
A Holistic View of AI-driven Network Incident Management

Pouya Hamadanian; Behnaz Arzani; Sadjad Fouladi; Siva Kesava Reddy Kakarla; Rodrigo Fonseca;
Denizcan Billor; Ahmad Cheema; Edet Nkposong; Ranveer Chandra

Abstract — We discuss the potential improvement large lan-
guage models (LLM) can provide in incident management and
how they can overhaul how operators conduct incident man-
agement today. Despite promising results, initial work in this
space only scratched the surface of what we can achieve with
LLMs. We instead propose a holistic framework for building
an AI helper for incident management and discuss the several
avenues of future research needed to achieve it.

We support our design by thoroughly analyzing the funda-
mental requirements the community should think about when
it designs such helpers. Our work is based on discussions
with operators of a large public cloud provider and their prior
experiences both in incident management and with attempts
that have tried to improve the incident management experience
through various forms of automation.

1 Introduction

“No design works unless it embodies ideas that are held
common by the people for whom the object is intended.”

—Adrian Forty

Frequent incidents—failures that compromise the reliability
of essential services—pose a challenge for large-scale cloud
operations [20, 24]. Prior research has focused on the Incident
Management (IM) process which finds and mitigates these
incidents quickly [1, 10, 13, 22, 26, 46]. This paper presents
a network operations view of how Large Language Models
(LLMs) can accelerate the IM process and reduce the impact
of incidents on cloud tenants. We discuss the requirements that
any LLM-based solution for IM must meet.

When automation or customers report an incident, the inci-
dent manager assigns it to an On-Call Engineer (OCE) who
investigates the issue, mitigates it (e.g., moves traffic away
from the problematic area or takes a failed device offline),
finds the root cause, and fixes it. The mitigation step is the
most important: it stops the incident’s impact on customers.
Providers view Time to Mitigation (TTM) as the main indica-
tor of efficiency and strive to keep it within 30 minutes (for
more details on the IM process, see prior work [13, 22, 24]).

The IM process is time-consuming, exhausting, and stressful
for the OCE because the set of possible root causes and mon-
itoring data is large. OCEs also need to understand a diverse
set of systems and their components and go through multiple
hours of training to develop enough expertise to understand
how different components interact.

A prevailing question is: should we utilize LLMs to im-
prove the IM process [1, 13, 46], or in other words, create an

LLM-powered OCE-helper? LLMs are well positioned to
help address the challenges in this space. Works such as [8]
show how LLMs can ingest large datasets, generate structured
insights from unstructured text, automate workflows, and gen-
erate human-like written content: they introduce an unexplored
design continuum in systems research. LLMs such as GPT-
3.x [7] and PaLM [14] have already helped with tasks such as
code generation [12], formal verification [21], database query
generation [31, 48]. At the same time, LLMs struggle with
long-term planning [8], and are prone to hallucination [8, 41].

Our answer to this question—whether one should use LLMs
in this context—is nuanced: due to the unstructured format
of IM, OCE-helpers are infeasible without LLMs, but cannot
solve the end-to-end problem directly. We, as networking
researchers with IM experience, investigated feasible OCE-
helpers and the requirements for a successful design. This led
us to a modular design where we incorporate LLMs to help in
different stages of the IM workflow. Our design bears a similar
insight to goal-driven LLM agents [37, 47, 55].

While the implications may not be as severe, IM process
shares similarities to medical diagnosis. Operators (medical
practitioners) want to mitigate incidents (treat symptoms), un-
derstand what caused the incident, and fix (cure) the problem.
The space of possible hypotheses (underlying diseases) is large,
and they cannot test each and every one. Instead, they pick a
likely hypothesis, do targeted tests, and reassess their initial
guess—doing so from incident summaries (symptoms) is non-
trivial. They also have to be careful in how they apply mitiga-
tions (treatments) to avoid further harm to the system (patient)—
the risks involved mean an OCE-helper cannot replace an oper-
ator (medical practitioner) outright. This is why we design the
OCE-helpers as assistants instead of replacements for OCEs.

We interviewed multiple OCEs with 5+ years of experience
and identified three key requirements for any OCE-helper,
which we outline and motivate through examples based on real
incidents. Initial work on such helpers shows promise [1, 13],
but to realize their full potential, we have to take a holistic
view of IM and identify how helpers can meet the fundamental
requirements described in this work.

The core requirements we found for an OCE-helper are that
it should be: iterative, reliable and safe, and adaptive. An
iterative helper forms and tests hypotheses and recommends
mitigation strategies through a multi-step process. A reliable
and safe helper does not cause extra harm to the network, and
adaptive helper can evolve and adjust as operators deploy new
components, make configuration changes, and discover new
issues. We discuss these requirements in depth.

Hypothesis
Formation

Hypothesis
Testing

Mitigation
Planning

Incident Info
& Metadata

! PingMesh ↑↑
" Inquire Customer ↓↓

<OVERRIDE> <PROCEED>

OCE-Helper 9000

! Faulty Link ↑↑
" Overload ↑
" Faulty Monitor ↓↓

<OVERRIDE> <PROCEED>

OCE-Helper 9000

! BGP Isolate ↑↑
" Escalate to SWAT ↓

<OVERRIDE> <PROCEED>

OCE-Helper 9000

!
Toolbox

Figure 1: Our framework consists of three modules: hypothesis
formation, hypothesis testing, and mitigation planning.

