
Exploring Perceus For OCaml
A Direct Comparison between Precise Reference Counting and Generational Garbage Collection.

Presented at the Higher-order, Typed, Inferred, Strict: ML Family Workshop 2023. Sep 8, 2023.

ELTON PINTO, Georgia Institute of Technology, USA
DAAN LEIJEN,Microsoft Research, USA

1 SUMMARY
The Perceus algorithm [Reinking, Xie et al. 2021] is a precise and garbage-free reference counting
schemewhich shows good performance in practice. However, the algorithm has only been compared
against garbage-collection across different systems and languages. There is no direct comparison
between Perceus and a garbage collector within the same system.

In this work, we take a step towards this goal. We have implemented a prototype of Perceus for
OCaml 4.14.0 (which subsumes the standard garbage collector [Doligez and Leroy 1993]). Now we
can directly compare the performance of programs compiled with the exact same compiler, where
we only switch the backend: either using the standard generational collector, or using Perceus
compilation with a reference counted runtime system. The initial performance results look quite
promising, motivating futher exploration.

2 PERCEUS REFERENCE COUNTING
With Perceus style reference counting the compiler automatically inserts reference count instruc-
tions in a way that guarantees that the resulting execution is garbage free, where non-live objects
are never retained. This is quite different from most other reference counting implementations that
are scope based. Consider for example:

let () =
let xs = biglist () in
let ys = map inc xs in
print_list ys

In scope based reference counting (like a C++ smart pointers or the Rust Drop trait), the references
to xs and ys are dropped at the end of the scope. However, this means that the big xs list is not
deallocated until the end of the scope – just before the print_list we now have two big lists in
the heap. In contrast, Perceus style reference counting passes the ownership of the xs reference
to map, where map will drop the xs list nodes as it iterates over it (and the same for the ys list in
print_list) – we have effectively halved the memory usage. Perceus would generate no reference
count instructions for main at all.
In contrast, as shown in Figure 1, the map function does the reference counting now. Here, the

Perceus compilation phase inserts dup and drop instructions. In the Cons branch, the rc_dup function
increments the reference count of the children x and xx, and then decrements the reference count
of the parent xs with the rc_drop instruction. If the reference count drops to zero, the cell is freed
and its children are recursively dropped (using a dynamic traversal at runtime).

We have implemented this transformation in the OCaml compiler and the result on map is shown
in Figure 1b.

2.1 Drop Specialization
We can already see that the naive Perceus algorithm is a bit inefficient: if xs is unique (with a
reference count of 1 at runtime), we first increment the reference count of its children, and then
immediatedy decrement them again when xs is dropped. We can avoid this by inlining the drop
operation, where

let rec map xs f =
match xs with
| Nil -> Nil
| Cons(x,xx) -> Cons(f x,map f xx)

type ’a list = Nil | Cons of ’a * list

(a) plain map

let rec map xs f =
match xs with
| Nil -> rc_drop xs; rc_drop f; Nil
| Cons (x, xx) ->

rc_dup x; rc_dup xx; rc_drop xs;
Cons ((rc_dup f) x, map f xx)

(b) with dup/drop insertion

let rec map xs f =
match xs with
| Nil -> rc_drop xs; rc_drop f; Nil
| Cons (x, xx) ->

if rc_is_unique xs then rc_free xs
else (rc_dup x; rc_dup xx; rc_decref xs);
Cons ((rc_dup f) x, map f xx)

(c) with drop specialization

Fig. 1. Perceus on the map function. Certain details (like those pertaining to fixing an evaluation order for
correctness of reference counting in OCaml) have been omitted for clarity.

rc_dup x; rc_dup xx; rc_drop xs

becomes:

rc_dup x; rc_dup xx; if rc_is_unique xs then (rc_drop x; rc_drop xx; rc_free xs) else rc_decref xs;

We can now push down the rc_dup instructions into the branches and fuse them with the rc_drop

instructions:
if rc_is_unique xs then rc_free xs else rc_dup x; rc_dup xx; rc_decref xs;

This is much better! This transformation is called drop specialization [Lorenzen and Leijen 2022;
Reinking, Xie et al. 2021], which we have also implemented. Figure 1c shows the result of this opti-
mization on the map example. There are further optimizations that can be done — in particular reuse
analysis and reuse specialization can have a large performance impact [Lorenzen and Leijen 2022;
Lorenzen et al. 2023b]. We plan to implement this in the future.

