picked based on their relevance to the
code that is being updated. Our next research question is concerned
with how relevance impacts prediction.

To motivate this research question, we first make the connection
to “few-shot prompting”. Consider just the code update task – predict
the new version of the code given its old version. The difference
between the “code update task” and “associated code update task”
are the associated edits. Now, a prompt containing an instance of
the “associated code update” task begins to look a lot similar to a
few-shot prompt for a code update task where the associated edits

serve the purpose of few-shot examples of code update.
It may be tempting to say that the “associated code update” task

just combines some few-shot examples with a code update task.
However, this view is not beneficial since associated edits are more
than just any examples of code updates. As discussed in Section 2,
the associated edits contain crucial information for performing the
given code update. To validate that associated edits are more than
just code update examples, we turn to our next research question:
RQ2. Are associated edits important for code update prediction,

or simply serve as few-shot examples for the code update task?

In other words, is there something to be gained by using asso-
ciated edits beyond what we gain by just adding some few-shot
examples of code updates (that are not necessarily associated)?

Results: Table 5 shows the Exact Match we get using the codex-
davinci model using different sets of edits as the “associated edits”.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

Table 5: Less relevant edits degrade prediction: codex-

davinci on filtered c3po test set for different associated edits.

Choice of Associated Edits Exact Match
Association Dataset Repository

Spatial Filtered Same 67.92

Random Filtered Same 64.90
Random Filtered Other 55.82
Random Unfiltered Same 43.23
Random Unfiltered Other 43.64

No Associated Edits 37.09

We use the c3po filtered test set again for evaluation. We saw before
that we get a 67.92% Exact Match on this test set (Table 4). This case
corresponds to when the prompt includes spatially close filtered
edits from the same file (this is a property of the c3po benchmarks).
Let us now randomly sample edits to include in the prompt. There
are two dimensions and two buckets in each dimension to use for
sampling: the filtered dataset versus the unfiltered dataset, and edits
from the same repository versus edits from different repositories.
Randomly picking filtered edits from the same repo drops perfor-
mance only slightly. However, randomly picking filtered edits from
other repos drops performance more significantly to 55.82%. When
sampling from unfiltered edits - irrespective of whether edits are
from the same or different repos - the Exact Match remains consis-
tently around 43%. We recall that when we provide no associated
edits in the prompt, we had 37.09% Exact Match (Table 4).

The results show that going from filtered to unfiltered edits
reduces relevance of edits to the target filtered edit. This is because
the filtering step in [10] actually removes certain kinds of edits; for
example, edits that are pure insertions or deletions, or edits that
result in unparseable code. Hence, a randomly picked unfiltered
edit is more likely to be structurally different from our target edit
(which was picked from the filtered test set.)

The results also show that picking edits from repositories other
than the repository of the target edit reduces relevance of the edit
to the target edit. This is because edits from the same repository
could potentially be using common concepts, classes, methods,
programming practices, and even contain similar changes.

Finally, we note that using unfiltered edits from other reposi-
tories (43.64%) is still better than not using them (37.09%). This is
possibly due to the LLM leveraging its few-shot learning capabilities
in that case. The gain from around 43% to around 68% can thus be
attributed to the associated edits. We can, therefore, conclude that:
Result 2: Associated edits play a crucial role in predicting a target

edit, and the Exact Match metric drops as the relevance of the edits

to the target edit drops.

5.4 Pre-trained Outperforms Custom

When working with code and code edits, LLMs (such as codex
and gpt3) and other pre-trained models (such as CodeT5) use byte-
pair encodings (BPE) to tokenize code and then represent code as
a sequence of tokens – in the same way as Natural Language is
represented. In contrast, some works have argued for the use of
custom representations for code and code edits that partly capture
the parse structure and/or the programming language semantics.
The paper that introduced the c3po dataset [10] also used the spatial

Table 6: Comparison with c3po.

Exact Match on
Model c3po overwatch

c3po 53.20 10.50
codex-davinci 67.92 49.09

codeT5-u 74.16 34.00
codeT5-uf/ codeT5-uo 81.83 48.23

edits used by our pre-trained LLMs but they learned a custommodel
employing code-centric representations for code edits. Our next
research question concerns comparing our approach based on pre-
trainedmodels with prior work on customneural approaches.While
both the approaches have access to the associated spatial edits, we
want to understand how pre-trained models with their text-based
prompts compare against models with custom code representations.
RQ3. How does our LLM-based approach compare with the c3po

approach based on a custom neural model on the associated code

update task?

Let us compare how the c3po custom neural model performs
in comparison to codex-davinci and fine-tuned CodeT5. We first
compare these models on the filtered c3po test set and the over-
watch test set. Table 6 shows that both codex-davinci and fine-
tuned CodeT5 significantly outperform the custom c3po model on
both test datasets. The c3po model was reported to give a 53.2%
accuracy [10] on the c3po test set, whereas both codex-davinci
and fine-tuned CodeT5 give better results. The codeT5-uf model
gives 81.83% Exact Match, which is significantly higher than 53.2%
achieved by the c3po model. Similarly, on the overwatch dataset,
the best possible configuration of c3po was reported to give 10.5%
ExactMatch [67], whereas all of codex-davinci (49.09%), codeT5-u
(34%), and codeT5-uo (48.23%) perform significantly better.

Comparison on unfiltered c3po test set: The c3po model does
not report results on the unfiltered c3po dataset. This is partly
because it contains benchmarks that are out of scope for their
technique. Two such notable benchmarks are: (a) benchmarks that
contain alien insertionswhere the inserted code contains tokens that
do not occur in either the associated edits or the current version
of the target code snippet, and (b) benchmarks that contain code
snippets that cannot be parsed by an underlying parser (this step
is important for c3po to generate the Abstract Syntax Tree (AST)).
Grace can handle both these classes of benchmarks. We evaluated
codex-davinci on a 5.9K random sample from this test set and
obtained a 43.47% Exact Match. These 5.9K samples did not contain
any benchmarks from the filtered set. (We used a sample because
of the cost of doing inferences using an LLM.) On the full unfiltered
c3po test set, codeT5-u has 57.3% Exact Match using Grace and
45.30% without. These numbers are lower than those for the filtered
c3po test set. This indicates that the unfiltered benchmarks are
more challenging than the filtered benchmarks, which is at odds
with the informal assertions to the contrary in [10].

Alien Insertion Benchmarks: We extracted the samples from
unfiltered c3po test set that involved alien insertions. On that set,
codeT5-u with Grace achieved 17.6% exact match, but only 10.28%
without it. The codex-davinci model achieved 17.37% exact match
with Grace and 10.67% without it. This indicates that conditioning
on associated edits can help with hard benchmarks.

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 7: Comparison with overwatch.

Technique overwatch Codex-
Davinci codeT5-u codeT5-uo

Exact Match 38.17 49.09 34.00 48.23

Admittedly, the c3po model is much smaller (750K parameters)
compared to both codex-davinci (175B) and CodeT5 (220M). How-
ever, these large models are pre-trained and hence they can be
quickly fine-tuned or prompt engineered for downstream tasks
without need for excessive training data. Furthermore, the pre-
trained models are not limited in scope, as we have discussed above.
Result 3: Pre-trained language models can be tuned to yield higher

Exact Match compared to the custom c3po model for associated

code update prediction.