We propose a framework that meets these key requirements
(§4) and explain the practical considerations and insights that
led us to it. This framework (Figure 1) is analogous to OCE’s
natural thought process and includes three modules: hypoth-
esis former, hypothesis tester, and mitigation planner. The
hypothesis former offers plausible explanations for an incident,
akin to forming a scientific hypothesis. The hypothesis tester
aims to test these hypotheses, querying available monitors
and tools and interpreting the results. The mitigation planner
creates a mitigation plan based on the validated hypotheses,
which the OCE can execute at their discretion.

This framework is ambitious, and the community needs
further research to realize it in areas such as: (1) network-
specialized LLMs to serve as backbones to these modules; (2)
network-specialized embedding models that help knowledge-
retrieval methods (e.g., vector databases); and (3) structural
approaches that breakdown complex tasks in network manage-
ment (e.g., isolate links) to LLM-digestible steps. The commu-
nity needs to approach problems such as risk estimation and
safety [2, 38] differently and think through how to: (1) analyt-
ically evaluate the end-to-end risk of the LLM proposals; (2)
define abstractions between LLMs and existing tools to grace-
fully balance the trade-off between automation and safety; and
(3) create verifiable LLM-based tools (e.g., text-to-SQL [48]).

Our goal for this paper is to motivate the community to fur-
ther explore this space and think about the implications such
solutions have for network management and beyond. We hope
that this work inspires novel research on one of the largest
bottlenecks of modern cloud infrastructure.

2 Foundational Principles: Design
We analyzed real incidents across various teams, services, and
time-frames and interviewed OCEs with several years of expe-
rience, with a focus on their day-to-day operations, pain points,
and where they thought automation could help. We studied
prior work, explored the different designs for OCE-helpers,
and then ran through what-if scenarios where we took a spe-
cific design for an OCE-helper, replayed historical incidents
and observed how this hypothetical helper would integrate
into the IM workflow. Three main themes emerge which we
believe are foundational principles any such design should
meet: iterative prediction, reliable and safe, and adaptive.

In hindsight, these principles seem obvious; yet prior works

root causeroot cause root causeroot causeroot causeroot cause

(1) Config
Issue

(2) Multiple
IP Prefixes
for a WAN

(3) Bug in
Traffic

Controller

(4) B4 Traffic
Rerouted to

B2

(5) Capacity
Overload

(6) Packet
Loss

root causeinitial symptom

Iterative Prediction

One-shot Prediction

deduction
step

Figure 2: Iterative vs. one-shot design. One-shot predictors
need to make logical leaps with no extra information. Iterative
chaining mimics the natural thought process of OCEs.

do not fully meet them (Table 1).

Iterative Prediction. It is simple to formulate this problem
as a Machine Learning (ML) prediction problem which en-
tices us to train a one-shot feed-forward model that predicts
root cause or mitigation, conditioned on past incidents and
telemetry we carefully engineer: prior work [1, 13] takes the
(predefined) incident information (e.g., title, summary, and
the auto-generated digest of system health and telemetry) and
predicts the root cause or mitigation without any additional
context. These approaches are promising: they work well with
incidents similar to those resolved in the past, or where oper-
ators have fleshed out clean monitoring signals. But they fail
with more complex (often more impacting1) or novel incidents.

Challenging incidents deviate from known patterns, are
sparse, and often happen due to a complex chain of events.
There is not enough information in the initial incident sum-
mary of many networking incidents to find the right mitigation
or root cause in one-shot—operators need to make multiple
informed attempts to test various hypotheses, safely mitigate
the incident, zero in on the root cause, and resolve the problem.
The one-shot approach falls short in these cases, and such a
design is inherently too restrictive for the IM workflow.

Consider the Casc-1 incident from a report on Google
Cloud incidents [24] (Figure 2). At the time, Google’s network
was comprised of two Wide Area Networks (WANs), namely
B2 and B4. During a network upgrade, a transient configu-
ration inconsistency (event 1) caused more than one cluster
to observe B4 with several IP prefixes (event 2). The traffic
controller that managed traffic across B2 and B4 mistakenly
interpreted that as B4’s failure (event 3) and rerouted all B4
traffic through B2 (event 4). This led to an overload (event 5)
and packet loss (event 6). A one-shot predictor has to infer
event 1 after it observes event 6, and a naïve OCE-helper that
only observes predefined information would decide it is either
a device failure (e.g., a switch) or a transient increase in traffic.

An OCE checks both of these suggestions first, but would
quickly reassess after they gather more evidence that shows
both are incorrect: high traffic utilization of B2 (event 5) and no
traffic for B4. They would hypothesize and confirm that traffic
is intentionally rerouted away from B4 (event 4). This cascade
of hypothesis, testing, and reassessment would continue until
they discover the inconsistency and the bug. We believe an
1These works don’t report accuracy per severity of incidents they
studied and this discussion is based on our experience in IM.

OCE-helper should behave the same, i.e., only an OCE-helper
that hypothesizes, tests, and re-evaluates its decisions in a feed-
back loop can successfully resolve such complex incidents.

Reliable & Safe. When we deploy the OCE-helper we need to
be sure it won’t make mistakes with $100M in damages [20] on
its first day: unlike past research that applied ML to network-
ing problems, risk assessment cannot be an afterthought—we
cannot wait until the problems happen before we assess the
safety of the model’s suggestions. Even smaller mistakes can
drive operators away—if they can’t reliably show when drastic
cases happen, they will bypass the helper with the mere threat
of a mistake [22]: helpers need to be safe (should not worsen
the situation) and reliable (should not have inconsistencies that
introduce mistakes in the workflow).

