
FormaT5: Abstention and Examples for Conditional Table
Formatting with Natural Language

Mukul Singh
Microsoft
Delhi, India

singhmukul@microsoft.com

José Cambronero
Microsoft

New Haven, USA
jcambronero@microsoft.com

Sumit Gulwani
Microsoft

Redmond, USA
sumitg@microsoft.com

Vu Le
Microsoft

Redmond, USA
levu@microsoft.com

Carina Negreanu
Microsoft Research
Cambridge, UK

cnegreanu@microsoft.com

Elnaz Nouri
Microsoft Research
Redmond, USA

elnaz.nouri@microsoft.com

Mohammad Raza∗
Microsoft

Redmond, USA
moraza@microsoft.com

Gust Verbruggen
Microsoft

Keerbergen, Belgium
gverbruggen@microsoft.com

ABSTRACT

Formatting is an important property in tables for visualization,
presentation, and analysis. Spreadsheet software allows users to
automatically format their tables by writing data-dependent condi-
tional formatting (CF) rules. Writing such rules is often challenging
for users as it requires understanding and implementing the un-
derlying logic. We present FormaT5, a transformer-based model
that can generate a CF rule given the target table and a natural
language description of the desired formatting logic. We find that
user descriptions for these tasks are often under-specified or am-
biguous, making it harder for code generation systems to accurately
learn the desired rule in a single step. To tackle this problem of
under-specification and minimise argument errors, FormaT5 learns
to predict placeholders though an abstention objective. These place-
holders can then be filled by a second model or, when examples of
rows that should be formatted are available, by a programming-by-
example system. To evaluate FormaT5 on diverse and real scenarios,
we create an extensive benchmark of 1053 CF tasks, containing real-
world descriptions collected from four different sources. We release
our benchmarks to encourage research in this area. Abstention and
filling allow FormaT5 to outperform 8 different neural approaches
on our benchmarks, both with and without examples. Our results
illustrate the value of building domain-specific learning systems.

PVLDB Reference Format:

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu,
Elnaz Nouri, Mohammad Raza, and Gust Verbruggen. FormaT5:
Abstention and Examples for Conditional Table Formatting with Natural
Language. PVLDB, 17(3): XXX-XXX, 2023.
doi:XX.XX/XXX.XX

∗Work performed while at Microsoft
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s).
Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

The code, data, and/or other artifacts have been made available at https://
github.com/microsoft/prose-benchmarks/tree/main/ConditionalFormatting.

1 INTRODUCTION

Conditional formatting (CF) allows users to automatically format
data by writing rules that describe when specific formatting styles
should be applied to cells. CF is commonly used for data analysis
and presentation, and is supported by spreadsheet software (like
Microsoft Excel and Google Sheets), data analysis software (like
Pandas), and data visualization software (like Tableau).

A recent analysis [46] shows that CF is present in 18% of spread-
sheets from two popular public corpora [3, 16]. Unfortunately, users
struggle to write CF rules as it requires knowledge of the underly-
ing data logic and rule language. The aim of FormaT5 is to allow
users to go from their intended formatting to a CF rule that achieves

this formatting as intuitively as possible. We therefore study how to
obtain CF rules from natural language descriptions of the desired
formatting (utterances).

Example 1. An example table and the intended formatting is

shown in Figure 1 (a). Logical conjunction and string comparison

are required to write the rule. Our system takes the table (a) and the

natural language instruction (b) and generates the rule (c).

An important challenge in parsing utterances is inferring con-
stant values required in rules. Recent work has explored learning
formatting rules by example [46]. We show how these comple-
mentary forms of intent—natural language and examples—can be
combined to learn rules with the correct constants.

Our approach, called FormaT5, uses an encoder-decoder trans-
former to generate the rule from a flat representation of the input
data (table, utterance). There are three main challenges: (1) teaching
the model link tabular data with code, (2) using examples when
appropriate, and (3) obtaining training data. We now describe how
we tackle these challenges.

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX
https://github.com/microsoft/prose-benchmarks/tree/main/ConditionalFormatting
https://github.com/microsoft/prose-benchmarks/tree/main/ConditionalFormatting

Figure 1: A real conditional formatting task from an Excel

tutorial. (a) shows the table with an optionally highlighted

row (as a single example) that should be formatted, (b) is a

natural language utterance for the desired formatting rule,

(c) is the target formatting rule, which would also correctly

color Student 4’s row.

To address the first challenge, FormaT5 first learns to relate
tabular data and code in a pre-training step, and then learns to
incorporate natural language in a fine-tuning step. Text-to-code
systems [21, 37, 44] often ignore the data programs are meant
to execute on (typically due to lack of availability). Table models
[23, 53] have been developed to answer natural language questions
over tables, but are not trained on code. SpreadsheetCoder [7] or
FORTAP [9] encode table data to generate formulas, but do not
include natural language.

To address the second challenge—using examples and learning
when examples are required—we allow the model to generate place-
holder tokens in the predicted rule and use a separate approach
to populate the placeholders. An abstention loss objective teaches
the model to only predict placeholders when tokens cannot be
inferred from the utterance and table information. Based on the
available information, we either use a separate model to generate
constant values (given utterance only) or adapt the example-based
rule learning system from Cornet [46] to generate plausible candi-
dates (given utterance and examples).

To address the third challenge, we use pre-trained large language
models (Codex and GPT-3) to bootstrap training examples from a
few manually annotated code snippets. Additionally, pre-training
on table and rule pairs and then fine-tuning themodel to incorporate
natural language (see the first challenge) allows us to leverage the
availability of large amounts of rules without natural language
utterances, as opposed to the comparatively small amount of rules
with utterances.

To evaluate FormaT5, we gather 1053 tasks from four different
sources (crowdsourced annotation, Stack Overflow posts, online
tutorials, and sampled spreadsheets we annotate). Each task consists
of an utterance, a table and a formatting rule. We release these
benchmarks to encourage future research in this area.

We compare FormaT5 to a wide range of neural baselines, in-
cluding text models, text-to-code models, table models and a table-
to-code model. Our experiments show that FormaT5 outperforms
the next best system by 2.4–10.3% using an exact match criterion,

depending on the type of task. We also demonstrate the effective-
ness of some design choices, including placeholder insertions, pre-
training objectives, and constrained decoding [37].

Learning conditional formatting rules is related to row selection
and learning database queries (like SQL) from natural language,
but there are three key differences. First, conditional formatting
allows specialized formatting operators (such as data bar, colour
scale and icon sets). Second, natural language utterances in the
conditional formatting domain are often underspecified. Third, con-
ditional formatting formulas are focused on (aggregate) numerical
properties and specific string properties (like prefixes and suffixes).
Specializing to these, FormaT5 avoids a more complex search space
and can learn from few (or no) user-provided examples.

We make the following contributions:
• We present FormaT5, a CF rule generation system trained

on code, natural language and tables.
• We construct a benchmark set of 1053 table formatting

problems from various sources and of varying difficulty.
We release this benchmark for future research.

• We carry out an extensive evaluation against existing text-
to-code and table models, showing that FormaT5 outper-
forms prior approaches across our benchmark tasks, both
without and with examples.

2 RELATEDWORK

Table Formatting. Despite its popularity, there is little work on
generating table formatting rules. [46] proposes Cornet, a system
that learns table formatting rules by examples. Our work is com-
plementary, as it focuses on natural language and uses examples
sparingly—when there is ambiguity in the utterance. CellGAN [13]
focuses on borders and alignment of cells to learn hierarchical head-
ers and data groups in tables. It uses an end-to-end approach to
learn formatting directly from a large number of formatted sheets.
Other work [8, 24, 30] focuses on formatting cells based on table
structure (like headers and partitions) and cell sizes. Neither of
these approaches focus on conditional formatting rules.

Text-to-Code Systems. A substantial body of work has explored
the use of transformer-based models for general code tasks. For
example, CodeBERT (BERT), CodeT5 (T5) and Codex (GPT-3) have
been fine-tuned for text-to-code tasks for multiple domains includ-
ing SQL, pandas and Python. In our work, we use a similar (T5)
approach to learn to generate conditional formatting rules, but we
also consider the input table in addition to the utterance.