5.5 Temporal Edit Prediction

The temporal edit prediction problem is an application that is well-
suited for using Grace. The state of the art in this application
domain is overwatch [67]. Fundamentally, overwatch is solving
a different problem from the associated edits prediction problem:
the input to overwatch are fine-grained IDE version histories of
the form 𝑣0, . . . , 𝑣𝑛 where each 𝑣𝑖 is a version of the source code
file. The edit histories are extremely fine-grained, at the keystroke
unlike source control histories. For example, if a developer types a
variable name predicate, each intermediate file version containing
the prefixes p, pr, . . . is present in the edit history.

The overwatch technique takes the set of such IDE version
histories as a training set, and produces a ranked sequence of edit
sequence patterns (ESPs). At inference or run-time in an IDE, each
ESP examines the current version history 𝑣0, . . . , 𝑣𝑛 and (a) identifies
a sequence of transitive coarse-grained edits 𝛿𝑖0,𝑖1 , 𝛿𝑖1,𝑖2 , . . . , 𝛿𝑖𝑘−1,𝑖𝑘
(i.e., each 𝛿𝑖0,𝑖𝑘 is the edit between the potentially non-consecutive
versions 𝑣𝑖 𝑗 and 𝑣𝑖 𝑗+1), and (b) uses these edits to predict the next
edit to 𝑣𝑖𝑘 . In short, the ESPs are doing two tasks: (a) identifying
“associated edits” from fine-grained version histories, and (b) using
these associated edits to predict the next edit.
RQ4. Can our LLM based approach be used in conjunction with

overwatch’s temporal associated edit identification? How does it

compare with overwatch’s symbolic edit prediction component?

The second task above is exactly the prediction from associated
edits problem we are tackling in this paper. Hence, we run over-
watch on its test data of 399 version histories with over 200, 000
versions, and gather the associated edits wherever the ESPs are able
to identify them. This results in a dataset of 1048 cases as mentioned
in Section 5.1. At training time, overwatch identifies a set of 9.9K
edit sequences from the older data of 682 version histories, however
using different techniques. The edit sequences are such that each
of them belong to some commonly occurring edit sequence pattern
across version histories – they are the supports for ESPs – and thus
each of them can be treated as a set of associated edits (all edits in
the sequence but the last), and expected edit prediction (last edit in
the sequence). We use this set of 9.9K instances to further fine-tune
codeT5-u to obtain codeT5-uo; see Table 2.

Table 7 summarizes the different models’ performance on the
1048 test cases, along with overwatch’s predictions as a baseline.

1 catch (Exception ex)

2 {

3 - info.ReportClientError('Scheme is missing ');

4 + info.ReportClientError('Scheme is missing ',System.Net.

HttpStatusCode.BadRequest);

5 }

6 default:

7 - info.ReportClientError('No such action ');

8 + info.ReportClientError('No such action ',System.Net.

HttpStatusCode.NotFound);

Figure 4: User adds BadRequest error code on Line 3 and moves

to Line 5 where we should predict inserting NotFound .

Except codeT5-u, all of our models beat the prediction component
of overwatch by a considerable margin of roughly 10%.
Result 4: Our LLM-based techniques, in conjunction with systems

like overwatch creates neuro-symbolic solutions that are better

at predicting next edit compared to purely symbolic techniques.

5.6 Qualitative Analysis

Our experiments support two major observations: (a) LLMs can
predict edits that existing techniques fundamentally cannot support,
and (b) the addition of associated edits improves the performance of
LLMs on the task of predicting code edits. Next, we provide insights
into why these observations hold true.

5.6.1 Comparison with existing techniques. In the following
few paragraphs, we discuss the salient features of LLMs and the
Grace prompt design that help our approach outperform existing
techniques, i.e., c3po and overwatch on certain kinds of edits.

Generative capabilities of LLMs are useful in predicting

alien insertions: As discussed in Section 2, the LLMs we discuss
in this paper can support most forms of insertions as they have
access to a wide number of tokens through their pre-training and
our prompting setup doesn’t restrict the tokens that the models can
generate. Existing techniques are restricted in this aspect by design:
c3po cannot insert tokens other than those found in the contextual

edits and Overwatch may learn patterns where the prediction template

is incomplete due to unavailable mappings for holes in the Temporal

Edit Pattern. For instance, consider the scenario in Figure 4 where a
developer is trying to add HTTP error codes to error reporting calls.
Here, the developer first edits Line 3 by adding a BadRequest error
code to the reporting call. They then move to Line 5 to make a
similar edit. Note that the expected error code on Line 5 is different
from the one on Line 3 as it corresponds to a “No such action” error
message. Moreover, the expected error code has a token ‘NotFound’
which is not present anywhere in the existing context. As C3PO’s
pointer network can only pick paths to/from existing nodes, it
cannot generate this new token. codex-davinci with Grace can
correctly predict this edit.

Access to local spatial context in the prompt is useful: over-
watch learns patterns and templates from observed edit sequences
and strictly relies on these patterns to make predictions. There are
cases, however, where the pattern learnt by overwatch is too gen-
eral and is applicable irrespective of what is in the spatial vicinity
of the target edit. To better understand this limitation, consider
the scenario in Figure 5 from an active IDE editing session. The
user first replaces ex on Line 5 with ex.Output and then moves to
Line 3 to make the next edit. Overwatch gets triggered on Line 3

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

1 foreach (var ex in currentExamples)

2 {

3 - Console.WriteLine(GetText(ex, diff.BeforeFile));

4 + Console.WriteLine(GetText(ex.Input , diff.BeforeFile));

5 - Console.WriteLine(GetText(ex, diff.AfterFile));

6 + Console.WriteLine(GetText(ex.Output , diff.AfterFile));

7 }

8 var output = Run(currentExamples.First().Input);

9 AssertEqual(currentExamples.First().Output , output);

Figure 5: User replaces ex on Line 5 by ex.Output , moves to Line 3

where we should predict replacing ex by ex.Input .

and predicts that ex should be replaced by ex.Output since it learns
the pattern “repeat the same replacement”, which is an instance of
a common pattern. However, this is incorrect since ex should be
replaced by ex.Input here. codex-davinci, with Grace, correctly
predicts this edit because ex on Line 3 is followed by diff.BeforeFile

and Line 8 has additional information about the property Input that
is associated with each entry in ‘currentExamples’. Our prompt
design allows flexible addition of this additional spatial context
through the <Prefix> and <Suffix> tags. overwatch, on the other
hand, cannot access spatial context that is not already present in
the learned template.

Language-based pre-training is useful in identifying se-

mantic editing patterns: Scenarios in Figures 4 and 5 also high-
light the ability of LLMs to predict patterns based on semantics
of identifiers in the context. In Figure 5, codex-davinci seems to
understand that the relationship between diff.AfterFile and diff.

BeforeFile would also reflect in the preceding argument (ex.Output
and ex.Input , respectively). In Figure 4, codex-davinci uses the
signal from the 'No such action' error message to correctly predict
that the error code should be System.Net.HttpStatusCode.NotFound . Ex-
isting techniques such as c3po and overwatch rely on edit path
analogies and symbolic editing patterns respectively to understand
the editing intent. Without the use of a language-based pre-training
component, it may be difficult to obtain the semantic understanding
needed to perform the edits in Figures 4 and 5.