Helpers need to include risk mitigating mechanisms both
baked in—where it provides a reason for why it arrived at a par-
ticular response (these explanation mechanisms often improve
LLM responses [52])—and on the outside, e.g., a wrapper
around the helper which statistically analyzes the mitigation
outcome the helper proposes and its effect on the network [38].
We should not just analyze what helpers suggest: we should ex-
plicitly design the helper to take in feedback from internal and
external risk assessors, and search for actions with lower risks.

If we intend to eventually automate OCE-helpers, confi-
dence and risk measures are non-negotiable. We discuss why
prior work does not enable such a solution and the research the
community needs to fill the gap in §4.4.

Adaptive. A core challenge with IM is that network compo-
nents’ software and hardware evolve rapidly—often teams
don’t explicitly coordinate with each other when they update
components they own. Such evolution invalidates prior inci-
dents and mitigation strategies, and uncoordinated changes
lead to new incidents [5, 24]. Such “new” incidents are com-
plex and have the highest negative impact, but also where we
see the most potential for helpers to improve the IM workflow
and where we believe research in this space should focus.

Consider a failure reported in AWS Direct Connect Tokyo [44]
(Figure 3). This service provides low-latency consistent tunnel-
ing to the Tokyo region. New software and a perfect storm of
events led to this failure, where customers saw latency spikes
and packet loss. Operators deployed a new protocol that re-
acted faster to network failures. This protocol had an unknown
defect triggered by a specific set of packet headers and pay-
loads. Months later, traffic from one customer happened to
fit that pattern, and several network devices failed to forward
traffic. Operators first removed these devices to mitigate the
incident, but the same failure popped up again on other devices.
Operators eventually realized the culprit, disabled the protocol,
and resolved the defect. This was a unique incident, partly
because the events that led to it involved new and untested
protocols. No amount of historical incidents could supply a
helper with the knowledge to mitigate such an incident.

It is inherently difficult to adapt to new incidents because
there is little “learn-able” data in such sparse novel scenar-
ios: we know the changes, but are unaware what impact these

initial symptom initial symptominitial symptom initial symptom

(1) New
Protocol with a

Bug

(2) Network
Device OS

Failure

(3) Incorrect
Traffic

Forwarding
(4) Packet Loss

unseen root causeinitial symptom

!

initial symptom initial symptom

Stale Iterative Helper

Iterative Helper Aware of the New Protocol

!
One-shot Helper

Figure 3: Helper design affects how quickly we can adapt.
One-shot methods need to learn similar incidents (fine-tune or
in-context) before it can help. Iterative methods only need to
learn incremental changes.

changes may cause until they happen. We cannot use end-to-
end approaches (e.g., one-shot helpers) for new incidents since
they need end-to-end samples the change causes. An iterative
helper that explicitly reasons about individual components and
how operators change them can gradually build towards the
right mitigation. Operators only need to update this helper
with the new behavior of the system (e.g., either fine-tune on
new protocol documents, or add the relevant new protocols to
context), and not its impact. This helper could evolve almost
as quickly as OCEs to any changes in the infrastructure, guide-
lines, and incidents, and does not need end-to-end samples.

An OCE-helper that safely assists with critical incidents
needs to satisfy these three principles. While they are stringent,
and there is no current materialized automated OCE-helper
that satisfies them, we have designed a framework that ad-
dresses all of them systematically, which we explore in §4. But
first, we describe how we can verify and measure whether any
such framework can satisfy these requirements.

3 Foundational Principles: Evaluation
It is hard to evaluate solutions in this space. Prior works’ met-
rics (e.g., F1 score, semantic similarity) paint an incomplete
picture of the impact these helpers have on metrics operators
care about: how fast they resolve the incident and whether they
can do so safely—alone, they will not reveal the helper’s ability
to meet our requirements. Instead, we need to track: (1) TTM;
and (2) the overheads the helper’s mistakes induce (new inci-
dents caused by wrong mitigation plans, SLA violations, etc).

We can A/B test a helper to conduct an end-to-end evaluation
of the target system, i.e., randomly assign incidents to either a
helper-enhanced intervention or to a helper-free control group.
This is the most robust evaluation we can get and with enough
cases and statistical tests, we can compare the two groups at any
statistic (e.g., average TTM). This is nonetheless challenging,
because of the high variability in the nature of each incident,
among OCE’s expertise, and other confounding factors.

It is hard to estimate the overhead of the helper’s mistakes—
the complex interactions between the system state and the
mitigation make it hard to model; A/B tests are one mechanism
to do so but they are also costly and invasive. Many incidents
(e.g., customer-reported ones) are diverse and heavy-tailed:

Table 1: Foundational principles in prior work.

Iterative Reliable Adaptable End-to-end
& Safe Evaluation

Ahmed et al. [1] ✘ ✘ ✘ ✘2

RCACopilot [13] ✘ ✘ ✓ ✘

we need a long test span to collect enough measurements.
We can instead ‘replay’ historical incidents and compare the

replayed TTM to the original; we can use this to scale up the
measurements. We can query telemetry retroactively, but this
will not work if the mitigation the helper suggests differs from
the one the operator used in the original incident.