Comparison to Text-to-SQL. CF rules are related to row selection
and may seem similar to query languages like SQL. However, three
key differences. First, CF supports specialized formatting operators
(such as data bar, colour scale and icon sets [14]) that account for
24.35% of our corpus of 410K rules – these are unsupported by
traditional text-to-SQL systems [37, 44]. Simply fine-tuning text-to-
SQL methods on our dataset, which includes these new operators,
does not solve the challenge as we demonstrate experimentally.
Second, utterances in CF are often under-specified and ambiguous,
for example, an utterance may simply state to “highlight” rows
but not specify the stylistic properties. FormaT5 introduces ab-
stention along with learning from examples as a complementary

modality to tackle these underspecified utterances. Third, condi-
tional formatting formulas are not as complicated as general where
clauses in SQL. For example, we found that many conditions in
formatting are focused on (aggregate) numerical properties and
specific string properties (like prefixes and suffixes) [46], while
SQL where clauses can include general subqueries. Specializing
FormaT5 to conditional formatting allows us to avoid a more com-
plex search space and learn from few (or no) user-provided ex-
amples. Despite these differences, because row selection (SQL) is
a related problem, our evaluation considers 5 text-to-SQL base-
lines: TAPAS[23], TaBERT[53], ValueNet[5], PICARD[44] (which
achieved state-of-the-art top-1 execution accuracy on the Spider
benchmark), and Synchromesh[37]. FormaT5’s results demonstrate
the value of building domain-specific learning system for the task
of conditional formatting.

Learning Queries for Databases. In the field of databases, initial
efforts to create natural language based systems involved ontolo-
gies, intermediate languages, and various heuristics for selecting
join paths [27, 43, 45]. However, with the emergence of transformer
models [48], the process of adding such capabilities to databases has
become simpler. The Spider leaderboard [2] presents a comparison
of machine learning-based approaches for text-to-SQL conversion,
which are evaluated based on the Spider dataset [54]. These ap-
proaches can be broadly classified into three categories: customized
ML models like ValueNet [5], pre-trained language models such as
GPT-3 [37, 38], and fine-tuned large language models [44, 49].

Generating Placeholders. Learning to insert placeholders has pre-
viously been found to improve code completion [19]. We use a
similar approach to insert placeholders in rules when the utterance
is underspecified or the model fails to learn. We show how these
placeholders can be resolved by a dedicated deep learning model
or a symbolic programming-by-example approach.

Learning over Tables. Table transformer models like TaBERT
[53], TAPAS [23] and TAPEX [31] learn a joint representation of
table data and query, and use this to predict the answer of a query.
These systems are designed to extract answers from tables in the
form of individual cells or aggregation over a range of cells. These
systems are not designed for code generation. TUTA [50] is another
table pre-training system that uses tree-based attention to encode
tables and has been fine tuned for table type classification and cell
type classification tasks. [35] performs data tasks like cleaning and
imputation by framing these as natural language tasks over tables.
They extend foundation models for data tasks by serializing tables
and framing data tasks into Yes and No text generation prompts.

Programming By Example. FormaT5 integrates NL-based gener-
ation with programming-by-example (PBE). PBE has been popu-
larized by the likes of FlashFill and FlashExtract [18, 26]. FlashFill
learns string transformation programs from few input-output ex-
amples while FlashExtract is a general framework for tabular data
extraction by examples. Because of their ease of use, they have been
integrated into commercial software—FlashFill and FlashExtract are
available in Excel. Popper [10] is another popular inductive logic
programming (ILP) framework for learning programs by specifying
examples and constraints. [46] is recent work that uses PBE to learn
CF rules. FormaT5 can use a PBE system (such as Cornet) to fill

the placeholders inserted when the utterance is underspecified or
the model fails to learn.

Multi-modal Synthesis. Recent work in code generation has ex-
plored combining NL and examples to design multimodal systems.
[51] provides examples to LLM in the prompt while [40] uses NL to
generate components with an LLM and then uses bottom-up synthe-
sis to generate programs. In contrast to these, FormaT5 uses NL to
learn a partial program that has placeholders for under-specification
or ambiguity, leveraging examples or a second NL-based value fill-
ing model to fill these holes, generating the complete program.

3 PRELIMINARIES

A CF task consists of the input table 𝑇 , an utterance 𝑄 , optionally
some examples 𝐸 and the target formatting rule 𝑅. Given input
(𝑇,𝑄, 𝐸) the goal is to find 𝑅.

The input table 𝑇 consists of a collection of columns that are
described by their header and data (list of cells). Each cell has a value
and type, where the type is one of date, number or string. We define
the type of the column as the most general type in the column,
where string ⊃ number ⊃ date. For example, a column where cells
have type number or type date has column type number.

Examples 𝐸 are given in the form of a (possibly empty) list of row
indices where each example is treated as a positive instance—the
given example is expected to be formatted by the correct rule.

Rules 𝑅 consist of logical propositions that are evaluated at the
level of the row—a rule cannot partially format a row.

4 FORMAT5

FormaT5 builds on the encoder–decoder architecture of T5, which
has been shown to be effective for code generation and code under-
standing [39]. We pre-train FormaT5 on (𝑇 , 𝑅) tuples without an NL
utterance—of which we have an abundance—and then fine-tuned
on (𝑇 , 𝑅, 𝑄) triples—which are harder to obtain.

4.1 Encoding 𝑇 , 𝑅 and 𝑄

We encode the table and rule by building a flat, textual representa-
tion and then using the T5 tokenizer. Rather than encode the whole
table, we represent it with its headers and column type informa-
tion.1 Columns are encoded from left to right and concatenated by a
[COL] separator token. For example, the table in Figure 1 is flattened
to “Name string [COL] Marks number [COL] ID string”.
All special tokens (between square brackets) are added as special
tokens to the tokenizer.

A rule is interpreted as a string according to the Excel syntax,
with boolean connectives in prefix notation (AND(a, b)). The ut-
terance is directly provided to the T5 tokenizer. The table and
utterance are joined by a [SEP] token.

4.2 Pre-training on 𝑇 and 𝑅

We gather a large corpus of 410K table and rule pairs from a collec-
tion of public Excel worksheets. These pairs do not have a natural
language utterance, so we use them to pre-train FormaT5 on the
following objectives.

1Experiments show that including data values does not improve performance–see
Table 7.

Figure 2: FormaT5 architecture summary. Given a natural language description and the associated table, FormaT5 uses an

abstention based generation that generates a sketch rule that can have holes for constants. In the value filling step, these holes

are filled using examples, when available or using an NL-only model that leverages the original description. In this case, the

user provided a single row as an example (Student 2) and the generated rule correctly colors remaining rows (Student 4).

Figure 3: FormaT5’s pre-training tasks: (1) two variants of Mask Span Prediction—recover (a) masked proposition names and (b)

masked arguments and column names; (2) Rule token type tagging—predict the indices representing different classes {0: syntax

tokens, 1: proposition name, 2: column name, 3: argument}; (3) Table schema prediction—recover the table schema.

Masked Span Prediction (MSP). We use two variations of the
masked span prediction (MSP) objective during pre-training, which
has been shown to be effective for sequence-to-sequence tasks [25]
like code generation [17]. In one variant, we randomly mask 50% of
tokens associated with proposition names (like TextStartsWith). In
the other variant, we randomly mask 50% of tokens associated with
proposition arguments (constants or references to table column
names). As usual in generative models, masked tokens are predicted
by teaching the model to generate (mask token, replacement) pairs.
This is shown in Figure 3 (a) and (b).

Rule Token Type Tagging. We adapt the identifier prediction ob-
jective [49] to predict the type of each token in a tokenized rule.
Possible types are proposition name, proposition arguments, col-
umn types and syntax tokens (like parentheses and quotes). A clas-
sification head is added to the encoder and we train with standard
cross entropy loss. This is shown in Figure 3 (2).

Table Schema Prediction. Given a rule, we task the model with
generating the table schema for the columns that it references.
The schema generated corresponds to (column name, column type)
tuples. This is shown in Figure 3 (3).

4.3 Bootstrapping Data

As conditional formatting rules with natural language utterance
annotations are scarce, we generate synthetic data using Codex
(code-davinci-002) [6] and GPT-3.5 (text-davinci-003) [4]. First, we
use Codex (code-davinci-002) to translate rules into utterances, and
then we use GPT-3.5 (text-davinci-003) to paraphrase the utter-
ances. Bootstrapping training data using language models [32] and
paraphrasing for diversity has been studied in prior work [22, 33].

We collected 50 rules that jointly contain at least one instance
of each proposition name from the rule language. We annotate
each rule with an associated natural language utterance. We then
prompt Codex to generate utterances for rules without an utterance
by using examples from the manually annotated set. We provide 3
examples which are selected using cosine similarity over CodeBERT
[15] embeddings of the rules.