5.6.2 Benefits of using associated edits. We observed three key
benefits of providing associated edits to LLMs:

Associated edits help in clarifying the editing intent of the

developer: The illustrative example in Section 2 (Figure 1) showed
that associated edits provide strong signals about the next edit
that the developer intends to perform. In fact, without associated
edits, codex-davinci doesn’t predict the right edit even in the top-5
results. With associated edits, the correct prediction is ranked at
the top suggesting that associated edits help improve the top-1
performance of the model.

Associated edits emphasize relevant code context: While
LLMs like codex-davinci can support a large number of tokens in
their prompts (4K in codex-davinci’s case), it has been observed
that irrelevant information in the prompt affects the model’s ability
to attend to the right set of tokens [59]. In the illustrative example
in Figure 1, the target edit is 247 lines away from the required spa-
tial context. codex-davinci can predict the right import with only
4-5 lines in the spatial context and access to the associated edit.
The scenario without associated edits, on the other hand, requires
providing 250 lines of mostly irrelevant code to the model to include
the Exception that the required import provides. codex-davinci
fails to generate the right prediction in the top-5 results even with

all of this spatial context. On a simpler version of this example
where the relevant code context is moved closer to the target edit
(from Line 250 to Line 15), codex-davinci without associated edits
predicts the right import in top-10, but it is not the top-1 prediction.

Associated edits contain information about edited code ele-

ments: There may be key variables that are deleted or replaced by
previous edits but referenced by the target code location. Without
access to these associated edits, the model has no context about
these variables, methods or other code elements. For example, if a
variable var1 is replaced by var2 in a previous edit and the developer
now moves to line var1 = var1 / 2 , the model is expected to replace
this line with var2 = var2 / 2 . Without access to the previous edit,
the model doesn’t know the relationship between var1 and var2 and
may consider them to be two distinct variables.

5.7 Additional Results & Discussion

We conducted additional experiments to understand how Grace
affects robustness and entropy during prediction. We also evaluated
other prompting styles and model configurations. See the technical
report for details and further discussion.

6 RELATEDWORK

6.1 Automatic code editing

In recent years, there has been a significant boom in academic and
industrial research for automating developers’ code editing activi-
ties. Most modern IDEs [25, 44] support automated code changes
like the addition of boilerplate code, developer-assisted refactoring,
etc. While these developer-assisted approaches tremendously help
boost productivity [46], a significant amount of further research ex-
ists in automated code editing aimed at learning code edit patterns
from developer’s previous edits [6, 10, 13, 17, 27, 47, 48, 53, 54, 60,
66, 67]. We divide these approaches into two orthogonal directions:

Symbolic approaches: Symbolic approaches learn the code
transformation patterns by representing the example edits with
symbolic abstractions. Given a set of such symbolically represented
abstract edits, these approaches generalize the edit patterns as a
sequence of edit operations. For instance, Refazer [55] represents
syntactic changes with Domain Specific language and uses a de-
ductive inference algorithm to generalize and synthesize common
edit patterns. More recently, Overwatch [67] learns to generalize
developer code editing behavior from a sequence of code versions.
Each edit is represented as pre and post program states, and general-
ized edit sequences are derived from an edit graph from these state
pairs. While the earlier works in symbolic editing [24, 33, 41, 42, 55]
primarily focused on syntactic editing, i.e., refactoring, similar to
overwatch [67], we also focus on semantic changes in code. Simi-
lar to overwatch, we emphasize on conditioning future edit w.r.t.
associated edits. However, unlike overwatch, Grace does not nec-
essarily need demonstrations of the specific edit sequence pattern
to learn to apply that pattern.

Neural Network-based approaches: Recent advancements in
machine learning and neural networks have catapulted the field of
code editing with Neural Networks relying on their noise tolerance
and generalization capabilities. As such, several approaches [10,
13, 17, 21, 61, 66] have been proposed over the years using differ-
ent types of Neural Networks for automatically generating edits.
Notable among these are Sequence to Sequence Neural Machine

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Translation based approaches [15, 17, 61], Tree to Tree translations
approach [13], and Graph Neural Network based approach [21, 64].
While most of these approaches learn to generalize code edit pat-
terns from seemingly unrelated example edits, this work shows
the importance of related associated edits. Nevertheless, the most
notable feature of Neural Code Editing approaches is how the ap-
proach generates the edited code. While some approaches [10, 21,
66] generate a script of edit operations (i.e., insert, delete, update),
others [13, 17, 61] generate the edited code applying the edit pat-
tern in the process of translation. Similar to the latter approach, we
generate the edited code given the code before the edit.

6.2 Deep Learning for source code

Recent advancement in Deep Neural Networks (DNN) has drawn
focus on the application of such in different source code understand-
ing and generation tasks, including bug detection [14, 22], code
comprehension [1], code search [12], code generation [62], code
translation [3, 37], program repair [17, 61], etc. The vast plethora of
DNN models in SE tasks ranges from general-purpose models [2]
inspired by Natural Language Processing to custom-built models for
source code modeling [21, 30, 64]. These models, however, require
a large quantity of labeled data to optimize millions of parameters.
To overcome this problem, researchers have proposed to pre-train

models with a large quantity of unlabelled data and subsequently
re-use such a pre-trainedmodel across different tasks [20, 50]. There
are a wide variety of pre-trained models for source code proposed
over the years [2, 16, 23, 62], some containing hundreds of billions
of parameters [16], colloquially known as large language models
or LLMs. LLMs show excellent promise in autonomously learning
programming language properties and additionally, have shown the
ability to learn deductive reasoning inherent in programming and
natural languages [40, 56, 63, 65]. As such, these LLMs are leveraged
in many industrial developer assistance tools such as GitHub Copi-
lot [28], Amazon CodeWhisperer [57], Intellicode Compose [18, 43],
etc. In this work, we show an in-depth investigation of harnessing
the power of these LLMs for automated code editing.

7 LIMITATIONS & THREATS TO VALIDITY

Limitations: There are certain limitations of our approach that
we would like to address in future work. Firstly, as our approach
depends on other edit mining techniques, it is restricted by the
quality of the collected edits. On rare occasions, associated edits in
the prompt can also mislead the model with some irrelevant infor-
mation which in turn leads to incorrect predictions. Moreover, our
approach can also fail when the ground truth requires knowledge
of certain context (method signatures, for example) that does not
appear in the associated edits. Secondly, the LLMs used are prone
to known issues such as hallucinations, generation of uncompilable
code, etc. Despite being generative, these models can still fail to
predict edits that involve generating entirely new code.

Threats to validity: When using a pre-trained model, there is
always a threat of test data leaking to the train set [4]. It is possible
that the data used for pre-training codex-davinci contained some
or all of the data in the c3po test set since the c3po dataset was
created from GitHub repositories. One way to mitigate this threat
is to perform evaluation on multiple test sets. Therefore, we also

performed our evaluation on the overwatch dataset. The over-
watch test set was not publicly available and we obtained it directly
from the authors. Hence, we believe our results are not inflated
because of the possibility of codex-davinci having seen the c3po
test set. We mitigated the threat further by performing the same
experiments on fine-tuned CodeT5. All conclusions wemake in this
work are informed by results from both models on both datasets.
Finally, this potential data leak would affect all our experiment
settings with the codex-davinci model equally and any benefit
would also have been available to the model without associated
edits. Our results suggest that the model clearly benefits from the
addition of associated edits thus entailing a fair comparison.