We can naïvely solve this problem and report the TTM sav-
ings for incidents where the mitigations match and the fraction
where this was not the case. Can we do better? We can find past
incidents where operators used the same mitigation the helper
proposed and estimate the impact of that mitigation on the
TTM distribution—this measure will be, by definition, approx-
imate: the semantics of the specific incidents may be different
which will impact the TTM. We need further research to for-
malize how we derive this estimate, and what to condition it on.

Besides TTM savings, operators need efficient OCE-helpers—
they cannot cost more than the SLA violations the incidents
induce. The infrastructure cost to train (or fine-tune) and run
inference constitute the system cost of the helpers—research
such as [17, 45, 50] which make ML training and inference
more efficient can help reduce this cost. Work on OCE-helpers
should report these costs.

Research on OCE-helpers should also report management
costs. Each time operators have to research how to adapt to
new incidents or maintain a reliable and performant solution
they add to the management cost of the OCE-helper. Prior to
this work, we considered an OCE-helper that automates well-
structured incidents that have a clear resolution strategy—in
these cases OCEs follow a detailed Troubleshooting Guide
(TSG) to mitigate and resolve the incident and the LLM can
do the same—but the cost outweighs the benefit: to make this
(seemingly simple) solution work we had to integrate LLMs
with monitoring APIs, put guard-rails to minimize damages
that results from mis-predictions, and even carefully design
prompts to make sure the LLM exactly follows the TSG. We
can achieve the same goal with a hard-coded Python script (in
fact, operators already do)! A change in the TSG necessitates
a change in both solutions, and the cost would not amortize.

4 Framework
We present a framework that meets the foundational principles
we discussed. It consists of three modules: a hypothesis former,
a hypothesis tester, and a mitigation planner. Together, these
modules replicate an OCE’s thought process when resolving
an incident. We discuss where and why LLMs fits within this
framework. This framework needs further research to materi-

2Authors ask OCEs to rate how useful responses are, but, as they also
mention, this metric is subjective and the scale is small [1].

alize, which we will discuss. We invite the community to also
propose other viable options in this space.

4.1 Our Perspective
To provide context for certain design choices, we discuss our
design perspective. While these choices are not fundamentally
necessary (unlike the principles in §2), they are well-motivated
based on firsthand experience.

OCE-centric design. IM workflows are too chaotic and intri-
cate to fully automate. We believe the helper should act as a
“copilot” and suggest the next steps but keep the OCE in the
driver’s seat. The OCE remains responsible for the incident
and can decide to use helpers only when they deem it useful.
This makes it easier for operators to deploy the solution and
helps prevent the negative impacts of the helper on the IM
workflow when it inevitably makes mistakes.

Decentralized extensibility. 100+ independent networking
teams control and execute IM—each team has its own cat-
egories of incidents and root causes, guidelines, tools, and
documentation. It is impractical for all teams to follow the
same formula [34] (especially so if they already have legacy
workflows which they have trained their OCE to follow). We
instead believe in a design where each team can modify how
the helper impacts their workflow but not interfere with other
teams (and their preferences) in the process—we want to en-
able operators to distributedly manage the helper.

Modular design. We split the helper into independent modules—
similar to how, early on, researchers split the networking
stack into separate layers (i.e., OSI [18]). A well-designed
monolithic system can outperform a modular one—e.g., co-
optimized application and transport layers outperform the
modularized stack [29]—but a modularized design accelerates
early research and helps find solutions quickly.

Asset reuse. OCEs use many tools: device health monitors,
packet loss detectors, link/device isolation tools, etc. It took
operators many years of research and experience to create
them, and we designed our framework to leverage them.

4.2 The Case for LLMs
LLMs have a unique ability to help us achieve a holistic OCE-
helper design, and perhaps a fully automated solution:

They can reason (kind of). Resolving incidents (or in general,
debugging faults) boils down to inferring the chain of causal re-
lationships that lead to the incident (e.g., Figure 2). Operators
logically understand the components—e.g.,, switch failures
lead to packet loss—which they use to make these inferences—
and backtrack through the possible chain and confirm or reject
prior states in the chain to hone in on the correct cause.

We see a similar causal deduction in LLMs [52]: they parrot
the cause and effect relationships they learned through training
on vast corpora of text; e.g., we asked GPT-4 why a VM experi-
enced packet loss, and it provided an exhaustive list including
congestion, device failure, misconfiguration, bugs, etc. Since
OCEs also learn such deduction through training, we can get

more detailed responses if we fine-tune LLMs on the same
documents and if we look at the mitigation history of previous
incidents—this is in line with prior works’ observations [1].

We can embed causal deductions statistically in a black-
box [3, 4, 22], e.g., statistically model the causal link between
device failures and packet loss. But such models are usually
not tractable (operators make them explicit and narrow to make
them tractable): a monolithic black-box that models all causal
relationships needs to observe all telemetry and predict all
possibilities. We have too much telemetry to collect or feed
to a black-box and the larger input/output sizes increase sam-
ple complexities—they need too many training samples. IM
involves rare incidents and is structurally sample-starved.

They are technically well-suited to the problem. Unlike
prior ML solutions which have fixed input spaces, we can
input anything from normal text, to numbers, to system logs,
to loose descriptions, or instructions to an LLM. LLMs also
quickly and cheaply instance-optimize, i.e., specialize to a
specific instant and problem, with in-context learning and can
integrate with external tools [43] and plugins [40].