3 ADAPTING OCAML FOR REFERENCE COUNTING
The OCaml runtime is highly optimized for GC and fast allocation [Doligez and Leroy 1993;
Sivaramakrishnan et al. 2020]. In particular, it uses a calling convention that is different from the
regular C ABI, where all registers are caller-save (for fast exceptions and GC root scanning) and
registers r14 and r15 are reserved for use by the runtime. The r14 register contains the thread-local
OCaml state (including the minor generation limit) while the r15 register contains a pointer into the
minor generation. This allows for very fast bump pointer allocation where r15 is just incremented
and compared to the minor generation limit to see if a GC is required.

However, this calling convention is not well suited for a reference counting scheme like Perceus,
where we rely on standard malloc and free to allocate and free objects. Since these routines are
typically implemented in C, we would have to save and restore all live registers (including r14 and
r15) on each call which could make the operation quite expensive. We work around this by explicitly
linking with the mimalloc allocator [Leijen et al. 2019] – a highly performant and scalable allocator
used by the Koka and Lean languages (and at the same time also at some very large services at
various companies) that is relatively small (~8k loc) and well suited for runtime integration. The
mimalloc allocator has the notion of a very small fast-path for allocation and freeing which we
can inline those directly into the generated code, resulting in allocation needing only about 8 to 10
assembly instructions containing a single test instruction. In our prototype, we use r15 to point
to the mimalloc thread local heap to avoid thread local storage. In these specialized fast paths,
we carefully use just 2 or 3 fixed registers, and only save the full register state on slow paths for
generic allocation and freeing, amortizing the cost over many allocations. This approach may also
work well for any future transition to OCaml 5 where we can execute the fast path on a split-stack
directly [Sivaramakrishnan et al. 2020].

2

cfold deriv nqueens rbtree rbtree ck
0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
tim

e
(lo

w
er

is
be

tte
r)

1.
00

1.
00

1.
00

1.
00

1.
00

0.
83

1.
09

0.
76

2.
76

1.
12

0.
72

0.
96

0.
87

1.
52

0.
76

Backend
GC
Perceus
Perceus+opt

(a) relative execution time

cfold deriv nqueens rbtree rbtree ck
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
rs

s
(lo

w
er

is
be

tte
r)

1.
00

1.
00

1.
00

1.
00

1.
00

0.
54

0.
99

0.
58

0.
98 0.
99

0.
54

0.
99

0.
58

0.
98 0.
99

(b) relative peak working set

Fig. 2. Relative execution time and peak working set with respect to the OCaml GC. ‘Perceus’ is baseline
Perceus reference counting while ‘Perceus-opt’ applies drop specialization. Reuse analysis is not applied.
Using a 64-bit Core i7 @2.5GHz with 16GiB memory, macOS Ventura 13.2.1. Each benchmark was compiled
using the Clambda middle-end with -O2 optimizations.

4 INITIAL BENCHMARKS
The prototype was evaluated on the same benchmark suite used in the original Perceus pa-
per [Reinking, Xie et al. 2021] which consists of five medium sized examples that are allocation
intensive. The systems compared are the standard generational GC (OCaml 4.14.0) (GC), plain
Perceus with no optimizations (Perceus), and Perceus with drop specialization (Perceus+opt). The
relative execution time and peak working set as the mean over five runs is given in Figure 2.
Even in our prototype without reuse optimizations, the Perceus backend performs close to the

GC backend and is even a bit faster in four out of the five benchmarks. The rbtree benchmark does
42 million balanced red-black tree insertions and folds the tree at the end. The rbtree-ck version
keeps a reference to every 10th tree in a list and thus shares many of the subtrees. For both of
these, drop-specialization proves to be important since each uses complex pattern matches which
benefit from the the dup-drop fusion. The balanced insertion creates many short-lived objects while
rebalancing back up the tree – an ideal case for the copying collector of the minor generation,
explaining the good performance of the GC variant on the rbtree programs.We see higher overheads
in rbtree-ck as more trees need to be promoted due to sharing. Balanced insertion lends itself well
to reuse of those short-lived objects [Lorenzen and Leijen 2022] and we anticipate that a future
reuse specialization will improve the performance of rbtree further for Perceus.
Since Perceus is garbage free, the Perceus backend uses less memory than the OCaml garbage

collector on all benchmarks, with a 40%+ reduction in the cfold and deriv programs. However, for
the other three benchmarks the working set is suprisingly close which is a testament to how well
the OCaml GC is able to manage its memory.