The test sets are another source of possible gap between what we
observe in our experiments and what we may see if the approach
were deployed in real world. The c3po dataset was created from
commits. It defined an edit at a certain level of granularity. This
definition may not match the notion of edits used in some target
application (of our code prediction models). Again, we mitigate this
threat by also testing on overwatch dataset that uses a different
level of granularity for defining an edit. Our results appear to hold
across the different possible notions of an “edit”. In fact, by present-
ing the associated edits to the model (in the prompt and during
fine-tuning), we are able to teach the notion of an edit to it. Even
with the notion of edit conveyed, the distribution of associated edits
in our test sets may not reflect what we observe in practice. The
approach based on codex-davinci is not immune to this threat,
but the fine-tuning approach can adapt if we have fine-tuning data.

8 DATA AVAILABILITY

The c3po dataset is made publicly available by the authors of [10].
We share the scripts, prompts, and instructions to access the fine-
tuned models on c3po at https://aka.ms/GrACE-Code. Since the
overwatch dataset is private, we do not hold the authority to
redistribute the dataset or any models learned from that dataset.
Readers with access to overwatch data can reproduce the exper-
iments using the shared scripts. An interactive tutorial notebook
discussing deployment of our approach in an IDE-based edit sug-
gestions tool is also available at the same webpage.

9 CONCLUSIONS & FUTUREWORK

Predicting code edits is an important software-engineering problem.
In this paper, we leverage the generative capability of LLMs to ad-
dress this problem. Without the knowledge of prior edits, the LLMs
fail to predict the required edits, but when we combine them with
associated edits, their performance improves greatly. This simple
strategy is quite effective, and as shown in the experiments, Grace
outperforms the current state-of-the-art specialized symbolic and
neural methods on their respective datasets.

The generative capability of LLMs has opened up many oppor-
tunities for addressing software-engineering problems that have
been hard to deal with. We believe that combining the LLMs with
domain-specific insights, such as our use of associated edits, holds
promise for hitherto challenging problems. In the future, we shall
seek to exploit this strategy for other software engineering prob-
lems. On the problem of predicting code edits, we plan to explore
the problem of discovering associated edits, and the application to
large-scale migrations, refactorings, and maintenance activities.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

REFERENCES

[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A
Transformer-based Approach for Source Code Summarization. Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics (2020),
4998–5007.

[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
fied Pre-training for Program Understanding and Generation. Proceedings of the
2021 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies (2021), 2655–2668.
[3] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

2023. Summarize and Generate to Back-translate: Unsupervised Translation of
Programming Languages. The 17th Conference of the European Chapter of the

Association for Computational Linguistics (EACL 2023) (2023).
[4] Miltiadis Allamanis. 2019. The Adverse Effects of Code Duplication in Machine

Learning Models of Code. In Proceedings of the 2019 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Programming and

Software (Athens, Greece) (Onward! 2019). Association for Computing Machinery,
New York, NY, USA, 143–153. https://doi.org/10.1145/3359591.3359735

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proc. ACM Program. Lang. 3, POPL (2019),
40:1–40:29. https://doi.org/10.1145/3290353

[6] Jesper Andersen, Anh Cuong Nguyen, David Lo, Julia L Lawall, and Siau-Cheng
Khoo. 2012. Semantic patch inference. In Automated Software Engineering (ASE),

2012 Proceedings of the 27th IEEE/ACM International Conference on. IEEE, 382–385.
[7] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article
159 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360585

[8] Mohammad Bavarian, Angela Jiang, Heewoo Jun, and Henrique Pondé. 2022.
New GPT-3 Capabilities: Edit & Insert. (2022). At https://openai.com/blog/gpt-3-
edit-insert.

[9] B.W. Boehm. 1976. Software Engineering. IEEE Trans. Computers 25, 12 (1976).
[10] Shaked Brody, Uri Alon, and Eran Yahav. 2020. A structural model for contextual

code changes. 4, OOPSLA (Nov. 2020). https://doi.org/10.1145/3428283 Publisher
Copyright: © 2020 Owner/Author..

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
CoRR abs/2005.14165 (2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165

[12] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When deep learning met code search. In Proceedings of the 2019 27th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. 964–974.
[13] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.

2020. Codit: Code editing with tree-based neural models. IEEE Transactions on

Software Engineering 48, 4 (2020), 1385–1399.
[14] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.

Deep learning based vulnerability detection: Are we there yet. IEEE Transactions

on Software Engineering (2021).
[15] Saikat Chakraborty and Baishakhi Ray. 2021. On multi-modal learning of edit-

ing source code. In 2021 36th IEEE/ACM International Conference on Automated

Software Engineering (ASE). IEEE, 443–455.
[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374

[17] Z. Chen, S. Kommrusch,M. Tufano, L. Pouchet, D. Poshyvanyk, andM.Monperrus.
2021. SequenceR: Sequence-to-Sequence Learning for End-to-End Program
Repair. IEEE Transactions on Software Engineering 47, 09 (sep 2021), 1943–1959.
https://doi.org/10.1109/TSE.2019.2940179

[18] Microsoft Corp. 2022. Overview of IntelliCode. https://learn.microsoft.com/en-
us/visualstudio/intellicode/overview

[19] Reudismam Rolim de Sousa, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris
D’Antoni. 2021. Learning Quick Fixes from Code Repositories. In SBES ’21: 35th

Brazilian Symposium on Software Engineering, Joinville, Santa Catarina, Brazil,

27 September 2021 - 1 October 2021, Cristiano D. Vasconcellos, Karina Girardi
Roggia, Vanessa Collere, and Paulo Bousfield (Eds.). ACM, 74–83. https://doi.
org/10.1145/3474624.3474650

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[21] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning graph transformations to detect and fix bugs in programs.
In International Conference on Learning Representations (ICLR).