But LLMs are not magic. Computational complexity grows
quadratically with token count, and we have input limits (cur-
rently 32K tokens ≈ 24K words in GPT-4).3 Mainstream
LLMs only accept text, and we need clever tricks for multi-
modal inputs (e.g., images, graphs, time series). We still can’t
use them for long-term planning and reasoning [8, 41]. LLMs
are unreliable—they are powerful enough to enable OCE-
helpers, but imperfect on their own: they cannot replace the
OCE. As researchers, we have to find how best to use them,
and we discuss our initial work on this in the next section.

4.3 Overview
The framework we propose has three “LLM agents” (Figure 1):
(1) the hypothesis former produces bite-sized hypotheses and
describes possible root causes or mitigations in each step; (2)
the hypothesis tester takes a hypothesis as input and generates
a procedure to verify it; and (3) the mitigation planner creates
a detailed mitigation plan. These modules need not use the
same techniques: some may use a simple LLM while others
more complex goal-driven LLM-agents [47,55]. Each module
presents several suggestions to the OCE who then approves a
select few at their discretion. OCEs can pre-approve certain
suggestions that have high confidence and low risk. This strict
approval process avoids compounding mistakes—one early ir-
relevant hypothesis can lead the LLM astray for long durations.

In this design, we generate hypotheses and tests in a loop
and eventually produce a mitigation plan—we replicate how
an OCE mitigates incidents (the design shadows the OCE).
The end-to-end helper workflow is as follows:

Hypothesis former. The hypothesis former takes in the cur-
rent context and produces a hypothesis small enough that we
can easily verify—its only goal is to help the operator get one
step closer to recognizing the root cause or mitigation.
3Ongoing trends suggest higher token lengths and specialized smaller
models, which would benefit our applications.

Take an example incident where a link drops packets: the hy-
pothesis former hypothesizes that either a link is faulty or over-
loaded, or the monitoring pipeline is broken. The OCE has to
choose which hypothesis to test. The LLM must produce a con-
fidence score and an explanation to help novice OCEs decide.

Hypothesis tester. The hypothesis tester receives these choices,
and generates a plan to validate each: in our earlier example,
the tester can query monitors to check the link utilizations
across the network and validate whether any link is overloaded.
The hypothesis tester can access the operator’s monitoring
infrastructure (e.g., link utilization dashboards), LLM-based
tools (e.g., one that checks whether there is an ongoing inci-
dent with similar symptoms in the operator’s network), or even
produce manual steps the OCE can execute (e.g., it can tell the
OCE to ask the customer for a packet trace). The role the LLM
plays in this step is to identify what tools can test the hypoth-
esis and how to interpret the results from the queries and either
accept or reject the hypothesis. The OCE will verify both steps.

Mitigation planner. The OCE then invokes the mitigation
planner which takes the tested hypothesis as input and produces
a mitigation plan that the OCE then can trigger. We explicitly
only allow the OCE (and not the other LLM modules) to start
the mitigation process because: (1) mitigations can impose
drastic costs on cloud tenants, and the responsibility of prema-
ture mitigation should fall on the OCE; (2) the hypothesis form-
ing and testing is meant to decrease OCE uncertainty, not the
helper’s uncertainty (which is non-trivial to assess too). This
adds an extra layer of risk protection without impacting TTM.

The mitigation planner generates a list of possible actions
(e.g. de-isolate link and reroute traffic) and the associated risk.
The OCE selects which to use. The OCE has to use various
tools to execute each action (API, LLM or OCE) and then
presents the results to the module, which parses it and decides
whether the mitigation was successful.

Risk assessment is central to the third module. We highlight
two important risk assessments in §2: (1) an internal, qualita-
tive analysis, which the LLM produces based on thought chains
and reason (e.g., if the de-isolated link is faulty, packet loss
may increase); (2) an external, quantitative analysis, which
a white-box algorithm produces based on network principles
(e.g., 23% risk that de-isolating link A disrupts a microservice).
We find these measures necessary as they are complementary
views of risk, and vital to both experienced and novice OCEs.

Design benefits. Teams can independently contribute and
develop the system. They can add new tools or remove depre-
cated ones from the hypothesis tester and mitigation planner.
OCEs have first-hand experience and know best what tool or
mitigation implementation is cost-effective and which tools to
update to support new incident patterns.

While these modules work best in tandem, their tasks are
separate. Operators benefit from each individual module, and
OCEs can fill the gaps for modules in development. This allows
a phased execution and lowers the high barrier to deployment.

A modular design eases adaptation. In an end-to-end model,
each change requires a full prompt redesign or model fine-

tuning. With a modular design, we can surgically upgrade
the relevant module. We can adapt LLM-based modules by:
(1) fine-tuning [1] which pays a cost up-front but is the most
accurate; (2) in context learning [13] which is faster to develop
but cannot accept tasks with large contexts because of lim-
ited prompt size. Fine-tuning has a high infrastructure cost so
operators should use it sparingly.