We find that even with multiple runs at a high temperature,
the generated utterances lack diversity and have similar sentence
structure for rules that use the same propositions. To induce more
diversity in our dataset, we use GPT-3.5 to paraphrase the utterances
that were originally generated by Codex.

We find that the paraphrased queries are much more diverse
and realistic. After annotation and paraphrasing, we finally are

able to generate a total of 105K (𝑇,𝑄, 𝑅) triples. These are used for
fine-tuning FormaT5 and all baselines.

4.4 Fine-tuning on 𝑇 , 𝑅 and 𝑄 with Abstention

We describe teaching FormaT5 to insert placeholders using the
abstention loss objective and describe the fine tuning process.

4.4.1 Abstention Loss. We want to teach FormaT5 to predict a
placeholder rather than an incorrect token. During generation, For-
maT5 may be unable to capture parts of the intended 𝑅, either
due to under-specification in 𝑄 or because of the model fails to
learn. Code generation with placeholders over grammars by re-
inforcement learning was previously also used to generate code
completion sketches [19].

Example 2. Given the utterance “Highlight the students who
have middle school ID and have scored above Average” from Ex-

ample 1, the rule generation model struggles to identify the constant

associated with “middle school ID” without further user information.

We address this issue by extending the vocabulary with a special
[?] token that represents a placeholder in the rule which needs to be
filled. However, we cannot train such amodel in a supervised setting
as our training data does not have these [?] tokens. One solution to
this is to use a weighted cross-entropy loss and reduce the weight
of [?] tokens, such that the loss penalizes incorrect predictions
more heavily as compared to [?] predictions. The modified loss
𝐿ℎ (simplified for a single placeholder) is shown below with 𝛼

controlling the penalty for placeholder generation.

𝐿ℎ = −(1 − 𝛼)
(
𝑡≠ℎ∑︁
𝑡 ∈𝑇

𝑦𝑡 log(𝑝𝑡)
)
− 𝛼 · log(𝑝ℎ) (1)

This appears to solve the problem, but it has two major limita-
tions: (1) with this loss the model produces a lot more false-positive
placeholders, and (2) it is difficult to tune the parameter 𝛼 .

To address these issues, we employ the abstention loss objective
introduced for standard multi-class classification in [47]. For each
token 𝑐𝑖 in the rule, this objective combines a standard cross-entropy
loss function and the modified abstention loss

𝐿 (𝑖) = (𝑃 (𝑐h) − 1) log
(

𝑃 (𝑐𝑖)
1 − 𝑃 (𝑐h)

)
+ 𝛼 log

(
1

1 − 𝑃 (𝑐h)

)
,

where 𝑐h = [?] and 𝑃 (·) denotes the token probability from the
model. The first term computes a modified cross-entropy loss (re-
normalized for non-placeholder token probabilitymass) andweights
it by the complement of the placeholder probability. The second
term computes a placeholder penalty adjusted by a factor 𝛼 .

Example 3. Given the utterance “Highlight the students who have

middle school ID and have scored above Average,” FormaT5 with

abstention generates a rule

And(GreaterThan(Average("Marks")), TextContains([?]))

with a (single) placeholder [?].

4.4.2 Fine-tuning FormaT5. We fine-tune FormaT5 on the 105K
bootstrapped samples. We use an Adam optimizer with a constant
learning rate of 1𝑒 − 3. We train for 100 epochs over batches of 32
samples. We set the maximum sequence length of the model to 128

Figure 4: Input and target for value filling model used for

filling placeholders. The value filling task is implemented as

a mask span prediction where the placeholders in the rule

sketch are the masks that the model needs to predict.

and use the standard T5 [PAD] token to fill batches. We use the
same tuning procedure described in [47] to set a value for 𝛼 during
training by starting from 0 and linearly ramping up the value of 𝛼 .
This ensures that the model learns abstention only for cases that
need them and the regular training is not affected. We also explored
replacing T5 with BART and found similar performance.

4.5 Filling placeholders

To fill placeholders, we distinguish between the cases where exam-
ples are not available and when examples are available.

4.5.1 Without examples. When examples are not provided, we
reuse FormaT5 with standard cross-entropy loss (without place-
holders) in a mask span prediction setting. The input contains the
NL utterance, table schema, and the rule with placeholders replaced
by [MASK] tokens. Figure 4 shows an example input and target for
the model. We show that first learning a sketch and then populating
placeholders performs better than directly predicting the whole
rule without placeholders in Section 7.3.

4.5.2 With examples. When examples are available, we leverage
the Cornet system for learning CF rules by examples [46]. In
summary, Cornet (1) clusters a column to obtain positive, negative
and soft negative examples, (2) iteratively learns decision trees on
those clustered examples, and (3) ranks the learned decision trees.
Each decision tree corresponds to one CF rule, where each node
corresponds to one predicate. FormaT5 uses the same three steps to
learn CF rules from the given examples, but constrains the learned
decision trees to match the generated sketch. To do this efficiently,
the rule with placeholders is converted to a decision tree with
placeholders in nodes and these placeholders are populated—using
Cornet predicate generation—to maximize the splitting criterion.
Note that both FormaT5 andCornet can explicitly state a grammar
and can be made fully compatible.

Example 4. Figure 2 shows a column with highlighted cell and an

utterance. FormaT5 first generates a rule with a placeholder:

And(GreaterThan(Average("Marks")), TextContains([?]))

The associated decision tree with placeholders is shown in Figure 5. We

only need to compute the splitting criterion over Cornet predicates

for one node to complete the tree with TextContains(“Mid”).

Figure 5: Example of a Cornet decision tree, where nodes

contain CF predicates, with a placeholder in a node. To learn

the split for this node, we only need to consider the predicate

generation step of TextContains over the Id column.

4.6 Constrained Semantic Decoding

To generate syntactically valid rules that can be successfully exe-
cuted, we use constrained semantic decoding [37, 44]. During the
decoding process, we verify that (1) the predicted token satisfies
the rule grammar, (2) that any column references are present in
the table and have the appropriate type for their proposition, and
(3) that placeholders are only generated for argument tokens (i.e.
constants). Figure 6 shows how the grammar and table schema
constrain the possible next tokens for the prefix of a rule.

Figure 6: CSD of formatting rules for a prefix

And(TextContains(ID, “Mid”), LessThan(. The only possible

extension is Marks, as LessThan is a numerical operation

andMarks is the only number column in the schema.

5 BASELINES

AsNL-to-CF is a new problem,we adapted various systems designed
for code generation or table conditioned tasks. These baselines
were chosen by considering the state-of-the-art systems from three
different categories: code generation models (like Codex and T5),
constrained generation models (like Synchromesh and PICARD)
and table based models (like TAPAS and TaBERT). Five of the eight

baselines approaches (TAPAS, TaBERT, ValueNet, PICARD, Syn-
chromesh) have been used for text-to-SQL. Of these, PICARD is
state-of-the-art on the popular Spider dataset [54]. We report top-1
results for FormaT5 and all baselines.

5.1 Code Generation

We fine-tune T5-base, CodeT5-large and CodeT5+ (770M) on our
data, and use GPT-3.5 variants in a few-shot setting.

5.1.1 T5, CodeT5, CodeT5+. T5 is the base model of FormaT5 and
uses an encoder-decoder architecture. CodeT5/CodeT5+ also use T5
as the base model and pre-train on code generation and understand-
ing tasks. We train T5, CodeT5, and CodeT5+ to generate formatting
rules from (utterance, table) pairs. The input is the same as that of
FormaT5 fine-tuning (Section 4.4). The models are optimized on
standard cross-entropy loss with Adam optimizer at 1𝑒−4 learning
rate for 100 epochs.

5.1.2 GPT Variants. We use multiple variants of GPT-3.5 [1]: code-
davinci-002, text-davinci-003, and gpt-3.5-turbo. We use all in a few-
shot setting. For each test, we select five examples from the training
corpus based on cosine similarity of SentenceBERT [41] embedding
over the NL utterance. We evaluated using temperature values
between 0 to 1 with a step size of 0.1 and report the best result. All
other parameters are set at their default value.

5.1.3 CodeLlama and StarCoder. We use the pre-trained versions
of CodeLlama [42] and StarCoder [29] in a few-shot setting. We
use the inference as described in the documentation at [52].

5.2 Constrained Generation

Synchromesh, PICARD and ValueNet [5] are three popular con-
strained generation systems trained for text-to-SQL.