[22] Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray,
and Saikat Chakraborty. 2022. Towards Learning (Dis)-Similarity of Source Code
from Program Contrasts. In Annual Meeting of the Association for Computational

Linguistics.
[23] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[24] Stephen R. Foster, William G. Griswold, and Sorin Lerner. 2012. WitchDoctor: IDE
support for real-time auto-completion of refactorings. In 2012 34th International

Conference on Software Engineering (ICSE). 222–232. https://doi.org/10.1109/
ICSE.2012.6227191

[25] Eclipse Foundation. 2018. Eclipse IDE (https://www.eclipse.org). https://www.
eclipse.org

[26] Martin Fowler. 2018. Refactoring. Addison-Wesley Professional.
[27] Xi Ge, Quinton L DuBose, and Emerson Murphy-Hill. 2012. Reconciling manual

and automatic refactoring. In Proceedings of the 34th International Conference on

Software Engineering. IEEE Press, 211–221.
[28] github.com. 2022. GitHub Copilot: Your AI pair programmer. github.com. https:

//github.com/features/copilot
[29] google.com. 2022. GitHub Acitvity Data. google.com. https://console.cloud.

google.com/marketplace/details/github/github-repos
[30] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

[31] Anandi Hira and Barry Boehm. 2016. Function Point Analysis for Software
Maintenance. In Proceedings of the 10th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (Ciudad Real, Spain) (ESEM ’16).
Association for Computing Machinery, New York, NY, USA, Article 48, 6 pages.
https://doi.org/10.1145/2961111.2962613

[32] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. https://doi.org/10.48550/ARXIV.1909.09436

[33] JetBrains. 2021. ReSharper. (2021). At https://www.jetbrains.com/resharper/.
[34] Capers Jones. 1998. Estimating Software Costs. McGraw-Hill.
[35] M. Kim, D. Notkin, D. Grossman, and G. Wilson. 2013. Identifying and Summariz-

ing Systematic Code Changes via Rule Inference. IEEE Transactions on Software

Engineering 39, 1 (2013), 45–62. https://doi.org/10.1109/TSE.2012.16
[36] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An

Exploratory Study of How Developers Seek, Relate, and Collect Relevant In-
formation during Software Maintenance Tasks. IEEE Transactions on Software

Engineering 32, 12 (2006), 971–987. https://doi.org/10.1109/TSE.2006.116
[37] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample.

2020. Unsupervised translation of programming languages. arXiv preprint

arXiv:2006.03511 (2020).
[38] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H.

Hoi. 2022. CodeRL: Mastering Code Generation through Pretrained Models and
Deep Reinforcement Learning. arXiv preprint arXiv:2207.01780 (2022).

[39] M. M. Lehman and L. Belady. 1985. Software Evolution–Processes of Software

Change. Academic.
[40] Christopher D Manning. 2022. Human language understanding & reasoning.

Daedalus 151, 2 (2022), 127–138.
[41] Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Sydit: Creating and

applying a program transformation from an example. In Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference on Foundations of

software engineering. 440–443.
[42] Na Meng, Miryung Kim, and Kathryn S McKinley. 2013. LASE: locating and

applying systematic edits by learning from examples. In 2013 35th International

Conference on Software Engineering (ICSE). IEEE, 502–511.
[43] Microsoft. 2021. IntelliCode suggestions. (2021). At https://devblogs.microsoft.

com/visualstudio/intellicode-suggestion-apply-all/.
[44] Microsoft. 2021. Visual Studio. (2021). At https://www.visualstudio.com.
[45] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo

Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the Fly Synthesis of Edit
Suggestions. 3, OOPSLA, Article 143 (oct 2019), 29 pages. https://doi.org/10.
1145/3360569

[46] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Gi-
ancarlo Succi. 2008. A case study on the impact of refactoring on quality and

https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3360585
https://openai.com/blog/gpt-3-edit-insert
https://openai.com/blog/gpt-3-edit-insert
https://doi.org/10.1145/3428283
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.1109/TSE.2019.2940179
https://learn.microsoft.com/en-us/visualstudio/intellicode/overview
https://learn.microsoft.com/en-us/visualstudio/intellicode/overview
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1109/ICSE.2012.6227191
https://doi.org/10.1109/ICSE.2012.6227191
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://github.com/features/copilot
https://github.com/features/copilot
https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos
https://doi.org/10.1145/2961111.2962613
https://doi.org/10.48550/ARXIV.1909.09436
https://www.jetbrains.com/resharper/
https://doi.org/10.1109/TSE.2012.16
https://doi.org/10.1109/TSE.2006.116
https://devblogs.microsoft.com/visualstudio/intellicode-suggestion-apply-all/
https://devblogs.microsoft.com/visualstudio/intellicode-suggestion-apply-all/
https://www.visualstudio.com
https://doi.org/10.1145/3360569
https://doi.org/10.1145/3360569

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

productivity in an agile team. In Balancing Agility and Formalism in Software

Engineering: Second IFIP TC 2 Central and East European Conference on Software

Engineering Techniques, CEE-SET 2007, Poznan, Poland, October 10-12, 2007, Revised

Selected Papers. Springer, 252–266.
[47] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,

Eli Rademacher, Tien N Nguyen, and Danny Dig. 2016. API code recommendation
using statistical learning from fine-grained changes. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 511–522.

[48] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.
2014. Statistical learning approach for mining API usagemappings for codemigra-
tion. In Proceedings of the 29th ACM/IEEE international conference on Automated

software engineering. ACM, 457–468.
[49] Alec Radford and Karthik Narasimhan. 2018. Improving Language Understanding

by Generative Pre-Training.
[50] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.

Improving language understanding by generative pre-training. (2018).
[51] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language Models are Unsupervised Multitask Learners.
[52] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.

Learn. Res. 21 (2020), 140:1–140:67. http://jmlr.org/papers/v21/20-074.html
[53] Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. 2013. Refac-

toring with synthesis. In ACM SIGPLAN Notices, Vol. 48. ACM, 339–354.
[54] Machel Reid and Graham Neubig. 2022. Learning to Model Editing Processes.

https://doi.org/10.48550/ARXIV.2205.12374
[55] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit

Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic
program transformations from examples. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). IEEE, 404–415.
[56] Christopher Rytting and David Wingate. 2021. Leveraging the inductive bias

of large language models for abstract textual reasoning. Advances in Neural

Information Processing Systems 34 (2021), 17111–17122.
[57] Amazon Web Services. 2022. ML-powered coding companion - Amazon CodeWhis-

perer. Amazon Web Services. https://aws.amazon.com/codewhisperer/
[58] Noam Shazeer and Mitchell Stern. 2018. Adafactor: Adaptive learning rates with

sublinear memory cost. In International Conference on Machine Learning. PMLR,

4596–4604.
[59] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Huai

hsin Chi, Nathanael Scharli, and Denny Zhou. 2023. Large Language Models Can
Be Easily Distracted by Irrelevant Context. ArXiv abs/2302.00093 (2023).

[60] Wesley Tansey and Eli Tilevich. 2008. Annotation refactoring: inferring upgrade
transformations for legacy applications. In ACM Sigplan Notices, Vol. 43. ACM,
295–312.

[61] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, 25–36.
[62] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana,

Dominican Republic, 7-11 November, 2021. Association for Computational Lin-
guistics, 8696–8708. https://doi.org/10.18653/v1/2021.emnlp-main.685 See also
https://arxiv.org/abs/2109.00859.

[63] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

[64] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt,
and Alexander Gaunt. 2019. Learning to Represent Edits. In ICLR

2019. https://www.microsoft.com/en-us/research/publication/learning-to-
represent-edits/ arXiv:1810.13337 [cs.LG].

[65] Eric Zelikman, Yuhuai Wu, and Noah D Goodman. 2022. Star: Bootstrapping
reasoning with reasoning. arXiv preprint arXiv:2203.14465 (2022).