4.4 Research Directions
Our community needs to research several new directions to
materialize this framework, which are:
Network expertise. We need to evaluate, and if necessary,
improve the LLM’s performance on complex systems and net-
work problems (LLMs can diagnose simple problems but not
complex ones [47, 55]). To fine-tune for networking knowl-
edge, we can use IM data: (1) OCE training documents, slides,
and videos (which are multi-modal, high-quality, and low
volume); (2) TSGs (which are high-volume, detailed, and
sometimes stale); (3) incident logs and OCE communications
(which are high-volume, low-quality and unstructured); (4)
direct LLM chatting with OCEs (which are high-quality and
expensive); (5) IM tools and their documentation.
Network-focused Embeddings. We have a limited token
size per query and have to carefully pick what information
is relevant to the current prompt. Frameworks currently em-
bed pieces of text to a vector, and store the tuple in a vector
database. At runtime, the vector database runs an approxi-
mate nearest neighbour search on the database and appends
top results to the prompt. But embeddings come from generic
models trained on non-network specific data [23], and also not
trained specifically to guide prompts. Future work can train
network-specific embedding models that guide LLM prompts.
Recent work may serve as a good starting point [57].
Intelligent planning. LLMs cannot plan long-term [8]. We
require the framework to generate and test small hypothe-
ses that are easy to plan and test but also benefit from better
planning which requires more study. Methods such as chain-
of-thought [28,52,54] show promise but rely on intuitive ways
to structure the LLM response. There is no barrier to entry
for this research, and in fact, the systematic mindset in our
community may help us find better solutions. Recent work
provides a good starting point for the design [37, 47].
Risk assessment. We propose three lines of research. First, au-
tomated qualitative reasoning with LLMs: LLMs can support
their conclusions with logical [28, 52] or common-sense [6]
arguments if we use them in a multi-step process with “short
steps”. But researchers have not yet built a reasoning engine
for network and cloud systems. In the short-term, a network ex-
pert LLM that understands key network concepts (e.g., routing,
wired and wireless media, congestion, RDMA), cloud services
(VMs, WANs, Clos topologies, SDN, NICs, Programmable
switches), and can deduce the interaction between these dif-
ferent components, at least in steps can help address this.

Second, we can use reliable and white-box analytical models
of risk which apply to specific scenarios. Prior work has looked

at analytical risk assessment [2, 38, 53, 58] but they fall short:
(1) they don’t measure risk directly (e.g., they measure the
increase in link B’s utilization if we isolate link A but the risk
operators care about is the impact on the applications that used
link A before isolation and link B after); (2) they consider a
small set of mitigations compared to the full breadth of what op-
erators can use (e.g., they consider isolating the faulty link but
do not model migrating the affected VMs or partially re-routing
traffic); and (3) none consider whether the mitigation itself
may cause an incident (e.g., whether the mitigation may trigger
a race condition that would cause further harm to the network).

Third, and perhaps the most exciting path, is how we can
merge these two perspectives on confidence and risk; LLM-
based qualitative and high-level assessments, and explicit mod-
els with quantified analysis. At a high level, an LLM-based
agent decides what is at risk given some mitigation, generates
a causal graph of components, and uses analytical tools to
quantify the risks, given the causal model.

Toolbox abstraction. The boundary between modules and
tools is unclear. There is a trade-off; tools can provide low-
level telemetry and let the main module parse the information,
or tools could parse low-level telemetry and provide the main
module with high-level insights. With the former, we have to
verify the LLM-based module parsed the data correctly, and
with the latter, we have to manually design the tools.

Verifiable LLM-based tools. LLMs can help with code gener-
ation [12] and SQL queries [31, 48]. But we need to verify the
outputs they generate if we want to use them in an automated
pipeline. This requires research in: (1) formal verification
techniques [21] to prove correctness; (2) repairing responses
with consistency checks such as Haskell QuickCheck [15].

5 Related Works

LLMs. Prompt-engineering research has surged recently, and
is necessary to utilize LLMs to their full potential. Some ap-
proaches attempt to improve the reasoning quality of LLMs
through chain-of-though and scratch-padding [28, 39, 52, 54],
some aim to keep the LLM self-consistent [27, 32, 42, 47, 51],
some use debating among multiple models to improve re-
sults [19], some verify the response [16]. Some approaches
provide general-purpose techniques that teach LLMs to use
tools [43], some retrieve useful text from a large corpus and
put in context when needed [25], whilst others provide a sys-
tematic architecture for tools to use LLMs [9, 33]. Prior work
processes multi-modal data (e.g., image, audio, text, etc.) with
LLMs without explicit training [56].

Incident Management. Prior works have tried to improve and
understand the IM workflow either by describing examples
from large production environments [24], monitoring solutions
to help the diagnosis process [30, 35, 36, 49], or ML-based so-
lutions to improve different parts of the OCE experience [22].

The work which focuses on using ML to improve the IM
workflow itself includes but is not limited to [1, 10, 11, 13, 22,
26, 46]. From this set, those which involve LLMs [1, 13] laid

the initial foundation to show there is promise for LLMs to
have an impact in this space. We take on the next step: we
present an end-to-end view of how we can produce a reliable
and deployable solution in practice.

6 References

[1] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann,
X. Zhang, and S. Rajmohan. Recommending root-cause and mitigation
steps for cloud incidents using large language models, 2023. ICSE’23.

[2] O. Alipourfard, J. Gao, J. Koenig,
C. Harshaw, A. Vahdat, and M. Yu. Risk-based planning of network
changes in evolving data centers. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 414–429, 2019.

[3] A. Alomar, P. Hamadanian, A. Nasr-Esfahany,
A. Agarwal, M. Alizadeh, and D. Shah. CausalSim: A causal
framework for unbiased Trace-Driven simulation. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 1115–1147, Boston, MA, Apr. 2023. USENIX Association.