5.2.1 Synchromesh. Synchromesh [37] uses Codex but enhances
it with the addition of target-sample-tuning (TST) and constrained
semantic decoding (CSD). We fine-tune TST using mean-pooled
CodeBERT embeddings [15]. The CSD architecture is the same as
the one described in Section 4.6. We use Synchromesh in a few-shot
setting using the same prompt template as Codex (Section 5.1.2).

5.2.2 PICARD. PICARD [44] is a constrained decoding system that
improves the generations of large language models when generat-
ing syntactically structured information like code. We use PICARD
with T5, as done by the original authors. The training of T5 is the
same as described in Section 4.4. The constrained decoding does
not need training as its used at inference

5.2.3 ValueNet. ValueNet [5] is an end-to-end system for gener-
ating SQL queries from natural language specifications. ValueNet
leverages full table information by extracting relevant value can-
didates from the table, and a syntax based decoding to generate
SQL queries. We fine-tune ValueNet end-to-end for our conditional
formatting rule generation task.

5.3 Table Based

TaBERT [53] and TAPAS [23] are models trained for table question-
answering, and thus capture properties about tables and natural

language. SpreadSheetCoder [7] is a predictive formula generation
model that generates formulas from table context.

5.3.1 TAPAS and TaBERT. TAPAS and TaBERT are table encod-
ing models pre-trained for question answering over tables. Since
these models are not generative and only produce an encoding,
we add a decoder on top of these to convert these to an encoder-
decoder model. TAPAS produces joint table and query embedding,
so we directly pass that to a decoder. TaBERT produces separate
embeddings, one each for the query and the table, which need to
be concatenated before passing to the decoder. We tried different
setting for number of decoders and attention heads in each decoder,
and report results for the best performing model.

5.3.2 SpreadsheetCoder. SpreadsheetCoder [7] is a predictive Ex-
cel formula generation model that uses contextual information,
like table headers and neighbouring values, to suggest formulas
for cells. Since it only takes as input a table, we adapt the table to
include the utterance by adding a dummy column whose header is
the utterance. We then predict the formula for the first cell in the
dummy column and train this model end-to-end.

6 EVALUATION SETUP

We first describe the system specifications used for carrying out
experiments, benchmark statistics, and evaluation metrics.

6.1 Hardware Specifications

All experiments and studies have been carried out using Python
(version 3.8.7). The system used to run the experiments uses an
Intel Core i7 processor (base at 1.8 GHz) along with a K80 GPU, a
64-bit operating system, and 32 GB RAM. FormaT5 took 12 hours to
pre-train and 6 hours to fine-tune on our dataset. We implemented
FormaT5 using the HuggingFace transformers library [52] on
top of pytorch [36] and the existing Cornet PBE system [46].

6.2 Benchmarks

We collect benchmarks from a variety of sources to capture the di-
verse nature of CF rules and perform a domain-agnostic evaluation.
Instruct Excel (IE) Priorwork [34] crowdsourced 5K Excel spread-

sheets where annotators were asked to perform operations
of their choice (like formatting, pivoting and plotting) and
provide a description of the operations. Out of the 5K col-
lected tasks, 660 involved conditional formatting. We took
the associated workbook and NL description for these.

StackOverflow (SO) We scraped 1K posts on formatting data in
spreadsheets which had an accepted answer. We filter out
posts not requiring conditional formatting rules. For re-
maining posts we use the NL description and associated
table to write the ground truth CF rule. After removing
duplicate rules, we get 125 tasks. For posts that do not have
tables, we generate tables aligned with the post description.

Tutorials (T) We collected 33 URLs containing blogs, tutorials,
quizzes and help pages on how to use conditional for-
matting rules in Excel. We extracted NL descriptions and
ground truth rules, and generated tables that align with
those in the tutorial. After rule deduplication, we end up
with 117 tasks.

Annotated (A) We randomly sampled a subset of 100 spreadsheets
with at least 1 CF rule from our corpus of public spread-
sheets. We manually annotate these rules with NL utter-
ances by describing the formatted table without looking at
the rule. This gives us 151 tasks.

To characterize the number of columns used in a CF rule and the
number of columns in the associated table, we label tasks with a
tuple (𝑅,𝑇), where 𝑅 denotes the number of columns in the CF rule
and𝑇 the number of columns in the table. 𝑅 (and𝑇) can take values
of 𝑆 , for single, and𝑀 , for multiple. With this, we label benchmark
tasks as one of three categories: (S, S), (S, M), and (M, M). We classify
benchmark tasks into these three subcategories in Table 1.

Table 1: Properties of benchmark tasks.Rows ismeannumber

of rows in table, Cols is mean number of columns in Rule

(R) and Table (T). Tasks denote the number of tasks broken

by task type (𝑅,𝑇), where 𝑅 denotes columns in rule and

𝑇 denotes columns in table, which can be 𝑆 (single) or 𝑀

(multiple). Depth is the AST rule depth in our grammar.

Source Tasks Rows Cols Depth

(𝑆, 𝑆) (𝑆,𝑀) (𝑀,𝑀) R T

IE 97 524 39 172.6 1.3 11.4 1.4
SO 54 39 32 34.7 4.1 5.7 2.3
T 4 67 46 39.5 3.2 8.6 2.7
A 47 92 12 143.2 1.9 13.6 1.5
Total 202 722 129 67.2 1.9 10.7 2.1

6.3 Evaluation Metrics

We consider three metrics: sketch, exact, and execution match.
Sketch match is an argument agnostic match between the generated
and ground truth rule, equivalent to comparing abstract syntax
trees and ignoring leaf nodes. Sketch match aims to evaluate the
structure of the generated rule and is a popular metric in code
generation systems [7]. Exact match is a syntactic match between
the generated and ground truth rule, with tolerance for differences
arising from white space and alternative argument order. Execution
match consists of executing two rules and comparing the produced
formattings—there is an execution match if the formattings are
identical. Execution match captures the fact that different rules
can produce the same formatting outcomes. This distinction be-
tween exact and execution match is also made in the text-to-code
domain [44].

Example 5. because they are equivalent after removing spaces

and swapping (equivalent) argument order, Or(Equals(Value, 10),

Equals(Value, 20)) and Or(Equals(Value, 20), Equals(Value, 10)) are

an exact match. On the other hand, TextStartsWith(Code, "D12") and

TextContains(Code, "D12") are not an exact match because the rules

are not equivalent. These may be an execution match if the Code

column only has "D12" at the start of values.

7 RESULTS AND DISCUSSION

We perform experiments to evaluate the performance of FormaT5
and answer the following research questions:

Table 2: Comparison of FormaT5 with baselines on the task of NL based rule generation. We report sketch (SM), exact (EM) and

execution match (ExM) of the generated rules for the different task categories. “Model” column denotes the underlying base

model used by the system. FormaT5 outperforms all baselines in sketch, execution and exact rule match.

System description (S,S) (S,M) (M,M)

Method Model Param EM SM ExM EM SM ExM EM SM ExM

T5 T5 770M 74.8 86.8 77.7 63.3 84.7 70.9 48.9 68.2 54.6
CodeT5 T5 770M 75.4 88.0 78.0 65.1 83.8 72.5 50.4 69.3 55.8
CodeT5+ T5 770M 75.6 88.1 78 65.3 83.8 72.4 50.9 70.5 56.4
code-davinci-002 GPT-3.5 175B 68.5 82.1 70.8 62.9 79.7 70.4 45.1 62.4 50.8
text-davinci-003 GPT-3.5 175B 68.7 82.4 71.5 62.9 79.8 70.6 45.7 62.8 52.1
gpt-3.5-turbo GPT-3.5 Unknown 67.9 81.8 71.2 61.4 79.2 70.1 44.8 61.9 50.5
CodeLlama Llama 2 7B 65.6 78.2 70.1 60.1 77.9 69.1 41.3 57.5 48.2
StarCoder GPT-2 15.5B 65.8 78.3 70.4 60.3 78.2 69.8 41.5 57.8 48.5

PICARD T5 770M 75.8 88.7 78.3 67.4 85.6 75.0 52.4 73.5 58.2
Synchromesh GPT-3 175B 74.5 87.5 76.9 66.0 83.5 73.3 50.9 69.8 56.7
ValueNet BERT 110M 71.4 79.9 73.9 60.4 74.8 67.6 42.4 63.2 47.9

TAPAS BERT 110M 73.3 84.7 75.5 65.2 72.6 72.4 43.4 62.6 49.0
TaBERT BERT 110M 69.6 81.5 72.6 61.6 70.9 68.5 41.8 60.5 47.3
SpreadsheetCoder BERT 110M 46.7 52.4 47.5 32.4 37.8 33.9 21.3 26.7 23.4

FormaT5 T5 770M 78.2 90.7 81.2 70.7 86.2 78.0 58.6 79.5 64.3

Q1. Can FormaT5 generate CF rules from table and utterance?
Yes, FormaT5 scores 2.4–6.2 points higher (exactmatch)

than the second best baselines.