[66] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Mi-
los Gligoric. 2023. CoditT5: Pretraining for Source Code and Natural Lan-
guage Editing. In Proceedings of the 37th IEEE/ACM International Conference

on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). Associ-
ation for Computing Machinery, New York, NY, USA, Article 22, 12 pages.
https://doi.org/10.1145/3551349.3556955

[67] Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Al-
lamanis, Titus Barik, Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza,
Gustavo Soares, and Ashish Tiwari. 2022. Overwatch: Learning patterns in
code edit sequences. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 395–423.
https://doi.org/10.1145/3563302

http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2205.12374
https://aws.amazon.com/codewhisperer/
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://arxiv.org/abs/2109.00859
https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/
https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/
https://doi.org/10.1145/3551349.3556955
https://doi.org/10.1145/3563302

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

A MOTIVATING EXAMPLES

We present an illustrative example that has two associated edits
which are both used to make a final prediction using a fine-tuned
CodeT5 model.

Consider a developer refactoring code as shown in Figure 6. The
developer first performs edits on Line 1 to turn the asynchronous
function AssertQueryAsync<Order> to the function AssertQuery<Order>

that takes one extra argument - a Boolean flag isAsync (Line 3).
The second edit performed by the developer involves replacing
the attribute [ConditionalFact] on Line 24 by new attributes [Theory]

and [InlineData(false)] on Lines 25,26. After performing those two
edits, the developer now moves to Lines 9-18. Can we suggest the
code changes to be performed on these lines and correctly predict
Lines 9–18?

First, let us consider howmodern code completion tools based on
LLMs will attempt to predict the new code. These code completion
models look at the current snapshot of the code to make predictions.
Note that the associated edits preserve the relationship between the
AssertQueryAsync and AssertQuery and without the inclusion of these
edits it would be difficult to know that the two in fact refer to the
same method. Similarly, the relationship between [ConditionalFact

] and the new attributes [Theory] , [InlineData(false)] is also lost.
Without all that information, it will be a difficult to make the cor-
rect prediction. However, if we have information about the two
associated edits, then it is possible to correctly predict the third edit
that is needed on Lines 9-18. In fact, given the preceding two edits,
our fine-tuned CodeT5 model correctly predicts the third edit above.
If we instead fine-tune a CodeT5 model to predict code changes
just from the code in the current version, then such a model fails
to predict the correct change.

Figure 7 shows another scenario where the developer wants to
migrate from the NUnitC# testing framework to XUnit . The developer
first replaces [Test] on Line 10 by [Fact] and the Teardown method on
Line 8 by Dispose . Using these associated edits, our task is to predict
that (1) NUnit.Framework on Line 2 needs to be replaced by XUnit and
(2) the TimeConfigurationTests class needs to import the IDisposable

interface on Line 4. The associated edits provide strong signals for
these edits: (1) the [Fact] attribute is used to denote unit tests in
XUnit (2) XUnit test classes need to implement a Dispose method for
performing tasks at teardown (3) this Dispose method is available
via the IDisposable interface. Our fine-tuned CodeT5 model is able
to successfully predict this change when the associated edits are
provided.

Note that existing techniques such as c3po and overwatch may
not be able to generate the right predictions on the examples in
Figure 6 and Figure 7. As c3po can only use tokens from the context
edits and the target, it will not be able to generate the new tokens
required for the two edits (the scenario in Figure 6 needs the new
true token on Line 12 and the scenario in Figure 7 needs the XUnit

and IDisposable tokens on Line 3 and Line 5 respectively). Moreover,
as these are not common editing patterns, overwatch may not be
able to learn templates for them.

B ALTERNATE PROMPT

The alternate comment-style prompt is shown in Figure 8. The
main difference between this prompt and the prompt described in

the main text of the paper is that we use comments in place of tags
to delineate the various parts of the prompt.

C DATASET STATISTICS

There are two datasets discussed in the experiments: c3po filtered
test set and overwatch test set. In order to discuss the difficulty
of these datasets, we need to define the notion on an edit. For
simplicity, we consider an edit to be a line of code that is either
replaced, inserted or deleted. Here, modification of an existing line
is considered a replacement, addition of a new line is considered an
insertion and removal of an existing line is considered a deletion.

c3po filtered test set: Figure 9 shows the distribution of ex-
amples from the c3po filtered test set in terms of the number of
lines edited in the context and target. Note that the number of lines
edited in the context (Figure 9a) includes all the associated edits
provided to make prediction. In the context, the number of lines
edited on average are 3.8 and most of the samples (90𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒)
have less than 8 line edits. The target edits are much smaller with
an average of 1.8 line edits (Figure 9b). 90% of the targets contain
less than 4 line edits.

overwatch test set: Figure 10 shows the edit length distribution
of associated edits from the overwatch test set. 1.8 lines have been
edited in the context on average and 90% of the samples have at most
2 edits. It is expected to see smaller edits in this dataset because it
contains edits made by developers in an IDE (which are often small).
Note that it is not possible to get the edit length distribution for the
targets in this dataset as there is no single ground truth target edit
and the predicted edit is compared with several future versions of
the target (see Section 5.5 for more details on the evaluation).

D ADDITIONAL EXPERIMENTAL RESULTS

Additional details about the metrics: In the case of overwatch
dataset, a prediction is considered an exact match if the version

produced by incorporating the suggestion syntactically matches
any of the 50 future versions. The percentage of exact match pre-
dictions is also interchangeably called precision, as reported by the
overwatch paper. In all our results, we report Exact Match for
Top-1 predictions and explicitly call out whenever we report Top-5
numbers (any one of the 5 is an exact match).

Table 8 presents complete set of numbers from our various exper-
iments on the filtered c3po test set that contained 5.9 benchmarks.
Apart from the models discussed in the main text of the paper, we
also have results for a smaller Codex model code-cushman-1.

Table 9 presents results on the 1K test benchmarks from the
overwatch dataset.

Table 10 shows results on a edit sequence patterns test dataset
that contains 13K instances of edit sequences learned by over-
watch on the test IDE versions.

Table 11 shows results obtained by codex-davinci on a random
sample of 5.9K benchmarks taken from the unfiltered c3po test set.

Table 12 contain data from CodeT5 on filtered c3po test set using
different associated edits. Since CodeT5 models were fine-tuned on
certain prompts, presenting them with prompts that look different
causes a uniform degradation of accuracy – unlike the case for
codex-davinci that showed a graceful degradation as the edits in
the prompt became less relevant to the target edit.

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 - return AssertQueryAsync <Order >(

2 + return AssertQuery <Order >(

3 + isAsync

4 os = > os.Where(o = > o.OrderDate != null & & o.EmployeeID.Contains("10"))

5 .Select(o = > new Order{ CustomerID = o.CustomerID }) ,

6 e = > e.CustomerID);

7 }

8
9 - [ConditionalFact]

10 + [Theory]

11 + [InlineData(false)]

12 + [InlineData(true)]

13 - public virtual Task Select_expression_other_to_string()

14 + public virtual Task Select_expression_other_to_string(bool isAsync)

15 {

16 - return AssertQueryAsync <Order >(

17 + return AssertQuery <Order >(

18 + isAsync

19 os = > os.Where(o = > o.OrderDate != null)

20 . Select(o = > new Order{ ShipName = o.OrderDate.Value }) ,

21 e = > e.ShipName);

22 }

23
24 - [ConditionalFact]

25 + [Theory]

26 + [InlineData(false)]

27 ...