5 CONCLUSION AND FUTUREWORK
The benchmarks used in the evaluation are quite limited – too limited to draw any firm conclusions.
We do believe these benchmarks represent memory intensive workloads that are quite typical in
functional programming. Despite seemingly having “more” instructions to run, the Perceus backend
turns out to be competitive with OCaml’s GC for our benchmarks. As such, the results presented
here are encouraging and motivate further investigation to arrive at a stronger conclusion.

3

The prototype currently supports only a limited subset of OCaml and for example does not
consider exceptions and mutable references. In future work we hope to add support for these and
evaluate the system on a larger set of standard OCaml benchmarks. We also plan to implement
reuse analysis and specialization to further improve performance.

REFERENCES
Damien Doligez, and Xavier Leroy. 1993. A Concurrent, Generational Garbage Collector for a Multithreaded Implementation

of ML. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 113–123.
Daan Leijen, Zorn Ben, and Leo de Moura. 2019. Mimalloc: Free List Sharding in Action. Programming Languages and

Systems, LNCS, 11893. Springer International Publishing. doi:https://doi.org/10.1007/978-3-030-34175-6_13. APLAS’19.
Anton Lorenzen, and Daan Leijen. Sep. 2022. Reference Counting with Frame Limited Reuse. In Proceedings of the 27th ACM

SIGPLAN International Conference on Functional Programming (ICFP’2022). ICFP’22. Ljubljana, Slovenia.
Anton Lorenzen, Daan Leijen, andWouter Swierstra. May 2023. FP 2: Fully in-Place Functional Programming. MSR-TR-2023-19.

Microsoft Research.
Anton Lorenzen, Daan Leijen, and Wouter Swierstra. Sep. 2023. FP2: Fully in-Place Functional Programming. In Proceedings

of the 28th ACM SIGPLAN International Conference on Functional Programming (ICFP’2023). ICFP’23. Seattle,USA. Under
submission. See [Lorenzen et al. 2023a] for the extended technical report.

Reinking, Xie, de Moura, and Leijen. 2021. Perceus: Garbage Free Reference Counting with Reuse. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation, 96–111. PLDI 2021. ACK,
New York, NY, USA. doi:https://doi.org/10.1145/3453483.3454032.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and
Anil Madhavapeddy. Aug. 2020. Retrofitting Parallelism onto OCaml. Proc. ACM Program. Lang. 4 (ICFP). Association for
Computing Machinery, New York, NY, USA. doi:https://doi.org/10.1145/3408995.

A EXAMPLE OF THE GENERATED CODE
As an example of the fast paths, here is the assembly generated on x64 for a part of the Cons branch
of the map function:

; enter the Cons branch, %rax = xs
movq (%rax), %rdi ; store x and xx in %rdi and %rsi
movq 8(%rax), %rsi
movq %rsi, (%rsp)

; if unique xs then free xs else (dup x; dup xx; decref xs)
cmpl $0, -4(%rax) ; xs.refcount == 0 ? (0 is unique)
jne .L101 ; if not unique, use slow path to dup x and xx
leaq -8(%rax), %r11 ; free xs (using our fast-path free which expects the arg in r11)
call caml_rc_asm_mi_free_hp

; dup f
.L100: ; (the slow path L101 comes back here)

cmpl $0, -4(%rbx) ; if f.refcount is negative,
jl .L112 ; then use slow path for an atomic dup
incl -4(%rbx) ; else just increment the refcount

; call f(x)
.L111: ; (the slow path L112 comes back here)

movq (%rbx), %rsi ; load environment of f
movq %rdi, %rax ; load argument (x)
call *%rsi ; call f

... ; tailcall map

Here we see how the drop is specialized to where the fast path if rc_unique

xs then rc_free xs else ... is inlined. Even though we do inline allocation, the freeing code is a bit
too large (~20 instructions) and we use a call instead. For the rc_dup f we inline the common case
of a non-concurrent increment of the reference count. If a reference count is negative we need to
an atomic increment which is done in a slow path. (OCaml 4 does not have such concurrency but
we already generate code that can handle these situations in order to compare fairly since we hope
to port this to OCaml 5 in the future.)

4

https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3408995

	1 Summary
	2 Perceus Reference Counting
	2.1 Drop Specialization

	3 Adapting OCaml for Reference Counting
	4 Initial Benchmarks
	5 Conclusion and Future work
	References
	A Example of the Generated Code