Q2. Are additional examples useful when generating rules?
Yes, providing one and two examples increases the

exact match of FormaT5 by 7% and 9% respectively.

Q3. Does FormaT5 appropriately insert placeholders when gen-
erating rules with abstention?
Yes, 97.6% of arguments correctly predicted without

placeholders are still correct with placeholders, and

90.8% of arguments incorrectly predictedwithout place-

holders are correctly predicted as placeholders.

Q4. Do pre-training & constrained decoding improve FormaT5?
Yes, both pre-training objective and constrained de-

coding improve exact match performance by +.5%.

We also perform a case study on supporting rule grammars in
other spreadsheet systems (CS1).

7.1 Generation from Utterances and Tables (Q1)

Table 2 presents the results of FormaT5 and baselines on the bench-
marks. FormaT5 outperforms all baselines on sketch, exact and
execution match accuracy. We use the value filling model without
examples (section-4.5.1) to fill placeholders.

Pre-training on rules and tables lets FormaT5 leverage table
semantics more than text-to-code models (CodeT5, Codex). Con-
strained generation attempts to capture these table semantics dur-
ing generation. While PICARD is better than other text-to-code
models, it performsworse than FormaT5, which learns these seman-
tics during training rather than only impose them during decoding.

Table querying models like TAPAS and TaBERT perform worse
than all other baselines. Even though these models consider full
table information in their encoding, they are not trained to generate
code and perform poorly at a generation task.

All models have a relatively high sketch accuracy compared to
full match or execution match accuracy. Systems are better at pre-
dicting the right rule structure and are struggling more in picking
the correct arguments This is mainly due to (1) underspecification
in utterances and (2) LLM-based code generation models struggle
with arguments, as described in [5].

7.1.1 Success Case of FormaT5. We look at cases where FormaT5
is able to generate the correct rule and baselines systems are not. We
find that these are mostly where FormaT5 is able to extract infor-
mation better from tables and abstention allows it to fill ambiguous
arguments more accurately in a second step. Figure 7 shows an
example from the benchmarks where the user wanted to highlight
passengers flying to Mumbai who are not wearing a mask. The
correct rule for this is AND(TextEquals("Destination”,
"Mumbai”), TextEquals("Wearing Mask?”, "No”)).
FormaT5 is able to generate the correct rule with just the NL ut-
terance. TAPAS and TaBERT get the sketch wrong as they miss
the condition that the passenger is not wearing a mask. CodeT5
gets the column name wrong and uses a numeric rule on a text
type column. Synchromesh and PICARD get the structure right
but get the arguments wrong, by predicting False instead of No.
FormaT5 does not make this mistake as it can leverage the column
name “Wearing Mask?" to predict No as the argument for the rule.

7.1.2 Failure Case of FormaT5. While FormaT5 consistently out-
performs baselines, there are a few caseswhere Codex learns the cor-
rect rule and FormaT5 does not. For example, given a query “Color

all rows with a successful and valid return code”, Codex generates
the rule Equals(Codes, 200) whereas FormaT5 generates Equals(Codes,
100). Since Codex is trained on much more data (over 1B lines of
code) it knows 200 is the successful return code in HTTP responses.

7.1.3 Effect of Rule Complexity. We study the effect of rule com-
plexity on performance by analyzing exact match as a function

Figure 7: Example case where FormaT5 learns the correct rule but baselines fail.

Figure 8: Example case where Codex learns the correct rule

but FormaT5 fails. This is due to the fact that FormaT5 is a

much smaller model (770M) compared to Codex (175B) and

doesn’t relate successful response code to 200

of rule length (number of non-syntax tokens) and number of ar-
guments in the rule. Figure 9 shows FormaT5 and the next best
baseline system (PICARD). As expected, exact match declines with
longer rules and rules with more arguments. FormaT5 outperforms
the next best system across length and argument counts.

7.1.4 Inference Time and Memory Consumption. We also evaluate
the time and memory required by each system for inferring the
formatting rule. Table 3 shows the average time taken, disk space
used and GPU memory allocated, to predict a rule for FormaT5 and
baselines. Codex and Synchromesh are not included in this table
because these models are only available via APIs and we cannot run
them locally. FormaT5 uses T5 as the underlying model and hence
the time and memory consumption are comparable to CodeT5.
TAPAS and TaBERT uses a smaller model with 110M parameters
and are thus faster and more lightweight. However, these models
are limited in their learning capabilities. PICARD is the slowest out
of these as its constrained decoding is expensive as noted in [44].

7.2 Generation with Examples (Q2)

We employ two different strategies to integrate examples in our
baselines. Chain generates the rule in two steps: first generate the
sketch using the utterance and then predict values for the sketch
using utterance and examples. This strategy has been shown to be
successful for query generation [28]. Both the sketch generation
and the value filling step use the same baseline architecture and are
fine tuned separately. Examples in Prompt directly adds examples
in prompt. These are encoded along with the utterance and table,

1 2 3 4 5 6 7 8 9 10
Rule Length

0.3

0.4

0.5

0.6

0.7

0.8

Ex
ac

t M
at

ch
 (E

M
)

FormaT5
T5+PICARD

(a) Rule Length

1 2 3 4 5
Number of Arguments

0.3

0.4

0.5

0.6

0.7

0.8

Ex
ac

t M
at

ch
 (E

M
)

FormaT5
T5+PICARD

(b) Number of Arguments

Figure 9: Exact rule match (EM) across all benchmarks of

FormaT5 and best performing baseline (PICARD) plotted

against rule length and number of arguments (without ex-

amples). Performance drops as rules become more complex,

but FormaT5 is consistently better.

separated by a [SEP] token. We fine tune the systems by augment-
ing the data with examples obtained from ground truth execution.
To ensure that the generated rule satisfies the given examples, we
generate 50 rules via beam search and take the highest ranked rule
satisfying the examples.

Table 4 shows results with utterance and a single example for
FormaT5 and the best performing example strategy for each base-
line system. All systems perform better compared to only using
natural language utterances (Table 2). FormaT5 benefits the most
from using examples and achieves the highest increase in perfor-
mance (+7.3% versus +3.2% for PICARD).

Figure 10 shows the average exact match accuracy for FormaT5
and PICARD over 25 shuffled runs for an increasing number of
examples. FormaT5 is generally able to learn the correct rule with
just 2 examples—further examples provide diminishing returns.

Figure 11 shows a breakdown of FormaT5 results with a single
example based on (a) type of rule and (b) number of placeholders in
the rule (before filling). We find that text rules have the biggest im-
provement with examples and numeric rules have the smallest. This
is consistent with the observation made in Cornet that numeric
rules are harder to generate by example due to possibly infinite
space of arguments. Rules with more placeholders are harder to
complete with few examples.

Table 3: Table comparing rule inference time in milliseconds,

model disk space in megabytes and GPU memory used in

megabytes, averaged over all benchmarks for FormaT5 and

baselines with comparable size (< 1B parameters). Codex and

Synchromesh are not included since these models can only

be accessed via API and not run locally. FormaT5 has com-

parable inference time and memory usage to other systems.

System #param Time(ms) Disk(MB) Memory(MB)

CodeT5 770M 1632.4 897.3 914.5

PICARD 770M 1896 901.3 918.7
ValueNet 110M 996.1 563.7 645.4

TAPAS 110M 852.9 443.6 1416.8
TaBERT 110M 734.5 193.2 334.5

FormaT5 770M 1783.1 897.3 915.2

0 1 2 3 4 5 6 7 8 9 10
Number of Formatted Examples

72
74
76
78
80
82

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(a) FormaT5

0 1 2 3 4 5 6 7 8 9 10
Number of Formatted Examples

68

70

72

74

76

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(b) PICARD

Figure 10: Exact match accuracy across all benchmarks with

increasing number of examples for FormaT5 and PICARD.

We report average of 25 runs with shuffled rows. FormaT5’s

performance stabilizes with just 2 examples.