[4] B. Arzani, K. Hsieh,
and H. Chen. Interpret-able feedback for AutoML systems, 2021.

[5] M. Azure. Post incident review (pir) – azure networking –
global wan issues, 2023. https://azure.status.microsoft/
en-us/status/history/, Accessed: 2023-06-26.

[6] A. Bosselut, H. Rashkin, M. Sap, C. Malaviya, A. Celikyilmaz, and
Y. Choi. COMET: Commonsense transformers for automatic knowledge
graph construction. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4762–4779,
Florence, Italy, July 2019. Association for Computational Linguistics.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners, 2020.

[8] S. Bubeck, V. Chandrasekaran,
R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li,
S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang. Sparks
of artificial general intelligence: Early experiments with GPT-4, 2023.

[9] H. Chase. LangChain, Oct. 2022. https://
github.com/hwchase17/langchain, Accessed: 2023-06-26.

[10] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu,
Y. Dang, and D. Zhang. Continuous incident triage for large-scale online
service systems. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 364–375. IEEE, 2019.

[11] J. Chen, S. Zhang, X. He, Q. Lin, H. Zhang, D. Hao,
Y. Kang, F. Gao, Z. Xu, Y. Dang, et al. How incidental are the incidents?
characterizing and prioritizing incidents for large-scale online
service systems. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, pages 373–384, 2020.

[12] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino,
N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders,
C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,
A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer,
P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and
W. Zaremba. Evaluating large language models trained on code, 2021.

[13] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao,
L. Shi, Y. Cao, X. Gao, H. Fan, M. Wen, J. Zeng, S. Ghosh, X. Zhang,
C. Zhang, Q. Lin, S. Rajmohan, and D. Zhang. Empowering practical
root cause analysis by large language models for cloud incidents, 2023.

[14] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya,

S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra,
K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick,
A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child,
O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat,
M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov,
and N. Fiedel. Palm: Scaling language modeling with pathways, 2022.

[15] K. Claessen and
J. Hughes. QuickCheck: a lightweight tool for random testing of haskell
programs. In Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268–279, 2000.

[16] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun,
L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse,
and J. Schulman. Training verifiers to solve math word problems, 2021.

[17] M. Cowan, S. Maleki,
M. Musuvathi, O. Saarikivi, and Y. Xiong. Msccl: Microsoft collective
communication library. arXiv preprint arXiv:2201.11840, 2022.

[18] J. D. Day and H. Zimmermann. The OSI
reference model. Proceedings of the IEEE, 71(12):1334–1340, 1983.

[19] Y. Du, S. Li,
A. Torralba, J. B. Tenenbaum, and I. Mordatch. Improving factuality
and reasoning in language models through multiagent debate, 2023.

[20] M. Fernandez. Prime day woes might have cost
Amazon $72m-$99m in sales, 2018. https://www.axios.com/
2018/07/18/prime-day-woes-might-have-
cost-amazon-from-72-99-million, Accessed: 2023-06-26.

[21] E. First, M. N. Rabe, T. Ringer, and Y. Brun. Baldur:
Whole-proof generation and repair with large language models, 2023.

[22] J. Gao, N. Yaseen, R. MacDavid,
F. V. Frujeri, V. Liu, R. Bianchini, R. Aditya, X. Wang, H. Lee, D. Maltz,
M. Yu, and B. Arzani. Scouts: Improving the diagnosis process through
domain-customized incident routing. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page 253–269,
New York, NY, USA, 2020. Association for Computing Machinery.

[23] T. Gao, X. Yao, and D. Chen.
SimCSE: Simple contrastive learning of sentence embeddings, 2022.

[24] R. Govindan, I. Minei,
M. Kallahalla, B. Koley, and A. Vahdat. Evolve or die: High-availability
design principles drawn from google’s network infrastructure.
In Proceedings of the 2016 ACM SIGCOMM Conference, 2016.

[25] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang.
Realm: Retrieval-augmented language model pre-training, 2020.

[26] J. Jiang, W. Lu, J. Chen, Q. Lin, P. Zhao, Y. Kang,
H. Zhang, Y. Xiong, F. Gao, Z. Xu, et al. How to mitigate the incident?
an effective troubleshooting guide recommendation technique for
online service systems. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 1410–1420, 2020.

[27] G. Kim, P. Baldi,
and S. McAleer. Language models can solve computer tasks, 2023.

[28] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo,
and Y. Iwasawa. Large language models are zero-shot reasoners, 2023.

[29] A. Langley, A. Riddoch,
A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov,
I. Swett, J. Iyengar, et al. The quic transport protocol: Design and
internet-scale deployment. In Proceedings of the conference of the ACM
special interest group on data communication, pages 183–196, 2017.

[30] Y. Li, R. Miao, C. Kim, and
M. Yu. FlowRadar: A better NetFlow for data centers. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16), pages 311–324, Santa Clara, CA, Mar. 2016. USENIX Association.

[31] A. Liu, X. Hu, L. Wen, and P. S. Yu. A comprehensive
evaluation of ChatGPT’s zero-shot Text-to-SQL capability, 2023.

[32] A. Madaan, N. Tandon, P. Gupta, S. Hallinan,
L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye, Y. Yang,
S. Gupta, B. P. Majumder, K. Hermann, S. Welleck, A. Yazdanbakhsh,
and P. Clark. Self-refine: Iterative refinement with self-feedback, 2023.

