
Personalized action suggestions in low-code
automation platforms

Saksham Gupta
PROSE
Microsoft

Delhi, India

t-saksgupta@microsoft.com

Gust Verbruggen*
PROSE
Microsoft

Keerbergen, Belgium

gverbruggen@microsoft.com

Mukul Singh*
PROSE
Microsoft

Delhi, India

singhmukul@microsoft.com

Sumit Gulwani*
PROSE
Microsoft

Redmond, USA

sumitg@microsoft.com

Vu Le*
PROSE
Microsoft

Redmond, USA

levu@microsoft.com

Abstract—Automation platforms aim to automate repetitive
tasks using workflows, which start with a trigger and then
perform a series of actions. However, with many possible actions,
the user has to search for the desired action at each step,
which hinders the speed of flow development. We propose a
personalized transformer model that recommends the next item
at each step. This personalization is learned end-to-end from
user statistics that are available at inference time. We evaluated
our model on workflows from Power Automate users and show
that personalization improves top-1 accuracy by 22%. For new
users, our model performs similar to a model trained without
personalization.

Index Terms—transformers, personalization, prediction, de-
coder, recommendation system

I. INTRODUCTION

Workflow automation is a big problem today, but only a

fraction of people can write code. Platforms like Zapier, IFTTT

and Microsoft Power Automate allow users to build automated

workflows between different applications and services—without

a single line of code. A workflow (or flow) consists of a trigger
that initiates the flow and the actions to be performed. For

example, when an email arrives (trigger) we can store any

attachment to a cloud storage provider (first action) and log

the email subject in a spreadsheet (second action).

With thousands of actions across different vendors to choose

from, even low-code environments can be tedious to use.

Figure 1 shows the interface for selecting an action in Power

Automate. As flows get longer, the time spent on selecting

actions increases. Modern code development environments

boost the productivity of programmers by recommending

relevant functions or even whole lines of code [10].

In this paper, we tackle the problem of recommending

relevant actions to the user. Our approach is inspired by recent

advances in code completion [3], [4] and uses a transformer

model to predict the distribution over likely next actions.

* Listed in alphabetical order

Fig. 1: Action selection interface in the Microsoft Power

Automate platform. For each action in a workflow, the user

must manually navigate to the desired action.

A key difference with code completion is that personalization

depends more on the user and less on the context. Whereas code

completion can use context (imported packages or function

definitions) to determine likely functions, suggested actions

depend more on user preferences, for example, vendors or

actions that they have used in different flows. To make

personalized suggestions, we embed usage statistics into a

personalization vector and learn this embedding end-to-end by

feeding it as a token to the decoder model. New users will

not have a personalization vector, and we ensure consistent

suggestions by sometimes providing the model with an empty

personalization vector.

We focus on the Power Automate platform and use 674K

real flows to evaluate our model. We show that learning

personalization vectors improve performance by 14% over

personalization during inference (based on vendors) and by

346

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00100

http://crossmark.crossref.org/dialog/?doi=10.1109%2FICSE-Companion58688.2023.00100&domain=pdf&date_stamp=2023-07-27


22% over no personalization. Additionally, we show how the

performance on new users remains consistent.

In summary, we make the following contributions:

1) We introduce a personalized decoder-only transformer

that learns user profiles end-to-end.

2) We ensure that suggestions for new users are on par with

a non-personalized model by varying the personalization

rate during training.

3) We train and evaluate our model on 600K and 74K

flows respectively, showing that personalization improves

performance by 22% in top-1 recommendations, showing

that personalization does not affect suggestions for new

users, and that learning personalization vectors yields

better suggestions than inference personalization.

II. RELATED WORK

Suggesting actions in automation platforms is a novel

problem, but this is closely related to the task of predicting

words in natural language or making suggestions in code.

Early language modeling uses n-grams to predict the next

token. Combining different n though complicated backoff

schemes was shown to significantly boost performance [7].

With enough data, a backoff schedule called “stupid backoff”

[1] which simply uses the largest n for which a prefix exists,

was shown to work very well. The downside of n-gram models

is that they give the same attention to each token (word or

action) in the input context and completely ignore inter-token

dependencies which are often critical for understanding tasks.

Language models based on transformer architectures [11]

have greatly improved performance in a wide spectrum of

language understanding and generation tasks by incorporating

inter-token dependencies via attention. It was shown that these

models outperform humans at predicting tokens in a causal

setting [9]. Decoder-only architectures are particularly well

suited for the task of predicting the next token given a history

of tokens [5]. Based on their success, we use a decoder-only

language model [6] as the base architecture for our system.

Similar to suggesting an action in a workflow, code recom-

mendation is an active research area that has been integrated

in many commercial products. For example, GitHub Copilot

[3] uses a decoder trained on code to suggest whole blocks

of code. IntelliCode in Visual Studio uses a similar model to

suggest line completions [10] and is small enough to run on the

client. These models offer personalization through prompting

(Copilot) or require fine-tuning on the repositories for large

organizations (IntelliCode).