Text Number Date
Hole Datatype

0.2

0.4

0.6

0.8

Ex
ac

t M
at

ch
 (E

M
)

(a) Hole Datatype

1 2 3 4
Number of Holes

0.2

0.4

0.6

0.8

Ex
ac

t M
at

ch
 (E

M
) FormaT5

(b) Number of Holes

Figure 11: (a) Exact match for FormaT5 based on the place-

holder type in the rule. If a rule has multiple placeholders

of different types, it is counted towards each type. (b) Exact

match as a function of number of placeholders in the rule.

7.3 Abstention (Q3)

To evaluate the quality of predicted placeholders, we train For-
maT5 with and without placeholders and compare the argument
predictions for both models. For example, if the model without

0 1 2 3 4 5 6 7 8 9 10
Number of Formatted Examples

70.0

72.5

75.0

77.5

80.0

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

FormaT5
Example in Prompt

(a) FormaT5 with examples

in prompt

0 1 2 3 4 5 6 7 8 9 10
Number of Formatted Examples

70.0

72.5

75.0

77.5

80.0

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

FormaT5
Sketch + Cornet

(b) FormaT5 with sketch

plus value filling

Figure 12: Exact match accuracy for FormaT5 compared with

(a) adding examples directly in prompt (direct generation),

and (b) sketch generation (all arguments become placehold-

ers) followed by value filling with Cornet. FormaT5 performs

better than both variants.

placeholders correctly predicts an argument, the placeholder model
can change it to (1) a placeholder, (2) the same argument, or (3) an
incorrect argument. Table 5 summarizes these outcomes. We can
see that FormaT5 rarely changes correct arguments to placeholders
(2.4% cases) and converts most incorrect arguments (90.8% cases) to
placeholders—both desirable outcomes. Furthermore, we find that
FormaT5 generates placeholders in only approximately 11% – 22%
of rules (depending on task category) and that these rules usually
have only one placeholder (mean 1.07).

To understand the benefit of predicting placeholders, we compare
FormaT5 to two variants: (1) generating a sketch with all arguments
as placeholders and using Cornet to fill them, and (2) adding
examples to the prompt and generating the rule in a single step
(Examples in Prompt strategy in section-7.2) Figure 12 compares
FormaT5 against both variants for increasing number of examples.
Adding examples in prompt performs worse, as it is hard for a
neural model to extract syntactic constraints from few examples.
Full sketches blow up the number of placeholders (to 3.64 per rule)
that are difficult to fill with few examples. FormaT5, on the other
hand, only generates placeholders in places of under-specification.

FormaT5 uses a symbolic, example-based method to fill place-
holders. We compare this with two other methods: (1) a T5 based
model that takes utterance, examples and masked rule as input to
predict masked arguments, and (2) a decision tree that uses Cornet
predicates and is constrained to the generated rule sketch. Figure 13
shows the exact match accuracy for these different value filling
methods. FormaT5 performs better than both variants.

Figure 14 shows cases from benchmarks where FormaT5 pre-
dicted a hole in the rule. It can be seen that FormaT5 adds placehold-
ers where the provided NL utterance are either under-specified or
ambiguous. For the examples shown, FormaT5 fills all placeholders
correctly and generate the target rule with just a single example.

7.4 Ablations (Q4)

FormaT5 uses (1) table-aware pre-training and (2) constrained
generation. We analyze the impact of both of these.

Table 4: Comparison of FormaT5 with baselines for generating rules with utterance and examples. We report exact (EM) and

execution match (ExM) for the different benchmarks with 1 example given. We consider Chaining (Chain) and Examples
in Prompt (Prompt) stratergy for example selection and report the best strategy for each method. FormaT5 outperforms all

baselines in execution and exact match.

System description (S, S) (S, M) (M, M)

Method Model Strategy EM ExM EM ExM EM ExM

T5 T5 Chain 79.0 81.2 66.7 72.4 52.5 56.3
CodeT5 T5 Chain 79.7 81.6 68.7 74.3 54.1 57.4
CodeT5+ T5 Chain 79.9 81.9 68.7 74.8 55.2 58.2
code-davinci-002 GPT-3.5 Prompt 74.0 75.1 65.9 73.1 50.3 53.4
text-davinci-003 GPT-3.5 Prompt 74.4 75.7 66.3 73.4 51.4 55.1
gpt-3.5-turbo GPT-3.5 Prompt 74.1 76.0 65.3 73.1 50.6 55.2
CodeLlama Llama 2 Chain 72.1 75.3 64.2 72.3 47.3 53.2
StarCoder GPT-2 Prompt 72.4 75.5 64.5 72.9 47.5 53.4

PICARD T5 Chain 80.2 81.7 71.4 77.3 55.6 59.8
Synchromesh GPT 3 Prompt 80.3 81.9 70.7 75.6 54.7 58.6
ValueNet BERT Chain 74.9 75.6 63.0 68.7 46.5 49.80

TAPAS BERT Prompt 76.6 78.1 67.5 73.1 47.8 50.4
TaBERT BERT Prompt 72.2 74.7 64.4 69.9 45.3 48.9
FormaT5 T5 FormaT5 87.4 89.1 78.2 84.8 65.9 69.4

Table 5: Argument outcomes under FormaT5 without (left)

and with (top) abstention. Most correct arguments remain

correct and most incorrect arguments become placeholders.

FormaT5 with placeholders

without placeholders [?] Correct Incorrect

Correct Argument 2.4 97.6 0
Incorrect Argument 90.8 3.4 5.8

0 1 2 3 4 5 6 7 8 9 10
Number of Formatted Examples

72.5

75.0

77.5

80.0

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

FormaT5
T5
Decision Tree

Figure 13: Exact match accuracy for different value filling

models plotted against the number of examples. The exam-

ples are provided in top down order. FormaT5 performs bet-

ter than both T5 and Decision Tree based value filling.

7.4.1 Pre-training. We evaluate the impact of the pre-training ob-
jectives by ablating them. The first three rows of Table 6 show the
exact match accuracy for FormaT5 on different benchmark tasks,
removing one pre-training objective at a time. We find that all ob-
jectives contribute to FormaT5 performance, with table recovery
objective being the most important. The table recovery objective
allows FormaT5 to learn rule and column type associations.

Figure 14: Examples of taskswhere FormaT5 generates a hole

due to underspecification or ambiguity in the NL utterance.

FormaT5 resolves the holes with one example. The scenarios

are from Tutorials and InstructExcel, respectively

7.4.2 Constrained Semantic Decoding (CSD). We use CSD to ensure
reliability of generated rules. The fourth row in Table 6 shows the
performance of FormaT5without CSD. We find that CSD improves
performance by eliminating impossible candidates and forcing the
model to generate a syntactically valid rule.

7.4.3 Encoding Tables. One of the key factors behind the perfor-
mance of FormaT5 is its ability to leverage the table structure along
with the NL utterance. Prior work on integrating NL and Tables
have tried to encode the entire table [23], a subset of rows [53] and
header names [7]. To evaluate FormaT5’s table encoder, in addi-
tion to FormaT5 table encoder, we also implement the following
encoding techniques and compare performance on the benchmarks.

• Utterance Only:We only use the utterance.
• Header Only:We only use table column names.

Table 6: Exact match on all benchmark datasets using the

NL-only approach. M denotes full FormaT5, “–” means the

corresponding component is removed.

Model (S,S) (S,M) (M,M)

M – Rule MSP Objective 77.9 70.3 58.1
M – Rule Tagging Objective 77.7 70.0 58.0
M – Table Objective 77.3 69.5 57.2

M – CSD 77.5 69.7 57.5

M (FormaT5) 78.2 70.7 58.6

Table 7: Exact match on all benchmark categories for differ-

ent table encoders. FormaT5 table encoder performs better

than all variants for our task.

Table Encoder (S, S) (S, M) (M, M)

Utterance Only 74.3 36.2 8.4
Header Only 75.6 68.0 55.9
Schema (FormaT5) 78.2 70.7 58.6
Sample Values 78.0 70.5 58.3
Row Subset 75.8 68.3 56.2

• Schema: FormaT5 table encoder
• Sample Values: We use the schema along with sample

values from the column. The table in Figure 14 will be
encoded as (Students, Text, 90) [COL]
(Library, Text, Yes)...

• Subset of Rows: We use the header and the first 3 rows.
The table in Figure 14 will be encoded as Students,
Library [COL] Student1, Yes [COL]
Student2, No [COL] Student3, No

Table 7 summarizes the exact match accuracy on benchmarks
with different table encoding strategies. FormaT5 beats all variants
as it extracts necessary information from the table while restricting
context size. Performance is worst with only utterance as the table
contains useful type and column information.