Figure 6: User replaces AsserQueryAsync on Line 1 with AssertQuery and adds an argument isAsync (Line 3). The next edit replaces

[ConditionalFact] on Line 24 with [Theory], [InlineData(false)] . The task is to predict edits on Lines 9-18.

Table 8: C3PO filtered test set (5.9K samples)

Experiment Exact Match Accuracy
Top1 Top5

C3PO 53

Without Associated Edits Cushman-002 (comment-style) 3.54 5.59
Davinci-002 (comment-style) 28.85 35.36

Davinci-002 (tag-style, temp=0.1) 37.09 40.94
Davinci-002 (tag-style, temp=0.5) 33.72 52.9

CodeT5-base (finetuned on unfiltered C3PO train) 64.52 72.22
CodeT5-base (finetuned on filtered C3PO train) 72.28 83.13

CodeT5-base (trained on unfiltered C3PO train, finetuned on filtered C3PO train) 73.46 85.27

With Associated Edits Cushman-002 (comment-style) 64.09 65.36
(taken from the spatial context) Davinci-002 (comment-style) 65.63 66.92

Davinci-002 (tag-style, temp=0.1) 67.92 69.77
Davinci-002 (tag-style, temp=0.5) 66.59 74.64

CodeT5-base (finetuned on unfiltered C3PO train) 74.16 79.66
CodeT5-base (finetuned on filtered C3PO train) 75.30 84.7

CodeT5-base (trained on unfiltered C3PO train, finetuned on filtered C3PO train) 81.83 89.5

With Associated Edits Cushman-002
(taken from other repos filtered) Davinci-002 (tag-style) 55.82 60.05
(taken from any repo unfiltered) Davinci-002 (tag-style) 43.64 47.58

With Associated Edits Cushman-002
(taken from same repo filtered) Davinci-002 (tag-style) 64.9 68.09

(taken from same repo unfiltered) Davinci-002 (tag-style) 43.23 47.11

With Associated Edits Cushman-002
(2 associated edits + 1 unrelated) Davinci-002 (tag-style, temp=0.5) 67.4 74.91

Davinci-002 (tag-style, temp=0.1) 68.51 70.21

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

Table 9: Overwatch applications test set (1K samples)

Experiment Exact Match Accuracy
Top1 Top5

Overwatch 38

Without Associated Edits Davinci-002 31.81 37.15
CodeT5-base (trained on unfiltered C3PO train) 22.25 48.81

CodeT5-base (trained on unfiltered C3PO train fine tuned on overwatch train) 40.78 59.79

With Associated Edits Davinci-002 49.09 53.01
CodeT5-base (trained on unfiltered C3PO train) 34.0 53.1

CodeT5-base (trained on unfiltered C3PO train fine tuned on overwatch train) 48.23 63.61

Table 10: Overwatch complete test set (13K samples)

Experiment Exact Match Accuracy
Top1 Top5

Without Associated Edits Davinci-002 (tag-style) 25.39 33.89
CodeT5-base (trained on unfiltered C3PO train fine tuned on overwatch train) 17.08 25.65

With Associated Edits Davinci-002 (tag-style) 34.45 40.27
CodeT5-base (trained on unfiltered C3PO train fine tuned on overwatch train) 21.91 35.21

Table 11: C3PO unfiltered sampled test set (5.9K samples)

Experiment Exact Match Accuracy
Top1 Top5

With Associated Edits Davinci-002 (tag-style) 43.47 45.31
Without Associated Edits Davinci-002 (tag-style) 25.53 28.34

1 // The following piece of code is outdated.

2 /* <Snippet updated by 1st edit - before snapshot > */

3 // Here is the new version of the code.

4 <Snippet updated by 1st edit - after snapshot >

5 // The following piece of code is outdated.

6 /* <Snippet updated by 2nd edit - before snapshot > */

7 ...

8 // Here is the new version of the code.

9 <Snippet updated by n-th edit - after snapshot >

10 // The following piece of code is outdated.

11 /* <Snippet at locations to be updated > */

12 // Here is the new version of the code.

Figure 8: Comment-style prompt for the associated code up-

date task.

Table 12: Less relevant edits degrade prediction:

CodeT5 on filtered c3po test set using different associated

edits

Source of associated edits Exact Match

Spatial 74.16

Any unfiltered edit from same repo 63.25
Any unfiltered edit from other repo 63.32
No associated edits 64.52

1 using System;

2 - using NUnit.Framework;

3 + using XUnit;

4 - public class TimeConfigurationTests : NLogTestBase

5 + public class TimeConfigurationTests : NLogTestBase ,

IDisposable

6 {

7 - [TearDown]

8 - public void TearDown (){ ... }

9 + public void Dispose (){ ... }

10 - [Test]

11 + [Fact]

12 public void DefaultTimeSourceTest{ ... }

13 }

Figure 7: User replaces [Test] on Line 10 by [Fact] and the

Teardown method on Line 8 by Dispose . The target edit needs

to replace NUnit.Framework on Line 2 with XUnit and include the

IDisposable interface on Line 4.

D.1 Comparison with few-shot prompting

without associated edits

In Section 5.2 of the main text, we empirically show that predictions
using associated edits are significantly better than those made using
randomly samples edits. These results are with the prompt design
we discuss in Figure 2 (main text). While these results signify the im-
portance of associated edits, there is another important baseline to
consider: few-shot prompting without associated edits. In this case,
we create a few-shot prompt using the design mentioned in Figure 3

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(a) Distribution of number of lines edited in the context (associated edits)

(b) Distribution of number of lines edited in the target

Figure 9: Edit length statistics of the c3po filtered test set

Figure 10: Edit length statistics of the overwatch test set: Distribution of number of lines edited in the context

(main text). Our preliminary analysis on the c3po test set suggests
that this approach is better than zero-shot prompting without asso-
ciated edits but not as good as our approach. When codex-davinci
is prompted with 2 random examples from the same repository
(2-shot prompting), it reports an Exact Match of 45.53%. Compared
with the results in Table 5 (main text), this is expectedly better than

an Exact Match of 37.07% from the codex-davinci model without
associated edits. It is however much lower than 67.92% reported
by codex-davinci with associated edits. Interestingly, this is also
lower than the case where randomly sampled edits are added to the
prompt in Figure 2 from the main text (64.9%). As these two cases
only differ in the way the edits are presented in the prompt, this

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Gupta, Khare, Bajpai, Chakraborty, Gulwani, Kanade, Radhakrishna, Soares and Tiwari

may suggest that our prompt design actually helps the model use
the provided examples better. More experiments on the unfiltered
c3po and overwatch test sets would be needed to confirm this
hypothesis.

D.2 Associated Edits Improve Robustness

A central thesis of our work is that code updates should be con-
ditioned on associated edits, and we created two models, codex-
davinci and CodeT5 that perform that task. When using those
models for inference, we need associated edits. What if we don’t
have any? What if we have edits that include associated edits but
may have other edits? If we use edits that are not related to the
target edit, would those harm and cause exact match to fall below if
we had not used any associated edits? If the models are very sensi-
tive to such noise in the associated edits, then that would increase
the burden on users to find exactly the correct set of associated
edits.
RQ5. How tolerant is our approach to noise in the set of associated

edits provided during inference?