[33] Microsoft. LangChain, Feb. 2023. https://github.com/
microsoft/semantic-kernel, Accessed: 2023-06-26.

https://azure.status.microsoft/en-us/status/history/
https://azure.status.microsoft/en-us/status/history/
https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://github.com/microsoft/semantic-kernel
https://github.com/microsoft/semantic-kernel

[34] J. C. Mogul, D. Goricanec, M. Pool, A. Shaikh, D. Turk,
B. Koley, and X. Zhao. Experiences with modeling network topologies
at multiple levels of abstraction. In NSDI, pages 403–418, 2020.

[35] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Dream:
Dynamic resource allocation for software-defined measurement.
In Proceedings of the ACM SIGCOMM Conference, 2014.

[36] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Trumpet:
Timely and precise triggers in data centers. In ACM SIGCOMM, 2016.

[37] Y. Nakajima. Task-driven Autonomous Agent, Apr.
2023. https://github.com/yoheinakajima/babyagi,
Accessed: 2023-06-28.

[38] P. Namyar, B. Arzani, D. Crankshaw,
D. S. Berger, K. Hsieh, S. Kandula, and R. Govindan. Mitigating
the performance impact of network failures in public clouds, 2023.

[39] M. Nye, A. J. Andreassen, G. Gur-Ari,
H. Michalewski, J. Austin, D. Bieber, D. Dohan, A. Lewkowycz,
M. Bosma, D. Luan, C. Sutton, and A. Odena. Show your work:
Scratchpads for intermediate computation with language models, 2021.

[40] OpenAI. ChatGPT plugins, 2023. https://
openai.com/blog/chatgpt-plugins, Accessed: 2023-06-26.

[41] OpenAI. GPT-4 technical report, 2023.
[42] D. Paul, M. Ismayilzada,

M. Peyrard, B. Borges, A. Bosselut, R. West, and B. Faltings.
Refiner: Reasoning feedback on intermediate representations, 2023.

[43] T. Schick, J. Dwivedi-Yu, R. Dessì,
R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and T. Scialom.
Toolformer: Language models can teach themselves to use tools, 2023.

[44] A. W. Services. Summary of
AWS Direct Connect event in the Tokyo (ap-northeast-1) region, 2021.

[45] A. Shah, V. Chidambaram,
M. Cowan, S. Maleki, M. Musuvathi, T. Mytkowicz, J. Nelson,
and O. Saarikivi. TACCL: Guiding collective algorithm synthesis using
communication sketches. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 593–612, 2023.

[46] M. Shetty, C. Bansal, S. P. Upadhyayula, A. Radhakrishna, and A. Gupta.
Autotsg: Learning and synthesis for incident troubleshooting, 2022.

[47] N. Shinn,
F. Cassano, B. Labash, A. Gopinath, K. Narasimhan, and S. Yao.
Reflexion: Language agents with verbal reinforcement learning, 2023.

[48] R. Sun, S. O.
Arik, H. Nakhost, H. Dai, R. Sinha, P. Yin, and T. Pfister. SQL-PaLM:
Improved large language model adaptation for Text-to-SQL, 2023.

[49] C. Tan, Z. Jin, C. Guo, T. Zhang,
H. Wu, K. Deng, D. Bi, and D. Xiang. NetBouncer: Active device
and link failure localization in data center networks. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19), pages 599–614, Boston, MA, Feb. 2019. USENIX Association.

[50] W. Wang, M. Khazraee,
Z. Zhong, M. Ghobadi, Z. Jia, D. Mudigere, Y. Zhang, and A. Kewitsch.
TopoOpt: Co-optimizing network topology and parallelization strategy
for distributed training jobs. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 739–767, 2023.

[51] X. Wang, J. Wei, D. Schuurmans,
Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou. Self-consistency
improves chain of thought reasoning in language models, 2023.

[52] J. Wei, X. Wang, D. Schuurmans, M. Bosma,
B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-thought
prompting elicits reasoning in large language models, 2023.

[53] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz,
X. Yang, L. Yuan, and M. Zhang. NetPilot: Automating datacenter
network failure mitigation. In Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures,
and protocols for computer communication, pages 419–430, 2012.

[54] S. Yao, D. Yu, J. Zhao,
I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models, 2023.

[55] S. Yao, J. Zhao, D. Yu, N. Du,
I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

[56] A. Zeng, M. Attarian, B. Ichter,
K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit, M. Ryoo,

V. Sindhwani, J. Lee, V. Vanhoucke, and P. Florence. Socratic models:
Composing zero-shot multimodal reasoning with language, 2022.

[57] S. Zhang, P. Jin, Z. Lin, Y. Sun, B. Zhang, S. Xia, Z. Li,
Z. Zhong, M. Ma, W. Jin, D. Zhang, Z. Zhu, and D. Pei. Robust failure
diagnosis of microservice system through multimodal data, 2023.

[58] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy,
and T. Anderson. Understanding and mitigating packet corruption
in data center networks. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages 362–375, 2017.

https://github.com/yoheinakajima/babyagi
https://openai.com/blog/chatgpt-plugins
https://openai.com/blog/chatgpt-plugins

	Introduction
	Foundational Principles: Design
	Foundational Principles: Evaluation
	Framework
	Our Perspective
	The Case for LLMs
	Overview
	Research Directions

	Related Works
	References