7.5 FormaT5 on Different Platforms (CS1)

FormaT5 can be applied to any platform that supports rule-based
formatting based on a fixed grammar. To evaluate the generality
of FormaT5, we evaluate its performance when restricting the
output operators to those available on two additional spreadsheet
platforms: Google Sheets and Apple Numbers.

The predicates used to train FormaT5, drawn from Microsoft
Excel, are a superset of formatting rule trigger operations sup-
ported in Google Sheets and Apple Numbers. We restrict FormaT5
to platform-specific operator subsets at inference time using con-
strained decoding. To execute on a new platform, one would only
need a translator from our DSL to the corresponding runtime.

We see that the performance is comparable when using Google
Sheets operators. Apple Numbers has a limited formatting rule
grammar and hence has the worst performance. Because FormaT5
was trained on Excel data, it is possible that retraining on data from

Table 8: Exact match (top 1 with 1 example) on all benchmark

categories for platform-specific CF rule grammars.

Platform (S,S) (S,M) (M,M)

Google Sheets 80.5 71.3 57.5
Apple Numbers 73.8 63.8 40.6
Microsoft Excel 87.4 78.2 65.9

other platforms would perform better (as users in those domains
may express CF rules differently).

8 LIMITATIONS

Availability of Tables: FormaT5 assumes it has access to the target
table as a collection of named columns. Standard tables can be
easily represented this way. However, spreadsheets can contain
more complex structures (like multi-level headers and summary
rows). Structures vary substantially so even detecting tables in
the grid is an active area of research [12]. Extending FormaT5 to
support more complex table structures is left to future work.

Multiple Tables: FormaT5 does not currently support rules that
span multiple tables. One way of supporting this is to (1) predict
which tables are relevant from the given utterance, (2) proposi-
tionalize them into one large table with fuzzy joins, and (3) apply
FormaT5. While possible, our corpus shows that such rules are rare
in practice: only 314 of 410.6K rules referenced more than 1 table.

Language Use: FormaT5 currently only supports natural lan-
guage utterances in English. Ambiguous utterances are mitigated
with a combination of constrained decoding and the use of examples.
FormaT5 assumes that the user did not provide an example with a
mistake. This is a common assumption in PBE, and is reasonable as
users only needs to provide few examples (a single example for re-
sults in Table 4). Prior work in PBE [11, 20] has learned from noisy
examples. FormaT5 could improve robustness by replacing our
current symbolic PBE learner [46] with one of these alternatives.

Hardware Requirements: As Table 3 shows, the main resource
for FormaT5 is the associated GPU memory needed. We believe
that this requirement is mitigated by the increasing ease of running
model inference on consumer processors (like Apple’s M1).

9 CONCLUSION

We introduce the problem of learning spreadsheet formatting rules
from natural language. We propose FormaT5, a transformer-based
model that takes a table, natural language utterance, and optional
examples, and generates a conditional formatting rule. FormaT5
combines domain pre-training, fine-tuning with abstention, con-
strained decoding, and both NL and example-based abstention reso-
lution. We evaluate on 1053 tasks and show that FormaT5 performs
better across task types and metrics, and is more effective at us-
ing examples. This paper opens future work such as predictive
table formatting, generation over ambiguous NL and table specific
pre-training and designing domain-specific systems for other spe-
cialized data tasks like filtering and cleaning. A similar approach
can be explored for generating spreadsheet formulas from natural
language, as these also contain a high proportion of constant values
and cell references.

REFERENCES

[1] [n.d.]. OpenAI Platform Documentation. https://platform.openai.com/docs/
model-index-for-researchers Accessed on November 20, 2023.

[2] [n.d.]. The Spider leaderboard. https://yale-lily.github.io/spider.
[3] Titus Barik, Kevin Lubick, Justin Smith, John Slankas, and Emerson Murphy-Hill.

2015. Fuse: a reproducible, extendable, internet-scale corpus of spreadsheets. In
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE,
486–489.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are
Few-Shot Learners. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.
Curran Associates, Inc., 1877–1901. https://proceedings.neurips.cc/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[5] Ursin Brunner and Kurt Stockinger. 2021. ValueNet: A Natural Language-to-SQL
System that Learns from Database Information. In 2021 IEEE 37th International

Conference on Data Engineering (ICDE). 2177–2182. https://doi.org/10.1109/
ICDE51399.2021.00220

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, MiraMurati, Katie Mayer, PeterWelinder, BobMcGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374

[7] Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai,
Max Lin, and Denny Zhou. 2021. SpreadsheetCoder: Formula Prediction from
Semi-structured Context. In International Conference on Machine Learning.

[8] Zhe Chen and Michael Cafarella. 2014. Integrating spreadsheet data via accurate
and low-effort extraction. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining. 1126–1135.
[9] Zhoujun Cheng, Haoyu Dong, Ran Jia, Pengfei Wu, Shi Han, Fan Cheng, and

Dongmei Zhang. 2022. FORTAP: Using Formulas for Numerical-Reasoning-
Aware Table Pretraining. In Proceedings of the 60th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, Dublin, Ireland, 1150–1166. https://doi.org/10.18653/
v1/2022.acl-long.82

[10] Andrew Cropper and Rolf Morel. 2021. Learning Programs by Learning from
Failures. Mach. Learn. 110, 4 (apr 2021), 801–856. https://doi.org/10.1007/s10994-
020-05934-z

[11] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman
Mohamed, and Pushmeet Kohli. 2017. Robustfill: Neural program learning under
noisy i/o. In International conference on machine learning. PMLR, 990–998.

[12] Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. 2019. Ta-
blesense: Spreadsheet table detection with convolutional neural networks. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 69–76.

[13] HaoyuDong, JinyuWang, Zhouyu Fu, Shi Han, andDongmei Zhang. 2020. Neural
formatting for spreadsheet tables. In Proceedings of the 29th ACM International

Conference on Information & Knowledge Management. 305–314.
[14] Microsoft Excel. 2023. Color scales, data bars and icon sets. https:

//support.microsoft.com/en-us/office/use-data-bars-color-scales-and-icon-
sets-to-highlight-data-f118d0a6-5921-4e2e-905b-fe00f3378fb9. Last Accessed:
2023-04-30.

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings

of the Association for Computational Linguistics: EMNLP 2020. Association for
Computational Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.
findings-emnlp.139

[16] Marc Fisher and Gregg Rothermel. 2005. The EUSES spreadsheet corpus: a
shared resource for supporting experimentation with spreadsheet dependability
mechanisms. In Proceedings of the first workshop on End-user software engineering.
1–5.

[17] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder: A
Generative Model for Code Infilling and Synthesis. https://doi.org/10.48550/

ARXIV.2204.05999
[18] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets us-

ing Input-Output Examples. In PoPL’11, January 26-28, 2011, Austin, Texas,

USA. https://www.microsoft.com/en-us/research/publication/automating-
string-processing-spreadsheets-using-input-output-examples/

[19] Daya Guo, Alexey Svyatkovskiy, Jian Yin, Nan Duan, Marc Brockschmidt, and
Miltiadis Allamanis. 2022. Learning to Complete Code with Sketches. In Interna-

tional Conference on Learning Representations. https://openreview.net/forum?
id=q79uMSC6ZBT

[20] Shivam Handa and Martin C Rinard. 2020. Inductive program synthesis over
noisy data. In Proceedings of the 28th ACM Joint Meeting on European Software En-

gineering Conference and Symposium on the Foundations of Software Engineering.
87–98.

[21] Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. Text-to-SQL in the Wild:
A Naturally-Occurring Dataset Based on Stack Exchange Data. In Proceedings

of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog

2021). Association for Computational Linguistics, Online, 77–87. https://doi.org/
10.18653/v1/2021.nlp4prog-1.9

[22] Chaitra Hegde and Shrikumar Patil. 2020. Unsupervised Paraphrase Generation
using Pre-trained Language Models. https://doi.org/10.48550/ARXIV.2006.05477

[23] Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. Tapas: Weakly Supervised Table Parsing
via Pre-training. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Seattle, Washington, United
States. https://www.aclweb.org/anthology/2020.acl-main.398/

[24] Nathan Hurst, Kim Marriott, and Peter Moulder. 2005. Toward tighter tables. In
Proceedings of the 2005 ACM symposium on Document engineering. 74–83.