Table 13: Noise tolerance of associated code update:

codex-davinci on filtered c3po test set

Source of associated edits Exact Match

Spatial 67.92
Spatial + one unfiltered edit from any repo 68.51

Results: We first consider the case when have one additional
unrelated edit in the set of associated edits. We added one unrelated
unfiltered edit to the two spatially close associated edits in the
c3po filtered test set. With everything else unchanged, as shown
in Table 13, codex-davinci gives a 68.51% Exact Match on this
modified c3po filtered test set. So, adding an unrelated edit, in fact,
slightly improved the Exact Match metric from 67.92%. This small
gain is possibly due to the few-shot learning feature of codex-
davinci.
Result 1: Inclusion of an unrelated edit does not significantly

affect the LLM’s Exact Match metric on the associated code update

task.

We next consider the following question: How does a model
trained with associated edits compare against one trained without
them on the code update task? Does training with associated edits
hurt the model’s performance on the code update task?

Table 14: Effect of associated code update finetuning on code

update task:

Test set: overwatch without spatial edits

Technique Finetuning Prompt Exact Match

CodeT5-base-c3po-finetuned without spatial edits 22.25
with spatial edits 24.74

CodeT5-base-overwatch-finetuned without spatial edits 40.78
with spatial edits 38.97

Results: In order to answer these questions, we consider evalu-
ating two CodeT5 models with different finetuning objectives on
the overwatch dataset. The first model is trained with prompts
containing associated edits while the second one is trained without.
As shown in Table 13, the two models report comparable results
on the overwatch dataset when no associated edits are provided.
The model trained with associated edits reports a 2.5% higher Exact
Match when finetuned on the c3po dataset and only loses 2% on
Exact Match when further finetuned on the overwatch dataset.
This suggests that the associated code update task can be used to
train models that are robust enough to then be used out-of-the-box
on the code update task.

D.3 Associated Edits Reduce Entropy

Consider the probability density function (pdf) 𝑝1 (𝑣𝑛) on docu-
ment version 𝑣𝑛 given by 𝑝1 (𝑣𝑛) = 𝑃 (𝑣𝑛 |𝐿, 𝑣𝑛−1) and a second pdf
𝑝2 (𝑣𝑛) = 𝑃 (𝑣𝑛 |𝐿, 𝑣𝑛−1, 𝛿0,1, . . . , 𝛿𝑛−2,𝑛−1). If the associated edits
𝛿0,1, . . . , 𝛿𝑛−2,𝑛−1 contribute to the prediction of 𝑣𝑛 , then the en-
tropy of 𝑝1 should be higher than that of 𝑝2. The models without
and with associated edits learn the functions 𝑝1 and 𝑝2 respectively.
The difference between Top1 Exact Match and TopK Exact Match
for a given model is a good proxy for the entropy of the probability
density function it has learnt.

Table 15 shows that irrespective of whether we used fine-tuned
CodeT5, or codex-davinci, and independent of which training sets
we used to fine-tune CodeT5, when we used associated edits in the
prompt, the gap between Top1 and Top5 Exact Match was always
lower than what it was when we did not use associated edits. So,
this indicates that associated edits are indeed predictive of code
updates.

Table 15: Top1-Top5 Spread

Without associated edits With associated edits
Model Test Top1 Top5 Δ Top1 Top5 Δ

CodeT5 1 c3po 64.5 72.2 7.7 74.2 79.7 5.5

CodeT5 2 c3po 72.3 83.1 10.8 75.3 84.7 9.4

CodeT5 1 overwatch 22.25 48.81 24.6 34.0 53.1 19.1

CodeT5 12 overwatch 40.78 59.79 19 48.2 63.6 15.4

codex-davinci c3po 37.1 40.9 3.8 67.9 69.8 1.9

codex-davinci overwatch 31.8 37.2 5.4 49.1 53.0 3.9

In Table 15 CodeT5 1 is CodeT5 fine-tuned only on c3po unfil-
tered training set, CodeT5 2 is CodeT5 fine-tuned only on c3po
filtered training set, and CodeT5 12 is CodeT5 1 further fine-tuned
on overwatch training set. Note that the Top1-Top5 Exact Match
difference is generally smaller for codex-davinci because we used
a lower temperature setting (0.1) for our experiments. Additional
fine tuning also helps reduce entropy of the learned probability
density function. For example, the Top1-Top5 spread is extremely
large for the case when we use CodeT5 fine-tuned only on c3po
unfiltered training set (CodeT5 1) and evaluate it on overwatch
dataset, but the spread reduces somewhat when we further fine-
tune the model on overwatch train set (CodeT5 12). The above
results provide additional evidence in support of our Result 1 (from
the main text).

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

D.4 Learnings from Manual Inspection

Wemanually inspected a few benchmarks where some model failed
to make the correct code prediction – either with associated edits,
or without them, or in both cases. We next share some high level
observations from these investigation.

In the set of benchmarks that succeeded with associated edits,
but not without, a common case was when there was an edit in
the associated edits that could be generalized into a program trans-
formation rule and then applied to the edit location to yield the
ground truth. However, often the associated edit was not a “perfect”
demonstration of the required rule, but only a “noisy” demonstra-
tion. Furthermore, there were also cases where the rule had to
be adapted (say, by generating some new identifier based on the
pattern) in subtle ways.

In the set of benchmarks that succeeded without associated edits,
but not with, the prediction with associated edits was often very

close to the ground truth. There were a few failures (in presence of
associated edits) that were caused due to previous versions mislead-
ing the model with some irrelevant information (such as, something
about SelectExpression objects) that was close to something in the
ground truth (such as, the Expression type).

In the set of benchmarks that failed both with and without as-
sociated edits, the most common case was when the edit involved
generating entirely new code or a new identifier name. In other
cases, generating the ground truth would have required knowing
the signature of certain methods that did not appear in the associ-
ated edits. It was clear that while associated edits is very useful, it
is not always enough and needs to be enhanced with “associated
code context” (such as, live variables and type signatures). We leave
that investigation to future work.

Received 2023-02-02; accepted 2023-07-27

	Abstract
	1 Introduction
	2 Motivating Example
	3 Associated Code Updates
	3.1 Assumptions about Sub-Problems
	3.2 Related Problem Formulations

	4 Exploiting Associated Edits
	4.1 Pre-trained Language Models
	4.2 Prompting LLMs
	4.3 Fine-tuning LLMs
	4.4 Deployment

	5 Experiments & Results
	5.1 Experimental Setup
	5.2 Grace Improves Prediction
	5.3 Relevance of Edits Matters
	5.4 Pre-trained Outperforms Custom
	5.5 Temporal Edit Prediction
	5.6 Qualitative Analysis
	5.7 Additional Results & Discussion

	6 Related Work
	6.1 Automatic code editing
	6.2 Deep Learning for source code

	7 Limitations & Threats to Validity
	8 Data Availability
	9 Conclusions & Future Work
	References
	A Motivating Examples
	B Alternate Prompt
	C Dataset statistics
	D Additional Experimental Results
	D.1 Comparison with few-shot prompting without associated edits
	D.2 Associated Edits Improve Robustness
	D.3 Associated Edits Reduce Entropy
	D.4 Learnings from Manual Inspection