We take inspiration from SSE-PT [13], which introduces per-

sonalization using transformers. In SSE-PT, user embeddings

are appended to all token embeddings of the input sequence. To

avoid overfitting, they rely on regularization by applying Shared

Stochastic Embeddings [14]. In contrast, we only prepend the

user embeddings at the start of our input sequence as a single

token and do not require any regularization. By keeping user

information at the token level, the model learns to selectively

attend to personalization tokens based on the input.

III. METHOD

We use a decoder-only architecture [6] as predicting the

next action closely aligns with the auto-regressive pre-training

objective. A personalization vector is passed to the decoder to

make personalized suggestions. An overview of our architecture

is shown in Figure 2. The following two sections describe how

flows are tokenized, and how this decoder model is adapted

for learning to make personalized suggestions end-to-end.

User profile

Flow

embedding

linear

Decoder

Action
distribution

top-2

Fig. 2: Architecture diagram for the proposed Personalized
Decoder model. The model leverages both the current flow

and user history to predict the next action in the flow.

A. Tokenizing Flows

A flow is a rooted directed acyclic graph where the root is

the trigger and all other nodes are actions. There are different

types of actions, the most common of which are control flow

statements (which cause the graph to not always be linear)

and API actions. API actions consist of a connection and an

operation, for example, Outlook (connection) and SendEmail

(operation). An example flow is shown in Figure 3.

True False

"meeting" in body?

mail arrives

add row create meeting

send invite

Fig. 3: Example flow that, after a mail arrives, either creates a

meeting and sends an invite, or adds a row to an Excel file.

The context when making a prediction for an action are its

parent actions. In other words, when making predictions in

one branch, we do not look at actions from other branches.

This sequence of actions is called the prefix.

As opposed to code and language, the vocabulary for actions

is closed—every flow is a combination of the same 1423 actions.

We therefore do not use subword tokenization [8] and keep

every action as a separate token. During development, we

found that even only using separate tokens for connection and

347



operation (1) yields token predictions that are hard to aggregate

into one action, and (2) is significantly slower due to requiring

many individual token predictions.

B. Personalization

We map user information to a personalization vector and

prepend this to the embedded flow. The user information we

consider is a distribution of actions that the user has used in

previous flows—other information like demographic features

can be added, either to this vector or as a new vector. The

personalization vector is trained end-to-end with the model.

To evaluate whether these profile vectors retain some of

the information about action usage, we reduce them to two

dimensions through PCA [12] and plot them. In Figure 4, we

color each point based on the proportion of actions related

to Microsoft products, as these actions are the most common

by far. The clear gradient indicates that profile vectors exploit

action counts and learn which actions are related. In Figure 5,

only distinguish (92) users that have used any Twitter action and

a randomly sampled set of (460) other users. Some clustering

is clearly present, indicating that rare connections are also

linked in the profile vectors.

Fig. 4: User Embeddings for users with different percentage of

Microsoft based actions in their history. 0 means no Microsoft
action while 1 means only Microsoft actions in history. There

is a clear separation between users based on their action history

showing that the models captures these usage patterns.

Fig. 5: User Embeddings for users with Twitter based actions

compared against other users. We plot the first 2 principal

components. The separation between Twitter and other users

show that the user embeddings capture platform information.

IV. EVALUATION AND RESULTS

We perform experiments to answer the following research

questions:

Q1. Does personalization help in recommending actions?

Q2. Does the personalized model make good predictions for

new users?

Q3. Case study: can we limit the number of recommendations

based on the predicted probabilities?

A. Evaluation Setup

Here we describe the setup used to evaluate our model and

the custom baselines we compare our model against.
1) Data: We divide our 674K flows by user to ensure that

no user has a flow in both train (600K) and test (74K) sets.
2) Evaluation: The model returns a distribution over actions,

which we consider as a ranking. As common in both code

generation and recommendation methods, we evaluate whether

the actual action is amongst the top-k ranked ones or not. This

neatly aligns with the possibility of multiple actions following

the same prefix.
3) Baselines: Besides our transformer model, we use two

other approaches to evaluate the problem and our solution.

• We train an n-gram with stupid backoff, which computes

the probability p(ai+1 | ai−n . . . ai) of an action based

on how often ai+1 follows the prefix ai−n . . . ai and falls

back to n − 1 if that prefix does not exist. This (very)

roughly corresponds to a decoder that is not able to give

more weight to specific actions.

• Given a prefix, the top-k theoretical maximum is the

proportion of next actions that are in the top-k most

common ones in the test set. For example, a prefix with

continuations [a, b, b, c, c, c] has a top-1 theoretical

maximum of 50%. Essentially, this corresponds to a model

that is perfect with respect to the testing data.

• We train a simple decoder model without personalization.

• We perform personalization at inference time with the

simple model, either by only allowing API actions of

connections that the user has previously used, or by

weighing the predicted probabilities by how often the

user has used this action in the past.