[25] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and
Omer Levy. 2020. SpanBERT: Improving Pre-training by Representing and
Predicting Spans. Transactions of the Association for Computational Linguistics 8
(2020), 64–77. https://doi.org/10.1162/tacl_a_00300

[26] Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data extraction
by examples. In 2014 Programming Language Design and Implementation. ACM,
542–553. https://www.microsoft.com/en-us/research/publication/flashextract-
framework-data-extraction-examples/

[27] Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: An Interactive Natural Lan-
guage Interface for Querying Relational Databases. In Proceedings of the 2014

ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
709–712. https://doi.org/10.1145/2588555.2594519

[28] Hao Li, Chee-Yong Chan, and David Maier. 2015. Query from examples: An
iterative, data-driven approach to query construction. Proceedings of the VLDB
Endowment 8, 13 (2015), 2158–2169.

[29] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Ko-
cetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier De-
haene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nourhan Fahmy, Urvashi Bhattacharyya,
W. Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fe-
dor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jana Ebert, Tri Dao, Mayank Mishra, Alexander
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Car-
los Muñoz Ferrandis, Sean M. Hughes, Thomas Wolf, Arjun Guha, Leandro von
Werra, and Harm de Vries. 2023. StarCoder: may the source be with you! ArXiv
abs/2305.06161 (2023). https://api.semanticscholar.org/CorpusID:258588247

[30] Xiaofan Lin. 2006. Active layout engine: Algorithms and applications in variable
data printing. Computer-Aided Design 38, 5 (2006), 444–456.

[31] Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-
Guang Lou. 2021. Tapex: Table pre-training via learning a neural sql executor.
arXiv preprint arXiv:2107.07653 (2021).

[32] Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han. 2022. Generating Training
Data with LanguageModels: Towards Zero-Shot Language Understanding. https:
//doi.org/10.48550/ARXIV.2202.04538

[33] Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek Abdelzaher, and
Jiawei Han. 2022. Tuning Language Models as Training Data Generators for
Augmentation-Enhanced Few-Shot Learning. https://doi.org/10.48550/ARXIV.
2211.03044

[34] Swaroop Mishra, Justin Payan, Carina Negreanu, Christian Poelitz, Chitta Baral,
Subhro Roy, Rasika Chakravarthy, Ben Van Durme, and Elnaz Nouri. 2023. In-
structExcel: A Benchmark for Natural Language Instruction in Excel. arXiv

preprint (2023).
[35] Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré.

2022. Can Foundation Models Wrangle Your Data? arXiv:2205.09911 [cs.LG]

https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://yale-lily.github.io/spider
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/ICDE51399.2021.00220
https://doi.org/10.1109/ICDE51399.2021.00220
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.18653/v1/2022.acl-long.82
https://doi.org/10.18653/v1/2022.acl-long.82
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1007/s10994-020-05934-z
https://support.microsoft.com/en-us/office/use-data-bars-color-scales-and-icon-sets-to-highlight-data-f118d0a6-5921-4e2e-905b-fe00f3378fb9
https://support.microsoft.com/en-us/office/use-data-bars-color-scales-and-icon-sets-to-highlight-data-f118d0a6-5921-4e2e-905b-fe00f3378fb9
https://support.microsoft.com/en-us/office/use-data-bars-color-scales-and-icon-sets-to-highlight-data-f118d0a6-5921-4e2e-905b-fe00f3378fb9
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.48550/ARXIV.2204.05999
https://doi.org/10.48550/ARXIV.2204.05999
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://openreview.net/forum?id=q79uMSC6ZBT
https://openreview.net/forum?id=q79uMSC6ZBT
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.48550/ARXIV.2006.05477
https://www.aclweb.org/anthology/2020.acl-main.398/
https://doi.org/10.1162/tacl_a_00300
https://www.microsoft.com/en-us/research/publication/flashextract-framework-data-extraction-examples/
https://www.microsoft.com/en-us/research/publication/flashextract-framework-data-extraction-examples/
https://doi.org/10.1145/2588555.2594519
https://api.semanticscholar.org/CorpusID:258588247
https://doi.org/10.48550/ARXIV.2202.04538
https://doi.org/10.48550/ARXIV.2202.04538
https://doi.org/10.48550/ARXIV.2211.03044
https://doi.org/10.48550/ARXIV.2211.03044
https://arxiv.org/abs/2205.09911

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[37] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christo-
pher Meek, and Sumit Gulwani. 2022. Synchromesh: Reliable code generation
from pre-trained language models. ArXiv abs/2201.11227 (2022).

[38] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed In-
Context Learning of Text-to-SQL with Self-Correction. arXiv:2304.11015 [cs.CL]

[39] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine

Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html
[40] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun

Radhakrishna, Gustavo Soares, and Ashish Tiwari. 2021. Multi-Modal Program
Inference: A Marriage of Pre-Trained Language Models and Component-Based
Synthesis. Proc. ACM Program. Lang. 5, OOPSLA, Article 158 (oct 2021), 29 pages.
https://doi.org/10.1145/3485535

[41] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 3982–3992. https://doi.org/10.18653/v1/D19-1410

[42] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Fer-
rer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code.
arXiv:2308.12950 [cs.CL]

[43] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R. Mittal, and Fatma Özcan. 2016. ATHENA: AnOntology-Driven
System for Natural Language Querying over Relational Data Stores. 9, 12 (2016).
https://doi.org/10.14778/2994509.2994536

[44] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing. Association for Computational Linguistics, Online and
Punta Cana, Dominican Republic, 9895–9901. https://doi.org/10.18653/v1/2021.
emnlp-main.779

[45] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi
Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-
narayanan. 2020. ATHENA++: Natural Language Querying for Complex Nested
SQL Queries. 13, 12 (2020). https://doi.org/10.14778/3407790.3407858

[46] Mukul Singh, José Cambronero Sánchez, Sumit Gulwani, Vu Le, Carina Negreanu,
Mohammad Raza, and Gust Verbruggen. 2023. Cornet: Learning Table Formatting
Rules By Example. Proceedings of the VLDB Endowment 16, 10 (2023), 2632–2644.

[47] Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff A. Bilmes, Gopinath Chennupati,
and Jamal Mohd-Yusof. 2019. Combating Label Noise in Deep Learning using Ab-
stention. In Proceedings of the 36th International Conference on Machine Learning,

ICML 2019, 9-15 June 2019, Long Beach, California, USA (Proceedings of Machine

Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97.
PMLR, 6234–6243. http://proceedings.mlr.press/v97/thulasidasan19a.html

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[49] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Proceedings of the 2021 Conference on Empir-

ical Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708. https:
//doi.org/10.18653/v1/2021.emnlp-main.685

[50] Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei
Zhang. 2021. TUTA: Tree-Based Transformers for Generally Structured Table
Pre-Training. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining (Virtual Event, Singapore) (KDD ’21). Association
for Computing Machinery, New York, NY, USA, 1780–1790. https://doi.org/10.
1145/3447548.3467434

[51] Eli Whitehouse, William Gerard, Yauhen Klimovich, and Marc Franco-Salvador.
2022. Programming by Example and Text-to-Code Translation for Conversational
Code Generation. ArXiv abs/2211.11554 (2022).

[52] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 38–45. https://doi.org/10.18653/v1/2020.emnlp-demos.6

[53] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data.
In Proceedings of the 58th Annual Meeting of the Association for Computa-

tional Linguistics. Association for Computational Linguistics, Online, 8413–8426.
https://doi.org/10.18653/v1/2020.acl-main.745

[54] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Brussels, Belgium, 3911–3921. https://doi.org/10.
18653/v1/D18-1425

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2304.11015
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/3485535
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/2308.12950
https://doi.org/10.14778/2994509.2994536
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.14778/3407790.3407858
http://proceedings.mlr.press/v97/thulasidasan19a.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 FormaT5
	4.1 Encoding T, R and Q
	4.2 Pre-training on T and R
	4.3 Bootstrapping Data
	4.4 Fine-tuning on T, R and Q with Abstention
	4.5 Filling placeholders
	4.6 Constrained Semantic Decoding

	5 Baselines
	5.1 Code Generation
	5.2 Constrained Generation
	5.3 Table Based

	6 Evaluation Setup
	6.1 Hardware Specifications
	6.2 Benchmarks
	6.3 Evaluation Metrics

	7 Results and Discussion
	7.1 Generation from Utterances and Tables (Q1)
	7.2 Generation with Examples (Q2)
	7.3 Abstention (Q3)
	7.4 Ablations (Q4)
	7.5 FormaT5 on Different Platforms (CS1)

	8 Limitations
	9 Conclusion
	References