4) Hyperparameters: Our decoder is lightweight, with two

layers and an embedding dimension of 256 spread over two

attention heads—resulting in 2.3M parameters. The stupid

backoff model uses n = 5, which roughly corresponds to the

same number of parameters.

B. Personalization (Q1)

Figure 6 shows the top-k performance for increasing k.

Our personalized model performs on par or better than the

theoretical maximum without personalization. When making

three suggestions, the desired action is recommended 90% of

the time. When making ten suggestions, this increases to 98%.

The simple transformer (blue) barely outperforms the n-gram

model, indicating that this is a challenging task.

Figure 7 shows that personalization at inference time

performs significantly worse—about 14% percentage points

348



Fig. 6: Comparing top-k action prediction accuracy for our

system against baselines. We plot results for increasing values

of k. Personalized transformer performs the best and is

significantly better than simple transformer model.

Fig. 7: Top-k action prediction accuracy for different values

of k using different personalization strategies. Adding person-

alization during training performs the best with significant

improvement in top-1 accuracy.

for top-1. Action personalization performs better than only

using connections after showing three or more suggestions,

indicating that users often reuse actions. This hypothesis

is reinforced by action personalization performing similar

to trained personalization model in top-10 accuracy, both

containing the desired action 98.5% of the time.

C. New Users (Q2)

New users do not have a profile, but we still want to

make good recommendations for them. Figure 8 shows top-1

(green) and top-4 (orange) accuracy on users with (dashed)

and without (full) profiles, for varying levels of personalization

during training. For example, with 50% personalization, for

half examples that the model sees the user profile as all zeros.

Full personalization decreases performance on new users by

about 18%. Without personalization, users with and without

profiles get the same performance—there is no leakage between

Fig. 8: Top-1 and top-4 prediction accuracy compared against

increasing levels of personalization during training for existing

and novel users. Adding personalization improves performance

for existing users without losing performance for novel users

training and testing. The exact degree of personalization has

minimal influence on the results—it was left at 50% for all

other models.

D. Limiting Recommendations (Q3)
To reduce false positives, we want to suppress recommen-

dations when the model is not confident [2]. We provide

some preliminary insights into the relation between predicted

probabilities and the position of the desired action in Fig-

ure 9. Only making predictions when this probability exceeds

some threshold allows us to limit the number of undesired

suggestions.

Fig. 9: Probabilities for tokens being predicted at position K.

V. CONCLUSION

We introduced a personalized decoder model for recom-

mending the next best action in automation platforms. Our

model learns to embed action statistics to user personalization

vectors end-to-end by considering them as embedded tokens.

Our experiments show that learning personalization vectors

significantly improves performance over not making person-

alized suggestions, or only personalizing predictions during

inference. Personalization does not cause worse predictions

by not always providing user information during training. In

the future, we want to use the predicted action probabilities to

suppress recommendations that the model is not certain about.

349



REFERENCES

[1] Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Jeffrey
Dean. Large language models in machine translation. 2007.

[2] José Cambronero, Sumit Gulwani, Vu Le, Daniel Perelman, Arjun
Radhakrishna, Clint Simon, and Ashish Tiwari. Flashfill++: Scaling
programming by example by cutting to the chase. Proceedings of the
ACM on Programming Languages, 7(POPL):952–981, 2023.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde,
Jared Kaplan, Harrison Edwards, Yura Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, David W.
Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, S. Arun
Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew,
Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating large language models trained on code. ArXiv, abs/2107.03374,
2021.

[4] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. Codefill: Multi-
token code completion by jointly learning from structure and naming
sequences. In Proceedings of the 44th International Conference on
Software Engineering, pages 401–412, 2022.

[5] Mary Phuong and Marcus Hutter. Formal algorithms for transformers.
arXiv preprint arXiv:2207.09238, 2022.

[6] Alec Radford and Karthik Narasimhan. Improving language understand-
ing by generative pre-training. 2018.

[7] Ronald Rosenfeld. Two decades of statistical language modeling: Where
do we go from here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

[8] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine
translation of rare words with subword units. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, August
2016. Association for Computational Linguistics.

[9] Buck Shlegeris, Fabien Roger, Lawrence Chan, and Euan McLean.
Language models are better than humans at next-token prediction. arXiv
preprint arXiv:2212.11281, 2022.

[10] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan.
Intellicode compose: Code generation using transformer. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 1433–1443, 2020.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[12] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component
analysis. Chemometrics and intelligent laboratory systems, 2(1-3):37–52,
1987.

[13] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. Sse-pt:
Sequential recommendation via personalized transformer. In Proceedings
of the 14th ACM Conference on Recommender Systems, pages 328–337,
2020.

[14] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James L Sharpnack. Stochastic
shared embeddings: Data-driven regularization of embedding layers.
Advances in Neural Information Processing Systems, 32, 2019.

350


